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Abstract: We present a thorough analysis of the entanglement entropies related to differ-

ent symmetry sectors of free quantum field theories (QFT) with an internal U(1) symmetry.

We provide explicit analytic computations for the charged moments of Dirac and complex

scalar fields in two spacetime dimensions, both in the massive and massless cases, using

two different approaches. The first one is based on the replica trick, the computation of the

partition function on Riemann surfaces with the insertion of a flux α, and the introduction

of properly modified twist fields, whose two-point function directly gives the scaling limit

of the charged moments. With the second method, the diagonalisation in replica space

maps the problem to the computation of a partition function on a cut plane, that can be

written exactly in terms of the solutions of non-linear differential equations of the Painlevé

V type. Within this approach, we also derive an asymptotic expansion for the short and

long distance behaviour of the charged moments. Finally, the Fourier transform provides

the desired symmetry resolved entropies: at the leading order, they satisfy entanglement

equipartition and we identify the subleading terms that break it. Our analytical findings

are tested against exact numerical calculations in lattice models.

Keywords: Conformal Field Theory, Field Theories in Lower Dimensions

ArXiv ePrint: 2006.09069

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2020)073

mailto:smurcian@sissa.it
mailto:gdigiuli@sissa.it
mailto:calabrese@sissa.it
https://arxiv.org/abs/2006.09069
https://doi.org/10.1007/JHEP08(2020)073


J
H
E
P
0
8
(
2
0
2
0
)
0
7
3

Contents

1 Introduction 1

2 Symmetry resolution and QFT techniques 3

2.1 Symmetry resolved entanglement 3

2.2 Replica method and QFT 4

3 Twist field approach 6

3.1 Modified twist fields 6

3.2 Massive field theory and flux insertion 8

3.3 From charged moments to symmetry resolved entropies 10

4 The Green’s function approach: the Dirac field 11

4.1 The expansion close to the conformal point mℓ = 0 12

4.2 From the charged moments to symmetry resolution 15

4.3 The long distance expansion 18

5 The Green’s function approach: the complex scalar field 22

5.1 The expansion close to the conformal point 23

5.1.1 Symmetry resolution 25

5.2 The long distance expansion 26

6 Charged moments across the hyperplane: massive scalar field 27

7 Conclusions 30

A Conformal dimensions of twist fields 30

B Details for the analytic continuation for the Dirac field 32

C The lattice models 34

1 Introduction

Symmetries are a pillar of modern physics. They can concern spacetime, as rotational or

relativistic invariance, or can be internal symmetries, which do not touch the spacetime

coordinates. Their exploration turned out to be a central theme in several fields ranging

from elementary particles to the theory of phase transitions, from string theory to solid-

state physics. One century ago, Emmy Noether proved that every symmetry of a physical

system leads to a corresponding conservation law. For example, the conserved electric

charge is the generator of the U(1) gauge symmetry of electromagnetism. Consequently,
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an evergreen research topic is the characterisation of how the presence of a symmetry

influences the properties of a physical system. In particular, this manuscript addresses the

question of how the entanglement splits into the different sectors of an internal symmetry.

The von Neumann entropy is the most successful way to characterise the bipartite

entanglement of a subsystem A in a pure quantum state [1–4]. Given the reduced density

matrix (RDM) ρA of a subsystem A, the entanglement entropy is defined as

S1 = −TrρA ln ρA. (1.1)

A related family of functions, known as Rényi entropies, is

Sn =
1

1− n
lnTrρnA. (1.2)

The essence of the replica trick is that the von Neumann entropy may be obtained as the

limit n → 1 of eq. (1.2). The reason of this way of proceeding is that for integer n, in the

path-integral formalism, TrρnA is the partition function on an n-sheeted Riemann surfaceRn

obtained by joining cyclically the n sheets along the region A [5, 6]. This approach, when

applied to critical systems whose low energy physics is described by a (1+1) dimensional

conformal field theory (CFT), leads to the famous scaling results [5–11]

S1 =
c

3
ln
ℓ

ǫ
, Sn =

c

6

n+ 1

n
ln
ℓ

ǫ
, (1.3)

when the subsystem A is an interval of length ℓ embedded in an infinite one-dimensional

system and ǫ≪ ℓ is an ultraviolet cutoff.

The possibility of measuring in an experiment the internal symmetry structure of the

entanglement [12] went together with a new theoretical framework developed to address

the problem [13, 14]. Indeed, in refs. [13, 14] a simple generalisation of the replica trick

has been proposed to relate the symmetry resolved quantities to the moments of ρA on a

modified Riemann surface: we refer to them as charged moments. Such technique allowed

for the derivation of interesting results about the different symmetry-resolved contributions

not only in CFTs, but also in the context of free gapped and gapless systems of bosons

and fermions, integrable spin chains, disordered systems and many more (the interested

readers can consult the comprehensive literature on the subject [15–35]).

The main goal of this manuscript is to investigate the field theoretical techniques

for the computation of the charged moments in relativistic free two-dimensional quantum

field theories (QFTs). The paper is organised as follows. In section 2 we provide all

the definitions concerning the measures of symmetry resolved entanglement and we briefly

recall two tools for the computation of the entanglement in QFT, i.e. the twist fields [7, 36–

39] and the Green’s function technique in the replica space [40–42]. Our main findings are

reported in sections 3, 4, and 5: in the first we employ the twist fields to compute the

charged moments both in the massless and in the massive context (in the limit mℓ ≫ 1).

