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Entanglement and four-wave mixing effects in the dissipation-free nonlinear interaction
of two photons at a single atom

Holger F. Hofmann,1,2,* Kunihiro Kojima,2 Shigeki Takeuchi,1,2 and Keiji Sasaki2
1PRESTO, Japan Science and Technology Corporation (JST), Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan

2Research Institute for Electronic Science, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
~Received 26 January 2003; published 10 October 2003!

We investigate the nonlinear interaction between two photons in a single-input pulse at an atomic two-level
nonlinearity. A one-dimensional model for the propagation of light to and from the atom is used to describe the
precise spatiotemporal coherence of the two-photon state. It is shown that the interaction generates spatiotem-
poral entanglement in the output state similar to the entanglement observed in parametric down-conversion. A
method of generating photon pairs from coherent pump light using this quantum-mechanical four-wave mixing
process is proposed.

DOI: 10.1103/PhysRevA.68.043813 PACS number~s!: 42.50.Ct, 32.80.2t, 42.65.2k

I. INTRODUCTION

Optical nonlinearities sensitive to individual photons may
provide interesting new possibilities of controlling and ma-
nipulating the quantum states of light@1–10#. Possible appli-
cations of such nonlinearities include quantum nondemoli-
tion measurements of photon number@11# and quantum logic
circuits for photonic qubits@12#. Experimentally, sufficiently
strong nonlinearities have been achieved in cavity quantum
electrodynamics, where cavity confinement can enhance the
coupling between a single two-level atom and the input field
@2#. By optimizing the suppression of uncontrollable photon
losses in such systems, it may be possible to realize a fully
quantum coherent photon-photon interaction@13#. The analy-
sis of such a quantum level nonlinearity then requires a
quantum-mechanical treatment of the spatiotemporal coher-
ence in the input and output fields. Specifically, spontaneous
four-wave mixing effects may entangle the two input pho-
tons in their spatial coordinates. This entanglement appears
to introduce noise in the single-photon coherence, even
though the two photons are still in a quantum-mechanically
pure state.

In order to investigate such effects, we apply a one-
dimensional model of light field propagation to and from a
single two-level atom@14,15#. If photon losses are avoided,
it is then possible to determine the response functions for
single-photon and for two-photon inputs. Using these re-
sponse functions, we derive the output state for a resonant
rectangular input. We discuss the implications of this result
for coherent input fields and show that it is possible to create
entangled photon pairs from coherent input light by using an
interferometric strategy similar to the one recently applied in
parametric down-conversion@16#.

II. ONE-DIMENSIONAL MODEL OF LIGHT FIELD
PROPAGATION

If the transversal beam profile is known, it is sufficient to
describe the propagation of light to and from a system using

only a single-spatial coordinate. In free space, the propaga-
tion velocity c is constant. The linear propagation process
can then be described by a dispersion relation ofv5ck,
wherek is a scalar@14#. If this approximation is applied to
the interaction of electromagnetic field with a single two-
level system, the transversal profile of thek-space eigen-
modes is defined by the coupling characteristics of the two-
level system to the three-dimensional field in free space. As
has been discussed in Ref.@14#, the single-spatial coordinate
r corresponding to the wave vectork then represents the
distance from the system atr 50, where negative values
indicate propagation towards the system and positive values
indicate propagation away from the system.

Figure 1 shows a schematic representation of the model.
The Hamiltonian of this system can be written as

Ĥ1D5Ĥprop1Ĥabs,

with

Ĥprop5E dk \ck b̂k
†b̂k ,

Ĥabs5E dk \AcG

p
~ b̂k

†ŝ21ŝ2
† b̂k!, ~1!

