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Abstract: The superposition states of two qubits including entangled Bell states are considered in the
probability representation of quantum mechanics. The superposition principle formulated in terms
of the nonlinear addition rule of the state density matrices is formulated as a nonlinear addition rule
of the probability distributions describing the qubit states. The generalization of the entanglement
properties to the case of superposition of two-mode oscillator states is discussed using the probability
representation of quantum states.
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1. Introduction

The conventional description of system states in quantum mechanics is provided
using either wave functions [1] (pure states) or density matrices [2,3] (mixed states). In
addition, the vectors in the Hilbert space or the density operators acting in the Hilbert space
are used to describe the pure states and the mixed states, respectively [4]. Different other
representations of quantum states including the Wigner quasidistribution [5], the Husimi
function [6], the Glauber–Sudarshan quasiprobability distribution [7,8], and the groupoid
picture of quantum mechanics [9] were introduced to describe the systems with continuous
variables such as oscillators. In the case of systems with discrete variables such as spin
systems, the states were also described by analogs of the Wigner function of the discrete
variables; see, e.g., [10]). The described representations of quantum states are very different
from the representations used in classical physics, e.g., in classical statistical mechanics
where the probability distributions are associated with the classical system states. The
attempts to find the probability representation were done, e.g., in [11]).

Recently, the probability representation of quantum states was suggested for the
systems with continuous variables in [12] and with discrete variables in [13–15]. In classical
mechanics, the tomographic probability distribution of system states was introduced
in [16]. All the representations of quantum states including wave functions, density
operators, quasidistributions such as the Wigner functions, and the tomographic probability
distributions contain equivalent information on the physical properties of the quantum
states. However, the probability distribution description of the states sometimes gives
the possibility to obtain a better understanding of the physical phenomena based on an
intuition available due to the classical experience. The classical and quantum aspects of
tomography were discussed in [17], and classical–quantum dynamics were considered
in [18]. Recently, the probability representation of quantum states was used to study
properties of cosmology [19,20]. The density matrices of qudit states were discussed in
different representations in [21,22]. The application of the symplectic tomography scheme
to the stimulated Raman scattering (SRS) process was provided in [23]. The tomographic
probability distribution method was developed, and different aspects of its applications
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are presented in [24]. The review of the harmonic analysis of the density matrix properties
including the method of symplectic tomography is given in [25]. The connection of the
symplectic tomography method with the metaplectic group and the Radon transform was
discussed in [26]. The tomographic causal analysis of two-qubit states was done in [27].

In the probability representation, the system states are described by the standard
conditional probability distributions, which can be used to obtain all the other mentioned
functions determining quantum states. For example, the Wigner function is connected
with the tomographic conditional probability distribution [12] by means of the invertible
integral Radon transform [28]. The review of constructing the probability representation
of quantum states is presented in [29,30]. In quantum mechanics, the phenomenon of the
entangled states discovered by Schrödinger [31] plays an important role.

The aim of this paper is to study the properties of this phenomenon on an example of
qubit states, using the probability representation of the states introduced in [32,33]. The en-
tanglement properties of qubit states were discussed by Bell [34]; in this paper, we consider
the entanglement phenomena in the probability representation of quantum mechanics on
an example of Bell states of qubits—the two spin-1/2 systems. The entanglement of the sys-
tem pure states is associated with such characteristics as the linear entropy. In addition, the
von Neumann entropy is used to characterize this phenomena. We also consider the linear
entropy expressed through the probabilities (associated with probability distributions) to
describe the properties of qibut and ququart quantum states.

This paper is organized as follows.
In Section 2, we review the method of constructing the probability representation

of quantum states on the example of spin-1/2 (qubit) states. In Section 3, we present
the superposition principle of pure qubit states formulated for density matrices of the
orthogonal states following the approach suggested in [35]. In Section 4, we consider density
operators of the states constructed either for systems with two qubit subsystems or for
systems without subsystems and consider the entangled two-qubit states in the probability
representation of quantum mechanics, using the known probability representation of each
qubit state. In Section 5, we study the entangled Bell states for the system with two qubit
subsystems. In Section 6, we discuss the notion of entanglement phenomenon for systems
of two qubits and study the linear entropy of the entangled qubit states. In Section 7,
we consider the entangled states for systems with continuous variables on the example
of two-mode Gaussian states of quantum systems; the linear entropy of such system is
discussed. We present our conclusions and prospectives in Section 8. Explicit formulas
for the state vectors and density matrices expressed through the probabilities of the first
and second spin projections on x, y, and z axes for two-qubit states are provided in the
Appendix A.

2. The Probability Representation of Qubit States

The construction of the probability representation of quantum states is based on the
Born rule [36,37]. The Born rule was discussed in the connection with the relation to
classical probability theory in [38]. Namely, for two arbitrary density operators ρ̂1 and
ρ̂2, the number Tr(ρ̂1ρ̂2) = p(2)

(1) is a non-negative number 0 ≤ p(2)
(1) ≤ 1, which has the

physical meaning of the probability to obtain the properties of the second state with the
density operator ρ̂2, if one measures these properties in the system state with the density
operator ρ̂1 (and vice versa). For pure states ρ̂1 = |ψ1〉〈ψ1| and ρ̂2 = |ψ2〉〈ψ2|, the Born
rule means that in the state with the state vector |ψ1〉, the measured properties of the state
with the state vector |ψ2〉 have the probability given by the number p(2)

(1) = |〈ψ1|ψ2〉|2. Due
to this property of the Born rule, the idea of constructing the probability representation
of quantum states of any system either with continuous variables such as an oscillator or
discrete variables such as a spin-1/2 (qubit) is as follows.

We discuss this idea on the example of qubit. The density matrix ρ of the qubit state is
determined by the state density operator ρ̂ acting in the Hilbert spaceH, a linear space with
three basis vectors |ψx〉, |ψy〉, |ψz〉, which are eigenvectors of the spin projection operators
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sx = 1
2 σx, sy = 1

2 σy, sz =
1
2 σz, where σx, σy, σz are the Pauli matrices, and we assume the

Planck constant h̄ = 1. This means that the spin projection operators have the matrices

sx =
1
2

(
0 1
1 0

)
, sy =

1
2

(
0 −i
i 0

)
, sz =

1
2

(
1 0
0 −1

)
. (1)

Thus, one can check that the normalized state vectors |ψx〉, |ψy〉, |ψz〉 read

|ψx〉 =
1√
2

(
1
1

)
, |ψy〉 =

1√
2

(
1
i

)
, |ψz〉 =

(
1
0

)
. (2)

The corresponding pure-state Hermitian density matrices of the states with the state vec-
tors (2) have the form

ρx = |ψx〉〈ψx| =
1
2

(
1 1
1 1

)
, ρy = |ψy〉〈ψy| =

1
2

(
1 −i
i 1

)
,

ρz = |ψz〉〈ψz| =
(

1 0
0 0

)
. (3)

An arbitrary 2× 2 density matrix

ρ =

(
ρ11 ρ12
ρ21 ρ22

)
has the properties [3] ρ̂† = ρ, Trρ = 1, i.e., ρ11 + ρ22 = 1, and the eigenvalues of ρ are non-negative.