These results are extended in sections 4 and 5, where we write down the explicit form of

the charged moments for arbitrary mℓ and provide analytic asymptotic expansions valid

for large and small mℓ. These outcomes are the starting point for the computation of the
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symmetry resolved entanglement entropies. Numerical checks for free fermions and bosons

on the lattice are also provided as a benchmark of the analytical results. In section 6 we

give a result for the charged moments of a free massive scalar theory across a hyperplane in

generic Euclidean dimensions d. We draw our conclusions in section 7. Three appendices

are also included: they provide details about the analytical and numerical computations.

2 Symmetry resolution and QFT techniques

In this section, we provide an overview of notions about symmetry resolved entropies we

use throughout the manuscript. We also recall some standard techniques used to compute

the entanglement entropy in relativistic free QFT.

2.1 Symmetry resolved entanglement

We consider a system with an internal U(1) symmetry and its bipartition into two subsys-

tems, A and B. The charge operator Q is the generator of the symmetry and we assume

it obeys QA ⊕QB = Q, where Qi is the charge in the subsystem i. If the system described

by the density matrix ρ is in an eigenstate of Q, then [ρ,Q] = 0. Tracing out the degrees

of freedom of B, we obtain the RDM of A, ρA = TrBρ. Hence, taking the trace over B of

[ρ,Q] = 0, we find that [ρA, QA] = 0. This means that ρA has a block-diagonal structure

where each block corresponds to an eigenvalue q of QA. The density matrix ρA(q) corre-

sponding to an eigenvalue q is obtained by projecting ρA onto the eigenspace of QA with

fixed q, as induced by the projector Πq. Therefore we can write

ρA = ⊕qpA(q)ρA(q), (2.1)

where pA(q) is the probability of finding q in a measurement of QA in the RDM ρA, i.e.

pA(q) = TrΠqρA. Within this convention, the density matrices ρA(q) of different blocks are

normalised as trρA(q) = 1. The amount of entanglement shared by A and B in each sym-

metry sector can be computed through the symmetry resolved Rényi entropies, defined as

Sn(q) ≡
1

1− n
lnTrρnA(q). (2.2)

The limit n→ 1 gives the symmetry resolved entanglement entropy, i.e.

S1(q) ≡ −TrρA(q) ln ρA(q). (2.3)

The total von Neumann entanglement entropy associated to ρA in eq. (2.1) splits into [43]

S1 =
∑

q

p(q)S1(q)−
∑

q

p(q) ln p(q). (2.4)

The two contributions are known as configurational and fluctuation (or number) entan-

glement entropy, respectively [12]. The configurational entropy is also related to the op-

erationally accessible entanglement entropy of refs. [27–29], while the number entropy is

the subject of a substantial recent activity [12, 17, 30–32]. The calculation of the symme-

try resolved entropies by the definition (2.2) requires the knowledge of the entanglement
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spectrum of ρA and its resolution in the charge sectors. However, this is a difficult task,

especially for an analytic derivation. As first proposed in [13], we can rather focus on the

charged moments of ρA

Zn(α) ≡ TrρnAe
iQAα, (2.5)

with Z1(α = 0) = 1, being TrρA = 1. Similar charged moments have been already con-

sidered in the context of free field theories [44, 45], in holographic settings [46, 47], as well

as in the study of entanglement in mixed states [48, 49]. In this specific case, the charged

moments are not the main goal of our computation, but they represent a fundamental tool,

because their Fourier transforms are the moments of the RDM restricted to the sector of

fixed charge q [13], i.e.

Zn(q) ≡ Tr(Πq ρ
n
A) =

∫ π

−π

dα

2π
e−iqαZn(α). (2.6)

(Here we assumed Q to be the generator of a U(1) symmetry and q ∈ Z.) Finally the

symmetry resolved entropies are obtained as

Sn(q) =
1

1− n
ln

[Zn(q)

Zn
1 (q)

]

, S1(q) = lim
n→1

Sn(q). (2.7)

2.2 Replica method and QFT

In the following sections we will mainly deal with a free fermionic field theory and with a

complex scalar one, whose Euclidean actions are given, respectively, by

SD =
1

4π

∫

dzdz̄ (ψ∗
R∂zψR + ψ∗

L∂z̄ψL +m(ψ∗
LψR + ψ∗

RψL) ,

SS =
1

4π

∫

dzdz̄
(

∂zϕ
∗∂z̄ϕ+ ∂z̄ϕ

∗∂zϕ+m2ϕ∗ϕ
)

,

(2.8)

where we employ complex coordinates (z, z̄) for the 2D spacetime. In SD the fields ψR/L

are the chiral (right-moving R) and anti-chiral (left-moving L) components of the Dirac

fermion. In SS the field ϕ is a complex scalar. The actions in (2.8) exhibit a U(1) symmetry,

i.e. a symmetry under phase transformations of the fields given, respectively, by

ψR/L → eiαψR/L, ψ∗
R/L → e−iαψ∗

R/L, ϕ→ eiαϕ, ϕ∗ → e−iαϕ∗. (2.9)

By Noether’s theorem, this continuous symmetry transformation leads to a conserved quan-

tity, which is the charge Q we introduced before.

The actions (2.8) played the role of the simplest massive quantum field theories to

study the properties of the entanglement entropy. In the same spirit, they also represent

the natural starting point for the field theoretical investigation of the charged moments

and, as a consequence, of the symmetry resolved entropies.