*Email address: h.hofmann@osa.org

FIG. 1. Schematic representation of the one-dimensional model
for light field propagation in the field-atom interaction. There is
only one direction of propagation.r ,0 represents light propagating
towards the atom andr .0 represents light propagating away from
the atom. The interaction takes place locally atr 50.
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whereb̂k is the photon annihilation operator ink space and
s25uG&^Eu is the atomic annihilation operator describing
coherence between the ground stateuG& and the excited state
uE&. The coupling strength is expressed in terms of the di-
pole relaxation rateG. This rate defines the characteristic
time scale of the coherent interaction between the light field
and the two-level atom. For convenience, the resonant fre-
quency of the atom has been set to zero. Note that this
merely corresponds to a rotating frame of reference for the
phase oscillations, so that all frequencies are expressed as
frequency shifts relative to the resonant frequencyv0
5ck0.

Experimentally, the model presented here could be real-
ized using a one-sided microcavity@13,15#. Losses to trans-
versal light field modes can then be minimized and almost all
the light emitted by a two-level atom inside the cavity is
emitted along the axis of the cavity. If this ideal condition
cannot be met, the model described here could still be ap-
plied. However, it would be necessary to treat the losses as a
transversal-mode mismatch between the input and output
beams and the one-dimensional field actually interacting
with the single atom.

III. LOCAL ABSORPTION AND EMISSION

It is now possible to formulate the Schro¨dinger equations
for the single-photon case by defining the one-photon basis
asuk& for one photon in ak eigenstate anduE& for the excited
atom with no photon in free space. The quantum stateuc(t)&
is then described by the componentsc(k;t)5^kuc(t)& and
c(E;t)5^Euc(t)&. The temporal dynamics of these compo-
nents is given by

d

dt
c~k;t !52 ickc~k;t !2 iAcG

p
c~E;t !,

d

dt
c~E;t !52 iAcG

p E dk c~k;t !. ~2!

These equations of motion can now be transformed into real-
space coordinatesr by using the Fourier transform

c~r ;t !5
1

A2p
E dk exp~ ikr !c~k;t !. ~3!

The equation for the propagating field then reads

d

dt
c~r ;t !52c

]

]r
c~r ;t !2 iA2cGd~r !c~E;t !. ~4!

As a result of the integration overk, this equation of motion
now includes ad function expressing the locality of emis-
sion. Since the time evolution should be continuous, thisd
function implies a jump ofc(r ;t) at r 50. By integrating
Eq. ~4!, the discontinuity is found to be given by

c~r→10;t !2c~r→20;t !52 iA2G

c
c~E;t !. ~5!

Emission and absorption are therefore described by the in-
stantaneous addition of an amplitude proportional toc(E;t)
to the single-photon wave function propagating fromr ,0 to
r .0. At rÞ0, the dynamics ofc(r ;t) is simply described
by linear propagation,c(r ;t)5c(r 2ct;0).

In order to obtain the dynamics ofc(E;t), it is necessary
to define the integral corresponding toc(r 50;t). The
proper result is obtained by taking the average of the incom-
ing amplitude c(r→20;t) and the outgoing amplitude
c(r→10;t). However, it is convenient to use the result of
Eq. ~5! to express the dynamics ofc(E;t) entirely in terms
of the incoming amplitudec(r→20;t). It then reads

d

dt
c~E;t !52Gc~E;t !2 iA2cGc~r→20;t !. ~6!

The amplitude of the excited statec(E;t) can therefore be
obtained from an integration of the previous incoming field
amplitudesc(r→20;t). Since the dynamics of these ampli-
tudes are given by linear propagation at a constant velocityc,
they can be obtained from the initial single-photon wave
function atr ,0 using the linear propagation dynamics men-
tioned above.

With these results, it is possible to integrate the equations
of motion from any initial timet in to any final timetout. In
particular, the output field within 0,r ,c(tout2t in) for
c(E;t in)50 is given by

c~r ;tout!5c„r 2c~ tout2t in!;t in…2 iA2G

c
c~E;tout2r /c!

5c„r 2c~ tout2t in!;t in…22
G

cEr 2c(tout2t in)

0

dr8

3expS 2
G

c
@r 2r 82c~ tout2t in!# Dc~r 8;t in!.

