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Entanglement and quantum computation with ions in thermal motion
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With bichromatic fields, it is possible to deterministically produce entangled states of trapped ions. In this
paper we present a unified analysis of this process for both weak and strong fields, for slow and fast gates.
Simple expressions for the fidelity of creating maximally entangled states of two or an arbitrary number of ions
under nonideal conditions are derived and discussed.

PACS numbgs): 03.67.Lx, 03.65.Bz, 89.78.c

[. INTRODUCTION posal for two-bit[5] and multibit[6] gates in the ion trap,
which makes use of resonance conditions to couple certain
Quantum computing relies on the ability to perform a col-states of the two-particle system. In our proposal we apply
lection of unitary evolutions of a quantum system, composedbichromatic light which selects certain virtually excited in-
of a number of two-level systengthe qubit3, and it is a key termediate states, and by choosing appropriate parameters we
result that a small set of so-called universal gates existsshow that the desired internal state dynamics of the ions may
which may form the basis for the entire computatidh The  be perfectly achieved, even if the vibrational degrees of free-
development of proposals for physical implementation ofdom, used to couple the ions, are not in their ground state.
guantum computing has followed different routes, accordingrecently, Milburn[7] proposed a realization of a multibit
to the various views one may have on the quantum dynamiquantum gate in the ion trap, which also operates when the
cal processegi) One may view a gate operation on a singleions are vibrationally excited: Adjusting the phases of laser
qubit or on several qubits as a controlled transition fromfields resonant with sideband transitions, one may couple
initial to final states, and one may implement it by a Hamil-internal state operators to different quadrature components,
tonian, or a sequence of Hamiltonians, that couple these.g., position and momentuiandP of the oscillatory mo-
states directly.(ii) One may consider Hamiltonians that tion. In Ref.[7] it is was proposed to use the two Hamilto-
couple quite many states, but where unwanted operations argansH,=2\,J,P andH,=X\,J,X, expressed in terms of the
dynamically suppressed by resonance conditions or bgollective spin operatord,=ZXyjx (§=X,y,z), where the
“bang-bang” Hamiltoniang2]. (iii) One may depart from a sum is over the ions irradiated by the lasers, and whgres
more systematic analysis of the Lie algebra generélbyd the spin operator for the atokpwhich may be defined by the
commutation from a given set of basic Hamiltonians. If one Pauli spin matrice$ = o4/2 (h=1). By alternating appli-
has access to Hamiltoniak andH, with variable strength  cation of the Hamiltonian$i, andH,, we may obtain the
parameters«; and k,, subsequent application over short- exactpropagator
time intervalsdt of x;H;, xk,H,, —xiH;, and —«,H,
leads to the evolution operatof € 1) HoraiHmgiHorg—iH 7 e_i)\l)\zﬁfz’ 2

ei K2H2dteiKlHldtefiKZsztefiKlHldt ) N
because the commutator of the oscillator position and mo-

:eKl"Z[HlvHZ]dtz_}_O(dt:a)’ (1) ~mentum is a number. The interaction containedJinbe-
tween the ions has been established via the vibrational de-
grees of freedom, but after the gate this motion is returned to
the initial state and is not in any way entangled with the
Si'nternal state dynamics. Milburn also considered the possi-
bility of coupling different individual internal state operators
successively toX and P, so that the commutator term pro-
vides the product of such operators.

In this paper, we shall demonstrate that our bichromatic
excitation scheme is in fact already a realization of the pro-
operation.” posal by Milburn, and that a gate operation more rapid than

Different proposals for quantum computing with trappedconCIUded in Ref[5] is possible. We show that our blcr21ro—

ions can be roughly categorized according to the lines abovenatic scheme implements a propagator of the ferff\(77

In their original proposal4], Cirac and Zoller noted that Which is analogous to the one obtained by MilbliEg. (2)].
lasers resonant with sideband excitation of the trapped ionky Ref. [6] it was shown that this propagator can be used to
couple the ground and first vibrational states conditioned oprepare maximally entangled states \(i)(|gg. )

the internal state of the irradiated ion, and subsequent irra+ €?|ee- - -e)) of any number of ionsN), where thekth
diation of a second ion can couple its internal states condiletter denotes the internal stageor g of the kth ion. These
tioned on the vibrational state. We have formulated a promaximally entangled states, which are interesting in their

so that effectively the HamiltoniaiiH,,H,] is obtained. As
expressed by Lloyd3], “By going forward and backing up
a sufficiently small distance a large enough number of time
it is possible to parallel park in a space oglyonger than the
length of the car.” IfH; andH, commute with the commu-
tator[H4,H,], the higher-order terms idt vanish exactly,
and one may apply; andH, for arbitrarily largedt and
“make a round trip in the parking lot and park in one single
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own right[8], are produced by applying the unitary operator leen> VI A Igng

e ™2 1o a string of ions initially in the statig- - - g), and =ty leen-1>

they may be produced even without experimental access t1| s gen+1>

individual ions in the trap. legns lgen> " legn> lgen>
In this paper we focus on the preparation of maximally 'es-1> lgen-1>

entangled states. This is convenient both for theoretical pre Deg =g gon+1>

sentation and to emphasize results which are most easil' lggn>

verified experimentally. However, the procedures describea
here also apply to quantum computation. With two ions illu-  FiG. 1. Energy-level diagram for two ions with quantized vibra-
minated by laser light, the bichromatic scheme producegonal motion illuminated with bichromatic light. The only resonant
(172)(|gg)—ile®) and together with single-qubit rotation transitions are froniggn) to |eer) (left) and from|egr) to |gen)
this evolution forms a universal set of gates which may beright). Various transition paths involving intermediate states with a
used to constuct a quantum computer. TG@®NTROL-NOT  vibrational numben differing by unity are identified.
operation[1], for example, may be obtained by applying
single-ion operations on each ion before and after the bichrazenter-of-mass vibrational mode where all ions participate
matic pulse, which creates the state \(i)(|gg>—i|ee>) equally in the vibration, so that the coupling of the recoil to
from |gg). the vibration is identical for all ions, i.en;= 7 for all i. For

