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We show how entangled qubits can be encoded as entangled coherent states of two-dimensional center-of-

mass vibrational motion for two ions in an ion trap. The entangled qubit state is equivalent to the canonical

Bell state, and we introduce a proposal for entanglement transfer from the two vibrational modes to the

electronic states of the two ions in order for the Bell state to be detected by resonance fluorescence shelving

methods.

PACS number~s!: 03.65.Bz

The qubit, or quantum bit, is the fundamental component
of information in quantum computation. In the case of a
spin-1/2 system, for some axis of orientation, one can iden-
tify the up state with an on state, generally written as u1&L

[u1& , for 1 indicating on and the L subscript indicating that
this is a logical state. The u0&L[u0&, or off state, then corre-
sponds to down for this orientation. Qubits can thus be real-
ized, in principle, in any spin-1/2 system, such as the elec-
tronic state of a two-level atom, the polarization of a single
photon, or the vibrational state of an ion that is restricted to
either zero- or one-phonon excitations. The concept of qubits
is useful for quantum information considerations, but the
qubit is also a useful construct for Bell inequality tests @1,2#
and for considering the maximally entangled canonical Bell
states.

It is not necessary to restrict a qubit encoding to systems
with a two-dimensional Hilbert space. For example, a more
exotic form of qubit can be constructed from superpositions
of coherent states @3# and, as we show here, by employing
entangled coherent states @4#. Despite both the nonorthogo-
nality of coherent states and the unbounded Hilbert space,
Bell inequality violations are possible in both limits a→0
@4# and a→` @5#, for a the dimensionless amplitude of the
coherent state. The a→` limit is achieved by representing
the entangled coherent states in a subspace corresponding to
two-coupled spin-1/2 systems, and ideal canonical Bell states
are realized in the a→` limit. Entangled coherent states can
include the entanglement of even and odd coherent states @6#,
which can also be treated as coupled spin-1/2 systems. The
advantage of entangled even and odd coherent states, as we
show, is that the states are distinguishable by parity, so that
heating that changes the vibrational quanta corresponds to
bit-flip errors, which can be detected and corrected via the
appropriate circuit @7#.

Here we show how the desired entangled coherent states
can be created for the two-dimensional center-of-mass vibra-
tional mode state of two trapped ions. This proposal involves
the generalization of experimental techniques for generating
even coherent states for the motional state of one ion in one
dimension @8,9#. The advantage of distinguishing the logical
states by phonon number parity has been shown for the case

of one-dimensional motion @3,10#. We demonstrate that these
entangled coherent states can be represented as entangled
qubit states, and, moreover, such a state is equivalent to a
canonical Bell state up to unitary transformation with respect
to one of the two vibrational modes, which is up to a local
unitary transformation. In order to make measurements on
the entangled coherent states we give a procedure for swap-
ping entanglement from the vibrational to the internal elec-
tronic states of the ions, which can then be read by resonance
shelving methods.

The two-mode coherent state

ua ,b&[ua&a ^ ub&b ~1!

can be prepared in an entangled coherent state via the mutual
phase-shift interaction H I5\xa†ab†b; this interaction has
been studied in detail in the context of quantum nondemoli-
tion measurements @11# and for implementing phase gates
for photon qubits @12#. In the ion trap, the two-mode coher-
ent state corresponds to a two-dimensional Gaussian wave
packet for the center-of-mass motion of the two trapped ions.
The mutual phase-shift interaction between these two vibra-
tional modes of freedom for the ion can be achieved by an
appropriate Raman laser excitation @13#.

After an interaction time t5p/x , the output state is @14#

uc&5

1

A2
~ ua&a ^ u1&b1u2a&a ^ u2&b)

5

1

A2
~ u1&a ^ ub&b1u2&a ^ u2b&b), ~2!

where the even and odd coherent states are defined by

u6&a[N6~a !~ ua&a6u2a&a),

~3!

u6&b[N6~b !~ ub&b6u2b&b),

with N6 being the appropriate normalization coefficients
given by

N6~j !51/A262e22uju2. ~4!*Electronic address: billm@physics.uq.edu.au
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We will generally ignore these normalization coefficients un-
less otherwise stated.

