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Abstract: Advances in cosmology and astronomical observations have brought to light significant
tensions and uncertainties within the current model of cosmology, which assumes a spatially flat
Universe and is known as the ΛCDM model. Moreover, the Planck Legacy 2018 release has preferred
that the early Universe had a positive curvature with a confidence level more than 99%. This study
reports a quantum mechanism that could potentially replace the concept of dark matter/energy by
taking into the account the primordial curvature while generating the present-day spatial flatness.
The approach incorporates the primordial curvature as the background curvature to extend the field
equations into brane-world gravity. It utilizes a new wavefunction of the Universe that propagates
in the bulk with respect to the scale factor and curvature radius of the early Universe upon the
emission of the cosmic microwave background. The resulting wavefunction yields both positive and
negative solutions, revealing the presence of a pair of entangled wavefunctions as a manifestation
of the creation of matter and antimatter sides of the Universe. The wavefunction shows a nascent
hyperbolic expansion away from early energy in opposite directions followed by a first decelerating
expansion phase during the first ~10 Gyr and a subsequent accelerating expansion phase in reverse
directions. During the second phase, both Universe sides are free-falling towards each other under
gravitational acceleration. The simulation of the predicted background curvature evolution shows
that the early curved background caused galaxies to experience external fields, resulting in the fast
orbital speed of outer stars. Finally, the wavefunction predicts that the Universe will eventually
undergo a rapid contraction phase resulting in a Big Crunch, which reveals a cyclic Universe.

Keywords: duality; antimatter

1. Introduction

The Planck Legacy 2018 recent release implied a high confidence level of over 99%
for a positively curved early Universe [1]. Efforts to recover spatial flatness by employing
baryon acoustic oscillation data have encountered difficulties due to a discrepancy in the
curvature parameter between the two datasets, which is 2.5 to 3σ [2].

Despite the success of the ΛCDM model of a spatially flat Universe, it masks large areas
of ambiguity [3]. It is built upon vague components, namely, inflation, dark matter, and dark
energy that have not been identified or fully understood despite extensive research efforts
over decades. It leaves numerous enigmas, including the inferred baryon asymmetry,
coincidence, cosmological constant problems, etc. Moreover, advances in cosmology
and the enhanced precision of observations revealed inconsistencies among the essential
parameters of the model—notably, the Hubble tension at 4 to 6σ [4].

The objective of this paper is to tackle the issues related to the Universe’s accelerated
expansion and the high speed of the outer stars by adopting a quantum approach. Instead
of the concept of dark matter/energy, this paper considers a quantum mechanism that is
consistent with the preferred positively curved early Universe while yielding the present-
day spatial flatness.
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2. Interaction Field Equations

The Planck Legacy 2018 release preferred a closed early Universe, which indicates a
curved early bulk. By considering the bulk effect, an extended action is obtained as

S = ED

∫
C

[
R
R +

L
L

]√
−g d4ρ (1)

where R andR are the localized and bulk curvatures, while L and L are their Lagrangian
densities, respectively. The bulk’s modulus, ED, can be stated in terms of its resistance
or field strength by using a Lagrangian formalism as ED = −FλρFλρ/4µ0. Due to bulk’s
constant modulus and by considering its expansion, a dual action can be presented as

S =
∫

B

[
−Fλρ g̃λγFγα g̃ρα

4µ0

]√
−g̃

∫
C

[
Rµνgµν

Rµν g̃µν +
Lµνgµν

Lµν g̃µν

]√
−g d4ρ d4σ (2)

Given that inducing a curvature requires high energy densities, it can be deemed that
the bulk’s curvature (both induced and conformal) remains constant with respect to the
quantum fields. Consequently, the action can be further expanded to

S =
∫

B

[
−Fλρ g̃λγFγα g̃ρα

4µ0

]√
−g̃

∫
C

[
Rµνgµν

Rµν g̃µν

]√
−g

∫
Q

[
pµ pvqµν

πµπvgµν +
LαβqαλLλγqβγ

2χ0Lµνgµν

]√
−q ϑ2d12σ (3)

where the two entangled Lagrangian densities are denoted by LαβLαβ/2χ0, while their
respective four-momentum is represented by pµ pv. The four-momentum for vacuum
energy density is represented by πµπv. The derivation of Equation (2) in Ref. [5] results in