In what follows we describe two powerful methods to calculate the entropy for free

fields. Starting from the replica trick described in the introduction, the first approach is

based on a particular type of twist fields in quantum field theory that are related to branch
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points in the Riemann surface Rn. We denote them by Tn and T̃n. Their action, in operator

formalism, is defined by [7, 36, 37]

Tn(z1) φi(z′) = φi+1(z
′)Tn(z1),

T̃n(z2)φi(z′) = φi−1(z
′)T̃n(z2),

(2.10)

where z1 and z2 are the endpoints of A, z′ ∈ A and i = 1, . . . , n with n + 1 ≡ 1. The

two-point function of the twist fields directly gives [7]

TrρnA ∝ 〈Tn(z1)T̃n(z2)〉 . (2.11)

In conformal invariant theories (e.g. when the mass terms in the actions (2.8) vanish) the

two-point function of twist fields is fixed by their scaling dimension, leading to eq. (1.3).

In some instances, a simplification arises by the diagonalisation in the replica space: the

n-sheeted problem can be mapped to an equivalent one in which one deals with n decoupled

and multivalued free fields, generically referred as φ̃k. Thus, also the twist fields can be

written as products of fields acting only on φ̃k, denoted as Tn,k and T̃n,k. The total partition
function is a product of n partition functions, ζk, each one given by (up to unimportant

multiplicative constant)

ζk ∝ 〈Tn,k(z1)T̃n,k(z2)〉 . (2.12)

The second approach is the one used in refs. [40, 41] for a fermionic and a complex

scalar theory, respectively: it also relies on mapping the problem from the determination

of the partition function on Rn, to the computation of n partition functions of a free field

on a cut plane. However, the difference with respect to the previous approach is that each

ζk is not computed as a two point-function of twist fields, but using the relation between

the free energy and the Green’s function of each sector k. Denoting by GD the Green’s

function for the Dirac field and by GS the one for the scalar (in each sector k of the n

copies), they are related to the corresponding partition function ζk by, respectively,

∂m ln ζk = trGD, ∂m2 ln ζk = −
∫

dr2GS(r, r
′). (2.13)

The strategy of refs. [40, 41] was to exploit the rotational and translational symmetry of the

Helmholtz equations satisfied by GD and GS and analyse their behaviour at the singular

endpoints of the cut A so to determine the right hand sides of the above equations. The

final expressions for ζk can be expressed in terms of the solution of second order non linear

differential equations of the Painlevé V type. Here we only report the final results for the

Rényi entropies of free fields in the limit mℓ→ 0 [40, 41]

SD
n =

n+ 1

6n

(

ln
ℓ

ǫ
− (mℓ)2

2
ln2mℓ

)

+O((mℓ)2 lnmℓ),

SS
n =

n+ 1

3n
ln
ℓ

ǫ
+ ln

lnmℓ

lnmǫ
+O(mℓ).

(2.14)

These formulas have been obtained in the scaling regime with t = mℓ fixed, in the conformal

limit mℓ → 0 and after taking the limit of large ℓ. Eq. (2.14) shows the leading mass
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corrections to eq. (1.3) for the theories in eq. (2.8) strongly depend on the statistics of

the particles. The leading mass correction vanishes for a Dirac field, while it is singular

(like ln(− ln(m))) for a Klein-Gordon field (both real and complex). In the literature, this

infrared divergence is ascribed to the zero mode of the massless scalar theory [50, 51].

3 Twist field approach

In this section we consider 1D critical and close to critical systems. We obtain a general ex-

act result for the conformal invariant charged moments by exploiting the properties of some

local operators known as modified or fluxed twist fields [44–46]. This result includes and

generalises the ones in ref. [13]. The same approach also provides the leading asymptotic

behaviour of the charged moments for (free) massive field theories.

3.1 Modified twist fields

In a generic QFT, the replica trick for computing Zn(α) defined in eq. (2.5) can be imple-

mented by inserting an Aharonov-Bohm flux through a multi-sheeted Riemann surface Rn,

such that the total phase accumulated by the field upon going through the entire surface

is α [13]. The result is that Zn(α) is the partition function on such modified surface, that,

following ref. [13], we dub Rn,α. In QFT language, the insertion of the flux corresponds to

a twisted boundary condition. This boundary condition fuses with the twist fields at the

endpoints of the subsystem A resulting into two local operators Tn,α and T̃n,α. These are

modified versions of the standard twist fields Tn and T̃n which take into account not only

the internal permutational symmetry among the replicas but also the presence of the flux.

Thus, the partition function on Rn,α is determined by their two-point correlation function,

that is the main object of interest in this section.

As already mentioned in section 2.2, rather than dealing with fields defined on a non

trivial manifold Rn,α, it is more convenient to work on a single plane with a n-component

field

Φ =













φ1
φ2
...

φn













, (3.1)

where φj is the field on the j-th copy (here the field φj generically refers to either a scalar

field ϕj or a chiral Dirac one ψj ; the same applies to φ̃k that we are going to introduce soon).

Upon crossing the cut A, the vector field Φ transforms according to the transformation

matrix Tα

Tα =













0 eiα/n

0 eiα/n

. . .
. . .

(−1)(n+1)feiα/n 0













, (3.2)

where f = 1 for free Dirac fermions and f = 0 for free complex scalars. When α = 0

we recover the usual transformations for the fields across the different replicas [42]. The
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matrix Tα has eigenvalues

f = 0 : λk = ei
α
n e2πi

k
n , k = 0, . . . , n− 1,

f = 1 : λk = ei
α
n e2πi

k
n , k = −n− 1

2
, . . . ,

n− 1

2
.