The state in Eq. ~2! is equivalent, up to a local ~single-
oscillator! unitary transformation, to a Bell state for a par-
ticular encoding. Following Ref @3#, the logical states are
encoded in terms of even and odd coherent states, viz.,

u0&↔u1&, u1&↔u2&, ~5!

and the Discrete Fourier transform states are represented by

u0&↔u0&1u1&, u1&↔u0&2u1&. ~6!

We can ignore normalization coefficients and write the state
~2! as

uc&5u0&a ^ u0&b1u1&a ^ u1&b5u0&a ^ u0&b1u1&a ^ u1&b .
~7!

A single-qubit rotation on either oscillator a or b of the form

u0&→u0& , u1&→u1& ~8!

leads to uc& in Eq. ~7! being in the maximally entangled Bell
state

uf1&[u0& ^ u0&1u1& ^ u1&. ~9!

The Bell state ~9! is entangled with respect to phonon
number parity. That is, the two-dimensional oscillations are
either both in even coherent states or in odd coherent states.
A bit-flip error would destroy this parity entanglement. We
now show how the prepared state uc& in Eq. ~2! can be
transformed into the Bell state ~9!.

We must be able to implement the qubit rotation in the
logical basis of the mode, namely,

S uc0~u !&

uc1~u !&
D 5S cos u i sin u

i sin u cos u
D S u0&

u1&
D . ~10!

We present one simple, but approximate, scheme to achieve
this rotation. For D(b)[ exp(ba†

2b*a) as the displacement
operator, we can express the displaced coherent state as

D~b !ua&5e i Im(ab*)ua1b&, ~11!

which acquires a phase shift Im(ab*). Displacements can
be effected in ion traps via the Raman laser scheme @8,9#.
We assume that bosonic coding employs coherent states with
real amplitudes, and we assume that e[2ib is real to obtain

D~ ie !ua&'e iaeua1ie& . ~12!

If we let u5ae be fixed, with e→0 and a→` , then we
obtain the rotation ~10! for

uc0~u !&;D~ ie !u0&, uc1~u !&;D~ ie !u1&. ~13!

The displacement-effected rotation is approximate but ad-
equate for sufficiently small e . In order to quantify the effec-
tiveness of this approach to rotation, we consider the fidelity
of the operation

F5 z^c0~u !uD~ ie !u0& z25 z^c1~u !uD~ ie !u1& z25 exp~2e2!.
~14!

Here we have explicitly taken the normalization in Eq. ~3!
into account. The fidelity approaches unity exponentially
with respect to e2 and hence is a good approximation for
small e .

The Bell state can thus be created for the state of the
two-dimensional vibrational mode. However, direct detec-
tion of the Bell state is not possible with current technology.
An entanglement transfer from the vibrational mode to the
internal electronic states of the ions would allow detection of
the entanglement due to the existence of the Bell state. The
electronic state of an ion can be ‘‘rotated’’ and read with
current technology.

In order to transfer entanglement from vibrational to elec-
tronic degrees of freedom, we need to be able to effect the
transfer

~c0u0&1c1u1&)u0&e→u0&~c0u0&e1c1u1&e), ~15!

for $u0&e ,u1&e% the two electronic states of the ion. The trans-
fer ~15! is achieved via the swap operation

u0& ^ u0&e→u0& ^ u0&e , ~16a!

u0& ^ u1&e→u1& ^ u0&e , ~16b!

u1& ^ u0&e→u0& ^ u1&e , ~16c!

u1& ^ u1&e→u1& ^ u1&e . ~16d!