Rµν

R − 1
2

R
R gµν −

RRµν

R2 +
R
(
Kµν − 1

2K p̂µν

)
−R

(
Kµν − 1

2 Kq̂µν

)
R2 =

T̂µν

Tµν
(4)

These interaction field equations indicate that the induced over conformal curvatures
equals the imposed over vacuum energy densities. By transforming the bulk’s intrinsic,R,
and extrinsic, K, curvatures in Ref. [5], the interaction field equations reduce to

Rµν −
1
2

Rĝµν −
(

Kµν −
1
2

Kq̂µν

)
=

8πGR
c4 T̂µν (5)

where ĝµν = gµν + 2Rµν/R− 2
=
gµν, which can be expressed as ĝµν = gµν + 2g̃µν − 2

=
gµν

becauseRµν/R = Rµν/Rµν g̃µν = g̃µν, is the conformally transformed metric. The implicit
term RRµν/R = Rg̃µν ≡ Λgµν resembles the cosmological ‘constant’ or parameter term as
the bulk conformal curvature while GR relies on the background curvature.

Whereas the above equations describe the behavior of particles, the corresponding
wave duality can be expressed by utilizing Equation (3) (obtained in Ref. [5]), which gives

p̂µψ− 1
2

p̂νξµνψ−
(

Jµ Aµ −
1
2

Jµ Aνζµν

)
ψ =

}GR
2c2gR

T̂µψ (6)

where p̂µ and T̂µ are the momentum and gravitational operators, respectively;

ξµν = qµν + 2q̃µν − 2
=
qµν is the quantum cloud’s conformally transformed metric and

gR is the gravitational field strength of its parent cloud-world. By applying the quan-
tum operators,

i}γµ∂µψ− 1
2

i}γµ∂νξµνψ−
(

Jµ Aµ −
1
2

Jµ Aνζµν

)
ψ =

1
2
}
xµ R∂Rψ (7)
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These quantized interaction field equations reduce to quantum electrodynamics in a flat
spacetime background [5]. The interaction field equations have the ability to eliminate the
singularities and meet the requirements of a conformal invariance theory.

3. The Wavefunction of the Universe

The standard Friedmann–Lemaître metric assumes an isotropic and homogenous
Universe [6]. To reference it for a closed early Universe, a curvature radius rP when the
CMB was emitted and the corresponding scale factor aP are integrated as in Figure 1.
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emitted and ap is the corresponding reference scale factor.

The spacetime interval of this metric is

ds2 = c2 dt2 − a2(t)
ap2

(
dr2

1− r2/rp2 + r2 dθ2 + r2 sin2 θ dφ2
)

(8)

The hierarchical nature of the quantized field equations can be understood as signify-
ing that a 4D conformal bulk, as a representation of vacuum energy of conformal time flow,
embeds a 4D relativistic cloud-world representing a celestial object of conventional time
flow that, in turn, encapsulates 4D relativistic quantum clouds of quantum time flow. As
the quantum time is quantized in the conventional time, analogously, the latter should be
quantized in the conformal time. The early Universe metric can be stated in terms of the
conformal time as ds2 = a2/ap

2(c2dη2 − dr̃2/(1− r̃2/r̃p
2)− r̃2dθ2 − r̃2 sin2 θdφ2).

To obtain the wavefunction of the Universe, referenced metric in terms of conformal
time is substituted to the quantized field equations in Equation (7), as follows:

i}γµ∂µψ− 1
2

i}γµ∂ν a2(η)

ap2

(
c2 −

(
1− r̃2

r̃p2

)−1

− r̃2 − r̃2 sin2 θ

)
ψ =

}GR
2c2gR

T̂µψ (9)

