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Finding pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a
partial trace is necessarily a challenging task. Nevertheless, such purifications play the key role in characterizing
quantum information-theoretic properties of mixed states via entanglement and complexity of purifications. In
this article, we analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field
theories using the most general Gaussian purifications. We provide a comprehensive comparison with existing
results and identify universal properties. We further discuss important subtleties in our setup: the massless limit
of the free bosonic theory and the corresponding behavior of the mutual information, as well as the Hilbert space
structure under the Jordan-Wigner mapping in the spin chain model of the Ising conformal field theory.
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I. INTRODUCTION

Understanding quantum information theoretic properties of
quantum field theories (QFTs) and, via holography, of quan-
tum gravity has been an enormously fruitful research front in
the past two decades (as seen, for example, in Refs. [1–5]).

The main player in this endeavour has been the notion of
entanglement and its entropy S. Starting with a pure state
|�〉 and a subsystem A (its complement denoted by Ā), the
entanglement entropy is defined as the von Neumann entropy
of the reduced density matrix1 ρA = TrĀ |�〉〈�| associated
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1This approach assumes factorization of the Hilbert space between

A and Ā. This is not the case for gauge theories, where more refined
approaches need to be invoked; see, for example, Refs. [6–10].
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with A, specifically

S(A) ≡ − TrA ρA log ρA . (1)

While entanglement entropy is very hard to calculate in
a generic QFT, by now many results exist for free quantum
fields, conformal field theories (primarily in two spatial di-
mensions), and strongly coupled QFTs with a holographic
description. In the latter case, the entanglement entropy
acquires a natural geometric description in terms of the
Bekenstein-Hawking entropy of certain codimension-2 sur-
faces penetrating anti–de Sitter (AdS) geometries [11–14] and
has led to a wealth of results on quantum gravity in this
setting.

Complexity is another quantum information-theoretic no-
tion that made its appearance in the context of QFTs
only recently and is directly motivated by holography.
To this end, it was observed in Refs. [15–20] that
codimension-one boundary-anchored maximal volumes and
codimension-zero boundary-anchored causal diamonds have
properties expected from the hardness of preparing states
using tensor networks [21] in chaotic quantum many-body
systems.

Authors of subsequent articles starting with Refs. [22,23]
saw in this conjecture a strong motivation to define the notion
of complexity in the realm of QFTs in a similar spirit as
pioneering works [24,25] which introduced the notion of en-
tanglement entropy in the same context. These articles [22,23]
were largely inspired by the continuous tensor network of
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continuous Multiscale Entanglement Renormalization Ansatz
(cMERA) [26] and viewed preparation of a pure target state
|ψT 〉 in QFT as a unitary transformation from some pure
reference state |ψR〉

|ψT 〉 = U |ψR〉, (2)

where the unitary U is obtained as a sequence of layers
constructed by exponentiation of more elementary Hermitian
operators OI

U = Pe−i
∫ 1

0 dτ
∑

I OI Y I (τ ). (3)

Following the approach of Ref. [27], which was originally
devised to bound complexity of discrete quantum circuits, one
can associate the cost of invocations of different gates gener-
ated by OI as related to the infinitesimal parameter Y I (τ ) dτ

in the exponent. Translating this literally into a mathematical
formula would lead to

D1 =
∫ 1

0
dτ
∑

I

|Y I |, (4)

which is an integral over the circuit of a L1 norm of a formal
vector formed from the parameters Y I . Complexity C arises
then as the minimum of (4) subject to the condition (2)

C = min [D]. (5)

As anticipated already in Ref. [23], cost functions based on L1

norms such as (5) lead to challenging minimization problems.
In the present work, our rigorous results on complexity will
be based on a particular choice of a L2 norm

D2 =
∫ 1

0
dτ

√

∑

I

ηIJY I Y J , (6)

where, following Refs. [28,29], ηIJ is going to be a particular
non-negative definite constant matrix and OI are going to
be normalized accordingly. This choice of ηIJ is naturally
induced from the reference state |ψR〉 (bosonic systems) or
from Lie algebra (fermionic systems).

The essence of recent progress on defining complexity
in QFT using broadly defined approach of Ref. [27] lies in
making educated choices for OI and |ψR〉, which allow one
to perform minimization encapsulated by Eq. (5). In the vast
majority of cases, it was achieved by focusing on free QFTs
and utilizing powerful toolkit of Gaussian states and transfor-
mations [30].

The discussion so far has concerned pure states, i.e., von
Neumann entropy as an entanglement measure between a
subregion and a complement in pure states and complexity as
a way of quantifying hardness of preparation of pure states.
Much less understood in the QFT context are quantum in-
formation properties of mixed states, and the present paper
concerns precisely this important subject. Of interest to us will
be entanglement of purification (EoP) [31,32] and complexity
of purification (CoP) [33]. We will introduce these quantities
in more detail in, respectively, Secs. V and VI. Here, we want
to stress instead that the key motivating feature behind our
work stems from both of these quantities involving in their

definition scanning over purifications of mixed many-body
states.2

Such purifications, i.e., embedding a mixed state in an
enlarged Hilbert space in which it arises as a reduced den-
sity matrix, in the context we are interested in, i.e., QFT
physics, are clearly challenging to operate with. Earlier works
on EoP and CoP in high-energy physics include respectively
Refs. [34–36]3 and focus on free QFTs in which mixed states
of interest, such as vacuum reduced density matrices or ther-
mal states, are Gaussian. Gaussian mixed states allow for
purification to pure Gaussian states, which underlay strategies
employed in the aforementioned references. However, even
purifications within the Gaussian manifold of states for large
subsystems can be challenging to operate with and the above
works made additional choices in this respect.

This is where the key feature of our present work appears,
which is to consider the most general Gaussian purifica-
tions. To this end, we will consider free QFTs on a lattice
and, whenever possible, encode reduced density matrices
in terms of corresponding quadratic correlations represented
by covariance matrices. Considering the most general Gaus-
sian purifications amounts then to embedding mixed state
covariance matrices as parts of larger covariance matrices
corresponding to pure states. Utilizing efficient Gaussian tech-
niques allows us to minimize the two quantities of interest,
EoP and CoP, for a judicious choice of a definition of pure
state complexity [29] over general purifications to a given
number of bosonic or fermionic modes.

Our primary focus is on a particularly simple yet revealing
setup of two-interval vacuum reduced density matrices in
free QFTs with vanishing or very small mass. In a quantum
information context, such a setup arose in studies of mutual
information (MI) defined using two subsystems A and B as

I (A : B) = S(A) + S(B) − S(A ∪ B) (7)

in (1+1)-dimensional conformal field theories (CFTs), where
A and B are two disjoint or adjacent intervals on a flat spatial
slice as depicted in Fig. 1. MI will play an important role in
our studies, providing us with a guidance regarding both the
behavior of EoP, as in Ref. [34], and helping us to understand
subtleties underlying our models. Our studies will mostly con-
cern scaling of MI, EoP, and CoP with control parameters such
as interval size, separation, and, when present, system size and
mass. While EoP turns out be such a ultraviolet finite quantity
by itself, for CoP we will consider a combination of single-
and two-interval CoP results akin to (7) for which the leading
ultraviolet divergences cancel and only milder divergences
remain.

Our paper is structured as follows. In Sec. II, we review
the two models we consider, the Klein-Gordon field in the
massless limit and the critical transverse field Ising model, on
a lattice, paying a particular attention to description of their

2Otherwise, EoP and CoP use regular notions of, respectively,
entanglement entropy and pure state complexity, which is the reason
why they already made an appearance in the text.

3One should also mention in this context [37], which, motivated by
holographic complexity proposals, explored properties of CoP in the
setting of a single harmonic oscillator.
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FIG. 1. The subsystem that defines reduced density matrices for
our discretized bosonic and fermionic models in their vacuum state
consists of two intervals of a width of wA/δ and wB/δ sites and
separated by a distance of d/δ sites, where δ is the lattice spacing.
When d = 0, we will keep wA and wB generic. When d > 0, we
will set for simplicity wA = wB ≡ w and the natural continuum
combination is w/d . We will see that numerically determined MI
and EoP approach in the continuum limit functions of w/d . With
CoP, the situation is more complicated, as it turns out to be ultraviolet
divergent and brings in an additional dimensionful scale through the
class of reference states of interest |ψR〉.

ground states in terms of covariance matrices. In Sec. III, we
benchmark our abilities to reach continuum limit in lattice
calculations by comparing the results of our numerics with
existing analytic formulas for MI in the aforementioned two
interval case. In Sec. IV, we discuss briefly the mathemat-
ics of purifications of Gaussian states as seen by covariance
matrices, which is the working horse behind most of the
results reported in the present article. Subsequently, we use
this machinery to study EoP and CoP in the two-interval
case of Fig. 1, respectively, in Secs. V and VI. In Sec. VII,
we comment on two subtleties relevant for our model, namely
the zero mode when taking the massless limit for a bosonic
theory and the different notions of locality in the spin versus
fermion picture of the Ising model. We summarize our results
and present an outlook in Sec. VIII. We also provide an
extensive Appendix that provides further details regarding our
methods.

II. SETUP

In the present work, we focus on two paradigmatic models:
the Klein-Gordon field in the massless limit and the critical

transverse field Ising model in 1+1 dimensions. For our nu-
merical calculations, we discretize both theories either on a
lattice with N sites and periodic boundary conditions (i.e.,
we identify the sites N + j ≡ j) or on an infinite lattice. We
will consider subsystems consisting of intervals of width w/δ

sites and separated by a distance of d/δ sites, where δ is the
lattice spacing (see Fig. 1). Both theories describe CFTs in
the respective limits with central charge c = 1 (Klein-Gordon)
and c = 1

2 (Ising model). We will review the Hamiltonians of
both models and their ground states with a particular focus on
the covariance matrix formulation. The latter for free bosons
will allow for an efficient calculation of EoP and CoP using
Gaussian techniques. For the Ising model, we will discuss in
detail how there are two distinct notions of locality associated
to the spin and fermion formulation, respectively.

A. Klein-Gordon field

We consider the well-known Klein-Gordon scalar field
with a mass m that we will later take to zero. Its discretized
Hamiltonian on a lattice with N sites is

Ĥ =
δ

2

N
∑

i=1

(

π̂2
i +

m2

δ2
ϕ̂2

i +
1

δ4
(ϕ̂i − ϕ̂i+1)2

)

, (8)

where δ represents the lattice spacing. We thus have a circum-
ference

L = N δ. (9)

We define canonical variables

ξ̂ a
i ≡ (ϕ̂i, π̂i ) , (10)

where a = 1, 2. It is well known that the Hamiltonian can
be diagonalized via Fourier transformations, leading to N

decoupled harmonic oscillators with frequencies

ωk =
√

m2 +
4

δ2
sin2 πk

N
. (11)

The ground state |0〉 is Gaussian and fully characterized by its
covariance matrix

Gab
i j = 〈0|ξ̂ a

i ξ̂ b
j + ξ̂ b

j ξ̂
a
i |0〉

=
1

N

N
∑

k=1

ei 2πk
N

(i− j)

(

ωk 0
0 1

ωk

)

,
(12)

where a and b label the entries of the matrix. Continuum limit
on a circle requires taking N → ∞ while keeping the product
of meaningful continuum quantities m L = m δ N fixed. Each
value of this product corresponds to a different QFT as a
continuum limit within the class of free Klein-Gordon theo-
ries. Furthermore, when considering subsystems, as depicted
in Fig. 1, the continuum limit requires keeping ratios of w δ

and d δ to L fixed as N → ∞. In practice, one takes N to be
large but finite and requires that as N is increased well-defined
quantities, for example, the MI (7), stop changing significantly
with N and stabilize in the vicinity of their QFT values.

When w δ
L

≪ 1, d δ
L

≪ 1, then the results of the calculations
should be effectively indistinguishable from the situation in
which the spatial direction is a line. The mass m ≪ 1

δ
becomes

then the only dimensionful parameter in the continuum theory.
Also, in this case the number k associated with discrete mo-
menta in (11) gets incorporated into a continuum variable and
a sum in (12) needs to be replaced by an appropriate integral;
see, for example, Ref. [29].

We are particularly interested in the massless limit m → 0,
where the Klein-Gordon field describes the CFT with central
charge c = 1. More precisely, the c = 1 CFT with the periodic
boundary conditions we imposed should be regarded as a
one-parameter family of theories arising in the path integral
language from the compactification of the bosonic field ϕ (i.e.,
periodically identified):

ϕ + 2πR ≡ ϕ. (13)

The dimensionless parameter R is the radius of compactifica-
tion in the field space and plays the role of a moduli specifying
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a particular c = 1 CFT. The scaling dimension of the lightest
operator is then given by

�min = min

(

1

R2
,

R2

4

)

. (14)

The above formula is a hint of an underlying duality between
theories with field compactification radia of R and 2

R
[48]. The

massless limit of (8) corresponds to the decompactification
limit of compact free boson CFTs (R → ∞), which is a subtle
limit since in light of (14) the gap in the operator spectrum
approaches 0. While this limit leads to correct correlation
functions of vertex operators or a single interval entanglement
entropy, for other quantities the situation is more complicated.
In particular, the modular invariant thermal partition function
for the free boson reads [48]

Zmod−inv ∼
1

(β/L)1/2 η(i β/L)2
, (15)

whereas the free massive boson calculation for m L ≪ 1 and
upon keeping the regularized zero point energy is

Zm L≪1 ∼
1

(β m) η(i β/L)2
. (16)

In both expressions, η is the Dedekind eta function defined as

η(i β/L) = e− π
12 β/L �∞

n=1(1 − e−2π n β/L ). (17)

The mismatch between the two calculations can be understood
using the representation of the partition function on a circle as
an Euclidean path integral on a torus. In the case of (15), the
zero mode contribution is neglected, as its inclusion would
lead to an infinite volume term coming from the integration
over the field space. In the case of (15), the zero mode φ

contribution to the path integral is included and is finite, as
it originates in the path integral language from

∫ ∞

−∞
dφ e− 1

2 β L m2 φ2 ∼
1

m
√

β L
, (18)

where the product β L is the torus spatial volume. Multiplying
the partition function (15) by the factor (18) leads to (16),
which explains the relation between the two partition func-
tions. We will come back to these calculations in Sec. VII A,
where we discuss the influence of the zero mode on MI decay
with separation between two intervals.

In our studies, we will be using the free massive boson
setup to extract the properties of the modular invariant c = 1
free boson CFT in the decompactification limit R → ∞. From
this perspective, the partition function of interest, i.e., (15),
can be indeed recovered from the massive boson Gaussian
calculation (16) by dividing it by the known zero mode contri-
bution (18). However, in the case of other quantities calculated
using Gaussian techniques at nonvanishing mass the effect of
the zero mode is not straightforward to isolate. As we already
mentioned, numerical studies showed that Gaussian calcula-
tions with a small mass reproduce the universal entanglement
entropy result for a single interval [1]. Furthermore, one may
expect the two-interval case at small separations to be reliably
described by the massive free boson calculation, as the zero
mode affects primarily the long-distance physics. As a result,
these will be the mixed state setups that we will consider in our
EoP and CoP explorations. On the other hand, the two-interval

case at large separations is delicate and we will return to it in
the case of MI in Sec. VII A.