The swap operation can be realized via a sequence of
three controlled-NOT gates. The vibrational qubit is the con-
trol and the electronic qubit is the target for the first and third
gates, and the reverse holds for the second qubit. We now
discuss how to realize these two types of controlled-NOT

gates.
In the first case, where the vibrational qubit is the control,

it is necessary for the electronic qubit to be prepared in the
ground state and to become excited if and only if the vibra-
tional qubit contains an odd number of phonons. This trans-
formation is achieved via the unitary operator

Uve5 exp@2ipa†asy#exp@ ipa†au1&e^1u# , ~17!

which can be achieved by employing several Raman pulses
at the carrier frequency. Schneider et al. @16# explicitly con-
sidered a unitary operator of the form exp@2ipa†asz#. Not-
ing that sy5UszU

†, where U is a single-qubit rotation, the
exp@2ipa†asy# operator can be achieved by first applying a
single-qubit rotation to the electronic state and then by per-
forming the exp@2ipa†asz# operation via Raman pulses.

The exp@2ipa†asy# part of the unitary operator ~17!
transforms the input states as follows:

exp@2ipa†asy#u0& ^ u0&e5u0& ^ u0&e , ~18a!

exp@2ipa†asy#u0& ^ u1&e5u0& ^ u1&e , ~18b!

exp@2ipa†asy#u1& ^ u0&e52u1& ^ u1&e , ~18c!

W. J. MUNRO, G. J. MILBURN, AND B. C. SANDERS PHYSICAL REVIEW A 62 052108

052108-2



exp@2ipa†asy#u1& ^ u1&e5u1& ^ u0&e , ~18d!

whereas the operator exp@ipa†au1&e^1u# flips the sign of the
u1& ^ u1&e term

exp@ ipa†au1&e^1u#u1& ^ u1&e52u1& ^ u1&e , ~19!

while leaving the other states u0& ^ u0&e , u0& ^ u1&e and u1&
^ u0&e unchanged. Hence the unitary transformation ~17! is a
CNOT with the vibrational modes being the control bit and
the electronic mode the target.

The second controlled-NOT gate reverses the roles of the
vibrational and electronic qubits. Therefore, phonon number
parity must be changed if the ion is in the excited state. The
required unitary transformation is the conditional displace-
ment of the vibrational mode if and only if the ion is in the
excited state, and such conditional displacements have been
achieved experimentally @8,9#. The corresponding unitary
operator is

Uev5 exp@ ie~a1a†!u1&e^1u#exp@2ipu1&e^1u/2# ,
~20!

with u5ae5p/2. The exp@ie(a1a†)u1&e^1u# part in Eq. ~20!
gives

exp@ ie~a1a†!u1&e^1u#u0& ^ u0&e5u0& ^ u0&e , ~21a!

exp@ ie~a1a†!u1&e^1u#u0& ^ u1&e52u1& ^ u1&e , ~21b!

exp@ ie~a1a†!u1&e^1u#u1& ^ u0&e5u1& ^ u0&e , ~21c!

exp@ ie~a1a†!u1&e^1u#u1& ^ u1&e52u0& ^ u1&e , ~21d!

while the second term exp@2ipu1&e^1u/2# flips the sign of the
u0& ^ u1&e and u1& ^ u1&e states. Hence the unitary operator
~20! performs the required controlled-NOT operation with the
electronic mode as the control and the vibrational mode as
the target.

It is straightforward to then show that the sequence

Uswap5UveUevUve ~22!

produces the desired entanglement swap. This sequence
should be achievable with current experimentally technol-
ogy.

In current ion trap experiments heating of the vibrational
mode, though small, cannot be neglected. A simple model of
heating for a vibrational mode with annihilation operator a is
described by the master equation @15#

dr

dt
5

g

2
@2a†ra12ara† ~23!

2~a†a1aa†!r2r~a†a1a†a !].
~24!