For the pure states ρψ = |ψ〉〈ψ|, one has the property ρ2
ψ = ρψ and Trρ2

ψ = 1. The idea
of constructing the probability representation of quantum states of a spin-1/2 system can
be formulated as follows.

It is possible to express three real parameters of an arbitrary density matrix ρ of the
qubit state in terms of probabilities, which can be obtained using the Born rule. The minimal
number of such independent probabilities is equal to three. The larger number can also be
used, but to get three probability parameters, it is sufficient to calculate three probabilities
given by three numbers

p1 = Tr(ρρx), p2 = Tr
(
ρρy
)
, p3 = Tr(ρρz). (4)

One can check that numbers ρ11, ρ22, ρ21 = ρ∗12, and ρ22 = 1− ρ11 provide an explicit form
of the qubit density matrix [32,33] in terms of the probabilities, namely,

ρ =

 p3 p1 − 1
2 − i

(
p2 − 1

2

)
p1 − 1

2 + i
(

p2 − 1
2

)
1− p3

. (5)

Thus, the spin-1/2 state density matrix is described by the probabilities of the measurable
spin projections equal to +1/2 on three perpendicular directions of x, y, and z axes. We use
the density matrices ρx, ρy, ρz (3) of the pure spin states. However, all other state density
matrices, including mixed state density matrices, can be also used to express the density
matrix ρ parameters in terms of the probabilities given by the Born rule. Thus, the state
of qubit is described by three dichotomic probability distributions given by the pairs of
non-negative numbers 0 ≤ pi ≤ 1, i = 1, 2, 3, i.e., (p1, 1− p1), (p2, 1− p2), (p3, 1− p3),
which satisfy the condition of non-negativity of the eigenvalues of the density matrix ρ (5).
It reads

3

∑
j=1

(
pj −

1
2

)2
≤ 1

4
. (6)
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For pure qubit states, the probabilities pj satisfy the equality(
p1 −

1
2

)2
+

(
p2 −

1
2

)2
+

(
p3 −

1
2

)2
=

1
4

. (7)

This means that the probabilities p1, p2, p3 determine the points on the sphere of the radius
equal to 1/2, which has the center position in the points p1 = p2 = p3 = 1/2. For mixed
states, the probabilities p1 = p2 = p3 = 1/2 determine the points inside the sphere.

In fact, three dichotomic probability distributions can be considered as one conditional
probability distribution, which we denote as Π(j|k), with j = 1, 2 and k = 1, 2, 3 determin-
ing the quantum state of one spin-1/2 system. This notation means Π(j = 1|k = 1) = p1,
Π(j = 2|k = 1) = 1 − p1, Π(j = 1|k = 2) = p2, Π(j = 2|k = 2) = 1 − p2,
Π(j = 1|k = 3) = p3, and Π(j = 2|k = 3) = 1 − p3. This conditional probability
distribution satisfies the relations

2

∑
j=1

Π(j|k) = 1, 0 ≤ Π(j|k) ≤ 1.

Using the known Bayes formula for conditional probability distributions of two random
variables, one can check that the probability distributionsW(j, k) are given by

W(j, k) = Π(j|k)P̃(k).

Here, the function P̃(k) is the probability distribution of random variable k satisfying
the relations

3

∑
k=1
P̃(k) = 1, 0 ≤ P̃(k) ≤ 1.

Thus, the presented function W(j, k) is the joint probability distribution of two random
variables j, k satisfying the relation

2

∑
j=1

3

∑
k=1
W(j, k) = 1.

This distributionW(j, k) completely determines the state of spin-1/2 particle for arbitrary
probability distributions P̃(k).

Now, we consider an explicit generic form of the marginal probability distribution
Wm(j) = ∑3

k=1W(j, k); it reads

Wm(1) = p1P̃(1) + p2P̃(2) + p3P̃(3),
Wm(2) = (1− p1)P̃(1) + (1− p2)P̃(2) + (1− p3)P̃(3).

A partial case of this generic situation is described if the probability distribution P̃(k)
is given by equalities P̃(1) = P̃(2) = P̃(3) = 1/3. One can check that the marginal
probability distributionWm(j) has the form

Wm(1) =
1
3
(p1 + p2 + p3), Wm(2) = 1− 1

3
(p1 + p2 + p3).

One can mention that the marginal probability distribution W̃m(k) = ∑2
j=1W(j, k) coin-

cides with the probability distribution P̃(k). The physical interpretation of the probability
distribution of two random variableW(j, k) is as follows.

The six available probabilities describe the situation where not only spin projections
fluctuate but also directions of x, y, and z axes are random variables since they fluctuate,
which is experimentally possible, and this must be taken into account.
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The probability representation of qubit states can be illustrated by the geometrical
picture constructed as squares named Malevich’s squares [39]. These squares are con-
structed by means of two triangles. The first triangle is an equilateral triangle with a side
length of

√
2. The other triangle is an inscribed equilateral triangle with a side length of 1.

The vertices of the inscribed equilateral triangle are located on the sides of the equilateral
triangle with the side length of

√
2. It can be shown that the distance from the vertex of the

inscribed triangle to the vertex of the large triangle is equal to x,

x =

√
2

2

(
1− 1√

3

)
,

and the distance from the second vertex of the large triangle is equal to

√
2

2

(
1 +

1√
3

)
. The

area of three squares with sides equal to 1 constructed, using the equilateral triangle with the
sides of this length, is equal to 3. This picture is related to probabilities p1, p2, and, p3 [39].
This area is the maximum possible area corresponding to the spin-state description by
these probabilities p1, p2, and p3. The spin state is a quantum system, and the analogous
Malevich’s squares can be obtained for a classical system of three coins in the game of
the coin flipping. In this game, we also have probabilities p1, p2, and p3 corresponding
to the results of the game, if the coins are not ideal, which means that the probabilities
p1, p2, and p3 can take any values from zero to one, and they do not satisfy inequality (6).
The triangle picture of this game corresponds to the extremum distances of the vertex of
the inscribed triangle, which are equal either to zero or

√
2. This means that in this classical

system of three coins, the inscribed triangle can coincide with the large triangle. In addition,
this means that the maximum area of three Malevich’s squares constructed, using the sides
of the inscribed triangle, is equal to six. Thus, the qubit state, being a quantum system
described by three dichotomic probability distributions, and three classical coins, which
are also described by three dichotomic distributions, can be distinguished. In fact, the
maximum area of the classical system Malevich’s squares is twice as large as the area of
such squares for a quantum qubit state.