(3.3)

By diagonalising Tα with a unitary transformation, the problem is reduced to n decoupled

fields φ̃k in a two dimensional spacetime. Thus, the total partition function is a product of

the partition functions for each k and the twist fields can be written as products of fields

each acting on a different φ̃k, i.e.

f = 0 : Tn,α =

n−1
∏

k=0

Tn,k,α, T̃n,α =

n−1
∏

k=0

T̃n,k,α,

f = 1 : Tn,α =

n−1
2
∏

k=−n−1
2

Tn,k,α, T̃n,α =

n−1
2
∏

k=−n−1
2

T̃n,k,α,
(3.4)

with Tn,k,αφ̃k′ = δk,k′e
iα/ne2πik/nφ̃k and T̃n,k,αφ̃k′ = δk,k′e

−iα/ne−2πik/nφ̃k. Since the parti-

tion function on Rn,α can be written as the two-point function of the modified twist fields,

from (3.4) we have

f = 0 : lnZn(α) =
n−1
∑

k=0

ln 〈Tn,k,αT̃n,k,α〉 ,

f = 1 : lnZn(α) =

(n−1)/2
∑

k=−(n−1)/2

ln 〈Tn,k,αT̃n,k,α〉 .
(3.5)

When dealing with a CFT (e.g. whenm = 0 in (2.8)) Tn,k,α and T̃n,k,α are primary operators

and their two-point function is fixed by conformal invariance to be

〈Tn,k,αT̃n,k,α〉 ∝
1

|u− v|4∆k(α)
, (3.6)

where (see the appendix A)

f = 0 : ∆k(α) =
1

2

(

k

n
+

|α|
2πn

)(

1− k

n
− |α|

2πn

)

,

f = 1 : ∆k(α) =
1

2

(

k

n
+

α

2πn

)2

.

(3.7)

Let us stress that, in order to have operators with positive conformal dimension, the phase

that bosons pick up going around one of the entangling points must be 0 < k
n + α

2πn < 1.

This can be achieved, since α ∈ [−π, π], by trading α with |α| when we deal with scalar

field theories.
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Using eqs. (3.5), (3.6) and (3.7) the logarithm of the partition function on Rn,α reads

f = 0 : lnZn(α) = −4 ln ℓ
n−1
∑

k=0

∆k(α) = −
[

1

3

(

n− 1

n

)

− α2

2π2n
+

|α|
πn

]

ln ℓ,

f = 1 : lnZn(α) = −4 ln ℓ

n−1
2
∑

k=−n−1
2

∆k(α) = −
[

1

6

(

n− 1

n

)

+
2

n

( α

2π

)2
]

ln ℓ.

(3.8)

The charged moments for the free massless Dirac field theory (f = 1) have been already

worked out in the literature with different techniques [13, 16, 44–46]. Instead, the charged

moments for a free massless complex scalar field (f = 0) represent a new result (actually

in appendix A of [46] a result consistent with (3.8) has been obtained using the heat kernel

techniques).

Let us stress that the presence of a flux in the Riemann surface changes some features

of the twist fields in CFT: they remain primary operators (see appendix A for details), but

they do depend on the theory and are not anymore identified only by the central charge

(see also [13]).

3.2 Massive field theory and flux insertion

In this section we compute the charged moments Zn(α) of a massive relativistic 2D QFT on

the infinite line for a bipartition in two semi-infinite lines. Thus, we follow the same logic

as in [5] (i.e. the continuum version of Baxter corner transfer matrix approach [52] for the

reduced density matrix [5, 53–55]), which in turn parallels the proof of the c-theorem by

Zamolodchikov [56]. The results of this section are not limited to free theories but hold for

generic massive relativistic QFT. Exploiting the rotational invariance about the origin of

the Riemann surface Rn,α, the expectation values of the stress tensor of a massive euclidean

QFT in complex coordinates, T ≡ Tzz, T̄ ≡ T ∗
z̄z̄, and the trace, Θ ≡ 4Tzz̄, have the form

〈T (z, z̄)〉 = Fn,α(zz̄)/z
2,

〈Θ(z, z̄)〉 − 〈Θ〉1,α=0 = Gn,α(zz̄)/zz̄,

〈T̄ (z, z̄)〉 = Fn.α(zz̄)/z̄
2,

(3.9)

where 〈Θ〉1,α=0 is a non-vanishing constant measuring the explicit breaking of scale invari-

ance in the non-critical system, while 〈T 〉1,α=0 and 〈T̄ 〉1,α=0 both vanish. These quantities

are related by the conservation equations of the stress-energy tensor (4∂z̄T + ∂zΘ = 0) as

(zz̄)

(

F ′
n,α +

1

4
G′

n,α

)

=
1

4
Gn,α. (3.10)

The conservation equations as well as the rotational invariance are preserved in the presence

of the flux α because the Riemann surface Rn,α can be thought simply as a complex plane

with the insertion of two modified twist fields, as discussed in the previous subsection. Both

Fn,α and Gn,α approach zero for |z| ≫ ξ, while when |z| ≪ ξ, they approach the CFT values
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given by the conformal dimension of the modified twist field, ∆n(α) [13]. Hence we have

FCFT
n,α → c

24

(

1− 1

n2

)

+
∆n(α)

n
,

Gn,α → 0,

(3.11)

and in particular for a massive Dirac field theory (f = 1) and for a complex massive scalar

theory (f = 0), using the conformal weights (3.7), we have

F f=1
n,α → 1

24

(

1− 1

n2

)

+
1

2n2

( α

2π

)2
,

F f=0
n,α → 1

12

(

1− 1

n2

)

+
1

2n2

[

( α

2π

)2
− |α|

2π

]

.