Another subtlety that originates in the massless limit is that
the ground state is only defined distributionally. The issue
is best understood by diagonalizing the Hamiltonian (8) by

transforming to momentum modes π̃k = 1√
N

∑N
j=1 e−i

2πk j

N π j

and ϕ̃k = 1√
N

∑N
j=1 ei

2πk j

N ϕ j , leading to

Ĥ =
1

2

N
∑

k=1

(

δ |π̃k|2 +
ω2

k

δ
|ϕ̃k|2
)

, (19)

where we find N decoupled harmonic oscillators. For the
oscillator with k = 0 (zero momentum mode), we have ω0 =
m, which vanishes in the massless limit. Consequently, the
ground state of this mode approaches a δ distribution, which
does not lie in Hilbert space. This leads to the divergence
of certain terms in the covariance matrix (12). However, we
are still able to define expectation values of observables and
entanglement measures, such as the entanglement entropy,
by computing those quantities for finite m and generating
numerically results for values of m gradually approaching 0.
In Sec. VII A, we will discuss the role of the zero mode for
such calculations in more detail using MI as an example.

B. Critical transverse field Ising model

We consider the transverse field Ising model [49,50]

Ĥ = −
N
∑

i=1

(

2J Ŝx
i Ŝx

i+1 + h Ŝz
i

)

(20)

in the critical limit J = h, where Ŝx,z
i are spin- 1

2 operators in
the direction x or z at position i in the chain, i.e., related Ŝx,z

i =
1
2σ

x,z
i to the well-known Pauli matrices. The system consists

of N spin- 1
2 degrees of freedom arranged in a circle; i.e., we

assume periodic boundary conditions with N + i ≡ i.
The transverse field Ising model can be solved analyti-

cally by employing the Jordan-Wigner transform [51], i.e.,
eigenvalues and eigenvectors of the Hamiltonian Ĥ can be
constructed in closed form. The transformation is based on
introducing fermionic creation and annihilation operators f̂

†
i

and f̂i. For the transformation, we write S±
i = Sx

i ± iSy
i as

S+
i = f̂

†
i exp

(

iπ

i−1
∑

j=1

f̂
†
j f̂ j

)

, (21)

which leads to the almost quadratic Hamiltonian

Ĥ = −
N
∑

i=1

(

J

2
[ f̂

†
i ( f̂i+1 + f̂

†
i+1) + H.c.] + h f̂

†
i f̂i

)

+
J

2
[ f̂

†
N ( f̂1 + f̂

†
1 ) + H.c.](P̂ + 1) +

Nh

2
, (22)

where H.c. stands for Hermitian conjugation and P̂ =
exp (iπ

∑N
j=1 f̂

†
j f̂ j ) is the parity operator.

In this picture, the operators f̂
†
i and f̂i are fermionic cre-

ation and annihilation operators, but with a different notion
of locality than the spin operators appearing in (20). From
the Jordan-Wigner transformation (21), it is clear that the
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fermionic operator on site i is local to the whole region from
site 1 to i in the fermionic picture, and vice versa. This ensures
that bipartite entanglement of a connected region of sites is
equivalent in the spin and the fermionic picture, because we
can use translational invariance to identify this region with
the sites {1, . . . ,w}, for which the spin and the fermionic
pictures are isomorphic, i.e., the density operators are unitarily
equivalent leading to the same entanglement entropy.

It is well known [52] that the fermionic Hamiltonian (22)
can be written as a sum of two quadratic Hamiltonians Ĥ± of
the form

Ĥ = Ĥ+P+ + Ĥ−P− , (23)

where P± represent orthogonal projectors onto the Hilbert
subspaces H± of even and odd number of excitations, respec-
tively, i.e.,

H± = span{|n1, . . . , nL〉
∣

∣ eiπ
∑N

i=1 ni = ±1} (24)

with f̂
†
i f̂i |n1, . . . , nn〉 = ni |n1, . . . , nn〉. We can equivalently

describe the Hamiltonian in terms of Majorana modes ξ̂ a
i ≡

(q̂i, p̂i ) with

q̂i :=
1

√
2

( f̂
†
i + f̂i ) and p̂i :=

i
√

2
( f̂

†
i − f̂i ) , (25)

which leads to the Hamiltonian given by

Ĥ = i

N
∑

i=1

(J p̂iq̂i+1 − hq̂i p̂i ) − Ji p̂N q̂1(P̂ + 1) . (26)

We are particularly interested in the ground state |0〉 of the
critical model with J = h > 0, which is completely character-
ized by its covariance matrix

�ab
i j = 〈0|ξ̂ a

i ξ̂ b
j − ξ̂ b

j ξ̂
a
i |0〉

=
1

N

∑

κ

(

0 − cos κ
(

1
2 + i − j

)

cos κ
(

1
2 + j − i

)

0

)

,

(27)

where the variables ξ̂ a
i are defined using (25) as

ξ̂ a
i ≡ (q̂i, p̂i ), (28)

and κ = π
N

(2k + 1) with k = −N
2 , . . . , N

2 − 1 for even N .
An important subtlety arises if we compute bipartite en-

tanglement of disconnected regions, because in this case the
entanglement entropies are different in the spin and fermion
picture. This subtle fact has been recognized numerous times
in the literature [53–57] and plays an important role when re-
lating the lattice model with the continuum CFT [58]. The key
observation is that the canonical anticommutation relations
induce a different notion of tensor product and partial trace for
fermions [59]. Interestingly, this different notion only affects
the bipartite entanglement entropy of disjoint regions, i.e., the
reduced state in a subsystem consisting of two nonadjacent
intervals on the circle will be different if we compute it us-
ing the spin versus fermion picture. We comment on this in
Sec. VII B and review the respective literature in Appendix B.
In practical terms, this fact will lead us to apply our Gaussian
numerics based on purifications only to the case when the two
intervals are adjacent, i.e., d = 0 in Fig. 1.

Finally, note that the c = 1 free Dirac fermion CFT can
be obtained from two copies of Ising model (i.e., Majorana
fermion CFT) by imposing a different Gliozzi-Scherk-Olive
(GSO) projection [48]. As a result, the discussion in the
present section about spatial locality and Gaussianity applies
also to the free Dirac fermion CFT. In effect, our fermionic
Gaussian methods reproduce the properties of the free Dirac
fermion CFT only for a single subregion or adjacent subre-
gions and the answers in these cases are simply given by twice
the answers for the corresponding Ising calculation. It is well
known that the Dirac fermion CFT is equivalent to the free
compactified boson CFT at the compactification radius R = 1
(or equally R = 2) via the bosonization procedure [60,61]. Let
us also emphasize on this occasion that modular invariance is
a property that is not always imposed in free fermion calcula-
tion available in the literature (see Ref. [62] for a discussion of
the modular invariance in the context of entanglement entropy
in CFTs). This sometimes leads to apparent tensions between
CFT expectations and free fermion results. We will come back
to this point in the next section.

III. MUTUAL INFORMATION

MI defined in (7) provides an important correlation mea-
sure between two subsystems A and B and below we
summarize some of its properties. One reason to do this is to
test our ability to reproduce them using our numerics before
we apply it to a much less understood case of EoP and CoP.
Another one is to explore what kind of behavior to expect from
EoP and CoP.

MI is generically a nonuniversal quantity in CFTs, as it is
related to a four-point function of twist operators and the latter
is spectrum dependent [40].

At large distances between the intervals, i.e., for d ≫ w in
the notation of Fig. 1, the operator product expansion analysis
predicts the following behavior of MI:

I (A : B) ∼
∣

∣

〈

Omin
A Omin

B

〉∣

∣

2 ∼
(

w

d

)−4�min

, (29)

where Omin is the operator with lowest (but nonzero) confor-
mal dimension and where �min = hmin + h̄min [41,42].

At short separations, d ≪ w, one expects the following
universal result [40,63]:

I (A : B) ≃
c

3
log

w

2d
. (30)

For d = 0, one can use a universal, i.e., only c-dependent,
formula for a single-interval entanglement entropy in the vac-
uum to arrive at a variant of (30) with d = δ. In Table I,
we provided the form of (30) when the two intervals have
arbitrary lengths.

Moving on to the two models we are considering, for the
free massless scalar QFT one has continuous and gapless
spectrum of primary operators. As a result, the formula (29)
does not apply as such and in Sec. VII A we comment on
a possible generalization. However, for a compactified free
boson CFT [see (13)], the spectrum of operators develops a
gap (14) and calculations of entanglement entropy in Ref. [64]
do reproduce this behavior.

For the c = 1/2 Ising CFT in the limit d ≫ w, we ex-
pect I (A : B) ∼ (w/d )1/2, because Omin is the spin operator
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TABLE I. Overview of over known analytical results and numerical fits with approximate coefficients for entanglement entropy S(A), MI
I (A : B), and EoP EP, all for an infinite-size system. Analytical entries marked with an asterisk (*) are guesses based on analogous behavior
between MI and EoP. Twice the free fermion result in the d = 0 Ising is the c = 1 free Dirac fermion CFT quantity.

Analytical predictions Gaussian numerics

S(A) I (A : B) EP S(A) I (A : B) EP

Decompactified free boson CFT (c = 1)

d = 0 c

3
log wAwB

(wA+wB )δ
c

6
log 2wAwB

(wA+wB )δ
[38] 1

3
log wAwB

(wA+wB )δ
1
6

log 2wAwB

(wA+wB )δ

d ≪ w ≃ c

3
log w

δ
[39] ≃ c

3
log w

d
[40] ≃ c

6
log w

d
[38] ≃ 1

3
log w

δ
≃
(

<0.40
>0.27

)

log w

d
≃ 1

6
log w

d

d ≫ w ∝ ( w

d
)0[41,42] ∝ ( w

d
)0 * <( w

d
)0.15 <( w

d
)0.15

Ising CFT (c = 1
2
)

d = 0 c

3
log wAwB

(wA+wB )δ
c

6
log 2wAwB

(wA+wB )δ
[38] 1

6
log wAwB

(wA+wB )δ
1

12
log 2wAwB

(wA+wB )δ

d ≪ w ≃ c

3
log w

δ
≃ c

3
log w

d
≃ c

6
log w

d
[38] ≃ 1

6
log w

δ
(non-Gaussian setting)

d ≫ w ∝ ( w

d
)1/2[41,42] ∝ ( w

d
)1/2 *

σ ∼ Ŝx
i [see (20)], which has h = h̄ = 1

16 , i.e., �min = 1
8 .

Furthermore, as the free Dirac fermion CFT is dual to the
free compact boson theory at R = 1 (or, equivalently, R = 2),
according to (14) one expects MI to decay as 1/d governed by
the h = h̄ = 1

8 operator. Such an operator would be natural to
interpret as a product of two σ operators from each underlying
Majorana fermion model.

Let us also note that existence of the following formula for
MI for Dirac fermions [65]:

I (A : B) =
1

6
log

(d + w)2

d (2w + d )
. (31)

While this formula agrees at short distances with (30), at large
distances it falls off as 1/d2 rather than the aforementioned
1/d predicted by bosonization. This is related to the fact that
the calculation in Ref. [65] utilizes torus partition function
with the antiperiodic boundary condition for fermions. How-
ever, the modular invariant partition function leading to (29)
includes also contributions from sectors in which fermions
satisfy period boundary conditions. This is directly related to
the discussion about reduced density matrices in the fermionic
formulation of the Ising model mentioned in Sec. II B and
expanded later in Sec. VII B and Appendix B.

Having discussed the analytic expectations, let us show
how our bosonic and fermionic Gaussian method reproduces
them. This should be regarded as a cross check of both our
numerical lattice setup and its ability to reproduce features
of the continuum limit. Furthermore, it will illustrate to what
extent considering a decompactified free boson with the zero
mode regulated via nonvanishing mass captures long-distance
(d ≫ w) and short-distance (d ≪ w) CFT expectations.

First, we consider the behavior of MI for a free bosonic
field with central charge c = 1, shown in the first row of Fig. 2.
As anticipated in Sec. II A, employing Gaussian methods re-
stricts us to the decompactified free boson with nonvanishing
mass.

In the limit of small d/w, we find a logarithmic depen-
dence similar to (30), specifically

I (A : B,w ≫ d ) = a0 + a1 log
w

d
−

1

2
log(L m) . (32)

Note the logarithmic Lm dependence was already observed
in Ref. [35]. The coefficient a1, expected to be c/3 ≡ 1/3
in the continuum limit, converges very slowly as the block
widths w and the size L of the periodic system are increased.
However, we can bound it by considering the behavior of
I (A : B) and S(A ∪ B) separately. Estimating a1 by a discrete
derivative with respect to log(w/d ), we find that this estimate
approaches 1/3 from above for the I (A : B) data, and from
below for S(A ∪ B), as shown in the top-left corner of Fig. 2,
suggesting an asymptotic ∝ 1/3 log w behavior identical to
that of S(A). Our data, extending until N = 32 000 and w =
2000 δ, yield a bound 0.27 � a1 � 0.40, consistent with our
expectations. All shown data use a distance d

δ
= 1 of one

lattice site, as lattice effects on the value of the a1 estimate
were found to be negligible.

The behavior at large d/w can be anticipated to be subtle
in light of (29), as in the present case �min → 0. In particular,
assuming a power law behavior

I (A : B,w ≪ d ) = b0 + b1

(

w

d

)b2

−
1

2
log(Lm) , (33)

one would expect b2 to vanish. The power b2 can be estimated
by discretizing the derivatives in the expression

b2 = 1 +
d

d log(w/d )
log

dI (A : B)

d(w/d )
. (34)

Indeed, we find its estimated value to gradually decrease at
large d/w as N is increased, though MI can be well approxi-
mated by a power law with b2 ≈ 0.2 in the range 1 < d/w <

100, consistent with earlier numerical studies in the d/w < 50
range [35]. In the d/w → ∞ limit, we can bound b2 � 0.15.
The coefficient of a potential logarithmic growth I (A : B) ∼
b′

1 log(w/d ) in this limit can be bounded as b′
1 � 0.06. While

these results are obtained on a circle and extrapolated to a
line, in Sec. VII A we will discuss the large-distance behavior
of free boson directly on a line, where we will also consider
possible sublogarithmic decay functions at large d/w. Such
functional dependencies, resulting from subtle large distance
behavior for free, nearly massless bosons, will reappear in the
context of EoP studies in Sec. V.

As we can only study the Ising CFT via a Gaussian
fermionic model under the Jordan-Wigner transformation for
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FIG. 2. Numerical data for bosonic MI [(a)–(d)] and EoP [(e)–(g)] in the regimes of large [(a), (b), (e)] and small [(c), (d), (f), (g)] ratio
of block width w to distance d on a periodic system of N sites of bosons. [(a), (b)] Logarithmic coefficient of SA∪B and I (A : B). [(c), (d)]
Decay power and logarithmic coefficient of I (A : B). (e) Logarithmic coefficient of EP. [(f), (g)] Decay power and logarithmic coefficient of
EP. Expected limits and numerical estimates are in Table I. The bosonic scale mL = mNδ is set to 10−5 for MI and 10−3 for EoP, as the MI
computation is more stable at small values of mL.

adjacent intervals, MI computed in this approach is only rel-
evant for the d = 0 case, which follows directly from the
entanglement entropy formula for a single interval. These
formulas are included in Table I for completeness.

