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Entangled quantum states are an important component of quantum computing techniques such as
quantum error-correction, dense coding and quantum teleportation. We determine the requirements
for a state in the Hilbert space C™ & C™ for m,n € N to be entangled and a solution to the
corresponding “factorization” problem if this is not the case. We consider the implications of these

criteria for computer algebra applications.
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1. Entanglement

Entanglement is the characteristic trait of quantum
mechanics which enforces its entire departure from
classical lines of thought [1 - 6]. We consider entan-
glement of pure states. Let H; and H; be two finite
dimensional Hilbert spaces. Thus a basic question in
quantum computing is as follows: given a normalized
state |z) in the Hilbert space H; © H,, can two nor-
malized states |x) and |y) in the Hilbert spaces H,
and 'H, respectively be found such that

) @ |y) = [2). (1)

In other words, what is the condition on |z) such that
|z} and |y} exist? If no such |2) and |y} exist then |z)
is said to be entangled. The measure for entanglement
for pure states E(|u){u|) is defined as follows [6]:

E(|u)(u]) := Saim#)(pH,) = Saim) (PH,)s  (2)

where the density operators are defined as

pr, = Try, |u)(ul, pr, = Try, Ju) (u] 3)

and
Sp(p) := —Trplog, p. 4)

Tr denotes the trace and Try;, denotes the partial trace
over H;. We use the base b for the logarithm log,. We
have 0log, 0 =0 and 1log, 1 =0. Thus0 < E < 1.
If F =1 we call the pure state maximally entangled.

If E =0, the pure state is not entangled. We note that

k
Si(p) ==Y X;log, \;, 5)

s=1

where { A;, j = 1,... &k} are the eigenvalues of p,
and p is an operator on a k& dimensional Hilbert space.

Next we describe the relation between conditions
for entanglement and the measure of entanglement
introduced above. The cases m = n = 2 and m =
n = 3 have been discussed by Steeb and Hardy [3, 4].
We prove that, if |z) can be written as the Kronecker
product |z) © |y) then E(|z)(z|) = 0, and conversely,
if E(|z)(z|) = 0 it follows that |z) can be written as
[z} @ |y).

2. Conditions for Separability
Let m := dim(H,), n := dim(H>),

{|.j>7'[17j=071:~":7n_1} (6)

{|7>H277=071n_1} (7)
be an orthonormal basis for H,. Thus

{|7>'H1 ®|k>7‘[2.7=0717m_1 (8)
k=0,1,....n—1}
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is an orthonormal basis for H; © H,. We con-
sider arbitrary normalized states |2}, |y} and |2} in
the Hilbert spaces H;, H, and H; @ H, respec-
tively. We can identify these states with the vectors
(.770,1171, K] mm—l)T e C7, (y0>y1> v >ym—l)T €
C” and (20, 21, . .., Znm—1)" € C™" as follows:

m—1
DEDIEHHEANE Zyjlj Vi (9)
7=0
m—1n—1
=2 D il © i, (10)
=0 §=0

m—1 nm—1

n—I1
SlaP=1Y =1 > |5 =1 01D

=0 7=0 7=0

Thus we see that the tensor product is equivalent to
considering the Kronecker product [7]. To ensure that
|2} is the product state of |} and |y) we must have

Vie{0,1,....m—1},5€{0,1,....n—1}:
TiYj = Zinss- (12)
Thus
TY5TRYL = Zints Zhntl = Zintl Zhntjs (13)
i=0,1,...om—1,7=0,1,...n—1, (14)
k= i+l 42, om—1,1=j+1,j42,. ... n—1.(15)
There are
m—1 n—1
(Z(m —1 —i)) (Z(n— 1 —j)) (16)
=0 =0

_mn(m — 1)(n —1)
- 4

such equations. Supposing equations (13) hold, then
a “factorization” is given by

n—I1 1
2
= (X Lzl ) e
k=0

m—

= (3 Joines ) e,

k=0

(17

._.
NI'—‘

(18)
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a; = (1 = 6;0)(arg(z;n) — Bo), (19)

B; = arg(z;). (20)

We will omit the subscripts H; and H, since the
Hilbert space will be clear from the context. Since

n—

Z Z Zinsj Zenst ([N (ED @ (7)) 1)