Owing to the undeformed configuration of the early Universe, Equation (9) reduces to

i}γµ∂µ
a2(η)

ap2

(
c2 −

(
1− r̃2

r̃p2

)−1

− r̃2 − r̃2 sin2 θ

)
ψ =

}Rp
2

Mpc2 Tµψ (10)
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where gp = MpGp/Rp
2 is the gravitational field strength of the early Universe of mass Mp

and extrinsic curvature radius Rp. Performing the four-gradient covariant derivative gives

a2

ap2

(
γη

(
E + i2}

.
a
a

)
− γx pxc− γy pyc− γz pzc−Mpc2

)
A(E, p)expi(E, p) = 0 (11)

where the metric coordinates are transformed into cartesian coordinates.
By applying the gamma matrices, γµ, the wavefunction of the Universe is

ψµ(η) =




1
0

pzc
E+Mpc2+i2hH

pxc+ipyc
E+Mpc2+i2hH

 0 0 0

0


0
1

pxc−ipyc
E+Mpc2+i2hH

−pzc
E+Mpc2+i2hH

 0 0

0 0


pzc

E−Mpc2+i2hH
pxc+ipyc

E−Mpc2+i2hH
1
0

 0

0 0 0


pxc−ipyc

E−Mpc2+i2hH
−pzc

E−Mpc2+i2hH
0
1





expi
(
−R 2

p Tµxµ

Mpc2 − 2Hη

)
(12)

where H =
.
a /a is the Hubble parameter and η = ap

∫
dt/a is the conformal time.

To obtain the Hubble parameter and its evolution, Christoffel symbols are utilized for
the referenced metric in Appendix A. The resultant Ricci tensor components are

Rtt = −3
..
a
a , Rrr =

1
c2

(
a

..
a

ap2 +
2

.
a2

ap2 +
2c2

rp2

)
/
(

1− r2

rp2

)
,

Rθθ = r2

c2

(
a

..
a

ap2 +
2

.
a2

ap2 +
2c2

rp2

)
, Rφφ = r2 sin2 θ

c2

(
a

..
a

ap2 +
2

.
a2

ap2 +
2c2

rp2

)
,

(13)

The perfect fluid equation, Tµν =
(
ρ + P/c2) uµuν + Pgµν, is used to derive the referenced

Friedmann equations, by substituting the referenced metric and Equation (13) in the
interaction field equations, which gives

H2 ≡
.
a2

a2 =
8πGRρ

3
−

c2a 2
p

a2r 2
p

(14)

.
H ≡

..
a
a
= −4πGR

3

(
ρ + 3

P
c2

)
(15)

By expressing Equation (14) in the parametric form of the conformal time, dη = apdτ/ia
(where

.
a = ida/dτ); hence, dη = apda/a

.
a as

∫ η

0
dη =

∫ 2π

0
ap

(
8πGpρpa 3

p

3
a−

c2a 2
p

rp2 a2

)−1/2

da (16)
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where ρ = ρpap
3/a3. By integrating, the evolution over the conformal time of both the

dimensionless scale factor and the imaginary time, τ, (by utilizing dτ = ida/Hap) are

a(η)
ap

=
Gp Mp

c2rp

(
1− cos

c
rp

η

)
, τ(η) = i

Ep

6HED

(
c
rp

η − sin
c
rp

η

)
+ τp (17)

where Mp = 4
3 π ρpr 3

p and Ep are early Universe’s mass and energy density, respectively;
the amplitude of imaginary time is expressed in terms of vacuum energy density, ED.

According to energy conservation, ∆vTuv = 0; thus,
.
a
a Tu

u + 3
.
a
a ρ − i ∂ρ

∂τ = 0 and

3
(

ρ + P
c2

) .
a
a − i ∂ρ

∂τ = 0. The evolution of matter density can be obtained by integrating

these outcomes, which gives ρ(η) = Dp
(
1− cos cη/rp

)−3, where Dp is a constant. By
substituting this finding of matter density evolution and the scale factor in Equation (17)
into Equation (15), the Hubble parameter evolution can be determined by integration as

H(η) = Hr

(
1
5

cot5 c
2rp

η +
2
3

cot3 c
2rp

η + cot
c

2rp
η

)
+ Hp (18)

where Hr and Hp are constants. In addition, a minimal form of the wavefunction of the
Universe regarding its reference value, ψp, can be stated in terms of the spatial scale factor
and imaginary time as

ψ(η)

ψp
= ∓

Ep

6ED

((
1− cos

c
rp

η

)2
+

c2

H 2
η a 2

p

(
c
rp

η − sin
c
rp

η

)2
)1/2

exp i cot−1|H|
ap − ap cos cη/rp

c2η/rp − c sin cη/rp
(19)

where Ep/6ED is a new density parameter that is identified as the ratio of the early Universe
energy density, denoted by Ep, and vacuum energy density, ED.