3. The Superposition Principle of Qubit States in the Probability Representation

For pure orthogonal quantum states, the superposition principle for the existing spin
states |ψ1〉 and |ψ2〉means that the state vector, given as a linear combination

|ψ〉 = c1|ψ1〉+ c2|ψ2〉 (8)

of the normalized vectors with complex numbers c1 and c2 satisfying the condition
〈ψ|ψ〉 = |c1|2 + |c2|2 = 1, describes the existing spin state. In [35], the superposition
principle was expressed in terms of the density operators ρ̂1 = |ψ1〉〈ψ1| and ρ̂2 = |ψ2〉〈ψ2|,
using the additional pure state density operator ρ̂0 = |ψ0〉〈ψ0|. For orthogonal vectors with
ρ̂1ρ̂2 = 0, the relation of density matrices ρ1, ρ2, ρ0, and ρ were expressed as

ρψ = P1ρ1 + P2ρ2 +
√
P1P2

ρ1ρ0ρ2 + ρ2ρ0ρ1√
Tr(ρ1ρ0ρ2ρ0)

, (9)

where P1 and P2 are probabilities, P1 + P2 = 1.
We consider an example of the superposition of two pure orthogonal states of the form

|ψ1〉 =
(

1
0

)
, |ψ2〉 =

(
0
1

)
, (10)

such that the superposed pure-state vector reads

|ψ〉 = c1

(
1
0

)
+ c2

(
0
1

)
. (11)
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It describes the density matrix of the state (11) if we use (9). We introduce the notation for
the pure-state density matrix using the pure-state normalized vector

|ψ0〉 =
(

c1
c2

)
, (12)

which determines the density matrix ρ0 = |ψ0〉〈ψ0| as

ρ0 =

(
|c1|2 c1c∗2
c2c∗1 |c2|2

)
. (13)

Applying relation (9), one can see that the density matrix of the superposed state
ρψ = |ψ〉〈ψ|, which in our example, is equal to ρ0 (13) and is given by (9), because the
probabilities P1 and P2 are chosen according to the Born rule

P1 = Tr(ρ0ρ1), P2 = Tr(ρ0ρ2) (14)

and
[Tr(ρ1ρ0ρ2ρ0)] = P1P2. (15)

The obtained relationships such as (9) can be presented in the form of a nonlinear addition
rule of probability distributions describing the density matrices ρψ, ρ1, ρ2, and ρ0 in (9).

4. The Probability Representation of Two Spin States

In this section, we consider the states of two spins 1/2 (two qubits) with the density
matrix of a ququart state

ρ =


ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

. (16)

We construct the probability representation, using the Born rule [36,37]. For this, we
consider the density matrices of the pure states with the state vectors and corresponding
density matrices

|z ↑, z ↑〉 =
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0

. (17)

Here, the used notation means that in this state, the first spin has the spin projection +1/2
on the z axis, and the second spin has the projection +1/2 on the z axis. This means that the
obtained vector is the eigenvector of the 4× 4 matrices Sz,1, Sz,2, which read Sz,1 = 1

2 σz ⊗ 1
and Sz,2 = 1

2 1⊗ σz such that Sz,1|z ↑, z ↑〉 = 1
2 |z ↑, z ↑〉 and Sz,2|z ↑, z ↑〉 = 1

2 |z ↑, z ↑〉. In
addition, σz is the standard Pauli matrix (1) and 1 is the 2× 2 identity matrix. The density
matrix of this pure state ρz↑,z↑ = |z ↑, z ↑〉〈z ↑, z ↑ | has the form

ρz↑,z↑ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

. (18)
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The notation describes the state where the first index z ↑ means that the spin projection
of the first spin along the z axis is equal to +1/2, and the second index z ↑means that the
spin projection of the second spin along the z axis is equal to +1/2 . Analogous notation is
used for all other vectors, which we introduce below. For example, the vector |z ↑, z ↓〉 of
the form

|z ↑, z ↓〉 =
(

1
0

)
⊗
(

0
1

)
=


0
1
0
0

 (19)

describes the state, where the first spin has the projection equal to +1/2 along the z axis,
and the second spin has the spin projection −1/2 along the z axis. The density matrix of
this pure state reads

ρz↑,z↓ =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

. (20)

We present below all other analogous eigenvectors, using the introduced notation and
corresponding density matrices for all the states, with the spin projections ±1/2 on all
the x, y, and z axes. This means that we construct the eigenvectors of the spin projection
matrices Sx,1 = 1

2 σx ⊗ 1, Sx,2 = 1
2 1⊗ σx, Sy,1 = 1

2 σy ⊗ 1, and Sy,2 = 1
2 1⊗ σy. The matrices

σx, σy, and σz are standard Pauli matrices (1). All the eigenvectors and corresponding
density matrices are obtained in Appendix A. Calculating the traces of the product of the
density matrix (16) with matrices given in Appendix A (18), (20), (A1)–(A22), we obtain the
probabilities determining the two qubit states in the probability representation of quantum
mechanics. The notation of these probabilities corresponds to the notation of the density
matrices. For example, the probability pz↑,z↑ due to the Born rule reads pz↑,z↑ = Tr

(
ρρz↑,z↑

)
.

This relation explicitly is

pz↑,z↑ = Tr




ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

This means that
pz↑,z↑ = ρ11. (21)

Using the analogous relations presented in Appendix A, we give explicitly the matrix
elements of the density matrix expressed in terms of the probabilities pz↑,z↑, pz↑,z↓, pz↓,z↑,
pz↓,z↓, px↑,x↑, px↑,x↓, px↓,x↑, px↓,↓, py↑,y↑, py↑,y↓, py↓,y↑, py↓,y↓, pz↑,x↑, px↑,z↑, px↑,z↓, pz↓,x↑,
pz↑,x↓, px↓,z↑, px↓,z↓, pz↓,x↓, pz↑,y↑, py↑,z↑, py↑,z↓, pz↓,y↑, pz↑,y↓, py↓,z↑, py↓,z↓, pz↓,y↓, py↑,x↑,
px↑,y↑, px↑,y↓, py↓,x↑, py↑,x↓, px↓,y↑, px↓,y↓, py↓,x↓ as follows:
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ρ11 = pz↑,z↑, ρ22 = pz↑,z↓, ρ33 = pz↓,z↑, ρ44 = pz↓,z↓,