IV. GAUSSIAN PURIFICATIONS

As discussed in Sec. II, we focus on free theories since
their ground states are Gaussian states, so we have a powerful
machinery at our disposal to analytically compute the entan-
glement entropy and other quantities analytically from the
covariance matrix of pure Gaussian states (see Appendix C).
Similar analytical formulas exist also for the L2 circuit com-
plexity of interest. The primary goal of this paper is to use this
machinery to define and compute similar quantities, such as
entanglement entropy and complexity, for mixed states lead-
ing to the notions of EoP [66] and CoP [33], bearing in mind
the distinguishing feature that complexity is defined with re-
spect to a reference state, whereas entanglement entropy is
not. They are defined in the following way:

(1) We start with a function f (|ψ〉) that is defined for
arbitrary pure states |ψ〉.

(2) For a mixed state ρA ∈ HA, we construct the purifica-
tion |ψ〉 on a larger Hilbert space H = HA ⊗ HA′ , such that
ρA = TrHA′ |ψ〉 〈ψ |. Of course, there is quite some freedom
of how large the purifying Hilbert space HA′ can be.

(3) The purification |ψ〉 is not unique, but if we have found
one purification |ψ〉, we can construct any other purification
by acting with a unitary U = 1A ⊗ UA′ , where UA′ is an arbi-
trary unitary on the purifying Hilbert space HA′ .

(4) We then define a new function F (ρA) for the mixed
state to be given by

F (ρA) = min
U=1A⊗UB

f (U |ψ〉) ; (35)

i.e., we minimize the original quantity f (|ψ〉) defined for pure
states over all purifications of the mixed state ρA.

Note that there are some subtleties related to the fact that
the purifying Hilbert space HA′ may not have a direct physical
interpretation; e.g., if HA represents a local subsystem (region
in real space) of a QFT, it is a priori not clear what the physical
meaning of HA′ is. Consequently, the function f needs to be
defined in an appropriate way so that it can be meaningfully
applied to arbitrary extended Hilbert spaces H = HA ⊗ HA′ .
While this is relatively straightforward for entanglement en-
tropy, one needs to be careful about circuit complexity since
it is usually defined with respect to a reference state that is
chosen as spatially disentangled with respect to a physical
notion of locality. As explained in (48), one can show that
this can also be done for the purifying Hilbert space HA′ in
such a way that the resulting CoP is actually independent of
the notion of locality or, put differently, the outcome of the
minimization procedure can even be understood as equipping
HA′ with a notion of locality.

While both EoP and CoP have been introduced previously,
their efficient evaluation has been an ongoing problem for
practical applications. The reason is that the required mini-
mization procedure must be generally performed numerically,
while the dimension of the respective manifold over which
one needs to optimize grows quickly with the number of
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degrees of freedom. Therefore, EoP has been only studied for
small systems and often only with respect to certain subfami-
lies of states, while CoP was exclusively studied via purifying
individual degrees of freedom [36] rather than directly larger
subsystems.

The key ingredient that enables the progress of the present
paper is that we can efficiently compute EoP and CoP for the
family of Gaussian states. For this, we start with a Gaussian
mixed state ρG

A and compute a Gaussian purification |ψG〉.
When performing our minimization algorithm, we only sam-
ple over Gaussian states; i.e., we define the new function

F G
(

ρG
A

)

= min
U G=1A⊗U G

A′

f (U G |ψG〉) . (36)

Clearly, we must have F (ρG
A ) � F G(ρG

A ); i.e., F G(ρG
A ) is an

upper bound for the true minimum. Moreover, it is reasonable
to assume that for many quantities, such as EoP and CoP,
we actually have the equality F (ρG

A ) = F G(ρG
A ). This was

already conjectured in Ref. [34] and is further supported by
Ref. [67]. In the case of CoP, there is still limited progress
in even defining circuit complexity for non-Gaussian states,
which means that it is natural to only consider F G(ρG

A ) to start
with. In both cases, it is therefore a meaningful restriction to
only consider Gaussian purifications of Gaussian states.

For Gaussian states, we can use the covariance matrix
and linear complex structure formalism as explained in Ap-
pendix C (see Refs. [67,68] for further details). Rather
than working with Hilbert space vectors, which would
live in an infinite-dimensional Hilbert space for bosons
and a 2NA -dimensional Hilbert space for fermions, we can
fully characterize the Gaussian state by a (2NA by 2NA)-
dimensional matrix, where NA represents the number of
bosonic or fermionic degrees of freedom. We restrict to
Gaussian states with za = tr(ξ̂ aρG

A ), for which all relevant
information is encoded in the so-called restricted complex
structure JA defined in (C7). For a mixed Gaussian state, JA

has purely imaginary eigenvalues ±ici, where ci ∈ [1,∞) for
bosons and ci ∈ [0, 1] for fermions. The state is pure only if
all ci = 1. For every mixed state ρG

A ,

JA ≡

⎛

⎝

C1 0 0

0
. . . 0

0 0 CNA

⎞

⎠ with Ci = ci

(

0 1
−1 0

)

. (37)

We can always purify such a state using a Hilbert space HA′

with the same number of degrees of freedom as HA, i.e., NA′ =
NA. Then, there always exists a basis in the system A′, such
that the complex structure J of the purified state |ψG〉 takes
the form [69]

J ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

C1 0 0 S1 0 0

0
. . . 0 0

. . . 0
0 0 CNA

0 0 SNA

±S1 0 0 C1 0 0

0
. . . 0 0 0 0

0 0 ±SNA
0 0 CNA

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (38)

where (+) applies to bosons and (−) to fermions with

Ci = ci

(

0 1
1 0

)

and Si = si

(

0 1
1 0

)

(39)

and si =
√

c2
i − 1 for bosons and si =

√

1 − c2
i for fermions.4

From the perspective of Gaussian states, different purifica-
tions of ρG

A only differ in the choice of basis of the purifying
system B, for which J takes the above standard form. Conse-
quently, we can use the action of the respective Lie group GB

[symplectic group Sp(2NA′ ,R) for bosons, orthogonal group
O(2NA′ ,R) for fermions] to transform J → MJM−1 with
M = 1A ⊕ MA′ , where MA′ ∈ GA′ represented as 2NA′ -by-2NA′

matrix.
As reviewed in Appendix D, we optimize over all Gaus-

sian purification by taking the natural geometry (Fubini-Study
metric) of the state manifold into account. Using the fact that
this geometry is compatible with the group action, i.e., the
Fubini-Study metric on the manifold of purifications is left
invariant under the group action of GA′ , we do not need to
recompute the metric at every step, but we can fix an orthonor-
mal basis of Lie algebra generators equal to the dimension of
the manifold. This enables us to efficiently perform a gradient
descent search attuned the geometry of states, which scales
polynomially in the number of degrees of freedom and enables
us probe the field theory regime of our discretized models,
which has not been possible previously in this setting. In
particular, previous studies [34,35] of EoP restricted to special
classes of Gaussian states [namely, real Gaussian wave func-
tions generated by the subgroup GL(NA′ ,R) ⊂ Sp(2NA′ ,R)]
for a small number of degrees of freedom. Similarly, CoP
has been almost exclusively studied by purifying individual
degrees of freedom (mode-by-mode purifications [36]) rather
than whole subsystems for larger NA.

For purifications of small subsystems, e.g., of 1 + 1 or
2 + 2 sites, this optimization only takes a few seconds on a
desktop computer and is still feasible within a few hours for
10 + 10 sites, with efficiency depending on the optimization
function, the accuracy threshold, and the hardware on which
the computation is performed. For the particular case of CoP,
the optimization procedure for bosons was found to be an
order of magnitude faster than the fermionic case for the same
accuracy threshold, even for small subsystems. This implied
that for larger subsystems, e.g., of order of 10 + 10 sites,
the optimization parameters such as the gradient and function
tolerance were lowered without compromising the results. For
instance, lowering the gradient and function tolerance by a
couple of orders of magnitude resulted in changes in the final
value of the optimization in the third or fourth decimal.

V. ENTANGLEMENT OF PURIFICATION

We discuss our results for the EoP in bosonic and fermionic
field theories using the purifications discussed in the previous
section the algorithm described in Appendix D.

A. Definition and existing results

EoP is a measure of correlations, which include both clas-
sical and quantum ones, and can be regarded as a mixed state

4An equivalent parametrization is given by ci = cosh 2ri and si =
sinh 2ri for bosons and ci = cos 2ri and si = sin 2ri for fermions, as
used in Refs. [67,69].
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generalization of entanglement entropy [66]. When a mixed
state ρAB : HAB → HAB is given, we first purify it into a pure
state |ψ〉 ∈ H by extending the Hilbert space HAB according
to

HAB = HA ⊗ HB → H = HA ⊗ HB ⊗ HA′ ⊗ HB′ (40)

such that ρAB = TrA′B′ (|ψ〉 〈ψ |). The EoP EP(ρAB) is defined
as the minimum of the entanglement entropy S(A ∪ A′) =
− Tr(ρAA′ log ρAA′ ) for the reduced density matrix ρAA′ =
TrBB′ (|ψ〉 〈ψ |) over all possible purifications

EP(ρAB) = min
|ψ〉

[S(A ∪ A′)]. (41)

When ρAB is pure, it simply reduces to the entanglement
entropy as EP(ρAB) = S(A) = S(B).

EoP is relatively new to the QFT setting and its understand-
ing in this context is in development, which adds a strong
motivation for our paper. Our knowledge about this subject
is based on a conjecture in holography, results governed by
local conformal transformations in CFTs, and ab initio studies
in free QFTs, which is the research direction the present work
subscribes to. Below we briefly summarize the state of the art
that sets the stage for the results of our research.

In strongly coupled CFTs, a holographic formula which
computes EoP was proposed in Refs. [31,32]. Analytical
calculations of EoP, based on the idea of path-integral opti-
mization for CFTs [70], were given in Ref. [38]. In particular,
when the subsystems A and B are adjacent in a CFT, both holo-
graphic and path-integral results predict the universal formula

EP =
c

6
log

2wAwB

(wA + wB)δ
, (42)

where the widths of A and B are wA and wB, respectively and
δ is the lattice spacing. Exploratory numerical calculations
of EoP in a lattice regularization of (1+1)-dimensional free
scalar field theory have been performed in Refs. [34,35]. Be-
low we would like to extend such computations so that we
can compare the result (42) with our discretized numerical
calculations, as well as understand better the long-distance
physics (d ≫ w) in the QFT limit. The key technical differ-
ence on this front with respect to Refs. [34,35] is using bigger
total system sizes, significantly bigger subsystems—both of
which are desired to be closer to the QFT limit—and the most
general Gaussian purifications discussed in Sec. IV.

B. Numerical studies using the most general

Gaussian purifications

Using the approach outlined in Sec. IV and numerical
techniques explained in Appendix D, we can now compute
both bosonic and fermionic EoP for purifications on the whole
Gaussian manifold. In light of the discussion of our models in
Sec. II, for bosons we expect the Gaussian ansatz to describe
well the CFT properties when the two intervals are adjacent
(d = 0) or at small separation d ≪ w, as in these cases we do
not expect the zero mode to be a significant contribution to the
calculations we perform. For fermions, we expect the Gaus-
sian ansatz to be appropriate for CFT calculations only when
the two intervals are adjacent. Otherwise, the desired starting
points of our calculations, spatially reduced density matrices

FIG. 3. Bosonic [c = 1, (a)] and fermionic/Ising spin EoP [c =
1
2
, (b)] for two adjacent (d = 0) subsystems A and B on wA+wB

δ
=

12 sites, with the continuum result (42) for a fitted lattice spacing ǫ

plotted as a dashed curve. Total system size N = 1200. Bosonic mass
scale m L = 10−4.

for the Ising and Dirac fermion CFTs, are non-Gaussian and
our method is not applicable. In order to complete the picture,
we will nevertheless provide results of our methods for bosons
and fermions in the aforementioned regimes; however, they
are not supposed to be seen as CFT predictions based on
lattice calculations.

Starting with the adjacent intervals, our Gaussian lattice
calculations perfectly reproduce the behavior (42) as shown
in Fig. 3, in both our bosonic and fermionic (or equivalently,
Ising spin) computations up to slight lattice effects at small
wA or wB.

We move on to a more general case where the subsystem
A and B are disjoint intervals in a free CFT. We again take the
lengths of both intervals to be w and the distance between
them to be d . When d ≪ w, both holographic [31,32] and
path-integral approaches [38] predict the behavior

EP =
c

6
log

2w

d
, (43)

which agrees with (42) under the replacement δ = d,wA =
wB = w. On the other hand, no universal results have been
known for d ≫ w and one possibility is a behavior similar to
MI described in Sec. III.

The numerical results for nearly a massless free scalar QFT
are plotted in the second row of Fig. 2. As expected, we find a
logarithmic dependence on w/d when it becomes large, given
by

EP(w ≫ d ) = c0 + c1 log
w

d
−

1

2
log(Lm) , (44)

with a convergence to c1 ≈ 1
6 much faster than seen in MI.

This result is consistent with the ∝ c
6 log w

d
behavior of (43).

In the case of small w/d , we observe that the bosonic EoP
behaves extremely similar to bosonic MI. Such an observation
for smaller subsystems and separations was already made in
Ref. [35] and our results should be seen as a corroboration of
this earlier finding. Given this similarity and our discussion of
MI in Sec. III, it should not come as a surprise that a power-
law fit to the bosonic EoP in the regime of small w/d ,

EP(w ≪ d ) = d0 + d1

(

w

d

)d2

−
1

2
log(Lm) , (45)
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is unstable as w/d → 0. The best we could do is to provide
the upper bound on the power, d2 � 0.15, which is consis-
tent with the absence of a long-distance power behavior. One
should note that the power of such a quasi power law for EoP
agrees well with the one extracted for MI, as can be seen by
comparing the two rows of Fig. 2 (right).

VI. COMPLEXITY OF PURIFICATION

In the present section, we provide a comprehensive discus-
sion of CoP in the single and two adjacent interval case (d = 0
in Fig. 1). We start by briefly reviewing the relevant results of
the holographic complexity proposals, as well as the studies of
pure state complexity in free QFTs. These results will guide
us in the choice of a reference state and, also, in choosing
the way to combine two- and single-interval CoPs to get a
complexity analog of MI. Subsequently, we discuss the CoP
results obtained via optimization over the whole Gaussian
manifold. We focus on the single and adjacent intervals to
provide a clean message and we hope to report the d depen-
dence of CoP, which at least superficially seems involved, in
further work. We also compare some of our results with a
simplified version of single-mode purifications adopted in an
earlier study of single-interval CoP [36] to avoid the technical
problem our work addresses, i.e., optimizing over the full
manifold of Gaussian purifications. Finally, we compare the
properties of CoP with the notion of mixed state complexity
discussed in Ref. [71].