In Sec. Il, we recall our proposal for a two-qubit gate simplicity we also assume the same Rabi frequency for all
operation, and we show that it is equivalent to the proposaions participating in the gat@,;=(). In this section we will
of Milburn, with a harmonic rather than a stroboscopic ap-consider an ion trap operating in the Lamb-Dicke limit, i.e.,
plication of Hamiltonian coupling terms. In experiments it the ions are cooled to a regime with vibrational numbers
may be difficult to fulfill the requirements for the analysis of ensuring thatf+ 1) »?<1, so that we may perform the ex-
Sec. Il to be precise, and in Sec. Il we address the fidelityansjone' n(a+aT)%1+iﬂ(a+ ah).
with which certain entangled states may be engineered when
we take into account the off-resonant couplings and the finite
value of the Lamb-Dicke parameter. In Sec. IV we study the
influence of the environment on the system. We analyze the In a previous pape5] we assumed that two ions in the
role of spectator vibrational modes and energy exchange b&tring were both illuminated with two lasers of opposite de-
tween the ionic motion and thermal surroundings. A sum-+unings o — weq=*+ 6. With this choice of laser detunings
mary of our results and a conclusion are presented in Sec. \the only energy conserving transitions are frgggn) to

leen and from|gen) to |egn), wheren is the quantum
Il. GATE OPERATION UNDER IDEAL CONDITIONS number for the relevant vibrational mode of the trap; cf Fig.
) ) ) ) . . 1. We considered the weak-field regimg)<v— &, where
lons in a linear trap interacting with a laser field of fre- gnjy 5 negligible population is transfered to the intermediate

A. Weak-field coupling

quencyo may be described by the Hamiltonian levels with vibrational quantum numberst1. In this re-
H=H-+H. gime the effective Rabi frequendy for the transition from
07 Hint: lggn) to |een may be determined in second-order perturba-
tion theory,
Ho=r(a'a+ 1/2)+ wegd, 0,112, 3

_ | | )
. f=2> (eerHinm)(m[Hinlggr) (%) "

Em— (Eggnt @m) v—35"'

Hi= > &((, dm@rah—ot yp o)
-4 2 T R where we have used the intermediate stites=|egn=*1)
and|gen=1), and wherew,, is the frequency of the laser
where v is the frequency of the vibratiom' anda are the  exciting the intermediate staten). For the transition from
ladder operators of the quantized oscillatog is the energy  [egn) to |gen), we obtain the same effective Rabi fre-
difference between the internal stakeandg, and(}; is the  quency.

resonant Rabi frequency of thigh ion in the laser field. The The remarkable feature in E@) is that it contains no
exponentials account for the position dependence of the lasélependence on the vibrational quantum numitefhis is
field, and the recoil of the ions upon absorption of a photondue to interference between the paths shown in Fig. 1. If we
The positions of the iong; are replaced by ladder operators take a path where an intermediate state with vibrational
kx;= n;(a+a'), where the Lamb-Dicke parameter repre-  quantum numben+1 is excited, we have a factor of+ 1
sents the ratio between the ionic excursions within the vibraappearing in the numeratok/(+ 1 from raising andyn+1
tional ground-state wave function and the wavelength of thérom lowering the vibrational quantum numbein paths
exciting radiation. In Eq(3) we have assumed that the laserinvolving the vibrational state— 1, we obtain a factor ofi.

is close to a sideband~we,* v for a single vibrational Due to the opposite detunings, the denominators have oppo-
mode, and that we may neglect the contribution from allsite signs, and th@ dependence disappears when the two

other vibrational modes. We tune the lasers close to théerms are subtracted. The coherent evolution of the internal
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7 With f(t)=—27Q cos@—t and g(t)=—27Q sin(v
—o)t, following from Eg.(5), we obtain
V290
P F(t)=— — sin((v—o)t),
ZA(1)
7
(G®,-F() V270
G(t)=———<[1-cod(v= )], ©
FIG. 2. The paths traversed in phase space and the fun&(iyn
in Milburn’s proposal(rectangle and in our proposalcircle).
_ . . " - il 1
atomic state is thus insensitive to the vibrational quantum A(t)=— 5“— 21—9) sin(2(v—d)t)|.
_ —

numbers, and it may be observed with ions in any superpo-
sition or mixture of vibrational states. The coherent evolution
may even be seen if the vibrational quantum number .
changes during the gate due to heafiy In the xp phase space the operatdrperforms translations
(x,p)— (x+J,G(t),p— I F(t)) entangled with the internal
state of the ions.

