Entangled Quantum States and the Kronecker Product

Willi-Hans Steeb and Yorick Hardy
International School for Scientific Computing, Rand Afrikaans University, P.O. Box 524, Auckland Park 2006, South Africa
Reprint requests to Prof. W.-H. S.; E-mail: whs@ na.rau.ac.za

Z. Naturforsch. 57 a, 689-691 (2002); received March 25, 2002

Abstract

Entangled quantum states are an important component of quantum computing techniques such as quantum error-correction, dense coding and quantum teleportation. We determine the requirements for a state in the Hilbert space $\mathbf{C}^{m} \otimes \mathbf{C}^{n}$ for $m, n \in \mathbf{N}$ to be entangled and a solution to the corresponding "factorization" problem if this is not the case. We consider the implications of these criteria for computer algebra applications.

Key words: Entangled States; Quantum Computing; Computer Algebra; Hilbert Space.

1. Entanglement

Entanglement is the characteristic trait of quantum mechanics which enforces its entire departure from classical lines of thought [1-6]. We consider entanglement of pure states. Let \mathcal{H}_{1} and \mathcal{H}_{2} be two finite dimensional Hilbert spaces. Thus a basic question in quantum computing is as follows: given a normalized state $|z\rangle$ in the Hilbert space $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$, can two normalized states $|x\rangle$ and $|y\rangle$ in the Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} respectively be found such that

$$
\begin{equation*}
|x\rangle \otimes|y\rangle=|z\rangle \tag{1}
\end{equation*}
$$

In other words, what is the condition on $|z\rangle$ such that $|x\rangle$ and $|y\rangle$ exist? If no such $|x\rangle$ and $|y\rangle$ exist then $|z\rangle$ is said to be entangled. The measure for entanglement for pure states $E(|u\rangle\langle u|)$ is defined as follows [6]:

$$
\begin{equation*}
E(|u\rangle\langle u|):=S_{\operatorname{dim}\left(\mathcal{H}_{1}\right)}\left(\rho_{\mathcal{H}_{1}}\right)=S_{\operatorname{dim}\left(\mathcal{H}_{2}\right)}\left(\rho_{\mathcal{H}_{2}}\right) \tag{2}
\end{equation*}
$$

where the density operators are defined as

$$
\begin{equation*}
\rho_{\mathcal{H}_{1}}:=\operatorname{Tr}_{\mathcal{H}_{2}}|u\rangle\langle u|, \rho_{\mathcal{H}_{2}}:=\operatorname{Tr}_{\mathcal{H}_{1}}|u\rangle\langle u| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{b}(\rho):=-\operatorname{Tr} \rho \log _{b} \rho \tag{4}
\end{equation*}
$$

Tr denotes the trace and $\operatorname{Tr}_{\mathcal{H}_{1}}$ denotes the partial trace over \mathcal{H}_{1}. We use the base b for the logarithm $\log _{b}$. We have $0 \log _{b} 0=0$ and $1 \log _{b} 1=0$. Thus $0 \leq E \leq 1$. If $E=1$ we call the pure state maximally entangled.

If $E=0$, the pure state is not entangled. We note that

$$
\begin{equation*}
S_{b}(\rho)=-\sum_{j=1}^{k} \lambda_{j} \log _{b} \lambda_{j} \tag{5}
\end{equation*}
$$

where $\left\{\lambda_{j}, j=1, \ldots, k\right\}$ are the eigenvalues of ρ, and ρ is an operator on a k dimensional Hilbert space.

Next we describe the relation between conditions for entanglement and the measure of entanglement introduced above. The cases $m=n=2$ and $m=$ $n=3$ have been discussed by Steeb and Hardy [3, 4]. We prove that, if $|z\rangle$ can be written as the Kronecker product $|x\rangle \otimes|y\rangle$ then $E(|z\rangle\langle z|)=0$, and conversely, if $E(|z\rangle\langle z|)=0$ it follows that $|z\rangle$ can be written as $|x\rangle \otimes|y\rangle$.