A. Holographic predictions

Holographic complexity proposals relate gravitational ob-
servables associated with choosing a time slice on the
asymptotic boundary of solutions of AdS gravity with mea-
sures of hardness of preparing corresponding pure states in
dual QFTs using limited resources. The first covariant no-
tion is the spatial volume of the boundary-anchored extremal
(codimension-one) bulk time slice (CV ) [17]. The second
covariant notion is the spacetime volume (i.e., a codimension-
zero quantity) of the bulk causal development of such a time
slice (CV 2.0) [20]. The third covariant notion is also of a
codimension-zero type and is the bulk action evaluated in the
causally defined region (CA) [18,19]. The first two quantities
are unique up to an overall normalization, whereas CA has an
additional ambiguity related to the presence of null boundaries
[46,47].

While there is also another evidence in support of the
association of CV , CV 2.0, and CA with complexity, an important
clue about the correctness of these conjectures comes from
free CFT calculations of complexity of pure states along the
lines of Refs. [22,23]. In particular, such free CFT calcula-
tions are able to match the structure of leading divergences of
holographic complexity [22,23,28,72] provided the reference
state is taken to be a spatially disentangled state. Interestingly,
in the case of bosonic calculations of Refs. [22,23], the scale
entering the definition of a spatially disentangled reference
state can be linked, via the leading divergence, both to the
overall normalization freedom in the case of all three propos-
als, as well as to an additional ambiguity appearing in the CA

case. Furthermore, the free boson CFT calculation in Ref. [29]

explained qualitative features of the holographic complexity
excess in thermofield double states as compared to the vacuum
complexity reported in Ref. [73].

All three holographic complexity proposals acquire natural
generalizations for mixed states represented as spatial subre-
gions of globally pure states [74–76]. Instead of considering
extremal volumes or causal developments of a full Cauchy
slice in the bulk, the mixed-state version of holographic com-
plexity proposals uses the corresponding notions applied to
the relevant entanglement wedge [77–79]. While there are
certainly other possibilities regarding the kind of complexity
the proposals [74–76] represent (see Ref. [33] for a discussion
of some of the available options), we will treat their properties
as a guiding principle to study CoP in free CFTs.

The results of these proposals applied to single- and two-
interval cases of interest can be found in Table II. One can
clearly see that the leading divergence of holographic com-
plexity is in the volume of the combined subregions and there
can be also subleading logarithmic divergences.5 An earlier
study of divergences encountered in the case of a single-
interval CoP in the vacuum of a free boson theory using
restricted purifications is Ref. [36]. In the present work, we lift
the restriction on purifications within the Gaussian manifold
of states, include also the corresponding results for fermions
and carefully resolve finite contributions to CoP, including
their dependence on the reference state scale and residual
mass for bosons. The latter we achieve by considering the case
of two adjacent intervals.

For two intervals, it is interesting to define a better behaved
(less divergent) quantity in a manner similar to the definition
of MI (7). Led by the form of leading divergences, as well as
simplicity, the mutual complexity �C was defined in Ref. [80]
as the holographic complexity of the union of the intervals,
subtracted from the sum of contributions for each individual
interval.

�C = C(A) + C(B) − C(A ∪ B). (46)

The results in the two-interval setup at a vanishing separations
are included in Table II and motivated us to seek for a logarith-
mic behavior as a function of wA wB

(wA+wB ) δ
also in the analogous

setting in free CFTs. This is also reminiscent of the behavior
of MI and EoP at d = 0; see Table I.

B. Definition and implementation

CoP is defined in analogy with EoP as a measure of
complexity for mixed states with the use of a definition of
complexity for pure states minimized with respect to all pu-
rifications [33,81]. This includes, in principle, purifications
which contain an arbitrary number of ancilla greater or equal
to number of the degrees of freedom in the subsystem.

Given a mixed state in a Hilbert space HA characterized by
a density matrix ρA, we define a new Hilbert space

H′ = HA ⊗ HA′ (47)

5Note also that taking ℓCT ∼ δ can enhance the leading divergence
in the CA case by a logarithm of the cutoff and change subleading
divergence.
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TABLE II. Summary of mixed state complexity results consisting of predictions of holographic complexity proposals collected from
Refs. [36,43–45] and our numerical CoP results in free CFTs. The latter are obtained using Gaussian bosonic and fermionic states, the L2

norm circuit complexity encapsulated by (56), and spatially disentangled reference states. The mutual complexity is defined differently for
the holographic complexity proposals [see (46)] and for our implementation of CoP [see (61)]. In the case of the CA proposal, L is the AdS
curvature radius and ℓCT is an arbitrary length scale arising from counterterms [46,47]. In the case of the bosonic calculation, μ is the reference
state scale and functions f0, f1, and f2 are defined in (60).

CFT and complexity definition Single interval complexity / CoP Mutual complexity

Hologr. CFTs: subregion CV ∝w

δ
− π const.

Hologr. CFTs: subregion CV 2.0 ∝w

δ
− 2 log ( w

δ
) − π2

4
∝ log wA wB

(wA+wB )δ
+ π2

8

Hologr. CFTs: subregion CA ∝ log ( ℓCT

L
) w

2δ
− log (2 ℓCT

L
) log ( w

δ
) + π2

8
∝ log (2 ℓCT

L
) × log wA wB

(wA+wB )δ
− π2

8

Decomp. free boson CFT (c = 1) [ f2(μδ) w

δ
+ f1( m

μ
, μ δ) log w

δ
+ f0( m

μ
, μ δ)]

1
2 f1( m

μ
, μ δ) log wAwB

(wA+wB )δ
+ f0( m

μ
, μ δ)

Ising CFT (c = 1
2
) (0.103 w

δ
+ 0.0544 log w

δ
+ 0.0894)

1
2 0.0544 log wAwB

(wA+wB ) δ
+ 0.0894

with ancillary system A′. There exist many purifications
|ψT 〉 ∈ H′, such that ρA = TrHA′ (|ψT 〉 〈ψT |). In analogy to
the EoP [see (41)], we define the CoP CP as the minimum
of the complexity function C with respect to a reference state
|ψR〉 and to all purifications |ψT〉:

CP(ρA) = min
|ψT〉∈H′

C(|ψT〉 , |ψR〉) . (48)

CoP inherits the richness of building blocks of complexity for
pure states, such as dependence on the choice of a reference
state |ψR〉 as well as on the cost function which evaluates the
circuits built from the unitaries generated by the Lie algebra
of admissible gates. This is an additional complication with
respect to EoP, which requires only minimization over pu-
rifications. For a generic definition of complexity underlying
CoP, one would need to not only optimize over purifications
but also for each purification solve an intricate optimization
problem to find the optimal circuit.

The idea behind the present work is to make use of partic-
ularly natural definitions of cost function for Gaussian states
defined in Ref. [28] (fermions) and Ref. [29] (bosons), which
provide closed form and are efficient to evaluate expressions
for complexity. In this way, we make the problem of calcu-
lating CoP in free CFTs much more manageable, as similar to
EoP, it requires now only one layer of numerical optimization.
Of course, it would be very interesting to explore other cost
functions in the CoP context and we leave this rather difficult
problem for future studies.

To introduce the relevant cost function, let us recall
from Sec. IV (see also Appendix C) that bosonic and
fermionic Gaussian states |J〉 can be efficiently characterized
by their linear complex structure Ja

b. The latter can be con-
structed from their two-point function Cab

2 = 〈ξ̂ aξ̂ b〉, where
we only consider Gaussian states with 〈ξ̂ a〉 = 0. As shown
in Refs. [28,29], the geodesic distance between |JR〉 and |JT〉
within the Gaussian state manifold gives rise to a version of
complexity based on a L2 cost function

C(|JT〉 , |JR〉) =
√

| tr(log(−JTJR )2)|
8

. (49)

To relate to the discussion in the introduction, the above defi-
nition of complexity corresponds to optimization with respect

to the L2 cost function (6) with

ηIJ = 1
4 tr
(

KI G K
⊺

J G−1
)

, (50)

where Gab = 〈JR|ξ̂ aξ̂ b + ξ̂ bξ̂ a|JR〉 for the reference state
|ψR〉. Due to the canonical anticommutation relations, this
normalization of the Lie algebra elements KI is independent
of the reference state for fermions (see Ref. [28]), but for
bosons (50) implies that KI is normalized based on the spe-
cific reference state, which was also referred to as equating
reference and gate scale (as discussed in Refs. [22,23]). In the
above expression KI are the respective Lie algebra elements
(symplectic for bosons, orthogonal for fermions) associated to
the quadratic operators OI in their fundamental representation
acting on the classical phase space.

In the following, we focus on minimal purifications, i.e.,
purifications whose ancilla have the same number of degrees
of freedom as the reduced density matrix of the subsystem.
Our focus on minimality comes as a result of a number of
numerical computations for the cost function (49), which in-
dicate that purifying the reduced density matrix with a larger
number of ancilla does not lead to a lower CoP. It would
be very interesting to explore if this feature is special to the
cost function and the resulting complexity (49) we considered;
however, we leave it for future investigations.

When applying the closed-form complexity formula (49)
to Gaussian purifications |JT〉 of some mixed state ρA, we
need to think about what an appropriate reference state |JR〉
can be. The two most immediate applications are thermal
states and mixed states resulting from the reduction to spatial
subsystem:

(1) Thermal states. Our mixed state could be the thermal
state ρ in a system H =: HA, which we purify to H′ = HA ⊗
HA. Here, we can always choose a spatially unentangled and
pure reference state, which we can extend to the purifying
system as |JR〉 = |JR〉A ⊗ |JR〉A ∈ H′.

(2) Subsystems. We consider a pure Gaussian state |ψ〉 ∈
H = HA ⊗ HB, which we reduce to some local subsystem
ρA = TrHB

|ψ〉 〈ψ |. In this subsystem, we have a pure and
spatially unentangled Gaussian reference state |JR〉A, which
we can extend to the purifying system as |JR〉 = |JR〉A ⊗
|JR〉A ∈ H′.

The spatially unentangled character of |JR〉 is a choice
motivated by the fact that such a state on one hand is truly
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simple and on the other, in the case of pure state complexity,
reduces the kind of divergence encountered in the holographic
complexity proposals.

In both scenarios outlined above, only the target state |JT〉
is entangled across HA ⊗ HA′ , while the reference state is a
product state |JR〉 = |JR〉A ⊗ |JR〉A. As there is no a priori

physical notion of locality in the ancillary system, we only
require that |JR〉A is pure and Gaussian. We choose

[JR] ≡
NA
⊕

i=1

(

0 μ

− 1
μ

0

)

, (bosons) (51a)

[JR] ≡
NA
⊕

i=1

(

0 1
−1 0

)

, (fermions) (51b)

over spatially local sites i, where we only introduced a refer-
ence scale μ for bosons.6

The optimization over all purification in (48) could there-
fore be equivalently performed over reference or target state
or even both. The minimum would always be the same, which
can be seen as follows. By construction, the complexity func-
tion is invariant under the action of a single Gaussian unitary
U acting on both states; i.e., we have

C(|JT〉 , |JR〉) = C(U |JT〉 ,U |JR〉) , (52)

where U is related to a group transformation Ma
b via

U †ξ̂ aU = Ma
bξ̂

b. In the case of Gaussian purifications, we
optimize over all Gaussian purifications for the target state;
i.e., if we have found such a purification |JT〉, any other purifi-
cation is given by 1A ⊗ UA′ |JT〉. We thus find

CP = min
UA′

C(1A ⊗ UA′ |JT〉 , |JR〉)

= min
VA′

C(|JT〉 ,1A ⊗ VA′ |JR〉)

= min
UA′ ,VA′

C(1A ⊗ UA′ |JT〉 ,1A ⊗ VA′ |JR〉), (53)

where the equalities follow from (52) and where both UA′

and VA′ are Gaussian unitarites on the system A′. In practice,
we can therefore start with a basis ξ̂A, such that [JT]A takes
the mixed standard form (37). It can then be purified so that
the purification takes the standard form with respect to the
extended basis ξ̂ ′ = (ξ̂A, ξ̂A′ ),

JT ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

C1 · · · 0 S1· · · 0
...

. . .
...

...
. . .

...

0 · · · CNA
0 · · ·SNA

±S1· · · 0 C1· · · 0
...

. . .
...

...
. . .

...

0 · · ·±SNA
0 · · ·CNA

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (54)

as defined in (38). The reference state has the block diagonal
form

JR ≡ [JR]A ⊕ [JR]A′ ≡
(

[JR]A 0
0 [JR]A′

)

, (55)

6For fermions, the spatially unentangled vacuum is essentially
unique if we require it to be translationally invariant over sites and
have the same parity as the vacuum of the Ising model.

as it is a product state. We have (1A ⊗ UA′ ) |J〉 = |MJM−1〉
with M = 1A ⊕ MA′ , so the optimization gives

CP = min
M=1A⊕MA′

√

tr (log(MJTM−1JR )2)

8
, (56)

which shows explicitly that we can think of the optimization
as either applied to target or reference state. When we perform
the optimization, it is actually advantageous to optimize over
the reference state, as its stabilizer group is larger (i.e., there
are more group elements that preserve JR than JT) and so we
can identify a fewer number of directions and parameters to
optimize over. Our algorithm is described in more detail in
Appendix D and is one of subjects of a companion paper [67].

C. Single interval in the vacuum

In the present and following sections, we apply this general
framework to the particular case of free CFTs on the lattice,
as we did for EoP in Sec. V. We first consider the case of a
single interval in the vacuum, which appeared earlier in the
context of the aforementioned mode-by-mode purifications in
Ref. [36]. In the present section, we readdress the same prob-
lem using the most general purifications, whereas in Sec. VI E
we reconsider the same problem using our simplified take on
the mode-by-mode purifications to make further contact with
Ref. [36]. One expects CoP to diverge in the continuum limit
in light of a general physics picture where circuits acting on a
spatially disentangled state need to build entanglement at all
scales to match features of CFT vacua, as well as from explicit
results in Ref. [36].

For a single interval on a line, fermionic CoP will be a func-
tion only of w

δ
as the system size N becomes large. Bosonic

CoP, however, also contains two additional parameters, the
reference state scale μ, see (51a), and the effective mass m δ.
As changing μ → aμ is equivalent to rescaling the mass and
lattice spacing according to m → m/a, δ → aδ, we can set
μ = 1 in numerical calculations and restore it in analytical
formulas containing the (now unitless and independent) m

and δ.
We begin with the simpler case of fermionic CoP (at central

charge c = 1
2 ). Here, we find a relation of the form

lim
N→∞

CP
2 = e2

w

δ
+ e1 log

w

δ
+ e0 . (57)

Note that we consider the CoP squared. We test this functional
form by computing the discrete derivative with respect to w/δ,
expected to be described by the expression e2 + e1δ/w. As
Fig. 4 (top) shows, it is indeed perfectly linear, allowing us to
determine

e0 = 0.0894, e1 = 0.0544, e2 = 0.103, (58)

with the given three significant digits corresponding to the
numerical accuracy of the optimization algorithm.

The bosonic case (with c = 1) is more subtle, as we must
subtract terms in m

μ
and δμ that diverge in the continuum limit

m
μ
, δμ → 0. However, we still see in Fig. 4 (bottom) that the

functional form of (57) still holds, but with dependencies

lim
N→∞

CP
2 = f2(μδ)

w

δ
+ f1

(

m

μ
,μ δ

)

log
w

δ
+ f0

(

m

μ
,μ δ

)

.