4. Universe Evolution

The wavefunction has two possible solutions, indicating the existence of two entangled
wavefunctions representing separate matter and antimatter sides of the Universe. The
integration constants of the model were set based on a mean evolution value of the Hubble
parameter of ∼ 70 km·s−1·Mpc−1 and a phase change occurring at 10 billion years.

The matter wavefunction, represented by the orange curve in Figure 2a, suggests that
the evolution of the cosmos can be divided into three different phases. Both sides of the
Universe expand away from the early energy state in the first phase. The expansion speed,
represented by the blue curve in Figure 2b, initially increases at a hyperbolic rate but then
starts to decrease during the first phase due to the gravitational attraction of the sides. It
reaches its minimum at 10 billion years, marking the transition to the next phase.

In contrast, during the second phase, the matter wavefunction changes direction, and
both sides move towards each other in a state of free-fall. Additionally, the expansion speed
starts to increase in this phase, with the minus sign indicating the reverse direction.

Interestingly, according to the matter wavefunction, there will be a final phase of
spatial contraction occurring after approximately 18 billion years, which will lead to a
Big Crunch, indicating a cyclic Universe. According to its wavefunction, radiation-only
is predicted to propagate from one side to another, as shown in Figures 2a and 3a; this
phenomenon may explain why the CMB can be observed, despite propagating faster
than matter.

Figure 3a illustrates a representation of the wavefunction, which can also explain the
dark flow. Furthermore, Figure 3b convincingly duplicates the SLOAN Digital Sky Survey
data visualization by displaying the apparent geometry of the Universe due to the effects
of gravitational lensing.



Phys. Sci. Forum 2023, 7, 56 6 of 12

Phys. Sci. Forum 2023, 3, x 5 of 12 
 

 

these outcomes, which gives 𝜌 (𝜂) = 𝐷 (1 − 𝑐𝑜𝑠 𝑐𝜂 𝑟⁄ ) , where 𝐷  is a constant. By sub-
stituting this finding of matter density evolution and the scale factor in Equation (17) into 
Equation (15), the Hubble parameter evolution can be determined by integration as  𝐻(𝜂) = 𝐻 15 𝑐𝑜𝑡 𝑐2𝑟 𝜂 + 23 𝑐𝑜𝑡 𝑐2𝑟 𝜂 + 𝑐𝑜𝑡 𝑐2𝑟 𝜂 + 𝐻  (18)

where 𝐻  and 𝐻  are constants. In addition, a minimal form of the wavefunction of the 
Universe regarding its reference value, 𝜓 , can be stated in terms of the spatial scale factor 
and imaginary time as 𝜓(𝜂)𝜓 = ∓ 𝐸6𝐸  1 − 𝑐𝑜𝑠 𝑐𝑟 𝜂 + 𝑐𝐻  𝑎 𝑐𝑟 𝜂 − 𝑠𝑖𝑛 𝑐𝑟 𝜂 / 𝑒𝑥𝑝 𝑖𝑐𝑜𝑡 |𝐻| 𝑎 − 𝑎 𝑐𝑜𝑠 𝑐𝜂 𝑟⁄  𝑐 𝜂 𝑟⁄ − 𝑐 𝑠𝑖𝑛 𝑐𝜂 𝑟⁄    (19)

where 𝐸 /6𝐸  is a new density parameter that is identified as the ratio of the early Uni-
verse energy density, denoted by 𝐸 , and vacuum energy density, 𝐸 . 

4. Universe Evolution 
The wavefunction has two possible solutions, indicating the existence of two entan-

gled wavefunctions representing separate matter and antimatter sides of the Universe. 
The integration constants of the model were set based on a mean evolution value of the 
Hubble parameter of ~70 km∙s−1∙Mpc−1 and a phase change occurring at 10 billion years. 