] ) i ] o Apart from a change of basis frody to J,, the interac-
We now con5|der the interaction Wltho_ut restricting thetion considered by Milburfi7] may also be put in this form,
parameters to a regime where no population is transfered tgjth f(t) andg(t) alternating between zero and nonvanish-
states with differenn. For this purpose it is convenient t0 jng constants. Within the present formulation, the trick in
change to the interaction picture with respectg. In the  Ref [7] is to use functiond(t) andg(t) such that=(t) and
Lamb-Dicke limit, with lasers detuned by 6, the Hamil-  G(t) both vanish after a period. At this instant the vibra-

B. General field coupling

tonian becomes tional motion is returned to its original state, and the propa-
: 2
gator reduces tdJ(r)=e A0 ie., we are left with an
Hine=2Q0J, cosdt — 270, [ x(cog v— 8)t+ cog v+ H)t) internal state evolution which is independent of the external

L . vibrational state. This decoupling is possible because the ef-
Fp(sin(y = d)t+sin(v+ 1], ®) fective internal state transition is completed in the same

where we have introduced the dimensionless position anahmount of Emﬁ fforfalrL vibration?l colm[(:)jonentshanld becfauksje
_ _ (i the ac Stark shift of the atomic levels due to the laser fields

momentum operatorg,= (1/y2)(a+a") andp=(i/\2)(a’ _ .

—a), and the collective spin operators discussed above E re mdepend_ent of the value af In Fhe Wef’ik field case

). hese properties are ensured by the interfering coupling am-

Choosing not too strong laser intensiti@s< s, and tun- plitude in Fig. 1; see the detailed discussion in R&f. In
ing close to the sidebands— 5< 5, we may neélect the the general case it follow from the formal structure of Eq.
[l X

term and the terms oscillating at frequeney & in Eq. (5), 'E;)e gfg;rgwg;to bEyqfﬁ)etrlliﬁea(;qetg:ﬁgrfta%tsg/\é?@%?)eg)uzlnf
and our interaction is a special case of the Hamiltonian: '
P (G(t),—F(1)), as shown in Fig. 2. IG(t),— F(t)) forms a
Hine=f(t)Jyx+g(t)Iyp. (6) closed pathA(t) is plus(minus the enclosed area if the path
o is traversed in thécountej clockwise direction. In the pro-
The exact propagator for Hamiltoni&8) may be represented posal by Milburn successive constant Hamiltonians propor-

by the ansatz tional to x and p are applied and the area enclosed by
AT (0160 (G(t),—F(t)) is rectangular. In our proposal the area is a
U(t)=e "A0%e IFOIxe=iGMp, (7). circle of radius\2J,7Q/(v— 8), as illustrated in Fig. 2.

With the propagator in Eq.7) we may calculate the time
evolution of the system. Suppose that the ions are initially in
the internal ground state and an incoherent mixture of vibra-
¢ tional state as described by the density matp¥!

F(t)=f f(t)dt’, =3,Pnlg---gn){g---gn|. The time evolution of the
0 internal state density operatop=Tr,(p'"") with any
. number of ionsN may be found frompal__.aN,bll__bN(t)
G(t)=f g(t"dt’, ®  ==,Pn(g---gn|UT(t)|by- - -by)(as- - -an|U(t)|g---gn)
0 (aj,bj=e or g), where we have usell,|n)(n|=1 to re-
. move one of the summations over vibrational states. Here we
A(t) = _J F(t')g(t")dt'. !gsr:;[rlm\le r;levant density matrix elements for the case of two
0 i =2:

and the Schrdinger equationi (d/dt)U(t)=H,,U(t) then
leads to the expressions
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31 o ®) 1 —
= P |-+ =g [FO*+GOT4 0.8 1
Pgg.99 ; ng T 5® 0.6 t
- . 04 | 1
F(1)?+G(1)? 1 2t 1 o2t
L e a— cog A(t)+ zF(t)G(t) 0 . . : 0 . .
0 1000 2000 3000 4000 0 200 400 600
+ %e—(F(t)2+G(t)2)Ln[2(F(t)2+ G(t)z)]}, v vi
FIG. 3. Time evolution of density-matrix elements for two ions
3 1 ) , calculated from Edq10). (a) Weak-field regime(b) Fast gate. The
Pecee= 2 Pn[— — _ e [FO+GH4 first curve[counting from above att~1000 in(a) and »t~130 in
n 8 2 (b)] representsy, 49, the second is the imaginary part ofg ce.
F(t)2+G(t)2 1 the third iSpeeee, and the last is the real part pf ... The ions
n(—) cos( At)+ = F(t)G(t)) are initially in the internal statiyg) and a thermal vibrational state
2 2 with an average of two vibrational quanta. (@ the physical pa-

1 rameters are=0.9v, 7=0.1, andQ)=0.1v. In (b) the physical
+ _ef(F(t)2+G(t)2)L [2(F(t)2+ G(t)z)]} (10) parameters aré=0.95, »=0.1, andQ)=0.177. The parameters
8 " ' in (b) are chosen such that a maximally entangled statq2(1/
X(|gg)—ilee)) is formed at the timet~250, where the circular
pgg,ee:; Pn[%{l—e‘(F(‘)2+G(t)2)Ln[2(F(t)2+G(t)z)]} path in Fig. 2 has been traversed twice.
_ ) ) faster gate than considered in the weak-field case. See Fig.
_F PP emye, (F(t) +G(1) ) 3(b), where we have used =2, and where a maximally
n 2 entangled state ({2)(|gg)—ilee)) is created at the time
vt~250.
A(t)+ lF(t)G(t)”, By combining the requirement of E¢11) with the con-
2 dition (v— 8) 7=K2, we may express the time for the state
preparation as