(3.12)

Changing variable to R2 = zz̄, we can rewrite the eq. (3.10) as

R2 ∂

∂R2

(

Fn,α(R
2) +

1

4
Gn,α(R

2)

)

=
1

4
Gn,α(R

2). (3.13)

The corresponding integrated form using the boundary conditions in eq. (3.11) is

∫ ∞

0

Gn,α(R
2)

R2
dR2 = − c

6

(

1− 1

n2

)

− 4∆n,α

n
. (3.14)

Taking into account the normalisation of the stress tensor, the definition of Gn,α in eq. (3.9)

and that
∫

Rn
〈Θn,α〉 dR2 corresponds to the variation of the free energy w.r.t. a scale trans-

formation (the mass m in this case) per each sheet of the whole n-sheeted surface, the left

hand side of (3.14) is equal to

− 2

n
m∂m lnZn(α). (3.15)

We can therefore integrate this equation at fixed n and α to obtain lnZn(α). The additive

non-universal integration constant can be absorbed in a UV cutoff ǫn,α that consequently

depends both on the Rényi index n and the parameter α (consistently with the lattice

results in refs. [17, 20] for massless theories). Finally we get

lnZn(α) =

[

c

12

(

n− 1

n

)

+ 2∆n(α)

]

ln(mǫn,α), (3.16)

or specialising to free Dirac (f = 1) or complex Klein-Gordon (f = 0) fields

f = 1 : lnZn(α) =

[

1

12

(

n− 1

n

)

+
1

n

( α

2π

)2
]

ln(mǫn,α), (3.17)

f = 0 : lnZn(α) =

[

1

6

(

n− 1

n

)

− 1

n

( α

2π

)2
+

|α|
2πn

]

ln(mǫn,α). (3.18)

We should mention that lnZn(α) for the Klein-Gordon field matches the continuum

limit of a chain of complex oscillators obtained through the corner transfer matrix ap-

proach [20]. We can specialise eq. (3.16) to a Luttinger liquid with parameter K, whose

underlying field theory is a c = 1 CFT equivalent to a massless compact boson. In this
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case, one can use the results found in [13] for the conformal dimension of the modified twist

field, obtaining

lnZn(α) =

[

1

12

(

n− 1

n

)

+
K

n

( α

2π

)2
]

ln(mǫn,α), (3.19)

which for K = 1 gives the result found for fermions in eq. (3.17), as it should.

3.3 From charged moments to symmetry resolved entropies

Performing the Fourier transforms of the charged moments above, one obtains symmetry

resolved moments and entropies. For the Luttinger liquid, which includes Dirac Fermions

at K = 1, the α dependence of the leading term is the same as in the massless cases. Hence

the analysis is identical to the one of refs. [13, 17] and so we will just sketch the results

here. The charged moments (ignoring for the time being the dependence on n and α of

ǫn,α in (3.19)), are

Zn(q) ≃ (mǫ)
1
12(n−

1
n)
√

nπ

K| lnmǫ|e
− nπ2q2

K| lnmǫ| , (3.20)

and hence symmetry resolved entropies

Sn(q) = Sn − 1

2
ln

(

K

π
| lnmǫ|

)

+O(1), (3.21)

with Sn the total entropy. Exploiting the knowledge of Z1(q) in (3.20) we also easily get

the number or fluctuation entropy

Snum = −
∫ ∞

−∞
Z1(q) lnZ1(q) =

1

2
ln

(

K

π
| lnmǫ|

)

+O(1) , (3.22)

that in the sum for the total entropy cancels exactly the double logarithmic term in

eq. (3.21).

Although the massive complex boson has been already investigated in ref. [20], there

another critical limit has been taken. Here we are interested in the Fourier transform of

eq. (3.18). In the saddle point approximation, we can neglect the term ∝ α2 in eq. (3.18)

and the Fourier transform is

Zn(q) ≃ Zn(0)
2n| ln(mǫ)|

4n2π2q2 + ln2(mǫ)
≃ Zn(0)

2n

| ln(mǫ)|

(

1− 4n2π2q2

ln2(mǫ)
+ . . .

)

, (3.23)

and hence

Sn(q) = Sn − ln | lnmǫ|+O(1) , (3.24)

with Sn the total entropy. Also in this case, one easily derives the number entropy

from Z1(q) obtaining again, at the leading order, the double logarithmic term in Sn(q)

in eq. (3.24), i.e. Snum = ln(| lnmǫ|) +O(1).
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4 The Green’s function approach: the Dirac field

In this section we derive the charged moments for a massive Dirac field for arbitrary mass

and then consider the limits of small and large mass. In section 3.1 we showed that Zn(α)

can be written as product of partition functions ζa on the plane with proper boundary

conditions along the cut A, explicitly given by

ψ̃k(e
2πiz, e−2πiz̄) = e2πiaψ̃k(z, z̄), a =

k

n
+

α

2πn
, k = −n− 1

2
, · · · , n− 1

2
. (4.1)

Hence we have

lnZn(α) =

n−1
2
∑

k=−n−1
2

ln ζ k
n
+ α

2πn
. (4.2)

Let us introduce the auxiliary universal quantities

wa ≡ ℓ∂ℓ ln ζa, cn(α) ≡
∑

k

w k
n
+ α

2πn
, (4.3)

that, using (4.2), allow us to write the logarithmic derivative of the partition function in

Rn,α as

cn(α) = ℓ
∂ lnZn(α)

∂ℓ
⇒ lnZn(α) =

∫ ℓ

ǫ

cn(α)

ℓ′
dℓ′. (4.4)

For n = 1, the function cn(α) is the analogue of Zamolodchikov’s c-function [56] in the

presence of the flux α. The cutoff ǫ, in analogy to what discussed in section 3.2 depends

on both α and n, although we almost always omit such a dependence for conciseness.