The matter wavefunction, represented by the orange curve in Figure 2a, suggests that 
the evolution of the cosmos can be divided into three different phases. Both sides of the 
Universe expand away from the early energy state in the first phase. The expansion speed, 
represented by the blue curve in Figure 2b, initially increases at a hyperbolic rate but then 
starts to decrease during the first phase due to the gravitational attraction of the sides. It 
reaches its minimum at 10 billion years, marking the transition to the next phase. 

In contrast, during the second phase, the matter wavefunction changes direction, and 
both sides move towards each other in a state of free-fall. Additionally, the expansion 
speed starts to increase in this phase, with the minus sign indicating the reverse direction. 

 
Figure 2. (a) The diagram shows the matter wavefunction of one side of the Universe along with a 
radiation wavefunction and a light cone depicted by a straight line (not to scale). (b) The plot shows 
the Hubble parameter H. 

Interestingly, according to the matter wavefunction, there will be a final phase of 
spatial contraction occurring after approximately 18 billion years, which will lead to a Big 

Figure 2. (a) The diagram shows the matter wavefunction of one side of the Universe along with a
radiation wavefunction and a light cone depicted by a straight line (not to scale). (b) The plot shows
the Hubble parameter H.

Phys. Sci. Forum 2023, 3, x 6 of 12 
 

 

Crunch, indicating a cyclic Universe. According to its wavefunction, radiation-only is pre-
dicted to propagate from one side to another, as shown in Figures 2a and 3a; this phenom-
enon may explain why the CMB can be observed, despite propagating faster than matter. 

Figure 3a illustrates a representation of the wavefunction, which can also explain the 
dark flow. Furthermore, Figure 3b convincingly duplicates the SLOAN Digital Sky Survey 
data visualization by displaying the apparent geometry of the Universe due to the effects 
of gravitational lensing.  

 
Figure 3. (a) A diagram representing the predicted topology of both sides. (b) The apparent topol-
ogy in the first and second phases. 

Figure 4a illustrates that when a set of spacetime paths were simulated with an initial 
positive curvature, the spacetime became curved during the first phase. This curvature 
indicates that the ends of the worldlines are not equal at any given moment in time. Con-
versely, during the second accelerated expansion phase in the reverse directions, the sim-
ulation of worldlines coupled with the initial positive curvature resulted in the ends of 
the worldlines being equal at all times, as shown in Figure 4b. This phenomenon occurs 
because the worldlines that covered the greatest distances in the first phase due to the 
positive curvature (Figure 4a) take the longest routes in the second phase, as shown in 
Figure 4b, due to their reverse directions, and the same is true for the reverse situation. 

 
(a) (b) 

Figure 4. The evolution of spacetime worldlines during two different time periods: (a) the early 
Universe and (b) the modern Universe. 
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in the first and second phases.

Figure 4a illustrates that when a set of spacetime paths were simulated with an initial
positive curvature, the spacetime became curved during the first phase. This curvature
indicates that the ends of the worldlines are not equal at any given moment in time.
Conversely, during the second accelerated expansion phase in the reverse directions, the
simulation of worldlines coupled with the initial positive curvature resulted in the ends of
the worldlines being equal at all times, as shown in Figure 4b. This phenomenon occurs
because the worldlines that covered the greatest distances in the first phase due to the
positive curvature (Figure 4a) take the longest routes in the second phase, as shown in
Figure 4b, due to their reverse directions, and the same is true for the reverse situation.
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5. Galaxy Evolution and Rotation

The PL18 release suggests a background curvature that can be used in conjunction with
the new interaction field equations to propose a new scenario for the formation of galaxies.
This scenario involves a cloud-world that rotates and flows within a conformal bulk of
an initial curvature. When calculating the entropy of a black hole using the semiclassical
method, the boundary term is solely responsible for the entire influence [7]. By using this
finding and reorganizing the field equations as

Rµν −
1
2

Rgµν −
RRµν

R =
8πGR

c4 T̂µν −
R
(
Kµν − 1

2K p̂µν

)
−R

(
Kµν − 1

2 Kq̂µν

)
R = 0 (20)