(59)
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FIG. 4. Discrete derivative of fermionic (a) and bosonic squared
CoP [(b), (c)] of a single interval of length ℓ/δ. m and δ are given in
units where μ = 1. In both cases, the number of total sites is given
by N = 100 w/δ.

This form accurately describes the w dependence over a large
range of m/μ and μδ. The functions f0 to f2 are estimated as

f0

(

m

μ
,μ δ

)

= 0.80

√

log(μδ) log
m

μ
+ 0.25 log2 m

μ
, (60a)

f1

(

m

μ
,μ δ

)

= 0.25 − 0.46 log
m

μ
− 0.17 log(μδ), (60b)

f2(μδ) = 0.22 + 0.25 log2(μδ), (60c)

for parameters m/μ,μ δ ≪ 1. Because of the increased num-
ber of fit parameters relative to the fermionic case, we are
unable to produce fit coefficients with more than two signif-
icant digits of accuracy. The leading divergences in μδ and
m
μ

are visible in Fig. 5, where we plot CP (nonsquared) and
find linear divergences in log(μδ) and log m

μ
, respectively.

The dependence of the slope of the divergence on w, given

by ≈
√

w

2 , is clearly visible in the μδ case, while the m
μ

term

diverges with a constant slope ≈ 1
2 at m

μ
≪ 1, consistent with

the appearance of these terms in f2 and f0, respectively. Note
that f0 and f1 are estimated from the setup of two adjacent
intervals, analyzed in the next section, where the linear term
f2 cancels. In particular, the square root term in f0 can be seen
in Fig. 6, where the leading divergence in m

μ
is subtracted.

To corroborate this discussion, let us also note that the
structure of the leading divergences in the two cases matches
the result of the vacuum complexity in free CFTs; see
Refs. [22,23] for bosons and Refs. [28,72] for fermions. In
this pure state case analogy, the role of w is played by the
total system size measured in lattice units. The presence of the

FIG. 5. Divergences of bosonic CoP of a single interval of size
w at fixed μδ = 10−3 and m

μ
→ 0 (a) and at fixed m

μ
= 10−3 and

μ δ → 0 (b), in units of μ = 1. In both cases, the leading divergence
is linear. While the μδ divergence is w dependent, the m

μ
one is not.

log2 μδ contribution in the vacuum case comes from the ratio
of the highest momentum frequency of the order of the inverse
lattice spacing to the reference state scale and the overall
coefficient in front of the whole divergence is μ independent.
The logarithmic divergence is present because the symplectic
group is noncompact. For fermions, the group of transforma-
tions is compact and there is no logarithmic enhancement of
the leading divergence.

D. Two adjacent intervals in the vacuum

The next case to consider are two adjacent intervals in the
vacuum. This is basically the application of the formulas from
the previous section with the addition that it allows us to gain
a better control over the finite term f0( m

μ
, μ δ) in the bosonic

single interval CoP (59).
To this end, we are interested in a better behaved combina-

tion of complexities akin to (46). We take it to be

�C
(2)
P ≡ CP(A)2 + CP(B)2 − CP(A ∪ B)2, (61)

where we put two on the left-hand side (LHS) in the brackets
to emphasize that it does not denote taking a square. The ra-
tional behind this expression is that when one keeps μδ fixed,
the whole power-law divergent part cancels among the three

FIG. 6. Subleading contribution to constant term f0 of bosonic
CoP with respect to m/μ (a) and μ δ (b), with μ = 1. After subtract-
ing the leading contribution 0.25 log2 m

μ
from f0, the square of the

remainder is linear in log m

μ
and log(μδ) when both are small.
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FIG. 7. Fermionic/Ising (a) and bosonic (b) CoP for two adja-
cent (d = 0) subsystems A and B, in units of μ = 1. The expected
analytical forms, (62) for fermions and (63) for bosons, are plotted
as dashed curves. We consider wA+wB

δ
= 14 total sites for fermions

and 20 sites for bosons. The total system size is set to N = 100 w

δ
for

each block width w.

terms. Similar combinations to (61) in the aforementioned
context of pure state complexity in thermofield double states
appear in Ref. [29]. Also, note the difference with respect to
holographic mutual complexity (46).

Simple manipulations of the single interval case lead to the
following result for the Ising CFT (c = 1

2 ):

lim
N→∞

�C
(2)
P = e1 log

wAwB

(wA + wB) δ
+ e0. (62)

For the free decompactified boson CFT (c = 1), we can again
use the single-interval result (59) to obtain

lim
N→∞

�C
(2)
P = f1

(

m

μ
,μ δ

)

log
wAwB

(wA + wB) δ
+ f0

(

m

μ
,μ δ

)

,

(63)

but where the logarithmic coefficient and constant term now
depend on the divergences in m

μ
and μδ in precisely the same

way as the single-interval expression. The form of �C
(2)
P for

both bosons and fermions in shown in Fig. 7 in terms of the
ratio wA

wA+wB
. The qualitative behavior is the same as for the

EoP result shown in Fig. 3 and also the holographic complex-
ity proposal results encapsulated in Table II. However, one
should bear in mind a different subtraction of complexity with
the latter case related to the use of a L2 norm in our Gaussian
studies. Note also that �C

(2)
P is logarithmically ultraviolet

divergent.
Finally, it is interesting to observe that the mutual complex-

ity depicted in Fig. 7 is positive, which indicates subadditivity
of our CoP definition. This is in line with an earlier obser-
vation in the case of two coupled harmonic oscillations in
Ref. [37].

E. Single-mode optimization for bosons

A natural hope in the context of Gaussian states is to
split the problem of finding the CoP for a system with NA

modes into NA problems for a single mode. In Ref. [36],
the authors use a formula for the L1 norm complexity of a
single bosonic degree of freedom for certain Gaussian states
derived in Ref. [23], where they introduce two types of L1

norm bases (called the physical and the diagonal one). Note
that the authors use the geodesic with respect to the L2 norm,

but compute its length with respect to the L1, as it is difficult
to prove that a path is minimal with respect to the L1 norm
(in particular, for several modes). When considering several
modes of the free Klein-Gordon field, we need to distinguish
two settings reviewed previously:

(1) Thermal states. Here, we can choose a basis ξ̂A, such
that both [JT]A of a mixed thermal Klein-Gordon state and
[JR]A of a spatially unentangled vacuum decompose into 2-by-
2 blocks, so it is easy to argue that the Gaussian CoP results
from optimizing over individual modes.

(2) Subsystems. If we consider a mixed Gaussian state
ρA resulting from restricting the Klein-Gordon vacuum to a
region, it is typically not possible to bring both [JT]A and [JR]A

of a spatially unentangled vacuum into block-diagonal form,
so it will not suffice to optimize over individual modes.

Let us emphasize that in both cases we have a mode-by-
mode purification with respect to the standard form (38), but
it is the reference state that will only be a tensor product over
these modes in the case of thermal states but not for local
subsystems. However, we may encounter situations where the
standard decomposition of the mixed target state also approx-
imately decomposes the reference state into individual modes.

We consider a single bosonic mode with a pure Gaussian
reference state and a mixed Gaussian target state that both
do not have ϕπ correlations, i.e., 〈ϕ̂iπ̂ j〉 = 0. We extend this
system to a system of two bosonic modes H′ = HA ⊗ HA′

to have the extended reference state |JR〉 and the purified
target state |JT〉, such that the respective complex structures
are given by

JT ≡

⎛

⎜

⎜

⎝

0 λ 0
√

λ2 − 1
−λ 0

√
λ2 − 1 0√

λ2 − 1 0 0 λ

0
√

λ2 − 1 −λ 0

⎞

⎟

⎟

⎠

(64)

JR ≡

⎛

⎜

⎜

⎝

0 μ 0 0
− 1

μ
0 0 0

0 0 0 ν

0 0 − 1
ν

0

⎞

⎟

⎟

⎠

, (65)

where λ ∈ [1,∞) is the same as ci for several degrees of
freedom in (37), μ is the reference state frequency for the
original single mode, and ν is a parameter in the reference
state, for which we will minimize the complexity functional
(49). The latter is given for us by

C(λ,μ, ν) =
1

2

√

log

(

ω+

μ

)2

+ log

(

ω−

μ

)2

, (66)

where we defined the variables

ω± :=
μ

2
[λ(μ + ν) ±

√

λ2(μ + ν)2 − 4μν] . (67)

In order to find the minimum of CP = minν C(λ,μ, ν), we
need to solve a transcendental equation for ν. This can be done
numerically for any given value of c and μ in a very efficient
manner. Unfortunately, there is no closed analytic expression
for CP of a single mode, but we reduced the problem of
a single mode (with vanishing ϕπ correlations in reference
and target states) to a problem that is much simpler than the
optimization over a large manifold. Can we extend this to
larger systems?
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As derived in Refs. [22,28] for the perspective of the L2

norm, the optimal geodesic from reference to target state gives
(49), so we only need to worry about what goes into this
formula. We consider a mixed state of a region A with NA

sites. With respect to the local basis

ξ̂A =
(

ϕ̂A
1 , . . . , ϕ̂A

NA
, π̂A

1 , . . . , π̂A
NA

)

, (68)

the covariance matrix of reference and target state will have
the following forms:

[GT]A ≡
(

Gϕϕ 0
0 Gππ

)

, [GR]A ≡
(

μ1 0
0 1

μ
1

)

. (69)

If the Gaussian target state were pure, it is well known that we
can find symplectic transformation

M =
(

O 0
0 O

)

, (70)

where O is an orthogonal matrix, such that G̃T = MGTM⊺ is
diagonal, while GR = MGRM⊺ is preserved. As soon as GT

represents a mixed Gaussian state, there still exists a symplec-
tic transformation M, such that G̃T = MGTM⊺ is diagonal,
but now M will not be of the form (70) anymore and will
thus not preserve GR, i.e., MGRM⊺ �= GR. However, we could
pretend to approximate the true M by only diagonalizing Gϕϕ

with a respective O, such that G̃ϕϕ = OGϕϕO⊺ is diagonal.
We then apply the respective M of the form (70) and pretend
that also G̃ππ = OGππ O⊺ is diagonal; i.e., we drop the off-
diagonal terms which we hope to be sufficiently small. With
this assumption, we can apply a mode-by-mode optimization
based on (66), such that

CP(|JT〉 , |JR〉) ≈
√

∑

i

min
ν

C(λi, μ, ν), (71)

where λi is extracted from the diagonal entries of G̃ϕϕ and
G̃ππ . For a pure target state, (71) becomes an equality, where
both sides match the regular complexity (49).

We consider the restriction of the Klein-Gordon vacuum to
the subsystem of a single interval, as explored in Sec. VI C.
In this setup, we can compare the approximate single-mode
optimization with the full optimization. While the full opti-
mization takes several hours on a regular desktop computer,
our approximate scheme of optimizing (66) over individual
modes only takes a few seconds. Figure 8 shows how the
single-mode optimization is almost indistinguishable from
the full optimization for large m/μ, but the approximation
becomes increasingly worse for smaller m/μ. In Ref. [36], the
authors perform a similar calculation for the L1 norm, which
they refer to as mode-by-mode purifications.7 The difference
between our single-mode optimization and what the authors
in Ref. [36] do is twofold: First, we optimize over the L2

norm, while they consider the L1 norm. Second, we change the

7As pointed out at the beginning of this section, any Gaussian
purification is a mode-by-mode purification, but what the authors of
Ref. [36] mean is that they only optimize over the purifications in a
specific way, as if reference and target states would decompose into
the same individual modes as an approximation.

FIG. 8. Comparison of bosonic CoP obtained using the Gaussian
optimization algorithm (solid) and the single-mode optimization ap-
proximation (dashed) for the single interval case for mass m/μ =
10−1, 10−2, 10−3, 10−4 (top to bottom), N = 100, and for lattice
spacing μδ = 10−4(m/μ)−1.

target state by hand to decompose into a product over modes
in the same basis as the reference state and then perform the
optimization semianalytically for individual modes; i.e., we
optimize for each mode independently. In contrast, the authors
of Ref. [36] do not change reference or target states, but only
consider a subset of possible purifications; i.e., they evaluate
the full complexity function and optimize over a restricted
subset of parameters (one parameter per mode). As they do
not change the target state, they cannot evaluate the com-
plexity for individual modes and so would need in principle
to optimize over all parameters simultaneously but find good
convergence when optimizing over O(1) parameters at once.
Clearly, the approximation in Ref. [36] and our single-mode
optimization work because for large m/μ reference and target
states are close to decomposable over individual modes. This
will not be the case for generic subsystems (such as two
intervals), general states (such as those with ϕπ correlations),
and fermionic systems (which cannot be decomposed into
single-mode squeezings), in which case our full optimization
algorithm is required.

F. Comparison with the Fisher-Rao distance proposal

In Ref. [71], the authors propose a measure of bosonic
mixed-state complexity based on the Fisher-Rao distance,
which can be defined on the manifold P(N ) of 2N × 2N real
and positive definite matrices, of which bosonic covariance
matrices are a subset of. Without the need for any purifi-
cations, the proposal for the complexity of mixed states is
formally equivalent to (49), where here G and G0 are taken to
be the covariance matrices of the mixed target and reference
state, respectively. The motivation for this definition is that the
Fisher-Rao distance function

d (G, G0) :=
√

tr(log(G0G−1)2)/2
√

2 (72)

measures the geodesic distance in the manifold of covari-
ance matrices. It is important to highlight that the authors in
Ref. [71] focus on bosonic Gaussian states occurring in the
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FIG. 9. Comparison of CoP for a single interval (a) and two
adjacent intervals (b) obtained using the Gaussian optimization
algorithm (solid) and the Fisher-Rao distance function (dashed).
The data for the single-interval case (a) are generated for mass
m/μ = 10−1, 10−2, 10−3, 10−4 (top to bottom), N = 100, and for
lattice spacing μδ = 10−4 (m/μ)−1, while the data for the adjacent
interval case (b) are generated for mass m/μ = 10−3, 10−4, 10−5,
N = 1400, (wA + wB ) = 14, and for lattice spacing μδ = (1/14) ×
10−4 (m/μ)−1.

Hilbert space of harmonic lattices, and hence the proposal
of the Fisher-Rao distance function should be thought of as
applicable in principle only to bosonic states, although one
could conjecture that a similar formula should be applicable
to fermionic Gaussian states. Nonetheless, it is interesting
to compare the properties of such distance function with the
bosonic CoP measure arising from the Gaussian optimization
procedure developed in this paper.

For the single-interval case, there is in fact a noteworthy
qualitative and quantitative agreement between the two, as
shown at the top of Fig. 9. The Fisher-Rao distance func-
tion and the CoP measure offer a comparable measure of
the complexity of the mixed state associated to the single
interval, which is remarkable given the fact that the Fisher-
Rao distance function is a geodesic distance being evaluated
on the manifold of mixed states on the Hilbert space HA,
whereas CoP is a geodesic distance on the manifold of pure
states on the larger Hilbert space H = HA ⊗ HA′ and these

two need not be the same or even comparable to one another,
as explained in Fig. 12. This comparison seems to work better
the larger the mass m/μ, much like in the case of single-mode
optimization. Our studies also indicate that for two adjacent
intervals the distinction between the Fisher-Rao distance and
CoP deviate significantly from each other, even though the
qualitative behavior remains comparable, as shown at the bot-
tom of Fig. 9.