As already discussed in section 2.2, the key observation of this approach relies on the

identity between the partition function ζa and the Green’s function in the same geometry

(see eq. (2.13)). Through this relation, the function wa has been already obtained for

generic values of a for the massive Dirac fermion [40, 42].

The method that we just reviewed provides exact results for the charged moments of a

free Dirac field. Indeed, in ref. [40] it has been shown that the function wa defined in (4.3)

can be written as

wa(t) = −
∫ ∞

t
yv2a(y)dy, (4.5)

where t = mℓ and va is the solution of the Painlevé V equation

v′′a +
v′a
t

= − va
1− v2a

(v′a)
2 + va(1− v2a) + 4

(

a− 1
2

)2

t2(1− v2a)
va. (4.6)

This equation can be straightforwardly solved numerically with any standard algorithm for

ordinary differential equations, once we impose the boundary condition as t→ 0 [40]

va(t) = −2a(ln t+ κD(a)) +O(t2), (4.7)

where

κD(a) = − ln 2 + 2γE +
1

2
(ψ(a) + ψ(−a)), (4.8)

– 11 –
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Figure 1. The universal constant cn(α) extracted from the numerical solution of the Painlevé

equation (4.6) for different values of α and n as a function of t = mℓ (full lines). The numerical

data are obtained varying ℓ between 200 and 400 lattice points and properly choosing m in such

a way t = mℓ ∈ (0, 1). For larger α and n, we need larger subsystem size to have a good match

between field theory and lattice calculation because lattice corrections become stronger.

with ψ(z) ≡ Γ′(z)/Γ(z) the digamma function and γE the Euler-Mascheroni constant.

Plugging the numerical solution of the differential equation (4.6) into eq. (4.3), we obtain

the universal constant cn(α). Then, with the further integration (4.4), the desired lnZn(α)

is found to the price of introducing the non-universal cutoff ǫ. As examples we report in

figure 1 the plots of the resulting cn(α) for few values of α and n as functions of t = mℓ. In

the figure we also compare our exact solution with the numerical results obtained from a

lattice discretisation of the free Dirac theory (see appendix C for details). The agreement

is excellent. We stress that in figure 1 there is no free parameter in matching analytical

and numerical data for cn(α) (as a difference compared to Zn(α)).

The method we just outlined provides exact results for the desired charged moments

and, by Fourier transform, the symmetry resolved entropies. However, the procedure is

completely numerical and we would appreciate an analytic handle on the subject. While

in general this is not feasible, the limits of small and large t are analytically treatable, as

we are going to show.

4.1 The expansion close to the conformal point mℓ = 0

Here we use the methods just introduced to derive an asymptotic expansion of the charged

moments close to the conformal point, i.e. for t = mℓ → 0. In this limit, the expansion of

the function wa(t) has been worked out in ref. [40], obtaining

wa = −2a2 + a2(1− 2κD +2κ2D + (4κD − 2) ln t+2 ln2 t)t2 − 2a4t4 ln4 t+O(t4 ln3 t), (4.9)

– 12 –
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Figure 2. Leading scaling behaviour of the charged Rényi entropies with the insertion of a flux

α. The numerical results (symbols) for two different values of α and masses m are reported as

functions of t = mℓ when n = 1. The data match well the prediction in eq. (4.12) (solid lines)

which includes lattice corrections as explained in the text.

where we omitted the dependence on a of κD. In order to compute cn(α) through eq. (4.3),

we again set a = k
n + α

2πn and we compute the following sums

∑

k

a2 =
1

12

(

n− 1

n

)

+
α2

4nπ2
, (4.10a)

Ωn(α) ≡
∑

k

a2(ψ(a) + ψ(−a)) ≡ Ωn(0) +
α2

2π2n
ωn + ρωn(α), (4.10b)

Λn(α) ≡
∑

k

a2(ψ(a) + ψ(−a))2 ≡ Λn(0) +
α2

2π2n
λn + ρλn(α), (4.10c)

where ωn = π2nΩ′′
n(α) and λn = π2nΛ′′

n(α) so that the remainder functions ρ
ω/λ
n (α)

are O(α4). All the sums over k run from −n−1
2 to n−1

2 . The quantities Ω(n, α) and

Λ(n, α) (and their derivatives) can be rewritten using the integral representation ψ(x) =

−γE +
∫ 1
0 dy

1−yx−1

1−y for the digamma function ψ(x). This procedure allows for an analytic

continuation in n, as detailed in appendix B.

From eqs. (4.9)–(4.10) we obtain up to O(t2)

cn(α) =
∂ lnZn(α)

∂ ln ℓ
=

(n−1)/2
∑

k=−(n−1)/2

w k
n
+ α

2πn
=

(

1− n2

6n
− α2

2π2n

)

(1− t2 ln2 t)+

+

[(

1− n2

6n
− α2

2π2n

)

(1 + 2 ln 2− 4γE) + 2Ωn(α)

]

t2 ln t+

−
[(

1− n2

12n
− α2

4π2n

)

(1 + 2 ln 2− 4γE + 2(ln 2− 2γE)
2)+

+ (1− 4γE + 2 ln 2)Ωn(α)−
Λn(α)

2

]

t2 +O(t4 ln3 t).

