
Entangled Quantum States and the Kronecker Product

Willi-Hans Steeb and Yorick Hardy
International School for Scientific Computing, Rand Afrikaans University, P.O. Box 524, Auckland
Park 2006, South Africa

Reprint requests to Prof. W.-H. S.; E-mail: whs@na.rau.ac.za

Z. Naturforsch. 57 a, 689–691 (2002); received March 25, 2002

Entangled quantum states are an important component of quantum computing techniques such as
quantum error-correction, dense coding and quantum teleportation. We determine the requirements
for a state in the Hilbert space C C for N to be entangled and a solution to the
corresponding “factorization” problem if this is not the case. We consider the implications of these
criteria for computer algebra applications.
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1. Entanglement

Entanglement is the characteristic trait of quantum
mechanics which enforces its entire departure from
classical lines of thought [1 - 6]. We consider entan-
glement of pure states. Let 1 and 2 be two finite
dimensional Hilbert spaces. Thus a basic question in
quantum computing is as follows: given a normalized
state in the Hilbert space 1 2, can two nor-
malized states and in the Hilbert spaces 1

and 2 respectively be found such that

= (1)

In other words, what is the condition on such that
and exist? If no such and exist then

is said to be entangled. The measure for entanglement
for pure states ( ) is defined as follows [6]:

( ) := dim( 1)( 1 ) = dim( 2)( 2 ) (2)

where the density operators are defined as

1 := Tr 2 2 := Tr 1 (3)

and

( ) := Tr log (4)

Tr denotes the trace and Tr 1 denotes the partial trace
over 1. We use the base for the logarithm log . We
have 0 log 0 = 0 and 1 log 1 = 0. Thus 0 1.
If = 1 we call the pure state maximally entangled.
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If = 0, the pure state is not entangled. We note that

( ) =
=1

log (5)

where = 1 are the eigenvalues of ,
and is an operator on a dimensional Hilbert space.

Next we describe the relation between conditions
for entanglement and the measure of entanglement
introduced above. The cases = = 2 and =

= 3 have been discussed by Steeb and Hardy [3, 4].
We prove that, if can be written as the Kronecker
product then ( ) = 0, and conversely,
if ( ) = 0 it follows that can be written as

.

2. Conditions for Separability

Let := dim( 1), := dim( 2),

1 = 0 1 1 (6)

be an orthonormal basis for 1, and

2 = 0 1 1 (7)

be an orthonormal basis for 2. Thus

1 2 = 0 1 1 (8)

= 0 1 1
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is an orthonormal basis for 1 2. We con-
sider arbitrary normalized states , and in
the Hilbert spaces 1, 2 and 1 2 respec-
tively. We can identify these states with the vectors
( 0 1 1) C , ( 0 1 1)
C and ( 0 1 1) C as follows:

:=
1

=0
1 :=

1

=0
2 (9)

:=
1

=0

1

=0

+ 1 2 (10)

1

=0

2 = 1
1

=0

2 = 1
1

=0

2 = 1 (11)

Thus we see that the tensor product is equivalent to
considering the Kronecker product [7]. To ensure that

is the product state of and we must have

0 1 1 0 1 1 :

= + (12)

Thus

= + + = + + (13)

= 0 1 1 = 0 1 1 (14)

= +1 +2 1 = +1 +2 1 (15)

There are

1

=0

( 1 )
1

=0

( 1 ) (16)

=
( 1)( 1)

4

such equations. Supposing equations (13) hold, then
a “factorization” is given by

=
1

=0

+
2

1
2

(17)

=
1

=0

+
2

1
2

(18)

= (1 0)(arg( ) 0) (19)

= arg( ) (20)

We will omit the subscripts 1 and 2 since the
Hilbert space will be clear from the context. Since

=
1

=0

1

=0

+ + ( ) ( ) (21)

we find for the density operator

2 = tr 1 =
1

=0

( ) ( ) (22)

=
1

=0

1

=0

+ + (23)

and

1 = tr 2 =
1

=0

( ) ( ) (24)

=
1

=0

1

=0

+ + (25)

Since (when the equations (13) hold)

1

=0

+ + =
1

=0

+ + (26)

and

1

=0

+ + =
1

=0

+ + (27)

we find rank( 1 ) = rank( 2 ) = 1. Thus exactly
one of the eigenvalues of 1 and exactly one of the
eigenvalues of 2 are non-zero. Since 1 and 2

are positive operators with unit trace, they have eigen-
values 0 1 with appropriate multiplicities. Thus

( 1 ) = ( 2 ) = 0.
For the converse, suppose ( 1 ) = ( 2 ) = 0.

We will consider ( 1 ) = 0. Since 1 is a posi-
tive operator with unit trace, the eigenvalues =
1 must satisfy 0 1 and =1 = 1.
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Since log 0, we find that all the eigenval-
ues except one are zero. The eigenspace correspond-
ing to the eigenvalue has the dimension 1, i. e.
there exist 1 linearly independent vectors
such that 1 = 0. Thus all vectors

1

=0

1

=0

+ + (28)

are orthogonal to all 1 of the , and as a con-
sequence they are all scalar multiples of each other.
Thus we find

0 1 1 :

1

=0

+ + =
1

=0

+ + (29)

1

=0

( + + ) + = 0 (30)

This is the inner product [1] between 1
=0 ( +

+ ) and 1
=0 + .

Since dim( 1) = , the vectors cannot all be or-
thogonal and non-zero. Suppose

:=
1

=0

( + + ) (31)

is non-zero. The vectors 1
=0 + and

1
=0 + define at most a two-dimensional vec-

tor space. If + = + = 0 for all , then
+ = + trivially, where we choose = 1. If

this is not the case, the vector is a linear combina-
tion of these two vectors and yet is orthogonal to
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Basel 2001.

[7] W.-H. Steeb, Matrix Calculus and Kronecker Product with
Applications and C++ Programs, World Scientific, Singa-
pore 1997.

[8] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy,
Finding a Better-than-Classical Quantum AND/OR Algo-
rithm using Genetic Programming, Proceedings of the 1999
Congress on Evolutionary Computation, IEEE Press.

both – a contradiction. Thus we conclude

0 1 1 : + = + (32)

If = 0, then + = + = 0 and + + =
0 = + + . Thus we consider the case = 0. In
this case we have = 1. Now we consider

+ + = + + = + + (33)

Thus the two conditions for separability are equi-
valent.

3. Implications for Computer Algebra

The condition ( 1 ) = 0 is a compact criterium
for separability, so we should ask the question, when
are the conditions (13) we have derived useful? The
condition involves equations quadratic in , so at
least there are only a polynomial number of tests in

and . In a computer algebra application the den-
sity operators will in general be symbolic. The con-
dition ( 1 ) = 0 involves determining the rank of

1 . This could be determined by Gauss elimination,
which involves a total of ( )2 + ((min )3)
multiplications, including the calculation of the den-
sity matrix from the pure state. Here the criterium is
independent of basis, whereas our condition relies on
the choice of a particular basis. However, in computer
algebra applications we usually choose a basis before
any computation, and changing the basis is a simple
computational task. Our criterium is simpler to test
and involves less than 1

2 ( )2 multiplications. Thus
in applications such as finding quantum algorithms
using genetic programming [8] where efficiency in
determining fitness is important, it may be useful and
more efficient to apply our criteria. Of course testing
for entanglement is important since entanglement is
a necessary criterium for universal quantum compu-
tation.