VII. COMMENTS

In our considerations, two important subtleties of free
QFTs, known to the literature, played a key role and in-
fluenced the vacuum subregions we could consider to make
genuine QFT predictions. They are the zero mode in the case
of free boson QFTs and spatial locality of disjoint intervals
under the Jordan-Wigner mapping between the Ising model
and the free Majorana fermion theory. Below we provide an
additional discussion of these two important points.

A. Zero mode for free bosons

The presence of the zero mode is a known subtlety of the
free boson theory in the massless limit, as we discussed in
Sec. II A. The simplest way to deal with it is to keep the mass
term in the Hamiltonian (8) nonzero and try to numerically
approach the limit m → 0, which is precisely the strategy we
adopted in the calculations of the bosonic EoP and CoP. Given
the scarceness of other methods to shed light on EoP and CoP
in QFTs, it is important to learn about the role of zero mode
in better understood problems.

To some degree, we already explored this issue in Sec. II A
when understanding what needs to be done in order to re-
produce the modular invariant thermal partition function (15)
from the Gaussian calculation in the massive theory (16).
Here we will address another quantity, which is the two in-
terval vacuum MI reviewed in Sec. III. Fitting a power law
for the data on a periodic chain of bosons does not lead to
convergence of the estimated power to a nonzero value in the
d/w → ∞ limit (see Table I), implying a decay with slower
asymptotic functional dependency. Indeed, the massless limit
of our study can be thought of as a decompactification limit
of the free boson theory on a circle in the field space (which
can be seen as another way of dealing with the zero mode),
as reviewed in Sec. II A, and the predicted large distance
behavior in this case is not of a power-law type. In our periodic
setup, we considered the limit of a large number of sites N

with the dimensionless scale mL = mNδ kept constant and
small. In this limit, the mass dependence of both MI and EoP
is accurately described by an additive − 1

2 log(Lm) term (as
already noted in Ref. [35]), so that the dependence on w/d

can be studied independently of the mass.
However, one may alternatively consider free bosons on

an infinite line, i.e., taking the limit m δ → 0 only after the
limit N → ∞. As the scale m δ N formally diverges in the
first limit, the resulting mass dependence is qualitatively dif-
ferent from the periodic setup. To investigate the behavior in
this case, we adapted our numerical method to free bosons
on an infinite line and computed MI at extended precision
at small m δ. Comparable studies were performed earlier in
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FIG. 10. MI on an infinite line in the small m δ limit. Shown are
the general mass dependence (a) as well as the decay power (b) in
the d/w → ∞ limit compared to the periodic system in the large-N
limit (right).

Ref. [82] and the authors reported a power-law fall-off of the
form ( w

d
)0.05; see also (33). The value of I (A : B) on the line

changes only very slowly with mδ, as shown in Fig. 10 (left).
For d/w ≪ mδ, this mass dependence can be expressed by a
constant offset

I (A : B) = fMI

(

d

w

)

+
1

2
log

(

log
1

mδ

)

, (73)

where the factor of 1/2 is reproduced with a numerical
accuracy of four significant digits. This double-logarithmic in-
frared divergence matches previous results for single-interval
entanglement entropies in a similar setup [83]. Note that the
positivity of I (A : B) prevents this dependence persisting at
finite m δ, and thus I (A : B) begins to decay exponentially
as d/w ≫ m δ. Apart from the different mass dependence,
the periodic and line setup in their respective limits yield
equivalent results. As we show in Fig. 10 (right), the estimated
decay power from both limits exactly matches, vanishing as
d/w → ∞.

As the line setup is more efficient at probing large values
of d/w due to an absence of finite-size effects, we use this
setup to test for functional dependencies slower than the pre-
viously considered power law and logarithmic functions. As
the functional dependence of MI and EoP match in this limit,
we expect the results to extend to both measures. In particular,
we consider the power-logarithmic asymptotics

fMI

(

d

w

)

∼ g0 − g1

(

log
d

w

)g2

as
d

w

→ ∞ , (74)

as well as a power-double-logarithmic one,

fMI

(

d

w

)

∼ h0 − h1

(

log log
d

w

)h2

as
d

w

→ ∞ . (75)

In Fig. 11, coefficients from both fits are shown. While the
power e2 of the power-logarithmic fit converges to a value
e2 � 0.1 that may be zero in the d/w → ∞, mδ → 0 limit,
the double-logarithmic power f2 clearly converges to a value
f2 � 1.3 that is visibly larger than zero. Surprisingly, this clear
observation of subpolynomial functional dependence both in
the infinite line and periodic setups contradicts the aforemen-
tioned earlier numerical observations of a power law [82].
These earlier results may be the result of numerical estimates

FIG. 11. Power-logarithmic (a) and power-double-logarithmic
(b) fits of bosonic MI on an infinite line at large d/w and small
effective mass mδ. Block width set to w/δ = 10. Plotted are the
estimated coefficients g2 and h2 from (74) and (75).

performed only at moderately large d/w; while the functional
dependence in this range can be well approximated by a power
law, as also shown in Ref. [35], the apparent power law is
not stable as d/w → ∞. Curiously, the authors of Ref. [82]
analyze in the same setup another measure of entanglement—
the logarithmic negativity [84]—and our extended precision
calculations in this case reproduce the exponential fall-off as
reported in Ref. [82] for the same range of masses considered
in Fig. 11. This shows that not all nonlocal quantities are
affected by the zero-mode problem.

An additional insight about the expected behavior of MI
in the case of the free boson CFT in the decompactification
limit R → ∞ can be obtained from having another look at the
modular invariant partition function on the circle (15). The
partition function provides the information about the density
of states, which, via the state-operator correspondence, de-
scribes also the density of operators in the spectrum. The latter
quantity, in conjunction with (29), will provide an indication
on what to expect from the two-interval case in the large
separation limit for the decompactified free boson CFT. To
this end, the partition function of a CFT with a continuous
spectrum of operators (for a decompactified free boson theory
vertex operators are labeled with a continuous index) can be
written as

Z ∼
∫ ∞

0
d�ρ(�) e−2π (β/L) � e

π
6 (β/L), (76)

where the second exponent comes from the Casimir energy
and � is the scaling dimension of operators in the theory.
Note that descendent operators appear in the sum only for
� > 1. The power law multiplying the Casimir contribution
in the low-temperature limit of (15) points to the density of
operators behaving in a power law fashion in the vicinity of
� = 0. In particular, the behavior

Z|β/L≫1 ∼ (β/L)−α e
π
6 (β/L) (77)

can be explained by

ρ(� ≈ 0) ∼ �α−1. (78)

Note that for a free decompactified boson

α = 1
2 . (79)
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In this case, the density of states can be easily understood to
be given by �−1/2 upon noting that the operators of interest
are vertex operators : ei ν φ : specified by a real number ν. The
scaling dimension of vertex operators is given by � ∼ ν2. The
density of operators is uniform when parametrized by ν and
viewing it as a function of � brings in the Jacobian ∼�−1/2,
which gives (79).

Now we can come back to MI at large separation. Since the
formula (29) incorporates the exchange of a single operator, in
the absence of a gap in the spectrum one needs to sum over the
continuum of light operators with their density given by (78).
Following Ref. [42], we can schematically write

I (A : B)|w≪d ∼
∫ ∞

0
d��α−1

(

w

d

)4 �

(cT T O�
)2 + · · · ,

(80)

where cT T O�
is the three-point function coefficient between

two twist fields and a primary with dimension � and the
ellipsis denotes contributions with higher powers of ( w

d
)4 �.

At the present moment, we do not have control over the two
kinds of contributions. However, by neglecting the additional
contributions and assuming that cT T O�

has a power-law de-
pendence on � for small scaling dimensions

cT T O�

?∼ �κ , (81)

the long-distance behavior of MI becomes

I (A : B)|w≪d

?∼
(

log
d

w

)−α−2 κ

. (82)

Let us restress that the above equation is based on unveri-
fied assumptions and the correct answer is likely to be more
involved, yet in principle calculable. However, what (82) in-
dicates is that MI may decay much more slowly with distance
than a simple power law, as is also shown by our numerical
results. In particular, the fitting ansatz corresponding to (82)
is (74) consistent with −α − 2 κ � 0.1.

Finally, note also that while in the massive theory, the mass
scale eventually triggers an exponential decay of MI to zero,
the ansatzes (74) and (75) predict divergence when naively
extrapolated to d

w
→ ∞. It is unclear at the moment if this

is a feature of regularizing the zero mode via introducing a
nonvanishing mass, or if the behavior (74) or (75) that we see
using our Gaussian numerics persists in the free boson CFT in
the decompactification limit.

B. Subsystems in Ising CFT versus free fermions

There is a subtle difference for computations of MI and
EoP between the XY spin model and the Majorana fermion
model. The spin model in the continuum limit becomes the
genuine c = 1/2 Ising CFT, which has a modular invariant
partition function. However, the fermion model can only be
identified with this CFT in the continuum limit if we impose
the correct GSO projections, summing over the sectors of peri-
odic and antiperiodic boundary conditions (also known as the
R and NS sectors, respectively). This projection, originating
from anticommutative nature of fermions as opposed to spins,
maps entanglement entropy and related quantities like MI and
EoP for standard choices of subsystems in the spin model to

unconventional ones in the fermion theory. This difference
due to the projections does not occur in the calculations of MI
and EoP when the subsystems A and B are adjacent. However,
when A and B are separated, the nontrivial topology in the
replica computation of entanglement entropy leads to a differ-
ence between the spin and fermion calculation as the simple
choice of subsystems does not respect the projections. This is
consistent with our numerical results for Majorana fermions
and adjacent intervals shown in Fig. 3. We also note that MI
and EoP are smaller in the fermion model calculations with-
out projects compared with those in spin model calculations.
Refer to Appendix B for more details.

VIII. DISCUSSION

In this paper, we have a presented a systematic and com-
prehensive analysis of EoP and CoP that characterize mixed
states. We computed the EoP between two blocks of widths
wA and wB at distance d in one-dimensional periodic systems
at large size for both critical bosons and fermions, the latter of
which are equivalent to a discretized Ising CFT while d = 0.
Furthermore, we compared these results with the well-studied
MI. At d = 0, our data show

I (A : B) =
c

3
log

wAwB

(wA + wB)δ
, (83a)

EP =
c

6
log

2wAwB

(wA + wB)δ
, (83b)

confirming previous expectations through analytical methods
[38,39]. For d > 0, we considered the symmetric setup wA =
wB = w in the two limits d/w ≪ 1 and d/w ≫ 1. In the
former limit, our data are consistent with

I (A : B) ∝
1

3
log

w

d
, (84a)

EP ∝
1

6
log

w

d
, (84b)

for our bosonic model. The latter limit shows a subpolynomial
(logarithmic or double-logarithmic) decay of both I (A : B)
and EP at large d/w. In summary, MI and EoP show the same
scaling at large distance d . This result is consistent with the
observation in Ref. [35] that EoP appears to weight quantum
and classical correlations differently from MI, leading to dif-
ferent qualitative behavior only when both become relevant,
i.e., at small distances. Indeed, this is the regime in which our
numerical results show model-dependent features that distin-
guish both measures. For both the periodic and infinite line
setup, two-interval MI and EoP are divergent in the zero-mass
limit; this divergence can be regulated by 1

2 log(mδN ) and
1
2 log log(mδ) terms, respectively. Let us also emphasize that
the large distance behavior of MI in the free boson case at
small masses is very subtle and is described by the fall-off
slower than any power law, contrary to earlier studies in the
literature. We discussed this at length in Sec. VII A.

In the studies of CoP, our only guidance were the pre-
dictions of holographic complexity proposals for subregions,
as summarized in Table II. It is interesting to note that our
studies reproduce qualitatively terms present in the holo-
graphic results. In particular, for appropriately defined mutual
complexity, all complexity notions we considered lead to an
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analogous dependence on the sizes of two adjacent intervals
to the one seen for entanglement measures in (83). What is
also worth a separate remark is the intricate dependence of the
subleading divergent and the finite term in the bosonic CoP on
the reference state scale μ and the mass m acting as the zero
mode regulator; see (60).

The other important set of CoP results has to do with a
comparison with an earlier study of CoP using a restricted
set of Gaussian purifications in Ref. [36], as well as with
the Fisher-Rao distance introduced in a related context in
Ref. [71]. As we saw respectively in Secs. VI E and VI F,
both of these notions can reproduce qualitative behavior of the
CoP, but they can also exhibit significant deviations from the
numerical answer predicted by the full Gaussian optimization.
This indicates that in general one indeed needs to optimize
over as large sets of states in the Hilbert state as possible to
reproduce the true CoP. Of course, even if the reduced density
matrix is Gaussian, this does not imply that the optimal circuit
is necessarily such. Generalizing our study to non-Gaussian
states is an outstanding challenge and in the last paragraph
of this discussion, we sketch what we believe might be an
interesting and workable example.

In the context of CoP, we also want to offer an intuitive
yet rigorous interpretation of the setup that we were using.
Formula (49) was derived in Refs. [28,29] based on a cer-
tain metric on the group manifold, which coincided with the
geodesic distance on the Gaussian state manifold (Fubini-
Study metric), as studied in Ref. [22]. Note that there is an
ongoing debate what the most appropriate notion of distance
is, both on the manifold of states and the Lie group. While
the L1 norm appears to have similar properties as the different
holographic complexity proposals, only the L2 norm induced
by a certain Riemannian metric can be analytically minimized.
This is the key reason why we focused on the L2 norm in
the present paper, as most other notions of distances are in-
tractable in the setup we are considering (many degrees of
freedom, most general Gaussian gates, analytical optimization
over all trajectories from reference to target state, numerical
optimization of all possible purifications). Figure 12 provides
a visualization of this interpretation: CoP becomes in essence
another type of minimization, namely finding the minimal
distance between the unique reference state |ψR〉 and the the
set of all possible purifications (or all Gaussian purifications)
that is fully determined by the single mixed state, whose CoP
we are computing.