~7!

As the first line of Eq.~7! shows, the output wave function is
a superposition of a component that propagated past the atom
unchanged and a component emitted by the excited atom.
Since the atom was initially in the ground state, the emission
can be traced to absorptions of the incoming wave function,
as represented by the integral in the last line of Eq.~7!. The
output wave function atr .0 can thus be represented as a
linear function of the input wave function atr ,0.

IV. MANY-PHOTON EFFECTS

The advantage of a local description of the field-atom
interaction is that it is easily extended to multiple photons.
No matter how high the photon density is, we can always
define a region fromr 52e to r 51e around the atom small
enough to contain only one photon. In order to solve the
field-atom interaction problem for many photons, it is there-
fore only necessary to consider what happens if a photon
interacts with the excited atom.

For this purpose, it is useful to define the many-photon
Hilbert space as a product space of independent particles.
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The bosonic nature of photons must then be included in the
symmetry of the initial state. For reasons of consistency, it is
then also necessary to distinguish the origin of an excitation,
effectively treating the excited state as a state of the photon.
The two-photon wave function is then given by the ampli-
tudes for two photons in free space,c(r 1 ,r 2), the ampli-
tudes for one photon in free space and one photon at the
atom,c(r 1 ,E) or c(E,r 2), and the amplitude for a double
excitation, c(E,E). For a two-level atom, the latter must
always be zero. In the Hamiltonian given by Eq.~1!, this fact
is expressed by the difference between the atomic annihila-
tion operatorŝ2 and the annihilation operators of harmonic
oscillators. Within the product space of independent par-
ticles, this difference is simply represented by setting the
matrix elements between single excitation and double exci-
tation to zero. The Schro¨dinger equation for the two-photon
wave function then reads

d

dt
c~r 1 ,r 2 ;t !52c

]

]r 1
c~r 1 ,r 2 ;t !2 iA2cGd~r 1!c~E,r 2 ;t !

2c
]

]r 2
c~r 1 ,r 2 ;t !

2 iA2cGd~r 2!c~r 1 ,E;t !,

d

dt
c~E,r 2 ;t !52Gc~E,r 2 ;t !2 iA2cGc~r 1→20,r 2 ;t !

2c
]

]r 2
c~E,r 2 ;t ! ~••• !,

d

dt
c~r 1 ,E;t !52c

]

]r 1
c~r 1 ,E;t ! ~••• ! 2Gc~r 1 ,E;t !

2 iA2cGc~r 1 ,r 2→20;t !, ~8!

where (•••) marks the missing two-photon absorption terms.
This two-photon Schro¨dinger equation describes the nearly
independent dynamics of two separate photons, except for
the absence of absorption for one photon if the other photon
has been absorbed by the atom. The integration of the two-
photon Schro¨dinger equation can therefore be achieved by
using the single-photon results and setting all contributions
of double excitation to zero@15#. In the following, however,
we will present an alternative solution of the dynamics based
on the two-photon interaction represented by the missing
double excitation terms in Eq.~8!. This procedure has the
advantage that it can be easily extended to three or more
photons and may therefore provide a useful foundation for
further investigations.

V. SINGLE-PHOTON AND TWO-PHOTON
RESPONSE FUNCTIONS

Using the results for local emission and absorption, it is
possible to evaluate the effects of the atom-field interaction
on an arbitrary single-photon wave function. For this pur-
pose, it is useful to define a time-independent characteriza-

tion of the input and output wave functions. In the context of
our model, this characterization is easy to obtain since the
propagation before and after the interaction processes does
not change the shape of the wave packet. For the single-
photon cases, the input and output wave functions can there-
fore be given by

c in~x!5 lim
t in→2`

c~r 5x1c tin ;t in!,

cout~x!5 lim
tout→1`

c~r 5x1c tout;tout!. ~9!

According to Eq.~7!, the output wave function can be ob-
tained from the input wave function using a linear-response
function U1(x;x8) such that

cout~x!5E
2`

`

dx8U1~x;x8!c in~x8!. ~10!