X sin

wherel , is thenth-order Laguerre polynomium.
These expressions can be evaluated in different regimes.
In the weak-field regimg Q) <v— &, thexp phase-space tra- = —JK.
jectory is a very small circle, which is traversed several 7€)
times. F(t) and G(t) are negligible for all times, and
e F(Ixe=IGMOIP i gpproximately unity, such that we have In order to avoid off-resonant excitations of the ions, we
an internal state preparation which is disentangled from thenust require)?/v?><1 andz? must be much less than unity
vibrational motion throughout the gate. SincA(t) to fulfill the Lamb-Dicke approximatioiisee Secs. Il A and
~—n?Q%/(v— ) if (v—S)t>1 the time evolution corre- 1l B). For a given trap and/or laser intensity, Efj2) sets a
sponds to the one obtained from an effective Hamiltoniarbound on the speed of the gate. In Table | we give some
H=(~2J§, and Eq.(10) describes simple Rabi oscillations nume_rical examples for the time of the gate for some typical
between the statelgyg) and |ee). This is demonstrated in €xperimental parameters. The€ONTROL-NOT operation,
Fig. 3(a), which shows the time evolution described by Eq.Which plays a central role in quantum computatiah may
(10). The curves show sinusoidal Rabi oscillation frogy) b€ created by a combination of single-particle rotations and a
to |e€) superimposed by small oscillations due to the weakPichromatic pulse with the duration described by Etp).
entanglement with the vibrational motion. The single-particle operations may be performed much faster
Outside the weak-field regime the internal state is strongly
entangled with the vibrational motion in the course of the TABLE I. The time required to create the maximally entangled
gate. For successful gate operation we have to ensure that tte (142)(|gg- - -g)—ilee- - -e)) with a Lamb-Dicke parameter
return to the initial vibrational state at the end of the gate by7=0.1 for various trapping frequencies/)(and laser intensities
choosing parameters such tt@(7) =F(7)=0, correspond- Q). Thg table show§ the gate time if the entangled stat.e is. prepared
ing to (v— 8) r=K2, whereK is an integer. A maximally af_ter a single round m phase space. If the_gate operation is a_lcc_:om-
entangled state is created if we adjust our parameters so th{Shed aftei rounds in phase space, the time should be multiplied
A(7)=—m/2. This is achieved if the parameters are choser?Y VK.
in accordance with

v

(12

Q v
70 P 27200 KHz 1 MHz 10 MHz
=——, K=123.... 11
v=35 2K (1 0.05 200us 100us 10 us
0.10 100us 50 us 5 us
By choosing a low value oK such that an entangled state is 0.20 50us 25 us 2.5us

created after a few rounds in phase space we may perform-=a
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than the two-qubit gates, so the time required to perform a 1
CONTROL-NOT operation is also given by Eq12). 832 [
094
I1l. NONIDEAL CONDITIONS F 0693 r
In Sec. Il, we used the Lamb-Dicke and the rotating-wave 0.88 1
approximations to arrive at an exactly solvable model. In this 8-22 I
section we perform a more detailed analysis of the validity of 082 | \ \
the approximations and we estimate the effect of deviations 0.8 A . - . .
from the ideal situation in an actual experiment. The general 230 235 240 245 250 255 260 265 270
procedure in the section is to change to the interaction pic- vt

ture with respect to the simple Hamiltonid6), using the

exact propagator in Eq7), and to treat the small deviations the optimum. The full line is obtained by a numerical integration of

from the ideal situation by perturbation theory. The figure of i L .
merit for the performance of the gate is taken to be the fi_Hamlltonlan(s) and the dashed line is the product of the expression

delity F of creation of the maximally entangled-particle I(rlol)zqﬁ(lleei);;?nggr:);ereefﬁéoza:ﬂ;tzse i::dg(lg)y SObtamEd from Eq.
state |V .0 =1/12(|gg- - -g)—ilee - -€)), which in the ' '

ideal case is created at the time wh&(r) = — #/2, if the
ions are initially in thelgg- - - g) state[6], i.e.,

FIG. 4. Population of the EPR state (2)(|gg)—i|ee)) near

Eq.(10). The result agrees well with the result of a numerical
integration of the Schitinger equation with Hamiltonian

_ (5).
F=(¥mnadpint(7 ¥ max- (13 If the duration of the laser pulses can be controlled very
accurately in the experiment, so that one fulfills both Eg.
A. Direct coupling (11) and 257= 2K’ 7, the effect of the direct coupling van-

ishes. If one cannot perform such an accurate control, the net
= 20.J,cos@). This term describes direct off-resonant Cc)u_effect of the direct coupling is to reduce the average fidelity

pling of g and e without changes in the vibrational motion. PY N{?/25% (=0.03 for the parameters of Fig).4

For high laser power this term has a detrimental effect on the

fidelity, which we calculate below. B. Lamb-Dicke approximation
Changing to the interaction picture, we may find the

propagatoiJ,(t) from the Dyson series,

Going from Eq.(5) to Eq. (6), we neglected a terrhl

In Sec. Il we used the Lamb-Dicke approximation
d7@rah)~14ip(a+ah) to simplify our calculations. Now