Let us emphasize that there have been several approaches
to define and compute complexity for mixed states, which
predominantly focus again on Gaussian states. On the one
hand, there are approaches [33,36,37] based on purifications,
to which a notion of pure state complexity is applied. This
provides an elegant way to carry any definition of pure state
complexity over to arbitrary mixed states. Our present ap-
proach uses the same philosophy but performs the required
optimization over all possible (Gaussian) purifications numer-
ically. On the other hand, there are approaches [71] to define
mixed state complexity directly on the set of mixed states.
Here, one introduces additional nonunitary gates that allow
to change the spectrum of the density operator, so that unitar-
ily inequivalent mixed states can be reached. The resulting
geodesic distance agrees with the L2 norm when restricted

FIG. 12. We sketch how the manifold of mixed states on Hilbert
space HA is related to the manifold of pure states on the larger Hilbert
space H = HA ⊗ HA′ . We indicate the manifold (solid line) of all
possible purifications |ψT〉AA′ related by Gaussian unitaries UA′ . The
CoP CP is given by the geodesic distance (dashed line) between the
purified reference state |ψR〉AA′ and the family of purified target states
UA′ |ψT〉AA′ .

to pure states and the procedure can be understood as mea-
suring the geodesic distance on the manifold of (Gaussian)
mixed states equipped with the Fisher information geom-
etry. Remarkably, the resulting analytical formula in terms
of covariance matrices for bosons agrees with the one (48)
derived for pure states. One can expect the same result to
also hold for fermions. In particular, we can use these gates
to transform a pure reference state into a mixed target state.
Finally, a complementary approach is based on path integral
optimization [70,85], which uses gates as exponentials of the
energy-momentum tensor operators with complex coefficients
and so both unitary as well as Hermitian operators [86]. In the
case of free CFTs, these are Gaussian gates; however, in the
interacting cases they are not.

An important feature of our works stems from the fact
that the Ising model in the spin picture (rather than the
fermionic picture) leads to genuinely non-Gaussian mixed
states if we restrict to disconnected regions; i.e., the spectrum
of the reduced density operator to such subsystem cannot be
reproduced by bosonic or fermionic mixed Gaussian states.
This may open the window to study non-Gaussian circuit
complexity (of purification) in a genuine QFT limit. For this,
we propose to consider two individual separated sites in the
spin picture of the critical Ising model. This leads to a mixed
state in a system of two qubits, i.e., in a four-dimensional
complex Hilbert space. We can now study CoP in this setup
as a function of the separation between the two sites.8 While
these are ideas for future work, the implemented algorithm
to optimize over all possible purifications (in this cases non-
Gaussian ones) can be used, once an appropriate notion of

8Of course, one should in principle consider more sites to be closer
to continuum, but this will very quickly make the optimization prob-
lem intractable.
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non-Gaussian circuit complexity (for generic gates) is defined.
In this sense, we believe that our considerations of CoP in the
context of the critical Ising model CFT presents a stepping
stone to explore genuine non-Gaussian circuit complexity in
the context of QFTs.
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APPENDIX A: TRANSVERSE FIELD ISING MODEL

We review the construction of fermionic Hamiltonian de-
scribing the transverse field Ising model. In particular, we
explain how we decompose the fermionic Hamiltonian into
two quadratic parts and how we compute its bipartite entan-
glement entropy using standard Gaussian techniques.

1. Definition

We consider the transverse field Ising model in one di-
mension with N sites arranged in circle. We denote sites as
i = 1, . . . , N , with the site N + 1 is identified with the site 1.
For simplicity, we will assume that N is an even integer. The
Hamiltonian is given by

Ĥ = −
N
∑

i=1

(

2JŜx
i Ŝx

i+1 + hŜz
i

)

, (A1)

where Ŝx
i , Ŝ

y
i , and Ŝz

i are the standard Pauli operators. This
model can be solved by applying the following steps. We
follow the conventions introduced in Refs. [52,87,88].

(1) Jordan-Wigner transformation. We express the spin op-
erators Ŝx

i and Ŝ
y
i in terms of ladder operators Ŝ±

i = Ŝx
i ± iŜy

i .
We then perform a Jordan-Wigner transformation by express-

ing all spin operators in terms of fermionic creation and
annihilation operators f̂

†
i and f̂i, namely

Ŝ+
i = f̂

†
i exp

(

iπ

i−1
∑

j=1

f̂
†
j f̂ j

)

. (A2)

The resulting Hamiltonian is then given by

Ĥ = −
N
∑

i=1

[J

2
( f̂

†
i ( f̂i+1 + f̂

†
i+1) + H.c.) + h f̂

†
i f̂i

]

+
J

2
[ f̂

†
N ( f̂1 + f̂

†
1 ) + H.c.](P̂ + 1) +

hN

2
, (A3)

where P̂tot = eiπN̂ is the parity operator with N̂ =
∑N

i=1 f̂
†
i f̂i.

The last term is a boundary term.
(2) Quadratic Hamiltonians. Because of the operator P̂ in

(A3), the Hamiltonian is not quadratic in f̂
†
i and f̂i. The non-

quadratic term containing P̂ distinguishes the sectors of even
and odd eigenvalues of the number operator N̂ . The Hilbert
space can be decomposed as direct sum H = H+ ⊕ H−,
where H+ and H− are the eigenspaces of the number parity
operator P̂ = eiπN̂ with eigenvalues ±1. The projectors onto
these eigenspaces are given by

P̂± = 1
2 (1 ± P̂) . (A4)

We can diagonalize ĤXY over H± individually by applying the
Fourier transformations

ĉκ =
1

√
N

N
∑

j=1

eiκ j f̂ j, (A5)

where κ ∈ K± with

K+ =
{

π

N
+

2πk

N

∣

∣

∣ k ∈ Z,−
N

2
� k <

N

2

}

, (A6)

K− =
{

2πk

N

∣

∣ k ∈ Z,−
N

2
� k <

N

2

}

. (A7)

The resulting Hamiltonian Ĥ = Ĥ+P̂
+ + Ĥ−P̂

− is composed
of the quadratic pieces

Ĥ± =
∑

κ∈K±>0

[aκ (ĉ†
κ ĉκ + ĉ

†
−κ ĉ−κ − 1)

− bκ (i ĉ†
κ ĉ

†
−κ − i ĉ−κ ĉκ )] (A8)

with the parameters defined as

aκ = −J cos(κ ) − h, bκ = J sin(κ ) . (A9)

(3) Diagonalizing Hamiltonian. At this point, we only need
to perform individual fermionic two-mode squeezing transfor-
mations mixing the mode pair (κ,−κ )

η̂κ = uκ ĉκ − v
∗
κ ĉ

†
−κ , (A10)

with transformation coefficients explicitly given by

ǫκ =
√

h2 + 2hJ cos(κ ) + J2,

uκ =
ǫκ + aκ√

2ǫκ (ǫκ + aκ )
, vκ =

ibκ√
2ǫκ (ǫκ + aκ )

. (A11)
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As fermionic Bogoliubov coefficients, uκ and vκ satisfy
|uκ |2 + |vκ |2 = 1. The cases κ ∈ {0, π}, for which the Hamil-
tonian is already diagonal, can be treated by defining the
special coefficients

u0 = vπ = v−π = 0, uπ = u−π = 1, v0 = i, (A12)

which leads to the identification η̂0 = ĉ
†
0 and η̂π = ĉ

†
−π . After

performing this last transformation, the quadratic pieces take
the diagonal form

Ĥ± =
∑

κ∈K±

ǫκ

(

η̂†
κ η̂κ −

1

2

)

. (A13)

With this in hand, we can analyze efficiently the entangle-
ment structure of eigenstates. The relevant information is fully
contained in the transformation from the (local) fermionic
operators ( f̂i, f̂

†
i ) to the (nonlocal) operators (η̂κ , η̂

†
κ ). This

allows us to define and compute the covariance matrix of an
eigenstate |{Nκ}〉 as [88]

�ab
i j ≡ 〈0|ξ̂ a

i ξ̂ b
j − ξ̂ b

j ξ̂
a
i |0〉 =

1

N

∑

κ∈K±

(

0 −Nκ C
i− j
κ

Nκ C
j−i
κ 0

)

(A14)

with the functions C
i− j
κ given by

Cd
κ = (|vκ |2 − |uκ |2) cos(κd ) + 2Im(uκvκ ) sin(κd ) . (A15)

We find Cd
κ = cos κ ( 1

2 + d ) for J = h. The numbers Nκ ∈
{−1, 1} are given by Nκ = (−1)nκ , where we have the regular
occupation numbers nκ as eigenvalues of η̂†

κ η̂κ . For states with
an even number of excitations, i.e., where

∑

κ Nκ is even, we
need to use κ ∈ K+, while for an odd number of excitations,
we use κ ∈ K−.

2. Notions of locality

First, let us note that the transverse field Ising model is
invariant under lattice translations, which implies that we can
choose the reference point i = 1 of our Jordan-Wigner trans-
formation without loss of generality. It therefore suffices to
consider intervals that start at i = 1.

The Jordan-Wigner transformation (A2) does not only
provide an isomorphism between operators, but it also
preserves bipartite entanglement of connected interval; i.e.,
the entanglement entropy associated to a region consisting
of adjacent sites R = (1, . . . , w

δ
) is the same regardless if we

use the tensor product structure induced by the spin operators
or the fermionic creation and annihilation operators. This
is a consequence of the remarkable fact that, despite the
Jordan-Wigner transformation being nonlocal, the operator
Ŝ±

i only depends on creation and annihilation operators f̂
†
j

and f̂ j in the range 1 � j � i. Therefore, the subalgebras
generated either by Ŝσ

i (with σ ∈ {x, y, z}) in the spin
formulation or by f̂i and f̂

†
i in the fermionic formulation will

both probe the same observables.
This is no longer true if we consider regions

consisting two nonadjacent intervals, such as R =
(1, . . . , w

δ
, d+w

δ
, . . . , d+2w

δ
) for d > 0 and w > 0. In this

case, the spin operators Ŝσ
i on sites ( d+w

δ
, . . . , d+2w

δ
) will

depend on the fermionic operators associated to all sites

(1, . . . , d+2w

δ
) as seen from (A2), which in particular includes

the sites ( w

δ
+ 1, . . . , w+d

δ
). Consequently, computing the

bipartite entanglement entropy associated to the region R will
be different depending on if we define the subsystem in the
spin picture versus the fermionic picture. We will discuss this
issue in more detail in Appendix B.

APPENDIX B: SPIN VS MAJORANA FERMION

In this section, we highlight the known subtlety due to the
different notion of locality in the fermionic model compared
to the spin model.

1. Partial traces and subsystems

The inequivalence between spin and Majorana entangle-
ment can also be seen in the behavior of partial traces under
an explicit mapping between both models, the Jordan-Wigner
transformation. Explicitly, it relates spin and fermionic opera-
tors via

f̂ j =

(

j−1
∏

i=1

Zi

)

X j − iYj

2
, (B1)

f̂
†
j =

(

j−1
∏

i=1

Zi

)

X j + iYj

2
, (B2)

where we defined the k-site Pauli operators on N total sites as

X j = (12)⊗( j−1) ⊗ σx ⊗ (12)⊗(N− j) , (B3)

Yj = (12)⊗( j−1) ⊗ σy ⊗ (12)⊗(N− j) , (B4)

Z j = (12)⊗( j−1) ⊗ σz ⊗ (12)⊗(N− j) . (B5)

Alternatively, we can write the Jordan-Wigner transformation
in terms of 2N real Majorana operators γ j , related to the
standard fermionic operators by f̂ j = (γ2 j−1 + iγ2 j )/2. It then
takes the form

γ2 j−1 =

(

j−1
∏

i=1

Zi

)

X j , (B6)

γ2 j =

(

j−1
∏

i=1

Zi

)

Yj . (B7)

Consider the mapping between basis states under this trans-
formation. The basis decomposition of a pure state,

|ψ〉 =
∑

n∈{0,1}×N

Tn |n1〉1 |n2〉2 . . . |nN 〉N , (B8)

differs between fermions and spins: For the former, the basis
states |nk〉k = ( f̂

†
k

)nk |0〉k (with a local Fock vacuum |0〉k)
only commute for bk = 0, while for the latter (|0〉 , |1〉) =
(|↑〉 , |↓〉) are simply commuting spin states. Thus, choosing
a different ordering under the Jordan-Wigner transformation
leads to different fermionic states. Its entanglement entropies
S(A) = − TrA(ρA log ρA), computed from the spectrum of the
reduced density matrix ρA = TrĀ ρ, are then generally dif-
ferent as well. We can easily see that a partial trace over
fermionic sites, unlike spin degrees of freedom, is not com-
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muting:

Tr j Trk ρ =〈0| (1 + f̂ j )(1 + f̂k ) ρ (1 + f̂
†
k

)(1 + f̂
†
j ) |0〉

�= Trk Tr j ρ =〈0| (1 + f̂k )(1 + f̂ j ) ρ (1 + f̂
†
j )(1 + f̂

†
k

) |0〉 .

(B9)

Now consider a total system of N sites separated into |A|
sites in A and |Ā| sites in the complement region Ā. In the
simplest case, A and Ā are connected regions and Ā begins at
the first site of the given ordering. By defining the trace over
a subsystem as

TrB = TrB|B| TrB|B|−1 . . . TrB2 TrB1 , (B10)

i.e., tracing out sites in their reverse order, the reduced density
matrix ρA is equivalent in both fermions and spins, i.e.,

ρA = TrĀ |ψ〉 〈ψ |
=
(

〈0|ĀN
+ 〈1|ĀN

)

. . .
(

〈0|Ā1
+ 〈1|Ā1

)

|ψ〉 + H.c. (B11)

We call this setup, where creation operators appear in products
with increasing site index and annihilation operators in reverse
order, the canonical ordering. All other subsystem choices can
be brought into this form by permutation of indices. While a
reordering of modes leaves spin states invariant due to their
commuting basis, fermionic permutations change the equiv-
alence under Jordan-Wigner transformations: Entanglement
entropies S(A) are only equivalent between spins and fermions
for regions A in the canonical ordering.

This equivalence can be extended to connected regions A

of fermionic Gaussian states. Consider a first Jordan-Wigner
transformation where A is in the canonical ordering and a
second one where spin indices are cyclically permuted as i →
(i + 1) mod N . We denote the Majorana operators for both
transformations as γk and γ̃k , respectively. They are related as
follows:

γ1 ≡ X1 → X2 ≡ −iγ̃1γ̃2γ̃3 ,

γ2 ≡ Y1 → Y2 ≡ −iγ̃1γ̃2γ̃4 ,

γ3 ≡ Z1X2 → Z2X3 ≡ −iγ̃1γ̃2γ̃5 ,

. . .

γ2N−2 ≡ Z1 . . . ZN−2YN−1

→ Z2 . . . ZN−1YN ≡ −iγ̃1γ̃2γ̃N ,

γ2N−1 ≡ Z1 . . . ZN−1XN

→ X1Z2 . . . ZN ≡ −iγ̃1γ̃2P̂totγ̃1 ,

γ2N ≡ Z1 . . . ZN−1YN

→ Y1Z2 . . . ZN ≡ −iγ̃1γ̃2P̂totγ̃2. (B12)

Here, we defined the total parity operator P̂tot =
∏

i Zi ≡
(−i)N
∏

k γ̃k . As Gaussian states are fully characterized
by their covariance matrix entries Ŵ j,k , we consider how
they change between both Jordan-Wigner transformations.
For parity-even states, γk → −iγ̃1γ̃2γ̃k̃ with k̃ = (k + 1)
mod 2N , so we find

Ŵ+
i j =

i

2
〈ψ+| [γi, γ j] |ψ+〉 → Ŵ̃+

i, j =
i

2
〈ψ+| [γ̃i, γ̃ j] |ψ+〉 ,

(B13)

where |ψ+〉 is a Gaussian state vector with P̂tot |ψ+〉 = |ψ+〉.
In matrix form, this can be written as

Ŵ+ → Ŵ̃+ =
(

0 Ŵ+
[1,2],[3,2N]

Ŵ+
[3,2N],[1,2] Ŵ+

[3,2N],[3,2N]

)

, (B14)

where Ŵ+
[i, j],[k,l] is the submatrix consisting of the rows from

i, i + 1 up to row j and columns from k, k + 1 up to l .
For a parity-odd Gaussian state vector |ψ−〉 with Ptot |ψ−〉 =
− |ψ−〉, however, the rows and columns corresponding to the
first two Majorana modes are sign-flipped:

Ŵ− → Ŵ̃− =
(

0 −Ŵ−
[1,2],[3,2N]

−Ŵ−
[3,2N],[1,2] Ŵ−

[3,2N],[3,2N]

)

. (B15)

In consequence, only parity-even fermionic Gaussian states
are equivalent under different Jordan-Wigner transformations
related by cyclic permutations, while parity-odd ones acquire
a sign flip in the two-point correlations related to modes that
are moved from the end to the beginning of the fermionic
ordering. Fortunately, this sign flip does not affect fermionic
entanglement entropies S(A), which are computed from the
spectrum of the submatrix of Ŵ corresponding to sites in A,
denoted ŴA.