2. Conditions for Separability

Let $m:=\operatorname{dim}\left(\mathcal{H}_{1}\right), n:=\operatorname{dim}\left(\mathcal{H}_{2}\right)$,

$$
\begin{equation*}
\left\{|j\rangle_{\mathcal{H}_{1}}, j=0,1, \ldots, m-1\right\} \tag{6}
\end{equation*}
$$

be an orthonormal basis for \mathcal{H}_{1}, and

$$
\begin{equation*}
\left\{|j\rangle_{\mathcal{H}_{2}}, j=0,1, \ldots, n-1\right\} \tag{7}
\end{equation*}
$$

be an orthonormal basis for \mathcal{H}_{2}. Thus

$$
\begin{align*}
\left\{|j\rangle_{\mathcal{H}_{1}} \otimes|k\rangle_{\mathcal{H}_{2}}, j\right. & =0,1, \ldots, m-1 \tag{8}\\
k & =0,1, \ldots, n-1\}
\end{align*}
$$

is an orthonormal basis for $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$. We consider arbitrary normalized states $|x\rangle,|y\rangle$ and $|z\rangle$ in the Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$ and $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ respectively. We can identify these states with the vectors $\left(x_{0}, x_{1}, \ldots, x_{m-1}\right)^{T} \in \mathbf{C}^{m},\left(y_{0}, y_{1}, \ldots, y_{m-1}\right)^{T} \in$ \mathbf{C}^{n} and $\left(z_{0}, z_{1}, \ldots, z_{n m-1}\right)^{T} \in \mathbf{C}^{m n}$ as follows:

$$
\begin{gather*}
|x\rangle:=\sum_{j=0}^{m-1} x_{j}|j\rangle_{\mathcal{H}_{1}}|y\rangle:=\sum_{j=0}^{n-1} y_{j}|j\rangle_{\mathcal{H}_{2}}, \tag{9}\\
|z\rangle:=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} z_{i n+j}|i\rangle_{\mathcal{H}_{1}} \otimes|j\rangle_{\mathcal{H}_{2}} \tag{10}\\
\sum_{j=0}^{m-1}\left|x_{j}\right|^{2}=1, \sum_{j=0}^{n-1}\left|y_{j}\right|^{2}=1, \sum_{j=0}^{n m-1}\left|z_{j}\right|^{2}=1 . \tag{11}
\end{gather*}
$$

Thus we see that the tensor product is equivalent to considering the Kronecker product [7]. To ensure that $|z\rangle$ is the product state of $|x\rangle$ and $|y\rangle$ we must have

$$
\begin{align*}
& \forall i \in\{0,1, \ldots, m-1\}, j \in\{0,1, \ldots, n-1\}: \\
& \quad x_{i} y_{j}=z_{i n+j} . \tag{12}
\end{align*}
$$

Thus

$$
\begin{gather*}
x_{i} y_{j} x_{k} y_{l}=z_{i n+j} z_{k n+l}=z_{i n+l} z_{k n+j}, \tag{13}\\
i=0,1, \ldots, m-1, j=0,1, \ldots, n-1, \tag{14}\\
k=i+1, i+2, \ldots, m-1, l=j+1, j+2, \ldots, n-1 . \tag{15}
\end{gather*}
$$

There are

$$
\begin{align*}
\left(\sum_{i=0}^{m-1}(m-1-i)\right) & \left(\sum_{j=0}^{n-1}(n-1-j)\right) \tag{16}\\
& =\frac{m n(m-1)(n-1)}{4}
\end{align*}
$$

such equations. Supposing equations (13) hold, then a "factorization" is given by

$$
\begin{align*}
& x_{j}=\left(\sum_{k=0}^{n-1}\left|z_{j n+k}\right|^{2}\right)^{\frac{1}{2}} e^{i \alpha_{j}}, \tag{17}\\
& y_{j}=\left(\sum_{k=0}^{m-1}\left|z_{k n+j}\right|^{2}\right)^{\frac{1}{2}} e^{i \beta_{j}} \tag{18}
\end{align*}
$$

$$
\begin{align*}
& \alpha_{j}=\left(1-\delta_{j, 0}\right)\left(\arg \left(z_{j n}\right)-\beta_{0}\right), \tag{19}\\
& \beta_{j}=\arg \left(z_{j}\right) \tag{20}
\end{align*}
$$