ρ12 = ρ∗21 = pz↑,x↑ −
1
2
(

pz↑,z↑ + pz↑,z↓
)
+ i
[

1
2
(

pz↑,z↑ + pz↑,z↓
)
− pz↑,y↑

]
,

ρ13 = ρ∗31 = px↑,z↑ −
1
2
(

pz↑,z↑ + pz↓,z↑
)
+ i
[

1
2
(

pz↑,z↑ + pz↑,z↓
)
− py↑,z↑

]
,

ρ14 = ρ∗41 =
1
2
(

px↑,x↑ + px↓,x↓ − py↑,y↑ − py↓,y↓
)

+
i
2
(

py↑,x↓ + py↓,x↑ + px↑,y↓ + px↓,y↑ − 1
)
,

ρ23 = ρ∗32 =
1
2
(

px↑,x↑ + px↓,x↓ − py↑,y↓ − py↓,y↑
)

+
i
2
(

py↑,x↓ + py↓,x↑ − px↑,y↓ − px↓,y↑
)
,

ρ24 = ρ∗42 =
1
2
(

pz↑,z↓ + pz↓,z↓
)
− px↓,z↓ + i

[
1
2
(

pz↑,z↓ + pz↓,z↓
)
− py↑,z↓

]
,

ρ34 = ρ∗43 =
1
2
(

pz↓,z↑ + pz↓,z↓
)
− pz↓,x↓ + i

[
1
2
(

pz↓,z↑ + pz↓,z↓
)
− pz↓,y↑

]
. (22)

These formulae provide the possibility to obtain the density matrix of two qubit states by
measuring the above probabilities. We point out that for an arbitrary ququart state with the
density matrix (16), there exists the formal probability representation described by (22); for
example, it exists for a spin-3/2 system, which has no subsystems.

5. Bell States in the Probability Representation

In this section, we consider the example of entangled states of two qubits in the
probability representation; it is the Bell state which is a superposition of two pure states

1√
2
(|z ↑, z ↑〉+ |z ↓, z ↓〉). The density matrix of this state reads

ρB =
1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

. (23)

This state is entangled, and we can check this using the Peres–Horodecki criterion [40,41].
Making the partial transposition operation with the Bell matrix, which has only non-
negative eigenvalues, we obtain the matrix of the form

ρ
ppt
B =

1
2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

. (24)

One can check that one of the eigenvalues of this matrix is equal to −1/2. This means that
the Bell matrix is not separable due to the mentioned criterion [40,41]. In addition, one can
obtain the density matrices of the first spin and the second spin using the rule, which is
known for an arbitrary 4× 4 matrix presented in the block form,

ρ =

(
A B
C D

)
, (25)
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where A, B, C, and D are 2× 2 matrices [42]. According to this rule, the first spin density
matrix is expressed as follows:

ρ(1) =

(
TrA TrB
TrC TrD

)
, (26)

and the density matrix of the second spin reads

ρ(2) = A + D. (27)

Considering Equation (22) for a general matrix of the form (25) and calculating the matrices
ρ(1) (26) and ρ(2) (27) in this form, we obtain their matrix elements; they read

ρ
(1)
11 = pz↑,z↑ + pz↑,z↓, ρ

(2)
11 = pz↑,z↑ + pz↓,z↑,

ρ
(1)
12 = px↑,z↑ −

1
2
(

pz↑,z↑ + pz↓,z↑
)
+

1
2
(

pz↑,z↓ + pz↓,z↓
)
− px↓,z↓

+i
[

1
2
(

pz↑,z↑ + pz↓,z↑
)
− py↑,z↑ +

1
2
(

pz↑,z↓ + pz↓,z↓
)
− py↑,z↓

]
,

ρ
(2)
12 = pz↑,x↑ −

1
2
(

pz↑,z↑ + pz↑,z↓
)
+

1
2
(

pz↓,z↑ + pz↓,z↓
)
− pz↓,x↓

+i
[

1
2
(

pz↑,z↑ + pz↑,z↓
)
− pz↑,y↑ +

1
2
(

pz↓,z↑ + pz↓,z↓
)
− pz↓,y↑

]
. (28)

For the matrix elements, we use the equalities ρ
(1)
12 = (ρ

(1)
21 )∗, ρ

(2)
12 = (ρ

(2)
21 )∗, ρ

(1)
22 = 1− ρ

(1)
11 ,

ρ
(2)
22 = 1− ρ

(2)
11 . Thus, we expressed the probabilities of the qubit states determining the

2× 2 matrices of the first and second spins in terms of the probabilities determining the
4× 4 density matrix in terms of the probabilities of the spin projection of both spins on
the x, y, and z axes. These relations are valid for both separable and entangled states.
According to the Silvester criterion, all the probabilities satisfy inequalities for minors of
the 2× 2 and 4× 4 density matrices. One can check that the probabilities determining the
entangled Bell states will satisfy all these discussed equalities and inequalities. Applying
the rules (26) and (27) to the density matrix of the entangled Bell state (23), we see that the
density matrix of the first and second spins in the Bell states is

ρ(1) = ρ(2) =

(
1/2 0

0 1/2

)
. (29)

According to (5), we have p(1)1 = p(1)2 = p(1)3 = P(2)
1 = P(2)

2 = P(2)
3 = 1/2, where the

numbers p(1)k , P(2)
k (k = 1, 2, 3) are probabilities determining the spin-1/2 states according

to (5). In these states, both spins have equal probabilities, namely, 1/2 to be directed along
the x, y, and z axes.

Now, we present the probability representation of the Bell states as the expression of
the 4× 4 density matrix, using the general formula (22)

px↑,x↑ = px↓,x↓ = pz↑,z↑ = pz↓,z↓ = py↑,y↓ = py↓,y↑ =
1
2

,

px↑,x↓ = px↓,x↑ = pz↑,z↓ = pz↓,z↑ = py↑,y↑ = py↓,y↓ = 0,

pz↑,x↑ = px↑,z↑ = px↓,z↓ = pz↓,x↓ = pz↑,x↓ = px↓,z↑ = py↑,x↓ = px↓,y↑ = px↑,y↓

= py↓,x↑ = pz↑,y↑ = py↑,z↑ = py↓,z↓ = pz↓,y↓ = py↑,z↓ = pz↓,y↑ =
1
4

. (30)

The matrices ρ(1) and ρ(2) with matrix elements (30) satisfy inequality (6).
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6. Linear Entropy of Entangled Qubit States

Let us consider the linear entropy according to the following formula [43]:

H = 1− Tr
(

ρ(1)
)2

. (31)

If the separable state of two qubits with the state-vector |ψ〉 is of the form |ψ〉 = |ψ1〉|ψ2〉,
where |ψ1〉 and |ψ2〉 are the two-dimensional state vectors, the density 2× 2 matrices are

ρ(1) = |ψ1〉〈ψ1| and ρ(2) = |ψ2〉〈ψ2|; in this case,
(

ρ(1)
)2

= ρ(1), and this means that the
linear entropy (31) is equal to zero.