The single-photon response function reads

U1~x;x8!

5H d~x82x!22
G

c
expF2

G

c
~x82x!G for x<x8

0 for x.x8.

~11!

Note that the response functionU1(x;x8) is a representation
of the unitary operation describing the time evolution of the
field-atom interaction. It therefore preserves the norm of the
wave function given by the integral over the absolute square.

Likewise, the field-atom interaction of a two-photon wave
function can be described by a linear-response formalism.
The input and output wave functions are then described by

c in~x1 ,x2!5 lim
t in→2`

c~r 15x11c tin ,r 25x21ctin ;t in!,

cout~x1 ,x2!5 lim
tout→1`

c~r 15x11ctout,r 25x21c tout;tout!.

~12!

The unitary transform of the input state into the output state
can also be described by linear-response function

cout~x1 ,x2!5E
2`

`

dx18dx28U2~x1 ,x2 ;x18 ,x28!c in~x18 ,x28!.

~13!

If the two photons are always very far apart (x12x2
@G/c), or if the atom is replaced with a harmonic oscillator,
the propagation of the two photons must be independent of
each other. In this case, the response function is equal to the
product of two single-photon response functions,
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U lin~x1 ,x2 ;x18 ,x28!5U1~x1 ;x18!U1~x2 ;x28!. ~14!

This response function corresponds to the linear part of the
field-atom interaction. However, the absence of two-photon
absorption in the dynamics causes a coupling between the
photons that can be described by a nonlinear correction
DUnonlin such that

U2~x1 ,x2 ;x18 ,x28!5U1~x1 ;x18!U1~x2 ;x28!

1DUnonlin~x1 ,x2 ;x18 ,x28!. ~15!

According to the considerations in the preceding section,
DUnonlin can be found by integrating the contributions from
double excitations inU lin . The result reads

DUnonlin~x1 ,x2 ;x18 ,x28!5H 24
G2

c2
expF2

G

c
~x182x1!GexpF2

G

c
~x282x2!G for max$x1 ,x2%,min$x18 ,x28%

0 else,

~16!

where the minimum min$x18 ,x28% effectively defines the latest
absorption time and the maximum max$x1 ,x2% defines the
earliest emission. Thus the nonlinearity removes all compo-
nents where the first emission occurs only after the second
absorption@15#.

It is now possible to derive the output wave function for
any two-photon input wave function by integrating Eq.~13!
using the expressions forU1 and forDUnonlin given by Eqs.
~11! and~15!, respectively. If the input is a single-mode two-
photon pulse, the input wave function can be written as a
product state

c in~x1 ,x2!5f in~x1!f in~x2!, ~17!

wheref in defines the shape of the input pulse. The quantum
state of the output field can then be described by

cout~x1 ,x2!5fout~x1!fout~x2!1Dcnonlin~x1 ,x2!, ~18!

wherefout describes the linear single-photon response given
by

fout~x!5E
2`

`

dx8U1~x;x8!f in~x8!, ~19!

and the nonlinear contribution is directly obtained from

Dcnonlin~x1 ,x2!5E
2`

`

dx18dx28DUnonlin~x1 ,x2 ;x18 ,x28!

3f in~x18!f in~x28!. ~20!

These equations describe the nonlinear response of the two-
level atom at the quantum level. It is now possible to apply

this response function to a variety of input states. In the
following, we will focus on the case of a resonant rectangu-
lar wave packet.

VI. THE QUANTUM LEVEL NONLINEARITY
AT RESONANCE

Since the absorption of a photon is the strongest at reso-
nance, a resonant input should also produce the strongest
nonlinear effect in the field-atom interaction. In order to in-
vestigate this resonant nonlinearity, we consider the response
to a rectangular input wave packet given by

f in~x!5H 1

AL
for 0,x,L

0 else.

~21!

The linear and nonlinear parts of the output wave function
for this rectangular wave packet can be determined analyti-
cally. They read

fout~x!