Equation (20) gives

Rµν =
1
2

Rgµν + R
Rµν

R =
1
2

R
(

gµν + 2g̃µν

)
=

1
2

Rgµν

(
1 + 2Ω2

)
=

1
2

Rĝµν = 0 (21)

where Ω2 is a conformal function as g̃µν = gµνΩ2. The derived conformally transformed

metric ĝµν = gµν

(
1 + 2Ω2

)
in Appendix B is

ds2 =

(
1− rs

r
−

r̃p

r̃

)−c2dt2 + S2

 dr2

1 + rs2

r2 − 2 rs
r

+
r2dθ2 + r2 sin2 θdφ2

1− rs
r −

r̃p
r̃

 (22)

In a flat background ( r̃ → ∞) , this metric reduces to the Schwarzschild metric, where
the conformal function is Ω2 = − r̃p

2r̃ /
(
1− rs

r
)
; here r̃p = 2Gp Mp/c2 is the gravitational

radius of the early Universe. The minus sign of Ω2 indicates a spatial contraction through
evolving in the conformal time as in a vortex model.

A study was carried out to examine how the background curvature affects the core of a
galaxy. The simulation used a fluid to represent the spacetime continuum with curved paths
that increased incrementally as the background curvature evolved as shown in Figure 5a.
The findings from the simulation were then applied to create a model of a spiral galaxy,
which is depicted in Figure 5b.
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Figure 5. (a) The influence of the background curvature on the galaxy core. (b) A simulation of the
rotation of a galaxy in a curved background, with the fastest tangential speeds shown in red.

The simulation showed that the rotational velocity of a spiral galaxy’s outer regions
is higher than that of its inner regions. This finding is consistent with observed rotational
patterns of galaxies, except it used an ideal fluid.

6. Conclusions

This research shows that two entangled wavefunctions were created as an indication
of the Universe’s separate matter and antimatter sides. Presently, as both sides fell freely
towards each other under gravitational acceleration, this could be responsible for the
effects linked to dark flow and dark energy. The predicted evolution of the background
curvature shows that the outer stars move rapidly due to external fields exerted on them,
which could account for the observed phenomena attributed to the dark matter. The
wavefunction predicts that the Universe will eventually undergo a phase of rapid spatial
contraction towards the end, culminating in a Big Crunch, implying that the Universe goes
through cycles.
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Appendix A

The referenced metric is

gµν =



c2 0 0 0

0 −

(
a2

ap2

)
(

1− r2
rp2

) 0 0

0 0 −
(

a2

ap2

)
r2 0

0 0 0 −
(

a2

ap2

)
r2 sin2 θ


(A1)
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The inverse referenced metric is

guv =



1
c2 0 0 0

0 −

(
1− r2

rp2

)
(

a2
ap2

) 0 0

0 0 −1(
a2

ap2

)
r2

0

0 0 0 −1(
a2

ap2

)
r2 sin2 θ


(A2)

The non-zero Christoffel symbols are

Γ0
11 =

a
.
a

c2ap2
(

1− r2

rp2

) , Γ0
22 =

r2a
.
a

c2ap2 , Γ0
33 =

r2a
.
a sin2 θ

c2ap2 (A3)

Γ1
11 =

r

rp2
(

1− r2

rp2

) , Γ1
22 = −r

(
1− r2

rp2

)
, Γ1

33 = −r sin2 θ

(
1− r2

rp2

)
(A4)

Γ1
01 = Γ2

02 = Γ3
03 = Γ1

10 = Γ2
20 = Γ3

30 =

.
a
a

(A5)

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1
r

(A6)

Γ2
33 = − sin θ cos θ, Γ3

23 = Γ3
32 = cot θ (A7)

The non-zero components are solved as follows. The t− t component is

R tt = R 00 = −∂0Γ1
01 − ∂0Γ2

02 − ∂0Γ3
03 − Γ1

01Γ1
10 − Γ2

02Γ2
20 − Γ3

03Γ3
30 (A8)

R tt = −3∂t

.
a
a
− 3
( .

a
a

)2

= −3
..
aa − .

a2

a2 − 3
.
a2

a2 = −3
..
a
a

(A9)

The r− r component is

Rrr = R11 = ∂0Γ0
11 − ∂1Γ2

12 − ∂1Γ3
13 + Γ0

11Γ2
02 + Γ0

11Γ3
03 − Γ1

10Γ0
11 + Γ1

11Γ2
12 + Γ1

11Γ3
13 (A10)