If the density matrix of the two qubit pure state |ψ〉〈ψ| is entangled, we have
|ψ〉 = N(|φ1〉 + |ψ1〉) and 〈ψ| = N(〈φ1| + 〈ψ1|). The linear entropy for such states is

not equal to zero, because Tr
(

ρ(1)
)2

< 1.

Let us calculate Tr
(

ρ(1)
)2

in the probability representation of quantum states

Tr
(

ρ(1)
)2

=
(

p(1)3

)2
+ 2|P|2 +

((
1− p(1)3

))2
, (32)

where P = p(1)1 − 1/2 + i(p(1)2 − 1/2).

For the pure state, Tr
(

ρ(1)
)2

= 1. If we consider H for arbitrary entangled two-qubit
states, it is expressed through

Tr
(

ρ(1)
)2

=
(

ρ
(1)
11

)2
+ 2|ρ12|2 + ρ

(2)
22 ,

and its explicit form reads

H = 1− pz↑,z↑ − 2

{[
pz↑,x↑ −

1
2
(

pz↑,z↑ + pz↑,a↓
)]

+

[
1
2
(

pz↑,z↑ + pz↑,z↓
)2 − pz↑,y↑

]2
}

−
(
1− pz↑,z↑

)2. (33)

This means that the linear entropy is not equal to zero for the entangled states of two
qubits. One can check that for Bell states, the linear entropy is equal to 1/2 (29). Thus, we
expressed the linear entropy in terms of the probabilities for arbitrary two-qubit states.

7. The Entanglement of Two-Mode Oscillator States in the Probability Representation
of Quantum Mechanics

Now, we consider the two-oscillator Gaussian states in the tomographic probability
representation. To obtain the tomogram of such states, we recall that for one oscillator state,
one should use the dequantizer operator Û(X, µ, ν) = δ(X1̂− µq̂− ν p̂), where q̂ and p̂ are
the position and momentum operators in the position representation [44,45]. One can check
that the matrix elements of this operator read

〈x|δ(X1̂− µq̂− ν p̂)|x′〉 = 1
2π|ν| exp

(
− iµ

2ν
x2 +

iµ
2ν

x′2 +
i
ν

Xx− i
ν

Xx′
)

. (34)

This formula can be presented in the other form

〈x|δ(X1̂− µq̂− ν p̂)|x′〉 = 1
2π|ν| exp

[
i
ν
(x− x′)

(
X− µ

2
(x + x′)

)]
. (35)

The tomogram w(X|µ, ν) of a one-mode state with a density operator ρ̂ (called the to-
mographic symbol of the operator ρ̂) is w(X|µ, ν) = TrρÛ(X, µ, ν). The density opera-
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tor of the one oscillator state can be reconstructed by means of the quantizer operator
D̂(X, µ, ν) = 1

2π exp(X1̂− νq̂− ν p̂) such that

ρ̂ =
∫

w(X|µ, ν)D̂(X, µ, ν)dX dµ dν. (36)

The matrix elements of the quantizer operator in the position representation have the form

1
2π
〈x| exp(X1̂− µq̂− ν p̂)|x′〉 = 1

2π
exp

[
i
(

X− µ

2
(x + x′)

)]
δ(x− x′ − ν). (37)

The tomogram of the state with the state vector |ψ〉 and wave function ψ(z) is

Tr
(
|ψ〉〈ψ|δ(X1̂− νq̂− ν p̂)

)
=

1
2π|ν|

∣∣∣∣∫ dz ψ(z) exp
(

iµ
2ν

z2 − i
ν

Xz
)∣∣∣∣2 (38)

The tomographic symbol of the operators |φ〉〈ψ| determined by state vectors |φ〉 and |ψ〉 of
a one-mode oscillator is

Tr
(
|φ〉〈ψ|δ(X1̂− νq̂− ν p̂)

)
=

1
2π|ν|

∫
dx φ∗(x) exp

(
− iµ

2ν
x2 +

i
ν

Xx
)

×
∫

dx′ ψ(x′) exp
(

iµ
2ν

x′2 − i
ν

Xx′
)

(39)

If |φ〉 is the ground state of oscillator |φ0〉 and |ψ〉 is the coherent state |ψα〉, then (39) is
expressed as an integral,

Tr
(
|φ0〉〈ψα|δ(X1̂− νq̂− ν p̂)

)
=

1
2π|ν|

∫ dx
π1/4 exp

(
− x2

2

)
exp

(
− iµ

2ν
x2 +

i
ν

Xx
)

×
∫ dx′

π1/4 exp
(
− x′2

2
− |α|

2

2
− α2

2
+
√

2αx′
)

exp
(

iµ
2ν

x′2 − i
ν

Xx′
)

. (40)

Calculating the Gaussian integral, we arrive at

Tr
(
|φ0〉〈ψα|δ(X1̂− νq̂− ν p̂)

)
=

1√
π(µ2 + ν2)

exp

[
−|α|

2

2
+

α2(ν + iµ)
2(ν− iµ)

− i
√

2αX
ν− iµ

− X2

µ2 + ν2

]
. (41)

Let us consider the superposition state

|Φ〉 = N(|φ〉+ |ψ〉), (42)

where |φ〉 and |ψ〉 are any normalized states, i.e., 〈φ|φ〉 = 1 and 〈ψ|ψ〉 = 1. Then, the state
|Φ〉 is normalized, if

N2 =
1

2 + 〈ψ|φ〉+ 〈φ|ψ〉 . (43)

The tomogram of such a state reads

w(X|µ, ν) = Tr
[
δ(X1̂− µq̂− ν p̂)(|φ〉+ |ψ〉)(〈φ|+ 〈ψ|)N2

]
=

N2Tr
[
δ(X1̂− µq̂− ν p̂)(|φ〉〈φ|+ |ψ〉〈ψ + |φ〉〈ψ|+ |ψ〉〈φ|)

]
=

N2{Tr
[
δ(X1̂− µq̂− ν p̂)|φ〉〈φ|

]
+ Tr

[
δ(X1̂− µq̂− ν p̂)|ψ〉〈ψ

]
+Tr

[
δ(X1̂− µq̂− ν p̂)|φ〉〈ψ|

]
+ Tr

[
δ(X1̂− µq̂− ν p̂)|ψ〉〈φ|

]}
(44)
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Let us consider a two-mode oscillator state with the wave function Φ(x, y). Its tomogram
w(X1, X2|µ1, ν1, µ2, ν2) is given by

w(X1, X2|µ1, ν1, µ2, ν2) = Tr
[
|Φ〉〈Φ|δ(X11̂− µ1q̂1 − ν1 p̂1)δ(X21̂− µ2q̂2 − ν2 p̂2)