(4.11)

Eq. (4.11) can be now integrated analytically, getting

lnZn(α) = −
(

1

6

(

n− 1

n

)

+
α2

2π2n

)

ln
ℓ

ǫ
+ yn(t)−

α2

2π2n
zn(t) + ρzn(α, t) + o(t3), (4.12)
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where we defined

yn(t) =
t2

6

(

n− 1

n

)(

1

2
ln t2− ln t(1−2γE+ln2)+

3

4
+2γ2E+

ln2 2

2
(4.13)

−2γE(1+ln2)+ln2

)

+(ln t−(ln2+1−2γE))t
2Ωn(0)+

t2

4
Λn(0),

zn(t) = t2
[

− ln t2

2
+ln t(1−2γE+ln2−ωn)+ (4.14)

−3

4
−2γ2E− ln2 2

2
+2γE(1+ln2)− ln2+(ln2+1−2γE)ωn−

λn
4

]

,

ρzn(α,t) = t2[(ln t−(ln2+1−2γE))ρ
ω
n(α)+ρ

λ
n(α)], (4.15)

and ρzn(α) is defined so that ρzn(α) = O(α4). Notice, as we already stressed a few times,

that in eq. (4.12) the cutoff ǫ comes as an additive constant of integration and it generically

depends on both n and α.

Eq. (4.12) represents our final field theoretical result for the charged entropies. We

wish to test this prediction against exact lattice computations obtained with the methods in

appendix C. However, in order to perform a direct comparison with lattice data, we have to

take into account the additional non-universal contribution coming from the discretisation

of the spatial coordinate, i.e. the explicit expression for the cutoff ǫ in eq. (4.12) that, as

already mentioned, does depend on α and cannot be simply read off from the result at

α = 0. We assume here (as eq. (4.12) suggests at leading order) that the cutoff does not

depend on the mass; consequently we can use the exact value for m = 0 [17] obtained with

the use of Fisher-Hartwig techniques. The final result of ref. [17] may be written as

(

1

6

(

n− 1

n

)

+
α2

2π2n

)

ln(2ǫ) = (4.16)

Υn(α) = ni

∫ ∞

−∞
dw[tanh(πw)− tanh(πnw + iα/2)] ln

Γ(12 + iw)

Γ(12 − iw)
,

and in particular we will use

γ(n) ≡ 1

2

∂2Υn(α)

∂α2

∣

∣

∣

∣

α=0

=
ni

4

∫ ∞

−∞
dw[tanh3(πnw)− tanh(πnw)] ln

Γ(12 + iw)

Γ(12 − iw)
. (4.17)

In ref. [17] it has been shown that the cutoff in (4.16) is very well described by the quadratic

expansion in α and higher corrections O(α4) are negligible for most practical purposes.

In figure 2 we report the numerical data for the charged moments with the insertion

of a flux α for two values of α and m with n = 1. The data are well described by the

theoretical prediction (4.12) with the cutoff (4.16). Finally, in order to have a test of the

prediction (4.12) that does not rely on an independent lattice calculation we can consider

the difference between the charged entropy at finite t (i.e. finite mass) and the massless

one. Specifically we consider

δZ(α, t) = lnZn(α,m)− lnZn(α,m = 0), (4.18)

– 14 –
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Figure 3. Subtracted universal charged entropy δZ(α, t) in eq. (4.18). Left (right) panel is for n = 1

(n = 2). The dashed lines are the small t expansion in eq. (4.12) for n = 1 while the solid lines are

the Painlevé exact solution. The tiny discrepancies observed in some cases are finite ℓ corrections.

in which both the cutoff and ℓ dependences cancel and it becomes a universal function

solely of t (closely related to cn(α)). The results for δZ(α, t) are reported in figure 3. The

agreement of the numerics with the prediction (4.12) is perfect for small t. Furthermore,

the differences emerging for larger t are correctly captured by the numerical exact solution

of the Painlevé equation (4.6). The small discrepancies visible in the figure are just finite

size effects that are stronger for larger values of n and α.

4.2 From the charged moments to symmetry resolution

We are now ready to study the true symmetry resolution by performing the Fourier trans-

form of Zn(α). In this Fourier transform we ultimately use a saddle-point approximation

in which Zn(α) is Gaussian and hence we truncate hereafter eq. (4.12) at quadratic order

in α. Consequently, the charged partition function can be well approximated as

Zn(α) = Zn(0)e
−bnα2/2, (4.19)

where

bn(ℓ, t) =
1

π2n
(ln ℓ+ zn(t))− 2γ(n) +

ln 2

π2n
≡ 1

π2n
ln ℓ− hn, (4.20)

where we consistently approximated the cutoff at quadratic level and used the lattice cutoff

with γ(n) given in eq. (4.17). A different cutoff just leads to a different additive constant in

bn (i.e., a different definition of hn), but we will use its precise form only for the comparison

with numerics and so all the following formulas are completely general.

Now we can compute the Fourier transform (2.6) that reads

Zn(q) = Zn(0)

∫ π

−π

dα

2π
e−iqαe−α2bn(ℓ,t)/2. (4.21)

When ℓ → ∞, we can perform the integral by saddle point approximation and the inte-

gration domain can be extended to the whole real line. We end up in a simple Gaussian

integral, obtaining

Zn(q) =
Zn(0)

√

2πbn(ℓ, t)
e
− q2

2bn(ℓ,t) . (4.22)
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Figure 4. The probability Z1(q). Top: as a function of t = mℓ at fixed q = 0 for mass m =

0.0005 (left) and m = 0.001 (right). The dashed green line is Z1(q) obtained by the saddle point

approximation, i.e. eq. (4.22). The solid green line is the exact Fourier transform without taking

the quadratic approximation. For large ℓ (and t as a consequence) the saddle-point approximation

converges to the exact value, as expected. Bottom: the same at fixed t as function of q.