[t we investigate the validity of this approximation.
U|(t)=1—|f dt'Hg, (") In the weak-field case, we can use the exact matrix ele-
0
ments
t t’ 2
- dt’dt"Hg (t )Hgq ,(t")+ -+, (14 . e 72
fojo At (n|é@+ah|n 1>=i1;\/_lLﬁ(772),
n-+

where the interaction Hamiltonian is given by, (t)

=UT(t)H4(t)U(t). Since Hy(t) is oscillating at a much to obtain the effective Rabi frequency betweggn) and
higher frequency than the propagatd(t), we may treat |een),

U(t) as a constant during the integration, and we obtain

1/ 2\)\2 1 2\\2
20 Qn2687”2 (Ln(77 ) _(Ln71(77 ) }
U,(t)=1—i?sin(&)UT(t)JxU(t) n+1 n
02 ~ﬁ{1—n2(2n+1)+n4 En2+§n+E . (17
—g(l—cos{Zﬁt))UT(t)JiU(tH-~-. (15) 4 42

_ , where{) is given by Eq.(4), and Wherd_ﬁ are the general-
Near the end point) (t)~€(™?% and we obtain the fidelity ized Laguerre polynomials

2

n+a)\xm

F~1- —.
m!

(18)

n
1— 26 1 a — _a\m
Sz (L~ cosd20m), (16 Lio= 2 (1™
where N is the number of ions participating in the gate. The effective Rabi frequency is no longer independent of the
In Fig. 4 we plot the product of the fidelity due to the carrier vibrational quantum numben, and the internal state be-
[Eq. (16)] and the population of the EPR state comes entangled with the vibrational motion, resulting in a
(1V2)(|gg)—ilee) expected from the time evolution in nonideal performance of the gdi@).
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1 T T T T T ing thatk is a continuous variable and by replacing the bi-
nominal coefficient by a Gaussian distribution with the same

0.9 width. In this limit the fidelity becomes
0.8 o
: 1
F Ny F=> P, . (22
: n=0 \/ N(N—1)(m/2— 0, 1)
1+
0.6 4
0.5 0 0.5 ) 15 ) 5 3 Expanding this expression to lowest ordersnand adjust-
' fz; | ing the pulse duration to take into account the reduction in
the coupling strength, we find, to lowest ordersn
FIG. 5. Evolution of the population of the EPR state 5
(1V2)(lgg)—i|e®) for a vibrational thermal state with an average Fo1_ 7 N(N—1) 4var(n) 23)
of five vibrational quanta angy=0.20. The dotted line is the pre- 8 7

diction from Eq.(19), and the solid line is the result of a numerical

integration of the Hamiltoniarg3) with parameter€)=0.02» and  at the optimum time
5=0.9v. The discrepancy between the two curve$lat 2 is due

to additional off-resonant couplings which may be taken into ac-
count by multiplying the coupling strength bywQ v+ §) (dashed
curve [5,6].

o= (14 73(2n+ 1), 24)
PLon

wheren and Varf) are the mean and variance of the vibra-
|:\;ional quantum number.

In Egs. (22) and (23) we have replaced a quantity?
owing from the Gaussian approximation to E@1) by

To illustrate the effect of deviations from the Lamb-Dicke
approximation, we consider again the production of an EP
state (14/2)(/gg)—i|ee)). With an n-dependent coupling foll

strength the fidelity is N(N—1). With this substitution Eqg22) and(23) describe
1 1.2 the fidelity well for all values ofN. With the parameters of
F==+= > P,sinQ,t), (190  Fig. 5, Eq.(23) yields F=0.88, which is in good agreement
2 240 with the numerical result in the figure.

) _ . ) i Equations(17)—(23) were derived for weak fields, but
whereP, is the initial population of the vibrational state  they also provide an accurate description of the system out-

In Fig. 5 we show the evolution of the fidelity predicted by gjqe this regime. To show this we note, that with bichromatic
Eqg. (19), and obtained by a direct integration of the full light, H in Eq. (3) may be written as

Hamiltonian in Eq.(3). Due to the deviation from the Lamb-

Dicke approximation, the effective Rabi frequency is re-  H,_ =20 cog 8t){J,coq 7v2(x cog vt)+p sin(vt))]
duced|cf., Eq. (17)], and the optimal gate performance is

achieved with a duration that is longer thar(2()). The —Jy sin{ 73/2(x cog vt) + p sin(v1))]} (29

spreading of the values 61, causes entanglement with the j, e interaction picture with respect k. An expansion of
V|brat|ona_l motion which reduces the fldehty. .W't.h the Pa" the trigonometric functions in this Hamiltonian leads to Eq.
rameters in Fig. 5, the maximally obtainable fidelity is 0.92(g) \yhich formed the basis of the discussion in Sec. II. The
obtained after a pulse of duratiar~1.94). term proportional toJ, is suppressed because it is far off
With more than two ions, the time evolution of the systemresonance. The lowest-order contribution of this term was
may be obtained by expanding the initial stegg---g) on  treated in Sec. Il and we shall now consider corrections to

eigenstates of th@, operator: the J, term which may have significant effects. In the inter-
NN action picture with respect to the lowest-order Hamiltonian
|gg-~-g)=(_|) (1) /(N)“\A _NI2—K) [Eg. (6)], x and p are changed intax+J,G(t) and p
N2 =g k Y ' —JyF(t), and to lowest nonvanishing order inthe interac-