This master equation describes two conditional point pro-
cesses; one corresponds to an upward transition in phonon
number at rate g^aa†&, and the other, to a downward transi-
tion at the rate g^a†a&. For the states discussed in this paper

these two rates are approximately the same, at least initially.
The mean value of the amplitude does not decay, but the
average energy increases at the constant rate g . We can thus
model the heating by two independent jump processes. We
will assume that over each run of the experiment, taking time
t , the heating rate is low enough that we only need to con-
sider at most a single jump, either up or down, with prob-
ability d5guau2T . If only a single jump occurs, no matter
which way upward or downward, it flips the parity of the
state. In other words, heating leads to bit-flip errors.

Up to a fidelity of exp(2e2), the pure Bell state r
5

1
2 uf1&^f1u is obtained. In order to test a Bell inequality

with the entangled coherent states, a large number of runs of
the experiment would need to be performed, and the state
may vary from one run to the next if bit-flip errors occur.
Thus the test of the Bell inequality is actually performed on
a mixed state. Provided that a time interval t is chosen such
that the probability of more than one bit-flip error due to
heating is negligible, the density matrix for the state can be
expressed as

r5

1

2
~12d !uf1&K f1U1 1

2
dUc1L ^c1u, ~25!

with

uc1&[u0& ^ u1&1u1& ^ u0& ~26!

being another of the four maximally entangled Bell states.
The Bell state uc1& is orthogonal to the desired state uf1&.

The state given by Eq. ~25! for d sufficiently small must
violate the spin Bell inequality @1,2#

B5uE~u1 ,u2!1E~u1 ,u28!1E~u18 ,u2!2E~u18 ,u28!u<2,
~27!

where the correlation function E(u1 ,u2) is given by the ex-
pectation value

E~u1 ,u2!5^su1

(1)su2

(2)&. ~28!

Here the operator su i

(i) may be defined as

su i

(i)
5 cos u isx

(i)
1 sin u isy

(i) , ~29!

where the operators sa
(i) ~with a5x , y or z) are the a Pauli

spin operators for the two–level system of atom i. The tun-

able parameters u i (i51,2) control the proportion of sx
(i) to

sy
(i) in su i

(i) and function like variable polarizers in the

single–photon experiments.
In an ion trap this correlation function ~28! is achieved by

first applying single-qubit rotations to both ions and then by

performing a simultaneous measurement of ŝz on both ions.

The ŝz measurement is achieved with high precision via the
shelving fluorescence technique @18#. The experiment is re-
peated over many runs and the average gives the desired
correlation function E(u1 ,u2). Mathematically, this correla-
tion function can be expressed in the form
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E~u1 ,u2!5Tr@rV̂1
1/2~u1!sz

(1)„V̂1
1/2~u1!…†V̂2

1/2~u2!sz
(2)

3„V̂2
1/2~u2!…†# ~30!

where the Cirac and Zoller single-qubit rotations @17# V̂ i
k(f)

on the ith ion are given by

V̂ i
k~f !5 expF2ik

p

2
~ u1& i^0ue2iu i1u0& i^1ue iu i!G . ~31!

This single-qubit rotation is achieved by applying a carrier
pulse of length kp with a phase u i .

Returning to the density matrix given by Eq. ~25!, it is
easily shown that the correlation function ~28! has the sim-
plified form

E~u1 ,u2!5~12d !cos~u11u2!1d cos~u12u2!; ~32!

hence, the spin Bell inequality ~27! for optimal-angles
choices @19# reduces to

B52A2~12d !. ~33!

A violation of this inequality is possible for B.2, when d
,121/A2. Whereas the Bell inequality is technically vio-
lated, this does not present a loophole-free test due to the
limited temporal separation of the ions. It does, however,
completely close the detection loophole.

To summarize, we have described how entangled qubits
can be encoded as entangled coherent states of two-
dimensional center-of-mass vibrational motion for two ions
in an ion trap. The entangled qubit state is equivalent to the
canonical Bell state, and by transferring the entanglement
from the two vibrational modes to the electronic states of the
two ions, the Bell state can be detected by resonance fluo-
rescence shelving methods.
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