As the eigenvalue spectrum is not affected by change of
sign across entire rows and columns of a matrix, Ŵ̃|Ã and Ŵ|A
have the same eigenvalues, and hence, S(A) = S(Ã) indepen-
dent of parity. Note that once we consider index transpositions
more general than cyclic permutations, the relative fermionic
ordering is broken and even Gaussian states are no longer
equivalent under different Jordan-Wigner transformations.

2. Ising CFT representations

Here, we would like to discuss subtle differences between
the spin model and Majorana fermion model when we calcu-
late MI and EoP. Refer also to Ref. [59] for an earlier detailed
analysis on this problem, which is essentially equivalent to our
argument below.

First let us remember that the Ising spin CFT is defined
from Majorana fermion CFT by the GSO projection [61].
Explicitly the modular invariant torus partition function of the
Ising CFT is schematically written as

ZIsing = TrNS

[

1 + (−1)F

2

]

+ TrR

[

1 − (−1)F

2

]

, (B16)

where the first trace is taken for the NS sector (H+ sector);
i.e., the antiperiodic boundary condition is imposed for the

free fermion on a circle. Also 1+(−1)F

2 is the restriction to the
even fermion number state. The second one is for the R sector
(H− sector); i.e., the periodic boundary condition is imposed

for the free fermion on a circle. Also 1−(−1)F

2 is the restriction
to the odd fermion number state. Note that the spin operator
σ is included in the R sector of the Majorana fermion model.

In the calculation of entanglement entropy S(A ∪ B) or
its Renyi entropy in Ising CFT, we need to perform this
GSO projection of the Majorana fermion along the interval
C between A and B. This is illustrated in the upper pictures
in Fig. 13 by having in mind the calculation of Tr[ρ2

AB] as
an example, which is essentially the second Renyi entropy
and which is equivalent to a torus partition function (B16).
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FIG. 13. The replica calculation of Tr[ρ2
AB] and the resulting

wave function for the GSO projected Majorana fermion CFT which
is equivalent to the Ising CFT.

If we write the fermion number on this interval C as FC (i.e.,
FC =
∑

i∈C f̂
†
i f̂i), then the wave function for the calculation

of Renyi entropy should be

|�〉Ising = |�〉Majorana + (−1)FC |�〉Majorana , (B17)

which is depicted in the lower pictures in Fig. 13. This proce-
dure leads to the spin operator in the spectrum and leads to the
expected behavior of MI I (A : B) ∼ (w/d )1/2 when d ≫ w.
However, this form (B17) is not included in our Gaussian
ansatz of the numerical calculation. The Gaussian ansatz only
takes into account the first term which ignores the twisted
sector of Majorana fermion namely the spin operator sector
(i.e., R sector). This causes the absence of the spin operator
excitation and explains our numerical result I (A, B) ∼ (w/d )2

for the Majorana fermion model when d ≫ w.
Moreover, this difference between the XY spin model

and the Majorana fermion model leads to a significantly
different behavior of MI when d ≪ w. To see this, as a
toy model which mimics the calculation of MI in XY spin
model at d = 1, we would like to analyze a three-qubit sys-
tem, whose spins are called A,C, and B, from the left to
right. We consider the following spin state for this ABC

system:

|�(x, y, θ )〉ACB

=
1

√
2

U (x)ACU (y)CB(|0〉A|θ〉C |0〉B + |1〉A|θ〉C |1〉B),

(B18)

where |θ〉 = cos θ |0〉 + sin θ |1〉. The 4 × 4 unitary matrix
U (x) is defined by

|00〉 → cos x|00〉 − sin x|11〉,
|11〉 → − sin x|00〉 + cos x|11〉,
|10〉 → cos x|10〉 − sin x|01〉,
|01〉 → − sin x|10〉 + cos x|01〉. (B19)

Note that U (x)AC and U (y)CB mimic the entanglement be-
tween nearest neighbor sites due to the standard interactions
of spin system.

If we consider this state from the viewpoint of Majorana
fermions, then we need to take into account that the fermion
in C and the fermion in B do anticommute. This happens only
if there is a fermion in both B and C sites. Therefore, we have
the following rule:

|p〉C |q〉B = (−1)ab|q〉B|p〉C, (B20)

where p = 0, 1 and q = 0, 1. We act this rule to
|�(x, y, θ )〉ACB and obtain the wave function for the Majorana
fermion, which is written as |� f (x, y, θ )〉ABC .

We compare MI Is(A : B) obtained from the spin wave
function |�(x, y, θ )〉ACB, assuming the spin at B and that at C

do commute, with the fermionic one I f (A, B) calculated from
|� f (x, y, θ )〉ABC in Fig. 14. In the next subsection, we will
explain the same difference from the viewpoint of orderings
of traces.

First of all, even at x = y = 0 (no nearest neighbor entan-
glement), we find that I f (A : B) can be reduced from Is(A :
B). The reduction is maximized at θ = π/4, where we have
I f (A : B)/Is(A : B) = 1/2. By turning on the neighbor entan-
glement, we can reduce the fermion MI more. In particular,
we find at x = y = π

4 and θ = π
2 we obtain I f (A, B) = 0. In

summary, we always have I f (A : B)/Is(A : B) � 1; i.e., the
fermion MI is smaller than that of spin.

Let us consider this difference between the spin calculation
and fermion calculation from the viewpoint of two dimen-
sional CFTs. Remember again the computation of Trρ2

AB. In
the c = 1/2 Majorana fermion CFT, which is equivalent to the
critical spin system, we need to impose the GSO projection
to fermions in each of two cycles of the torus to obtain the
modular invariant partition function. In particular, we need
to impose the projection on the horizontal cycle (the dotted
circle, called “cut”) in the upper two tori in Fig. 13. This cycle
corresponds to the subsystem C. This GSO projection on C

picks up the periodic or antiperiodic boundary condition for
the fermion f̂

†
i depending on the even or odd value of the

total fermion number in C. This projection is automatically
performed in the spin system calculation. However, if we just
focus on the Majorana fermion system and ignore this phase
factor, we do not find the correct GSO projection or equally
the boundary condition to define the correct CFT partition
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FIG. 14. (a) The value of I s(A : B) (solid line) and I f (A : B)
(dashed line) as a function of θ at x = y = 0. (b) A 3D plot of the
ratio I f (A : B)/I s(A : B) as a function x (horizontal) and y (depth) at
θ = π/8. (c) A 3D plot of the ratio I f (A : B)/I s(A : B) as a function
x (horizontal) and y (depth) at θ = π/4.

function. Indeed, in the limit d ≪ w that we are interested in,
the entropy S(A ∪ B) significantly depends on this boundary
condition of the fermion on C because the size of C is very
small. In summary, calculations in the spin system correspond
to the CFT calculations of entanglement entropy and related
quantities such as MI and EoP for standard choices of subsys-
tems, while those in the naive Majorana fermion calculations
without the GSO projection do not.

APPENDIX C: GAUSSIAN ENTANGLEMENT ENTROPY

As explained in Secs. III and V, important measures of
quantum correlations, such as MI and EoP, are constructed
from the bipartite entanglement entropy. While this is hard
to evaluate for general quantum states |ψ〉, it is well known
that the entanglement entropy of a Gaussian state |ψ〉 can be
computed analytically based on the entanglement entropy. Let
us therefore briefly review the respective formulas.

A bosonic or fermionic system with N degrees of freedom
is characterized by the linear observables ξ̂ a ≡ (q̂1, p̂1, . . . , ),
as introduced in Sec. II. Mathematically, we refer ξ̂ a forms a
basis of the classical phase space V . They satisfy the canonical
commutation or anticommutation relations, namely

[ξ̂ a, ξ̂ b] = i�ab, (C1)

{ξ̂ a, ξ̂ b} = Gab, (C2)

where �ab is a symplectic form and Gab is a positive definite
metric. For a normalized quantum state |ψ〉 with 〈ψ |ξ̂ a|ψ〉 =
0, we compute its two-point function as

Cab
2 = 〈ψ |ξ̂ aξ̂ b|ψ〉 . (C3)

We can always decompose Cab
2 into

Cab
2 = 1

2 (Gab + i�ab), (C4)

where Gab is a symmetric positive definite metric and �ab

is nondegenerate antisymmetric symplectic form. Here, �ab

is fixed by (C1) for bosons, while Gab is similarly fixed by
(C2) for fermions. Consequently, only the respective other
piece, i.e., Gab for bosons and �ab for fermions, which are
often called the bosonic and fermionic covariance matrices,
respectively, will depend on the state |ψ〉. We can define the
linear map

Ja
b = Gac�−1

cb . (C5)

We refer to the state |ψ〉 as Gaussian if and only if J squares
to minus identity, i.e.,

|ψ〉 is pure Gaussian state ⇐⇒ J2 = −1, (C6)

in which case J is called linear complex structure.
The entanglement entropy S(A) of a Gaussian state |ψ〉

with complex structure J can be efficiently computed from
the restriction JA of J to the respective subsystem A. More
precisely, if we have H = HA ⊗ HB with phase space decom-
position V = A ⊕ B. The restriction

JA = J[1,2NA],[1,2NA] (C7)

represents then the 2NA-by-2NA submatrix of J associated to
the subspace A ⊂ V . While J associated to a pure Gaussian
state has eigenvalues ±i, its restriction JA will have eigen-
values ±λi with λi ∈ [0,∞) for bosons and λi ∈ [0, 1] for
fermions. The entanglement entropy can be computed from
these eigenvalues using the formulas

S(A) =
{

tr
(

1A−iJA

2 log
∣

∣

1A−iJA

2

∣

∣

)

(bosons)

− tr
(

1A−iJA

2 log
∣

∣

1A−iJA

2

∣

∣

)

(fermions)
, (C8)

where we wrote covariant matrix equations, which are equiv-
alent to replacing JA by its eigenvalues and the trace by a sum
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over them. Such analytical formulas for Gaussian entangle-
ment entropy were first derived in Refs. [89,90] based on the
covariance matrices and later also phrased in terms of linear
complex structures [91–93]. A unified framework to describe
bosonic and fermionic Gaussian states in terms of Kähler
structures (and in terms of complex structures, in particular)
is presented in Ref. [68].

Note that the definition of entanglement is a subtle issue.
Usually, one decomposes the Hilbert space into a regular
tensor product H = HA ⊗ HB, such that operators OA and OB

that are only supported in one of the subsystems are given as
OA = Â ⊗ 1 and OB = 1 ⊗ B̂, leading to [OA,OB] = 0. For
fermions, we would like to define a similar structure, but in-
dependent operators should anticommute; i.e., {OA,OB} = 0.
This requires a slightly different definition of “fermionic ten-
sor product,” as recognized and discussed in Refs. [53–55,94].
We discuss some of the resulting subtleties in the next section.

APPENDIX D: ALGORITHM IMPLEMENTATION

Our minimization algorithm has the goal to minimize a
function f (J ), where J is the linear complex structure of
a pure Gaussian state. Intuitively, we would like to apply
gradient descent, i.e., solve the differential equation

ẋμ = −
∑

j

G
μν (x)

∂ f

∂xν
(x), (D1)

where G
μν is the matrix representation of the Riemannian

metric on the manifold of states. Using coordinate has two
disadvantages: First, in general it will be difficult or even
impossible to find a global coordinate system depending on
the topology of manifold (in particular, for fermions the topol-
ogy is nontrivial). Second, the matrix G

μν (x) will depend on
the position and would need to be evaluated at every step,
which will slow down the computation. Our approach based
on the natural Lie group parametrization avoids both of these
disadvantages.

Our parametrization is defined relative to an initial state
|J0〉. We then choose a basis of Lie algebra generators (�μ)a

b

satisfying the conditions {�μ, J0} = 0 and

1
8 tr
(

�μG�⊺

ν g
)

= δμν, Kμ� = −�K⊺

μ , (bosons)

1
8 tr
(

�μG�⊺

ν g
)

= −δi j, KiG = −GK
⊺

i , (fermions)
(D2)

where Gab = 〈J0|{ξ̂ a, ξ̂ b}|J0〉 and �ab = 〈J0|[ξ̂ a, ξ̂ b]|J0〉. One
can show [95] that the dimension of this space is N (N +
1)-dimensional for bosons and N (N − 1)-dimensional for
fermions. Rather than using coordinates xi, we use the matrix
Ma

b to parametrize all Gaussian states J = MJ0M−1 con-
nected to J0. The gradient descent equation for M reduces then
to

dM

dt
= −M

(

∑

i

X μ(M )�μ

)

, (D3)

where the gradient vector is computed as [95]

Fμ(M ) = −
d

ds

∣

∣

∣

∣

s=0

f (Mes�μJ0e−s�μM−1) . (D4)

In our algorithm, we discretize (D3). Starting from the identity
M0 = 1, we perform individual steps as

Mn+1 = Mn eǫKn ≈ Mn

(

1 + ǫ
2 Kn

1 − ǫ
2 Kn

)

, (D5)

where Kn =
∑

μ Fμ(Mn)�μ/‖F‖2. Here, we approximate
the exponential for small ǫ in such a way that Mn+1 is en-
sured to lie in the symplectic or orthogonal group for bosons
or fermions, respectively, which eǫKn ≈ 1 + ǫKn would not
achieve. At each step, we choose 0 < ǫ < 1 in such a way
that f (Mn+1) < f (Mn), which is always possible to achieve
for sufficiently small ǫ.

Our algorithm circumvents the disadvantages of a coor-
dinate parametrization by distinguishing between state and
tangent space. While we use M to parametrize our state |J〉
with J = MJ0M−1, we construct an orthonormal basis of Lie
algebra generators Ki which can be identified with the respec-
tive tangent vector of the curve γ (s) = Mes�μ at the point
M. This allows in particular our Riemannian metric on the
manifold of Gaussian states to be left invariant, such that the
constructed tangent vectors are orthonormal at every point.
We therefore do not need to compute its matrix representation
G

μν (x), but can instead work with orthonormal frames at
every point M.
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