(200  tion picture Hamiltonian is

In the J, basis, the propagatdi) is diagonal and in the 3 V20
weak-field regime(F(t), G(t))~0, with n-dependent cou- Hs=7"Jy =5 [cod(v— ) Hhy(x,p)
pling strengths, we obtain the fidelity

+sin((v—8)ha(x,p)], (26)
% 1 NNy L
F=> P,— > ( )e'(N/Z‘k) (ml2=0nt) (21)  where
n=o |2V k=0 |k
hy(x,p)=3x3+xp?+ pxp+ p>x,
In the limit of many ions N>1), and near the optimum P PR 27)
(Q,t~7/2) we may approximate this expression by assum- ho(X,p)=3p3+ px2+Xpx+x2p,
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and where we have used thaft) andG(t) are proportional IV. EXTERNAL DISTURBANCES
to . To calculate the effect of the Hamiltonian in EG6),

we note that the propagator So far we have considered a system described by Hamil-

tonian (3), where only the center-of-mass motion is present
. in the ion trap, and where the coupling of this mode to the
_iwhl(x p)D surroundings is neglible. In this section we shall remove
-6 ' these two assumptions, and consider the decrease in fidelity
1—cog(v—o)t] due to the presence of other modes in the trap and due to
—ij —hZ(X’p)D (28)  heating of the center-of-mass vibrational motion.

Usindt) = exp{

-

is consistent with the Hamiltoniaf26) until order 7°, i.e.,

v—20

A. Spectator vibrational modes

With N ions in the trap, the motional state is described by
dUs (1) 3N nondegenerate vibrational modes. With a proper laser
i————=(H3+0(7%)U3zn. geometry or if the transverse potential is much steeper than
dt ’ the longitudinal potential, the coupling of the laser to trans-
o ) verse modes will be neglible, and the only contribution is
(But the full Hamiltonian contains terms of ordef and7°,  from the N longitudinal modes. WithN vibrational modes

which are not taken into account s ;. These terms are the jon trap may be described by the Hamiltonian
included below. We are interested in the propagator at times

7=K2x/(v— 6) where the vibrational motion is returned to H=Hy+Hju,
the initial state. At these instants the exponents in (28)

vanish, and the propagator reducesjtg( 7) =1 such that it N

has no influence on the internal state preparation. Ho=|21 V|(a|Ta|+1/2)+wegZ 04il2, (30
Expanding the Hamiltonian to ordes® we obtain the -

propagator to the same order inin the interaction picture N g

with respect toH, in Eq. (3): Him:z 7‘(0_+iei(E:\‘:lmJ(aﬁar)fwt)_i_H_C_),

Ue(T):eXp{ —i0737 1-9%(2n+1) wherer, anda, anda, are the frequency and ladder opera-

tors of thelth mode. The excursion of th¢h ion in thelth

a2 5, O 1 mode is described by the Lamb-Dicke paramejgr, which
Tttt gnts may be represented ag, = 7(yNb}/\/v,/v), wheren andv

refer to the center-of-mass mode as in the previous sections,
wexd i 532 V803 “r and whereb! obeys the orthogonality conditiorﬁi’\'zlb:b!/
T - 9)2 =5, and=],blbl, = 5., [10].
. The center-of-mass modé={ 1), which is used to create
<exd —in83% 50 . (0g) the entangled states of the ions, tigts= 1/\/N for all ions,
7 Y2(v—0)°% )’ and is well isolated from the remaning—1 vibrational
modesw,- 1= /3, so that we could neglect the contribution
valid at times7=K2#/(v—8). The first exponential pro- from the other modes in the previous sections. In this section
vides the time evolution with the modified effective Rabi We shall extimate the effect of the presence of the spectator
frequency in Eq(17). If we evaluate propagatd®9) in the modes. They have both a direct effect, due to the off resonant
weak-field regime, the last two exponentials both vanish iffoUPling to the other modes, and an indirect “"Debye-
the limit of largeK when requirementld) is inserted, and Waller” effect [11] because the coupling strength of the
the time evolution in Eq(29) is consistent with Eqs(17)— center-of-mass mode is reduced due to the oscilations in the
(23). The last two exponentials are also of minor importanceSPectator modes. Below we shall calculate the direct and
for a different reason: In Eq17), 7> appears in the combi- indirect effects separately. . _
nation 72n, whereas it appears ag in the last two expo- The lowest-order contribution of the direct coupling to the
nentials of Eq(29) when condition(11) is inserted. In situ- SPectator modes may be found by expanding the exponen-
ations where deviations from the Lamb-Dicke approximationfia!s as in Eq(5),
are importantz;®n~ 1, the deviation is typically caused by a N
high value ofn rather than a large value af( 7><1). In this o n i
case one may neglect the last two exponentials, and the ef- Him=202J; cosot 21 OxhO+pa®], G
fect of the non-Lamb-Dicke terms are the same as in the case
of weak fields as described by Eq47)—(23). To achieve where f(t)=—27Qv/v[cos—t+cos+)t] and
the optimum operation of~the gate with the parameters Ogl(t):—\/5779‘/V/VI[Sin(yl—é)t-ksin(vl-i-@t], and where
Fig. 5, we have to ensur@r~1.9, and there is a small the internal and external state operators are define® by
correction to the condition in Eq11). = NZ{Lobljy; and x,=(12)(a+a]) and p;=(i/2)
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><(a|T—a|). Since the ladder operators for different modes 14
commute, we may find the propagator for this Hamiltonian
using the steps that lead to E@):

1.2
1

:ﬁ
0.8 r‘ =

N
um=gumx (32 06 .
04 i
0.2 |

where

o 3 I I

0 10 20 30 40 50 60 70 80 90 100
Ul(t):e*i/’w(t)|2e*iF|(t)®|X|e*iG|(t)®|P|, (33 N

FIG. 6. Evaluation of the sums, - - - o for different number of
ions N. Starting from above atl~5 the curves represent,, o3,

with the functionsF,, G, andA, defined analogously to Eq. ;. &, andee.