Rrr = ∂t
a

.
a

c2ap2
(

1− r2

rp2

) − 2∂r
1
r
+

a
.
a

c2ap2
(

1− r2

rp2

) .
a
a
+ 2

r

rp2
(

1− r2

rp2

) 1
r
− 2

1
r2 (A11)

Rrr =
a

..
a

c2ap2
(

1− r2

rp2

) +

.
a2

c2ap2
(

1− r2

rp2

) +

.
a2

c2ap2
(

1− r2

rp2

) +
2

rp2
(

1− r2

rp2

) (A12)

Rrr =

(
a

..
a

ap2 +
2

.
a2

ap2 +
2c2

rp2

)
c2
(

1− r2

rp2

) (A13)

The θ − θ component is

Rθθ = R22 = ∂0Γ0
22 + ∂1Γ1

22 − ∂2Γ3
23 + Γ0

22Γ1
01 + Γ0

22Γ3
03 + Γ1

22Γ1
11 + Γ1

22Γ3
13 − Γ2

20Γ0
22

−Γ2
21Γ1

22 − Γ3
23Γ3

32

(A14)

Rθθ = ∂t
r2a

.
a

c2ap2 − ∂r r
(

1− r2

rp2

)
− ∂θ cot(θ) +

r2a
.
a

c2ap2

.
a
a
− r
(

1− r2

rp2

)
1
r
− cot2(θ) (A15)
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Rθθ =
r2a

..
a

c2ap2 +
r2 .

a2

c2ap2 +

(
3

r2

rp2 − 1
)
+ csc2(θ) +

r2 .
a2

c2ap2 −
(

1− r2

rp2

)
− cot2(θ) (A16)

Rθθ =
r2a

..
a

c2ap2 + 2
r2 .

a2

c2ap2 +

(
2

r2

rp2

)
− 1 + csc2(θ)− cot2(θ) (A17)

Rθθ =
r2

c2

(
a

..
a

ap2 +
2

.
a2

ap2 +
2c2

rp2

)
(A18)

The φ− φ component is

Rφφ = R33 = ∂0Γ0
33 + ∂1Γ1

33 + ∂2Γ2
33 + Γ0

33Γ1
01 + Γ0

33Γ2
02 + Γ1

33Γ1
11

+Γ1
33Γ2

12 − Γ3
30Γ0

33 − Γ3
31Γ1

33 − Γ3
32Γ2

33

(A19)

Rφφ = ∂t
r2a

.
a sin2 θ
c2ap2 − ∂r r sin2θ

(
1− r2

rp2

)
− ∂θ sin θ cos θ + 2 r2a

.
a sin2 θ
c2ap2

.
a
a

−r sin2 θ
(

1− r2

rp2

)
r

rp2
(

1− r2
rp2

) − r sin2θ
(

1− r2

rp2

)
1
r

−
.
a
a

r2a
.
a sin2 θ
c2ap2 + r sin2 θ

(
1− r2

rp2

)
1
r + sin θ cos θ cot θ

(A20)

Rφφ = R33 = r2a
..
a sin2 θ
c2ap2 + r2 .

a2 sin2 θ
c2ap2 − sin2 θ

(
1 + 3 r2

rp2

)
+ sin2 θ − cos2θ

+ r2 .
a2 sin2 θ
c2ap2 − sin2 θ

(
r2

rp2

)
+ cos2 θ

(A21)

Rφφ = R33 =
r2a

..
a sin2 θ

c2ap2 + 2
r2 .

a2 sin2 θ

c2ap2 + 2 sin2 θ
r2

rp2 (A22)

Rφφ =
r2 sin2 θ

c2

(
a

..
a

ap2 +
2

.
a2

ap2 +
2c2

rp2

)
(A23)

The Ricci scalar curvature is

R = Rµν gµν = − 6
c2

( ..
a
a
+

.
a2

a2 +
c2 a 2

p

a2 r 2
p

)
(A24)

where the dotes are conventional time derivatives.