We will omit the subscripts \mathcal{H}_{1} and \mathcal{H}_{2} since the Hilbert space will be clear from the context. Since

$$
\begin{equation*}
|z\rangle\langle z|=\sum_{i, k=0}^{m-1} \sum_{j, l=0}^{n-1} z_{i n+j} \overline{z_{k n+l}}(|i\rangle\langle k|) \otimes(|j\rangle\langle l|) \tag{21}
\end{equation*}
$$

we find for the density operator

$$
\begin{align*}
\rho_{\mathcal{H}_{2}} & =\operatorname{tr}_{\mathcal{H}_{1}}|z\rangle\langle z|=\sum_{i=0}^{m-1}\left(\langle i| \otimes I_{n}\right)|z\rangle\langle z|\left(|i\rangle \otimes I_{n}\right) \tag{22}\\
& =\sum_{i=0}^{m-1} \sum_{j, l=0}^{n-1} z_{i n+j} \overline{z_{i n+l}}|j\rangle\langle l| \tag{23}
\end{align*}
$$

and
$\rho_{\mathcal{H}_{1}}=\operatorname{tr}_{\mathcal{H}_{2}}|z\rangle\langle z|=\sum_{i=0}^{n-1}\left(I_{m} \otimes\langle i|\right)|z\rangle\langle z|\left(I_{m} \otimes|i\rangle\right)$

$$
\begin{equation*}
=\sum_{j=0}^{n-1} \sum_{i, k=0}^{m-1} z_{i n+j} \overline{z_{k n+j}}|i\rangle\langle k| . \tag{25}
\end{equation*}
$$

Since (when the equations (13) hold)

$$
\begin{equation*}
\overline{z_{k}} \sum_{i=0}^{m-1} z_{i n+j} \overline{z_{i n+l}}=\overline{z_{l}} \sum_{i=0}^{m-1} z_{i n+j} \overline{z_{i n+k}} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{z_{\ln }} \sum_{j=0}^{n-1} z_{i n+j} \overline{z_{k n+j}}=\overline{z_{i n}} \sum_{j=0}^{n-1} z_{i n+j} \overline{z_{\ln +j}} \tag{27}
\end{equation*}
$$

we find $\operatorname{rank}\left(\rho_{\mathcal{H}_{1}}\right)=\operatorname{rank}\left(\rho_{\mathcal{H}_{2}}\right)=1$. Thus exactly one of the eigenvalues of $\rho_{\mathcal{H}_{1}}$ and exactly one of the eigenvalues of $\rho_{\mathcal{H}_{2}}$ are non-zero. Since $\rho_{\mathcal{H}_{1}}$ and $\rho_{\mathcal{H}_{2}}$ are positive operators with unit trace, they have eigenvalues $\{0,1\}$ with appropriate multiplicities. Thus $S\left(\rho_{\mathcal{H}_{1}}\right)=S\left(\rho_{\mathcal{H}_{2}}\right)=0$.

For the converse, suppose $S\left(\rho_{\mathcal{H}_{1}}\right)=S\left(\rho_{\mathcal{H}_{2}}\right)=0$. We will consider $S\left(\rho_{\mathcal{H}_{1}}\right)=0$. Since $\rho_{\mathcal{H}_{1}}$ is a positive operator with unit trace, the eigenvalues $\left\{\lambda_{j}, j=\right.$ $1, \ldots, m\}$ must satisfy $0 \leq \lambda_{j} \leq 1$ and $\sum_{j=1}^{m} \lambda_{j}=1$.

Since $-\lambda_{j} \log _{m} \lambda_{j} \geq 0$, we find that all the eigenvalues except one are zero. The eigenspace corresponding to the eigenvalue has the dimension $m-1$, i.e. there exist $m-1$ linearly independent vectors $|\boldsymbol{a}\rangle$ such that $\rho_{\mathcal{H}_{1}}|a\rangle=0$. Thus all vectors

$$
\begin{equation*}
\sum_{j=0}^{n-1} \sum_{k=0}^{m-1} z_{i n+j} \overline{z_{k n+j}}|k\rangle \tag{28}
\end{equation*}
$$

are orthogonal to all $m-1$ of the $|\boldsymbol{a}\rangle$, and as a consequence they are all scalar multiples of each other. Thus we find

$$
\begin{align*}
& \forall i, k, l \in\{0,1, \ldots, m-1\}: \\
& \sum_{j=0}^{n-1} z_{i n+j} \overline{z_{k n+j}}=\alpha_{i l} \sum_{j=0}^{n-1} z_{l n+j} \overline{z_{k n+j}}, \tag{29}\\
& \sum_{j=0}^{n-1}\left(z_{i n+j}-\alpha_{i l} z_{l n+j}\right) \overline{z_{k n+j}}=0 . \tag{30}
\end{align*}
$$

This is the inner product [1] between $\sum_{j=0}^{n-1}\left(z_{i n+j}-\right.$ $\left.\alpha_{i l} z_{l n+j}\right)|j\rangle$ and $\sum_{j=0}^{n-1} z_{k n+j}|j\rangle$.