7,1=0

we find for the density operator

(] = 2((@|®In)|z>(

=0

PH, = Ty, |Z> Z|(|Z>®In) (22)

1

ZintjZin+l |j> <l|
0

m—1n

(23)
=0

.
Il

’

and

PH, = tr'H2|Z><Z| = Z(Im®(l|)|z><z|(jm®|7>) (24)

n—1m—1
=D i Fenes i) (k. (25)
3=0 4,k=0
Since (when the equations (13) hold)
m—1
Z Z ZintjZinel = 21 Z Zintj Zinth (26)
i=0 i=0
and
n—1 n—1
Zin Z Zin+j Zkn+j = Zin Z Zin+jZintgs  (27)
=0 5=0

we find rank(py,) = rank(py,) = 1. Thus exactly
one of the eigenvalues of ps;, and exactly one of the
eigenvalues of py;, are non-zero. Since py, and pyy,
are positive operators with unit trace, they have eigen-
values { 0,1} with appropriate multiplicities. Thus
S(p3,) = S(pr,) = 0

For the converse, suppose S(py,) = S(pn,) =0
We will consider S(pz,) = 0. Since pyy, is a posi-
tive operator with unit trace, the eigenvalues { A; , j =
1,...,m } mustsatisfy 0 < A\; < land 3772, A; = 1.
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Since —A; log,, A; > 0, we find that all the eigenval-
ues except one are zero. The eigenspace correspond-
ing to the eigenvalue has the dimension m — 1, i.e.
there exist m — 1 linearly independent vectors |a)
such that p, |a) = 0. Thus all vectors

n—1lm—1

YD zinei T [R)

§=0 k=0

(28)

are orthogonal to all m — 1 of the |a), and as a con-
sequence they are all scalar multiples of each other.
Thus we find

Vi, k,le{0,1,...,m—1}:

-1 -1
E Zintjfhnts = sl E Zln+jZkntjs (29)
=0 7=0

n—1

E (Zin+j - a1ﬁlZln+j)an+j =0.
=0

(30)

This is the inner product [1] between Z;:Ol(zmj —

. n—1 .
it 2ine)] ) and 370507 Zinag )
Since dim(#;) = m, the vectors cannot all be or-
thogonal and non-zero. Suppose

n—I1

|b> = Z(Zin+j

4=0

— Qi1 2ne5)|7) (3D

. —1 .
is non-zero. The vectors z;lo Zin+j|j) and

Z;:Ol Zin+j|J) define at most a two-dimensional vec-
tor space. If z,.; = 2ne; = 0 for all j, then
Zin+j = (i1 Zine; trivially, where we choose oy = 1. If
this is not the case, the vector |b) is a linear combina-
tion of these two vectors and yet is orthogonal to
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both — a contradiction. Thus we conclude

\V/J € {O> 1: cees 1} Zintj = Qg Zkntj. (32)

If oy = 0, then 2inej = Zkne; = 0 and Zinej Zenet =
0 = 2kn+j Zin+1- Thus we consider the case a;;, # 0. In
this case we have a;;, = a},'. Now we consider

Zin+j fkn+l = Ok Zkntj Oki Zintl = Zintl Zkntj- (33)

Thus the two conditions for separability are equi-
valent.

3. Implications for Computer Algebra

The condition S(py,) = 0 is a compact criterium
for separability, so we should ask the question, when
are the conditions (13) we have derived useful? The
condition involves equations quadratic in mn, so at
least there are only a polynomial number of tests in
m and n. In a computer algebra application the den-
sity operators will in general be symbolic. The con-
dition S(pz,) = 0 involves determining the rank of
pn, - This could be determined by Gauss elimination,
which involves a total of (mn)? + O((min{m, n})?)
multiplications, including the calculation of the den-
sity matrix from the pure state. Here the criterium is
independent of basis, whereas our condition relies on
the choice of a particular basis. However, in computer
algebra applications we usually choose a basis before
any computation, and changing the basis is a simple
computational task. Our criterium is simpler to test
and involves less than %(mn)2 multiplications. Thus
in applications such as finding quantum algorithms
using genetic programming [8] where efficiency in
determining fitness is important, it may be useful and
more efficient to apply our criteria. Of course testing
for entanglement is important since entanglement is
a necessary criterium for universal quantum compu-
tation.
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