]
, (45)

where |Φ〉 is the state vector corresponding to the wave function Φ(x, y). Formula (45) can
be written in the form of integral

w(X1, X2|µ1, ν1, µ2, ν2) =
1

4π2|ν1ν2|

∫
Φ(x, y)Φ∗(x′, y′) exp

(
− iµ1x2

2ν1
+

iµ1x′2

2ν1

+
iX1x

ν1
− iX1x′

ν1
− iµ2y2

2ν2
− iµ2y′2

2ν2
+

iX2y
ν2
− iX2y′

ν2

)
dxdx′dydy′. (46)

The state vector under study corresponds to the superposition state of the ground and
coherent states of the two-mode oscillator (the Schrödinger cat state)

|Φ〉 = 1√
2(1 + e−|α|2)

(|φ0〉|ψα〉+ |φα〉|ψo〉), (47)

where |φ0〉 and |ψ0〉 are state vectors of ground states of the first and second modes, and
|φα〉 and |ψα〉 are state vectors of coherent states of the first and second modes. For the
density matrix of the superposition state of the two-mode oscillator, we obtain

|Φ〉〈Φ| = N2(|φ0〉|ψα〉+ |φα〉|ψ0〉)(〈φ0|〈ψα|+ 〈φα|〈|ψ0|) = N2(|φ0〉〈φ0| ⊗ |ψα〉〈ψα|
+ |φα〉〈φα| ⊗ |ψ0〉〈ψ0|+ |φα〉〈φ0| ⊗ |ψ0〉〈ψα|+ |φ0〉〈φα| ⊗ |ψα〉〈ψ0|) (48)

The tomogram of state (45) can be written in the form of the sum of four terms; each of
them is the product of the Gaussian integrals,

w(X1, X2|µ1, ν1, µ2, ν2) =

N2

2π|ν1ν2|

{∣∣∣∣∫ dxφ0(x) exp
[

iµ1x2

2ν1
− iX1x

ν1

]∣∣∣∣2∣∣∣∣∫ dyψα(y) exp
[

iµ2y2

2ν2
− iX2y

ν2

]∣∣∣∣2

+

∣∣∣∣∫ dyψ0(y) exp
[

iµ2y2

2ν2
− iX2y

ν2

]∣∣∣∣2∣∣∣∣∫ dxφα(x) exp
[

iµ1x2

2ν1
− iX1x

ν1

]∣∣∣∣2
+
∫

dyφα(x′) exp
[

iµ1x′2

2ν1
− iX1x′

ν1

] ∫
dxφ∗0 (x) exp

[
−iµ1x2

2ν1
+

iX1x
ν1

]
×
∫

dy′ψ0(y′) exp
[

iµ2y′2

2ν2
− iX2x′

ν2

] ∫
dyψ∗α(y) exp

[
−iµ2y2

2ν2
+

iX2x
ν2

]}
, (49)

where the wave functions of ground states read

φ0(x) =
1

π1/4 exp
(
− x2

2

)
, ψ0(y) =

1
π1/4 exp

(
−y2

2

)
and the wave functions of coherent states are

φα(x) =
1

π1/4 exp
(
− x2

2
+
√

2αx− |α|
2

2
− α2

2

)
,

ψα(y)
1

π1/4 exp
(
−y2

2
+
√

2αy− |α|
2

2
− α2

2

)
.
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The explicit form of tomogram (45) is

w(X1, X2|µ1, ν1, µ2, ν2) =

exp
(
−|α|2 − α2

2 −
α∗2
2

)
2π
(

1 + e−|α|2
)√

(µ2
1 + ν2

1)(µ
2
2 + ν2

2)
exp

(
−

X2
1

µ2
1 + ν2

1

)
exp

(
−

X2
2

µ2
2 + ν2

2

)

×
{

exp

[
(α2 + α∗2)ν2

2
µ2

2 + ν2
2
− i
√

2ν2(α− α∗)X2

µ2
2 + ν2

2
+

i(α2 − α∗2)µ2ν2

µ2
2 + ν2

2
+

√
2X2µ2(α + α∗)

µ2
2 + ν2

2

]

+ exp

[
(α2 + α∗2)ν2

1
µ2

1 + ν2
1
− i
√

2ν1(α− α∗)X1

µ2
1 + ν2

1
+

i(α2 − α∗2)µ1ν1

µ2
1 + ν2

1
+

√
2X1µ1(α + α∗)

µ2
1 + ν2

1

]

+ exp

[
α2ν2

1
µ2

1 + ν2
1
+

α∗2ν2
2

µ2
2 + ν2

2
+

iα2µ1ν1

µ2
1 + ν2

1
− iα∗2µ2ν2

µ2
2 + ν2

2
+

√
2α(µ1 − iν1)X1

µ2
1 + ν2

1

+

√
2α∗2(µ2 + iν2)X2

µ2
2 + ν2

2

]

+ exp

[
α2ν2

2
µ2

2 + ν2
2
+

α∗2ν2
1

µ2
1 + ν2

1
+

iα2µ2ν2

µ2
2 + ν2

2
− iα∗2µ1ν1

µ2
1 + ν2

1
+

√
2α(µ2 − iν2)X2

µ2
2 + ν2

2

+

√
2α∗2(µ1 + iν1)X1

µ2
1 + ν2

1

]}
. (50)

This tomogram of the two-mode oscillator state is the conditional probability distribution
of two random variables X1 and X2 satisfying the relation∫

w(X1, X2|µ1, ν1, µ2, ν2) dX1 dX2 = 1. (51)

In addition, ∫
w(X1, X2|µ1, ν1, µ2, ν2) dX2 = w̃(X1|µ1, ν1), (52)

which is the conditional probability distribution determining the state of the first oscillator.
Tomogram (46) is the tomogram of an entangled state with the density matrix given by (48),
which is the density matrix of the superposition state of the two-mode oscillator.

One can check that the density operator of the first oscillator ρ̂(1) determined by the
tomogram w̃(X1|µ1, ν1), in view of (36), satisfies the condition

Tr(ρ(1))2 =
∫

w̃(X1|µ1, ν1)w̃(Y1| − µ1,−ν1) exp(i(X1 + Y1))dX1 dY1 dµ1 d ν1 < 1. (53)

The linear entropy is H = 1− Tr(ρ̂(1))2, and this means that the linear entropy is not equal
to zero; i.e., the state (47) is entangled. It is interesting that the usual normal probabil-
ity distributions are given in the Gaussian forms [46,47]. The properties of probability
distributions characterizing different aspects of quantum states are discussed in [48,49].
However, in the case of entangled quantum oscillator states, it appears that the probability
distributions, being the sums of Gaussian terms, provide the specific formal probability dis-
tributions in classical probability theory related to quantum mechanics and the description
of entanglement phenomena.