55
2

2

AL
F12expS 2

GL

c D GexpS G

c
xD for x,0

2
1

AL
H 122 expF2

G

c
~L2x!G J for 0,x,L

0 else

~22!

and

Dcnonlin~x1 ,x2!5H 2
4

L F12expS 2
GL

c D G2

expFGc ~x11x222max$0,x1 ,x2%!G for xi,L

0 else.

~23!
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Figure 2 shows the output wave functioncout and the non-
linear componentDcnonlin at an input pulse length ofL
520c/G. The most remarkable feature of the nonlinear con-
tribution is its localization aroundx15x2. This is a direct
consequence of the local interaction between the two pho-
tons.

A detailed discussion of the two-time correlation originat-
ing from this spatiotemporal locality of the interaction is
given elsewhere@15#. In the present paper, we focus on the
coherent properties of the two-photon wave function. For
this purpose it is useful to simplify the results by assuming
the limit of long pulses,L@c/G, and concentrating on the
region within the pulse, 0,xi,L. In this limit, the photon-
photon interaction becomes independent of the pulse shape
effects caused by the sudden rise and fall of the rectangular
pulse amplitude. The results should then apply to any pulse
with an input amplitude varying slowly on a scale ofc/G,
where the pulse length parameterL defines the local photon
density as 2/L. The output amplitudes are then given by

fout~x1!fout~x2!5
1

L
, ~24!

Dcnonlin~x1 ,x2!52
4

L
expS 2

G

c
ux12x2u D , ~25!

cout~x1 ,x2!5
1

L F124 expS 2
G

c
ux12x2u D G . ~26!

In the long pulse limit, the linear part of the output wave
function is nearly equal to the original input pulse. However,
the nonlinear contribution reduces this overlap by scattering
photons into other modes according to

^coutuc in&511E dx1dx2cout* ~x1 ,x2!Dcnonlin~x1 ,x2!

'12
4

LE dx2 expS 2
G

c
ux2u D

512
8c

GL
. ~27!

The probability that the two photons will be scattered out of
the input mode is therefore approximately equal to

12u^coutuc in&u2'
16c

GL
. ~28!

The long pulse limit requires that this fraction is never close
to 1. However, the result can be used to define a scattering
cross section for the two photons. If we think of the first
photon as being in a random position within the pulse, the
chance of finding the second photon within a distance<s
should be equal to 2s/L. The interaction cross sections for
the two-photon nonlinearity can then be defined ass
58c/G. Note thatc/G is the coherence length of spontane-
ous emission from the atom. The nonlinear photon-photon
interaction mediated by the two-level atom therefore appears
to extend over a region eight times longer than this coher-
ence length.

VII. ENTANGLEMENT AND FOUR-WAVE MIXING
IN THE NONLINEAR COMPONENT

In the long pulse limit, the input mode is very nearly a
plane wave resonant with the two-level atom (k50). It is
therefore possible to describe the scattering effect as a four-
wave mixing effect changing the photon frequencies from
k050 to 1k and2k, respectively. Thek-space representa-
tion of the output wave packet can be obtained by using the
local Fourier transform in the spatial region fromxi50 to
xi5L given by

cout~k1 ,k2!5
1

LE0

L

dx1dx2 exp~2 ik1x1!

3exp~2 ik2x2!cout~x1 ,x2!

'dk1,0dk2,02
8Gc

L~G21c2k1
2!

dk1 ,2k2
, ~29!

whereki can have values equal to integer multiples of 2p/L.
Note that this discretization ofki is necessary to preserve the
correct normalization of the quantum state. The phase-
matching conditions of four-wave mixing is expressed in Eq.
~29! as a Kronecker deltadk1 ,2k2

ensuring that the sum ofk1

and k2 is indeed zero. As a result of this strong correlation
betweenk1 and k2, the k-space representation of the two-
photon output is the Schmidt decomposition of the entangled
state@17#,

ucout&5uk150;k250&2(
k

8Gc

L~G21c2k2!
uk;2k&.