Appendix B

The conformally transformed metric ĝµν = gµν

(
1 + 2Ω2

)
can be written as

ds2 = −
(

A(r) + 2A(r)Ω2(r, r̃)
)

c2dt2 +
(

B(r) + 2B(λ)Ω2(r, r̃)
)

dr2 + r2gω (A25)

The metric in transformed coordinate is

ds2 = −
(

A(λ) + 2A(λ)Ω2(λ, r̃)
)

c2dt2 +
(

B(λ) + 2B(λ)Ω2(λ, r̃)
)

dλ2 + λ2gω (A26)
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The Christoffel symbols are

Γ1
00 =

.
A(1+2Ω2)+4A

.
Ω

2(B+2BΩ2)
, Γ0

01 =

.
A(1+2Ω2)+4A

.
Ω

2(A+2AΩ2)
, Γ1

11 =

.
B(1+2Ω2)+4B

.
Ω

2(B+2BΩ2)

Γ1
22 = −λ

(B+2BΩ2)
, Γ1

33 = −λ sin2 θ

(B+2BΩ2)
, Γ2

21 = Γ2
12 = 1

λ

Γ2
33 = − sin θ cos θ, Γ3

32 = Γ3
23 = cos θ

sin θ

(A27)

The Ricci tensor components are

Rtt = −
..
A
(

1+2Ω2+4
.

Ω
)
+4A

..
Ω+4

.
Ω

.
A

2(B+2BΩ2)
+

( .
A(1+2Ω2)+4A

.
Ω

)( .
B(1+2Ω2)+4B

.
Ω
)

4(B+2BΩ2)
2

+

( .
A(1+2Ω2)+4A

.
Ω
)2

4(A+2AΩ2)(B+2BΩ2)
− 1

λ

.
A(1+2Ω2)+4A

.
Ω

(B+2BΩ2)

(A28)

Rrr =
1
2

( ..
A
(

1+2Ω2+4
.

Ω
)
+4A

..
Ω+4

.
Ω

.
A

(A+2AΩ2)
−
( .

A(1+2Ω2)+4A
.

Ω
)2

2(A+2AΩ2)
2

)

−
( .

A(1+2Ω2)+4A
.

Ω
)( .

B(1+2Ω2)+4B
.

Ω
)

4(A+2AΩ2)(B+2BΩ2)
− 1

λ

.
B(1+2Ω2)+4B

.
Ω

B+2BΩ2

(A29)

Rθθ = 1
(B+2BΩ2)

− λ
2(B+2BΩ2)

( .
B(1+2Ω2)+4B

.
Ω

(B+2BΩ2)
−

.
A(1+2Ω2)+4A

.
Ω

(A+2AΩ2)

)
− 1 (A30)

Rφφ = sin2 θ

(B+2BΩ2)
− λ sin2 θ

2(B+2BΩ2)

( .
B(1+2Ω2)+4BΏ

(B+2BΩ2)
−

.
A(1+2Ω2)+4A

.
Ω

(A+2AΩ2)

)
− sin2 θ (A31)

Substituting the components in Equation (21) yields( .
A
(

1 + 2Ω2
)
+ 4A

.
Ω
)(

B + 2BΩ2
)
+
(

A + 2AΩ2
)( .

B
(

1 + 2Ω2
)
+ 4B

.
Ω
)
= 0 (A32)

Equation (A32) gives

B + 2BΩ2 =
k

A + 2AΩ2 (A33)

where k = 1 + 4Ω2 + Ω4. The weak-field limit: ĝµν ≈ ηµν + ĥµν, gives

Γi
tt =

1
2

∫
∂i ĥtt =

1
c2

∫
∂i ϕ (A34)

Integrating gives

ĝtt = −A
(

1 + 2Ω2
)
= −

(
ηtt +

2ϕc

c2 +
2ϕb
c2

)
(A35)

where ϕc and ϕb are the gravitational potentials of the cloud-world and bulk curvature,
respectively. Combining Equations (A33)–(A35) gives

Ω2 = −
r̃p

2r̃

(
1− rs

r

)−1
, A = 1− rs

r
, B =

(
1− rs

r

)−1
(A36)

where the minus sign of Ω2 indicates a spatial contraction through evolving in the conformal
time as in a vortex model.
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