(8). Note that this is an exact solution of Hamiltonié&3i)
without the J, term, so that to lowest order in the Lamb- ) N
Dicke parameter it includes all effects of the couplingtothe  _, 7 N(N—-1) ,$ Var(n)

other modes. 8 Te (v 1v)?

From the definition of®, it is seen tha®,=J, and the )
propagatorU, reduces to Eq(7) in the rotating-wave ap- m?(N—2) 4 N (b!)z(b! 2—1NZ__
proximation. The otheN— 1 propagators in Eq32) cause a T Z / nin.
reduction of the fidelity due to the excursion into the, Hhr=t vty
phase space of these modes. Expanding the exponentials, (36)
using(gg- - -9|©®,0,/|gg- - -g)= &, ;'N/4 andS~ v, and av-
eraging over time we find The expressions in Eq&34) and(36) may be simplified if

the vibrational motion is in a thermal equilibrium at a given
temperature. In a thermal state Va)=nZ+n,, nn,

ol ., v +1 — , - — .
F=1—7’N— E —(2n+1) . (34 =nn;, for I#1’, andn;<n;v/v,, and using these expres-
V2 =2 v (v1v?—1)? sions we find the lower estimate for the fidelity,
JE— 2 [R—
wheren, is the mean vibrational excitation of theh mode. F=1- nzN—z(nlal(N)+az(N)) (37)
14

In addition to the direct coupling to the spectator vibra-
tional mode, the fidelity is also reduced because the couplin ) )
strength is dependent on the vibration of the other modesg.Or the direct couplindEg. (34)], and
Unlike the direct coupling discussed above, this effect is not

. . 2
suppressed by the other modes being far off-resonant, and it ~mN(N=1) ,—, —
may have an effect comparable to the direct coupling. F=1 8 7" (N103(N) +1104(N))
Due to the vibration of the ions, the coupling 2(N-2)
of the ith ion to the sideband is reduced from T (N~ —
) o T — g 7'(Mfos(N)+nog(N))  (39)
ipyn+1 to (nin,---nyleZi=17i@ a)|n +1n,- - - ny)

~inyn+1(1—= ;7% (n+1/2)). With this reduced cou- _

pling strength the effective propagator at timesk2m/(» ~ for the Debye-Waller couplingEq. (36)], where the sums

— 8) may be described by o1---0g may be derived from Eq<34) and (36). For ex-
ample o5(N)=3,(v*/1}"). With the mode functions and
frequencies of Ref[10], these sums are readily evaluated,

U(7)=e TAMA? (35)  and the results are shown in Fig. 6. From the figure it is seen

that o5, 06<03,04, SO that the last term in E§38) may be
neglected. All the sums have a very rapid convergence, and

where A=3{L,j,i(1-=L 77, (n+1/2)). In the Cirac- we may estimate the fidelity by replacing the sums with their

Zoller schemd4], then-dependent ac Stark shifts caused bylargeN values, i.e.,

coupling to other vibrational modes lead to decoherence, un-

less these modes are cooled to the ground state. In our 02
bichromatic scheme, these internal state level shifts depend E=1-— nZN—O.S(FlJr 1) (39
much less on the vibrational excitation. By expanding Eqg. v?

(35 around the optimumA(t)~=/2, we calculate the
lowest-order reduction in the fidelity: for the direct couplindEq. (34)] and
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m*N(N-1 _ I'(1+2n
le—(T)n4(1_2|7§+1.4n1) (40) pMyyM;(T)=pMy’M;’(0)EX[{—(My—M)’l)Z(Tth)T).
(45
for the Debye-Waller couplingEq. (36)].

We note that Eq(40) is derived from terms beyond the The initial state is expanded on tli¢ eigenstates as in Eq.
Lamb-Dicke expansion, and it incorporates the reduction of20), and the population of the initial state/hich is ideally
fidelity due to deviations from the Lamb-Dicke approxima- constant in the interaction pictyrequals
tion in the center of mass mode, cf. the formal similarity of N NN
Egs.(40) and (23). e 1 S ( | )( )exp( _(j _k)zr(1+2nth) T)_

- i/\k 4K
B. Heating of the vibrational motion (46)

An ion trap cannot be perfectly isolated, and the vibrationFOr W0 ions this expressions can be readily evaluated:
of the ions will be subject to heating due to the interaction P y '
with the environment. Relaxation due to the interaction be-

o . . 3 1 I'1+2ny)
tween the vibration and a thermal reservoir may be described F=—+4_—exg - — " 1
by the master equation 8 2 4K

1 p(_4r(1+2nth) T).

d
Gip=—ilH.p]+L(p), (41) T geX 4K

(47)

In the limit of many ions N>1) and short times[{(1
+2n,,)/4K]7<1), we may again approximate the expres-
1 sion in Eq.(46) by assuming thaj and k are continuous
L(p)=—= clcp+pCC)+> C.pCl, variables, and by replacing the binomial coefficients by

(p)==5 2 (CoCrppCrCr) = 2 Coi Gaussian distributions with the same width. In this limit the
(42)  fidelity becomes

where L(p) is of the Lindblad form,

with relaxation operatorsC,;=+I'(1+ny)a and C, 1

=T (ny)a', whereTI' characterizes the strength of the in- F= : (48)
teraction, andh,;, is the mean vibrational number in thermal \/1+ N I'(1+2n4) ,

equilibrium.