~30!

FIG. 2. Contour plots of ~a! the output wave function
cout(x1 ,x2) and~b! the nonlinear componentDcnonlin(x1 ,x2) of the
output for a resonant rectangular input wave packet of lengthL
520c/G. The contour shading corresponds to amplitudes ranging
from 24/L for black to12/L for white. The dark gray shading at
the edges of the graphs correspond to zero amplitude. The light gray
shading of the triangular plateau regions in~a! correspond to an
amplitude of 1/L equal to the input amplitude of the rectangular
wave packet.
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According to this representation of the two-photon state, the
single-photon density matrix can be written as a mixture ofk
eigenstates with

r̂5S 12
16c

GL D uk50&^k50u1(
k

S 8Gc

L~G21c2k2!
D 2

uk&^ku.

~31!

This density matrix defines the single-photon coherence of
the output. In particular, the frequency spectrum of the scat-
tered light is given by a squared Lorentzian,

I scatter~k!5
1

Dk
^kur̂uk&5

16c

GL

2cG3

p~G21c2k2!2
. ~32!

Note that the resolution factorDk52p/L is required to ad-
just the normalization of the continuous spectrumI scatter(k)
to the discrete distribution given byr̂. Figure 3 shows this
scattering spectrum in comparison with the spontaneous
emission spectrum of the two-level atom. It should be noted
that the squared Lorentzian of the scattering spectrum is nar-
rower than the Lorentzian of spontaneous emission. This
spectral feature clearly distinguishes the two-photon scatter-
ing process from an incoherent sequence of absorption and
reemission and may serve as an indication of spontaneous
four-wave mixing in experiments where low detection effi-
ciencies prevent an evaluation of two-photon coincidences.

As this analysis shows, the resonant nonlinear interaction
of the two photons at the atom causes correlated changes in
the frequencies of the photons. Since the output state is com-
pletely quantum coherent, the noise in the single-photon den-
sity matrix actually indicates entanglement between the scat-
tered photons. This situation is quite similar to the creation
of photon pairs by spontaneous parametric down-conversion.
In fact, it may also be possible to create entangled photon

pairs from the spontaneous four-wave mixing effect at a
single-atom nonlinearity by isolating the nonlinear part of
the two-photon response to a coherent input field through
destructive interference with an appropriate reference pulse.
This method will be discussed in the following section.

VIII. GENERATION OF PHOTON PAIRS USING
COHERENT INPUT LIGHT

Spontaneous four-wave mixing can only occur if two pho-
tons interact. Moreover, phase matching requires that a pho-
ton scattered to1k must always be accompanied by a pho-
ton scattered to2k. It is therefore possible to use the
nonlinear photon-photon interaction to generate correlated
photon pairs from a coherent input pulse by selecting the
corresponding output ports in a spectrometer. However, even
better results for photon pair creation may be achieved if the
linear component is removed by interference with another
coherent light field using a method similar to the one applied
to parametric down-conversion in Ref.@16#.

For any pulse shape defined by the wave functionf, it is
possible to define a weak coherent stateua& with a low av-
erage photon numberuau2!1. This coherent state can then
be expanded into components with zero, one, and two pho-
tons. Usinguvac& for the vacuum state,uf& for the single-
photon pulse, anduf;f& for the two-photon pulse, this ex-
pansion reads

ua&'uvac&1auf&1
a2

A2
uf;f&1•••. ~33!

The unitary operatorÛ describing the response of the two-
level system can now be applied separately to the vacuum, to
the single-photon state, and to the two-photon state. The
vacuum state is not changed by the interaction at all
(Ûuvac&5uvac&). In the resonant long pulse limit, the single-
photon component changes its phase byp, but remains
nearly unchanged otherwise. However, the two-photon com-
ponent is changed by the addition ofuDcnonlin&. The expan-
sion of the output state therefore reads

ucout&'uvac&2auf&1
a2

A2
uf;f&1

a2

A2
uDcnonlin&

'u2a&1
a2

A2
uDcnonlin&. ~34!