8. Conclusions

To conclude, we formulate the main results of our work.
Using the new representation of quantum system states, namely, the probability

representation, where the states are identified with probability distributions, we explicitly
construct any density matrix of the spin-1/2 states. The matrix elements of this density
matrix are expressed in terms of probability distributions of two spin projections onto
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directions of the x, y, and z axes in three-dimensional space. The construction is based on
the probability representation of the density matrix elements for one qubit states, which
are expressed in terms of dichotomic probabilities to have the spin projections onto the x,
y, and z axes. The method to find the explicit expressions of the density matrix is based
on the Born rule [36,37]. First, we constructed the vectors in the Hilbert space, which are
eigenvectors of the spin-projection operators providing the expressions for density matrices
of these states and then, applying the Born rule, we found all corresponding probabilities,
which are needed for expressing any density matrix elements in terms of the probabilities.
We considered, in the probability representation, a particular example of the entangled Bell
state. Since the probability distributions determine the associated Shannon entropy, the
new entropies of quantum qubit states different from the von Neumann entropy can be
introduced and found for the Bell states. The linear entropy of entangled Bell states was
studied in the probability representation. The probability representation of the entangled
Schrödinger cat states of the two-mode oscillator also was considered on the example of the
superposition of the products of the coherent state of the first oscillator and the ground state
of the second oscillator. The entanglement of this state was studied within the framework of
the symplectic tomographic probability distributions determining the Schrödinger cat states.
The obtained probability distribution is expressed in terms of the sum of the Gaussian
terms of the form analogous to the form of tomograms of the Schrödinger cat states of free
particles [30]. It is worthwhile to add that different aspects of the Bell inequalities, quantum
dynamics, and probability and quasiprobability representations and their applications
were considered recently in [50–55]. The tomographic linear entropy of the Schrödinger cat
states is introduced, and the linear entropy characterizing the entanglement of these states
is obtained. The obtained results can be generalized for n-qubit and qudit states as well as
for multimode superpositions of the Gaussian states with different symmetries discussed
in [56].

We can address the question: what new knowledge can be obtained using the studied
probability representation of quantum states in comparison with using the standard rep-
resentation of quantum mechanics? The statistical properties of quantum systems can be
considered using the language of classical probability theory. Namely, we formulated in
the language of the tomograms determining the quantum states, which are the standard
probability distribution functions (not state vectors or density operators), the notion of
entanglement of the Bell states of two qubits. It is worthwhile to mention that the Shannon
entropy associated with the tomographic probabilities can give extra characteristics of the
properties of quantum system states, which were not used in the standard representations
of quantum mechanics in the literature. In addition, all the known inequalities for classical
probability distributions for the Shannon entropy and other entropies (the Tsallis entropy)
can be applied in quantum mechanics using the new formalism of probability distributions
determining the quantum states. The new aspect of the formalism presented in the paper is
a possible application of the tomographic approach to quantum statistics and description of
the system in the state of the thermodynamic equilibrium. For systems with Hamiltonian Ĥ
and temperature T, these states have density operators ρ̂ = (Z(T))−1 exp

(
−Ĥ/T

)
where

Z(T) = Tr
(
exp

(
−Ĥ/T

))
. In the probability representation of quantum states, this operator

is mapped onto the tomographic probability distribution describing this state of the system
at temperature T. We will study the above-mentioned approach to quantum statistics in
future publications.
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Appendix A

In the Appendix, we present calculations of state vectors and density matrices of
specific pure states of two spins-1/2 systems used to calculate the probabilities determining
the states of two qubits.

The state vector and the density matrix of the state, where the first spin has the
projection equal to −1/2 and the second spin has the projection equal to +1/2 on the z
axis, have the form

|z ↓, z ↑〉 =
(

0
1

)
⊗
(

1
0

)
=


0
0
1
0

, ρz↓,z↑ =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

. (A1)

The state vector and the density matrix of the state, where the first and second spins have
the projections on the z axis equal to −1/2, read

|z ↓, z ↓〉 =
(

0
1

)
⊗
(

0
1

)
=


0
0
0
1

, ρz↓,z↓ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

. (A2)

The state vector and the density matrix of the state, where the first and second spins have
the projections on the x axis equal to +1/2, are

|x ↑, x ↑〉 =
(

1/
√

2
1/2
√

2

)
⊗
(

1
√

2
1
√

2

)
=


1/2
1/2
1/2
1/2

, ρx↑,x↑ =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

. (A3)

The state vector and the density matrix of the state, where the first spin has the projection
equal to +1/2 and the second spin has the projection equal to−1/2 on x axis, have the form

|x ↑, x ↓〉 =


1/2
−1/2
1/2
−1/2

, ρx↑,x↓ =


1/4 −1/4 1/4 −1/4
−1/4 1/4 −1/4 1/4
1/4 −1/4 1/4 −1/4
−1/4 1/4 −1/4 1/4

. (A4)

The state vector and the density matrix of the state, where the first spin has the projection
equal to −1/2 and the second spin has the projection equal to +1/2 on the x axis, have
the form

|x ↓, x ↑〉 =


1/2
1/2
−1/2
−1/2

, ρx↓,x↑ =


1/4 1/4 −1/4 −1/4
1/4 1/4 −1/4 −1/4
−1/4 −1/4 1/4 1/4
−1/4 −1/4 1/4 1/4

. (A5)

The state vector and the density matrix of the state, where the first and second spins have
the projections on the x axis equal to −1/2, are

|x ↓, x ↓〉 =


1/2
−1/2
−1/2
1/2

, ρx↓,x↓ =


1/4 −1/4 −1/4 1/4
−1/4 1/4 1/4 −1/4
−1/4 1/4 1/4 −1/4
1/4 −1/4 −1/4 1/4

. (A6)
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The state vector and the density matrix of the state, where the first and second spins have
the projections on y axis equal to +1/2, are

|y ↑, y ↑〉 =


1/2
i/2
i/2
−1/2

, ρy↑,y↑ =


1/4 −i/4 −i/4 −1/4
i/4 1/4 1/4 −i/4
i/4 1/4 1/4 −i/4
−1/4 i/4 i/4 1/4

. (A7)

The state vector and the density matrix of the state, where the first spin has the projection
equal to +1/2 and the second spin has the projection equal to −1/2 on the y axis, have
the form

|y ↑, y ↓〉 =


1/2
−i/2
i/2
1/2

, ρy↑,y↓ =


1/4 i/4 −i/4 1/4
−i/4 1/4 −1/4 −i/4
i/4 −1/4 1/4 i/4
1/4 i/4 −i/4 1/4

. (A8)