We calculate the effect of heating assuming that the ions

remain in the Lamb-Dicke limit. Changing to the interaction For two ions the deviation between E¢47) and(48) is less
picture with respect to Hamiltonia(®), the time evolution of  than 0.02 for all values of larger than 0.5.

p is entirely due to the heating, i.e., the Lindblad terms |n the above expressions we have assumed the Lamb-

which are transformed using propagat@y: Dicke approximation. This corresponds to a situation where

the heating is counteracted, for example by laser cooling on

~ G(t)—iF(t) some ions reserved for this purpose. If the ions are not
Ci=U'CU=\T(1+ny) | a+J, i ; cooled the heating will proceed toward high vibrational num-

bers with a heating ratén,,,, and the heating will eventually
(43 take the ions out of the Lamb-Dicke limit. With strong fields
G(t)+iF(t) (K~1) the reduction in the fidelity described by E@8)
T . will ruin the entangled state before the heating has made a

significant change to the vibrational statEng,7=1). For
The density matrix is most conveniently expressed in theweak f!elds >1), however, the situation is different. With
basis ofJ, eigenstates, and by tracing over the vibrationalWeak fields one may produce an entangled state even though
Y ' .. the time required to entangle the ions is much longer than the
Yecoherence time of the vibrational motion which is used to
communicate between the ions, i.e.Ki&>NI'n,r the effect
of heating is small even though the change in the average
EPM v =—(My—M/)2C(1+2n,,) vibrational numbet™'n, 7 is larger than unity5,6]. Since the
dt™ My My Y y effective Rabi frequency has a small dependence on the vi-
brational quantum number, as described in Eq17) the
(44)  heating will have an indirect effect on the internal state
preparation. This can be modeled by changing the probabili-
ties in Egs.(19), (21), and (22) into time-dependent func-
This equation is readily integrated, and at times tions P,(t) reflecting the change in the vibrational motion
=K2m/(v— 8) we obtain occurring during the internal state preparation.

C,=u'Cc,Uu=\Tny, ( a'+J,

matrix in the interaction picture:

G(t)%+F(t)?
XK Puym
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TABLE Il. Creation of entangled states dfions (142)(|gg---g)—i|ee - -€)) by interaction with a bichromatic fieltEq. (5)] Hin
=20J, cosst— \/EnQJy[x(cos(v— St+cosp+ a)t)+ p(sin(w— Ht+sin(w+ )] obeyingnQ/ (v—8) =1/2yK, K=1,2,3 ..., and for a du-
ration 7=27K/(v— 6). The fidelity of the preparation is reduced by various causes listed in the table.

Heating of the vibration
toward vibrational

Cause of Direct off-resonant Deviations from numhber with
deviation coupling Lamb-Dicke Spectator vibrational modes Fatg,
J, term in Eq.(5) <n|é‘v(a+a1)|n+1> (i) Direct coupling (i) Debye-Waller
to other modes
#inyn+1
mN(N-1)

1-F NQ?2 m?N(N—1) 7?02 — [(1+2ng,)7

era n4TVar(n1) N——0.8(n;+1) _° N—ac

g v % (0.2n2+0.4n,)

Equation (16) (23 (39 (40) minus (23 (48)

V. CONCLUSION ployed to produce entangled states with more particles.

. . The use of ancillary degrees of freedduoenter-of-mass
In this paper we have evaluated the possibility for prepa-. _ ... .
ration of entangled states of ions by illumination with bichro- position and momentumto communicate between two or

matic light. We have identified two regime$) a weak-field more guantum systems is a key ingredient of guantum infor-

regime where single-photon absorption is suppressed angatmn processing. The algebraic propeq. (2)] which

where two-photon processes interfere in a way that make lows coupling and temporary entanglement with such an
: P P N . y that ncilla may find wide applications in many different systems
the internal state dynamics insensitive to the vibrationa

or quantum computation with different ancillgghotons,

state, andii) a strong-field regime where the individual ions . . i
are coherently excited and the motional state is highly enphonons, Cooper pairs, efctowever, operators with a con

. . : . . stant non-vanishing commutatgwhich allows the formal
gl i e itema siate un ) indesrable eXttep from Eq.(1) 0 Eq, (2] ony exst n i
interaction y dimensional Hilbert spacedl4]. In addition to the imple-

We have presented analytical estimates for the fidelity Ic_;f entation in cavity QED realizations of quantum computing

the internal state preparation. These expressions are sum 15-17, where quantized cavity fields play the role of the
. . prep L pression: \brational modes, it thus seems very relevant to investigate
rized in Table Il. The expressions for the fidelity may be

to what extent the ideas underlying EQ) can be general-

readily applied to experimental parameters and they Shov|Vzed to ancillae with a finite number of states and, e.g., for

that several ion trap experiments today are in a position t%ommunication across a linear qubit register by only nearest-

apply our proposal directly. In fact, using our proposal the . ; :
NIST group at Boulder has been able to produce the maxir_1e|ghbor Interaction.
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