Since $\operatorname{dim}\left(\mathcal{H}_{1}\right)=m$, the vectors cannot all be orthogonal and non-zero. Suppose

$$
\begin{equation*}
|\boldsymbol{b}\rangle:=\sum_{j=0}^{n-1}\left(z_{i n+j}-\alpha_{i l} z_{l n+j}\right)|j\rangle \tag{31}
\end{equation*}
$$

is non-zero. The vectors $\sum_{j=0}^{n-1} z_{i n+j}|j\rangle$ and $\sum_{j=0}^{n-1} z_{l n+j}|j\rangle$ define at most a two-dimensional vector space. If $z_{i n+j}=z_{l n+j}=0$ for all j, then $z_{i n+j}=\alpha_{i l} z_{l n+j}$ trivially, where we choose $\alpha_{i l}=1$. If this is not the case, the vector $|b\rangle$ is a linear combination of these two vectors and yet is orthogonal to
[1] W.-H. Steeb, Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics, Kluwer Academic Publishers, Dordrecht 1998.
[2] J. Preskill, Quantum Information and Computation, http://www.theory.caltech.edu/ preskill/ph229.
[3] W.-H. Steeb and Y. Hardy, Int. J. Theor. Physics, 39, 2765 (2000).
[4] W.-H. Steeb and Y. Hardy, Int. J. Mod. Physics C 11, 69 (2000).
[5] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed State Entanglement and Quantum Error Correction, http://xxx.lanl.gov/quant-ph/9604024.
both - a contradiction. Thus we conclude

$$
\begin{equation*}
\forall j \in\{0,1, \ldots, n-1\}: z_{i n+j}=\alpha_{i k} z_{k n+j} \tag{32}
\end{equation*}
$$

If $\alpha_{i k}=0$, then $z_{i n+j}=z_{k n+j}=0$ and $z_{i n+j} z_{k n+l}=$ $0=z_{k n+j} z_{i n+l}$. Thus we consider the case $\alpha_{i k} \neq 0$. In this case we have $\alpha_{i k}=\alpha_{k i}^{-1}$. Now we consider

$$
\begin{equation*}
z_{i n+j} z_{k n+l}=\alpha_{i k} z_{k n+j} \alpha_{k i} z_{i n+l}=z_{i n+l} z_{k n+j} \tag{33}
\end{equation*}
$$

Thus the two conditions for separability are equivalent.

3. Implications for Computer Algebra

The condition $S\left(\rho_{\mathcal{H}_{1}}\right)=0$ is a compact criterium for separability, so we should ask the question, when are the conditions (13) we have derived useful? The condition involves equations quadratic in $m n$, so at least there are only a polynomial number of tests in m and n. In a computer algebra application the density operators will in general be symbolic. The condition $S\left(\rho_{\mathcal{H}_{1}}\right)=0$ involves determining the rank of $\rho_{\mathcal{H}_{1}}$. This could be determined by Gauss elimination, which involves a total of $(m n)^{2}+O\left((\min \{m, n\})^{3}\right)$ multiplications, including the calculation of the density matrix from the pure state. Here the criterium is independent of basis, whereas our condition relies on the choice of a particular basis. However, in computer algebra applications we usually choose a basis before any computation, and changing the basis is a simple computational task. Our criterium is simpler to test and involves less than $\frac{1}{2}(m n)^{2}$ multiplications. Thus in applications such as finding quantum algorithms using genetic programming [8] where efficiency in determining fitness is important, it may be useful and more efficient to apply our criteria. Of course testing for entanglement is important since entanglement is a necessary criterium for universal quantum computation.
[6] Y. Hardy and W.-H. Steeb, Classical and Quantum Computing with C++ and Java Simulations, Birkhäuser Verlag, Basel 2001.
[7] W.-H. Steeb, Matrix Calculus and Kronecker Product with Applications and C++ Programs, World Scientific, Singapore 1997.
[8] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, Finding a Better-than-Classical Quantum AND/OR Algorithm using Genetic Programming, Proceedings of the 1999 Congress on Evolutionary Computation, IEEE Press.