The state vector and the density matrix of the state, where the first spin has the projection
equal to −1/2 and the second spin has the projection equal to +1/2 on the y axis, have
the form

|y ↓, y ↑〉 =


1/2
i/2
−i/2
1/2

, ρy↓,y↑ =


1/4 −i/4 i/4 1/4
i/4 1/4 −1/4 i/4
−i/4 −1/4 1/4 −i/4
1/4 −i/4 i/4 1/4

. (A9)

The state vector and the density matrix of the state, where the first and the second spins
have the projections on the y axis equal to −1/2, are

|y ↓, y ↓〉 =


1/2
−i/2
−i/2
−1/2

, ρy↓,y↓ =


1/4 i/4 i/4 −1/4
−− i/4 1/4 1/4 i/4
−i/4 1/4 1/4 i/4
−1/4 −i/4 −i/4 1/4

. (A10)

The state vector and the density matrix of the state, where the first spin has the projection
equal to +1/2 on the z axis and the second spin has the projection equal to +1/2 on the x
axis, have the form

|z ↑, x ↑〉 =
(

1
0

)
⊗
(

1
√

2
1
√

2

)
=


1/
√

2
1/
√

2
0
0

, ρz↑,x↑ =


1/2 1/2 0 0
1/2 1/2 0 0

0 0 0 0
0 0 0 0

. (A11)

The state vector and the density matrix of the state, where the first spin has the projection
equal to +1/2 on the x axis and the second spin has the projection equal to +1/2 on the z
axis, have the form

|x ↑, z ↑〉 =
(

1/
√

2
1/
√

2

)
⊗
(

1
0

)
=


1/
√

2
0

1/
√

2
0

, ρx↑,z↑ =


1/2 0 1/2 0

0 0 0 0
1/2 0 1/2 0

0 0 0 0

. (A12)

The state vector and the density matrix of the state, where the first spin has the projection
equal to −1/2 on the x axis and the second spin has the projection equal to −1/2 on the z
axis, have the form
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|x ↓, z ↓〉 =
(

1/
√

2
−1/
√

2

)
⊗
(

0
1

)
=


0

1/
√

2
0

−1/
√

2

, ρx↓,z↓ =


0 0 0 0
0 1/2 0 −1/2
0 0 0 0
0 −1/2 0 1/2

. (A13)

The state vector and the density matrix of the state, where the first spin has the projection
equal to −1/2 on the z axis and the second spin has the projection equal to −1/2 on the x
axis, have the form

|z ↓, x ↓〉 =
(

0
1

)
⊗
(

1/
√

2
−1/
√

2

)
=


0
0

1/
√

2
−1/
√

2

, ρz↓,x↓ =


0 0 0 0
0 0 0 0
0 0 1/2 −1/2
0 0 −1/2 1/2

. (A14)

The state vector and the density matrix of the state, where the first spin has the projection
equal to +1/2 on the z axis and the second spin has the projection equal to +1/2 on the y
axis, have the form

|z ↑, y ↑〉 =
(

1
0

)
⊗
(

1
√

2
i
√

2

)
=


1/
√

2
i/
√

2
0
0

, ρz↑,y↑ =


1/2 −i/2 0 0
i/2 1/2 0 0
0 0 0 0
0 0 0 0

. (A15)

The state vector and the density matrix of the state, where the first spin has the projection
equal to +1/2 on the y axis and the second spin has the projection equal to +1/2 on the z
axis, have the form

|y ↑, z ↑〉 =
(

1/
√

2
i/
√

2

)
⊗
(

1
0

)
=


1/
√

2
0

i/
√

2
0

, ρy↑,z↑ =


1/2 0 −i/2 0

0 0 0 0
i/2 0 1/2 0
0 0 0 0

. (A16)

The state vector and the density matrix of the state, where the first spin has the projection
equal to +1/2 on the y axis and the second spin has the projection equal to −1/2 on the z
axis, have the form

|y ↑, z ↓〉 =
(

1/
√

2
i/
√

2

)
⊗
(

0
1

)
=


0

1/
√

2
0

i/
√

/2

, ρy↑,z↓ =


0 0 0 0
0 1/2 0 −i/2
0 0 0 0
0 i/2 0 1/2

. (A17)

The state vector and the density matrix of the state, where the first spin has the projection
equal to −1/2 on the z axis and the second spin has the projection equal to +1/2 on the y
axis, have the form

|z ↓, y ↑〉 =
(

0
1

)
⊗
(

1/
√

2
i/
√

2

)
=


0
0

1/
√

2
i/
√

2

, ρz↓,y↑ =


0 0 0 0
0 0 0 0
0 0 1/2 −i/2
0 0 i/2 1/2

. (A18)
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The state vector and the density matrix of the state, where the first spin has the projection
equal to +1/2 on the y axis and the second spin has the projection equal to −1/2 on the x
axis, have the form

|y ↑, x ↓〉 =


1/2
−1/2

i/2
−i/2

, ρy↑,x↓ =


1/4 −1/4 −i/4 1/4
−1/4 1/4 1/4 −i/4

i/4 −i/4 1/4 −1/4
−i/4 i/4 −1/4 1/4

. (A19)

The state vector and the density matrix of the state, where the first spin has the projection
equal to −1/2 on the x axis and the second spin has the projection equal to +1/2 on the y
axis, have the form

|x ↓, y ↑〉 =


1/2
i/2
−1/2
−i/2

, ρx↓,y↑ =


1/4 −i/4 −1/4 i/4
i/4 1/4 −i/4 −1/4
−1/4 i/4 1/4 −i/4
−i/4 −1/4 i/4 1/4

. (A20)

The state vector and the density matrix of the state, where the first spin has the projection
equal to +1/2 on the x axis and the second spin has the projection equal to −1/2 on the y
axis, have the form

|x ↑, y ↓〉 =


1/2
−i/2
1/2
−i/2

, ρx↑,y↓ =


1/4 i/4 1/4 i/4
−i/4 1/4 −i/4 1/4
1/4 i/4 1/4 i/4
−i/4 1/4 −i/4 1/4

. (A21)

The state vector and the density matrix of the state, where the first spin has the projection
equal to −1/2 on the y axis and the second spin has the projection equal to +1/2 on the x
axis, have the form

|y ↓, x ↑〉 =


1/2
1/2
−i/2
−i/2

, ρy↓,x↑ =


1/4 1/4 i/4 i/4
1/4 1/4 i/4 i/4
−i/4 −i/4 1/4 1/4
−i/4 −i/4 1/4 1/4

. (A22)
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