The linear component can therefore be represented by the
weak coherent stateu2a& with the same coherence proper-
ties as the original pulse. This coherent pulse can be removed
by destructive interference with a much stronger reference
pulse of the same shape at a high reflectivity beam splitter.
Note that the high reflectivity of the beam splitter is neces-
sary to avoid quantum noise effects in the interaction that
would appear as photon losses in the final output. If these

FIG. 3. Frequency spectrumI scatterof the photons in the nonlin-
ear componentDcnonlin . The intensityI and the frequencyk have
been scaled in such a way that the area of the spectral line in the
graph is equal to one. The dashed line shows the Lorentzian line of
spontaneous emission from the two-level atom derived from the
same model@14#. Note that the area of this line is also one. The
comparison shows that the spectrum of photons scatters by sponta-
neous four-wave mixing at the single atom is narrower than the
spectrum of spontaneous emission.
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conditions are met, the destructive interference may be rep-
resented by the displacement operatorD̂(a)5exp(aâ†

2a* â). For uau!1, this operator is only slightly different
from 1̂, but it does have the fundamental property that
D̂(a)u2a&5uvac&. The final output therefore reads

D̂~a!ucout&'D̂~a!u2a&1D̂~a!
a2

A2
uDcnonlin&

'uvac&1
a2

A2
uDcnonlin&. ~35!

This output wave function now contains only a zero and a
two-photon component. The one-photon component has been
eliminated by the interference effects at the high reflectivity
beam splitter. It is therefore possible to generate entangled
photon pairs with a two-photon wave function described by
Dcnonlin using a coherently driven dissipation-free two-level
atom and an interferometric setup. The average number of
photon pairs created in each pulse is then given by

uau4

2
^DcnonlinuDcnonlin&5

8c

GL
uau4. ~36!

In the long pulse limit, it is possible to approximate continu-
ous input light as a sequence of rectangular pulses of length
L@c/G. The intensity of the pump light is then given by
I in5cuau2/L and the rate of pair creationRpair is given by the
average number of pairs per pulse divided by the pulse du-
ration L/c. The result of this estimate reads

Rpair5
8

G
I in

2 , ~37!

where higher-order many-photon effects are negligible ifI in
!G. The pair-creation rate is therefore also limited toRpair
!G. However,G is usually in the range of nanoseconds, so
considerable pair rates should be possible.

According to Eq.~30!, the quantum state of the emitted
photon pair can be written as

uDcnonlin&52(
k

8Gc

L~G21c2k2!
uk;2k&, ~38!

wherek represents the discretizedk space withDk52p/L.
In real-space representation, the same entanglement is ex-
pressed by the coefficientsDcnonlin(x1 ,x2) given by Eq.
~25!. These representations show the same time-frequency
correlations as a phase-matched parametric down-
conversion, that is,x1'x2 andk152k2. It may therefore be
possible to use photon pairs created by four-wave mixing in
applications similar to those of down-converted photons.

IX. CONCLUSIONS

We have described the spatiotemporal dynamics of a one-
dimensional light field interacting with a single two-level
atom for input states with up to two-photons. In the case of a
resonant two-photon input, the interaction at the atom results
in spontaneous four-wave mixing effects, scattering the pho-
tons to higher and lower frequencies. Since this scattering
effect is fully quantum coherent, the resulting output state is
entangled in frequency and time.

For a coherent-state input, it is possible to remove the
linear single-photon and two-photon components by destruc-
tive interference with a reference pulse. The remaining out-
put then consists of the vacuum state and a small contribu-
tion from the nonlinear two-photon component. This output
is very similar to the output from spontaneous parametric
down-conversion. It may therefore be possible to realize a
source of entangled photon pairs using the spontaneous four-
wave mixing effects at a single two-level atom.
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