We check eq. (4.22) against numerical computations in figure 4 focusing on n = 1 and the

agreement is perfect. We test both the scaling with t = mℓ for fixed q and at fixed t as a

function of q.

Now we are ready to compute the symmetry resolved Rényi entropies. From the

definition (2.7) we have

Sn(q) = SD
n − 1

2
ln(2π) +

1

1− n
ln
b1(ℓ, t)

n/2

bn(ℓ, t)1/2
− q2

2(1− n)

(

1

bn(ℓ, t)
− n

b1(ℓ, t)

)

, (4.23)

where SD
n is the total n-th Rényi entropy for the Dirac fields (cf. eq. (2.14) up to O(t2 ln2 t)).

We can further expand the above equation for ℓ→ ∞ since bn(ℓ, t) diverges logarithmically,

obtaining

Sn(q) = SD
n − 1

2
ln

(

2

π
ln δnℓ

)

+
lnn

2(1− n)
− π4n(h1 − nhn)

2

4(1− n)2(ln ℓ)2
+

+ q2nπ4
h1 − nhn

2(1− n)(ln ℓκn)2
+ o(ln ℓ−2), (4.24)

where

ln δn = −π
2n(hn − h1)

1− n
, (4.25)
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Figure 5. Symmetry resolved entanglement entropies for a few different values of q and n as func-

tions of ℓ. The field theory prediction is tested against exact lattice computations. The agreement

with eq. (4.24), that includes lattice effects, is remarkable. For large |q|, the approximation at the

order q2 is no longer sufficient and neglected corrections to the scaling become important, as well

known for the massless case [17].

and

lnκn = −π2 (h1 + nhn)

2
. (4.26)

The above formula is valid also for the symmetry resolved Von Neumann entropy taking

properly the limits of the various pieces as n→ 1. By construction, the total entropy, SD
n ,

coincides with the one obtained in [40] for the massive fermions in the conformal limit up

to O(t2).

Let us critically discuss the result in eq. (4.24). The leading terms for large ℓ (up to

O((ln ℓ)−2)) do not depend on q and they are given by the total entropies SD
n in eq. (2.14).

We then conclude that at this order, the presence of the mass does not break entanglement

equipartition found in conformal field theory [16]. The first term breaking equipartition is

at order O((ln ℓ)−2) and its amplitude is governed by the constant hn defined in eq. (4.20).

This constant gets contributions both from the non-universal cutoff and from the mass; the

two contributions have the same analytic features. In figure 5 we test the accuracy of our

total prediction against exact lattice numerical calculations. The agreement is remarkable

for small values of |q|, but it worsens already at q = 2; this does not come as a surprise

since the same trend was already observed in the massless case [17]. Such discrepancies are

entirely due to corrections of order o(q2) and are expected to reduce as ℓ gets larger. The

drawback of the data reported in figure 5 is that universal field theory mass contributions

and the lattice non-universal terms are mixed up and the latter are, by far, the largest one.
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Figure 6. Subtracted symmetry resolved von Neumann entropy δS1(q, t) ≡ S1(q, t)− S1(q, t = 0)

for q = 0 (left) and q = 1 (right) as a function of t (fixing ℓ = 600 and varying m). This

subtracted quantity highlights the mass dependence of symmetry resolved entropies. The continuous

lines are just the difference of the same subtracted entropies as obtained from the field theory

expansion (4.24).

It is then very difficult to observe the dependence on the mass in these plots. An effective

and easy way to highlight the role of the mass is to subtract from the symmetry resolved

entropies their value for the massless case, i.e. considering the numerical evaluation of the

δSn(q, t) ≡ Sn(q, t)−Sn(q, 0). Such subtracted entropies for n = 1 and q = 0, 1 are reported

in figure 6, showing that the entropy is a monotonous decreasing function of t (and hence

of m at fixed ℓ).

4.3 The long distance expansion

In this subsection we move to the analysis of the charged and symmetry resolved entropies

in the limit of large t. The most effective way to proceed is, following ref. [40], to employ

in eq. (4.6) a boundary condition for t→ ∞, that takes the form [40]

va(t) ∼
2

π
sin(πa)K2a(t), (4.27)

where K2a(t) is the modified Bessel function of the second kind. This is the starting point

for a systematic expansion for large t of the solution va(t) of the differential equation (4.6).

Plugging the resulting expansion into the integral (4.5) for wa(t), we get

wa(t) = −e−2t sin
2(aπ)

π

(

1 +
−1 + 16a2

4t
+O(t−2)

)

. (4.28)

Summing over a = k
n + α

2πn , we obtain the long distance asymptotic expansion for the

universal factor cn(α)

cn(α) =
e−2t

2π

(

−n+
(4− n2)π2 − 12α2

12ntπ2
− 2 csc π

n(π cot
π
n cos α

n + α sin α
n )

πnt
+O(t−2)

)

,

(4.29)

and for n = 1

c1(α) = −e
−2t

π
sin2

α

2

(

1 +
4α2

π2 − 1

4t
+O(t−2)

)

. (4.30)
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Figure 7. The solid lines are the functions cn(α) obtained as exact numerical solutions of the

differential equation (4.6). The dashed lines are the leading terms in the expansions for short (red)

and long (black) distances, i.e. eqs. (4.11) and (4.29), respectively.

This is consistent with the exact result c1(0) = 0 coming from the normalisation of the

reduced density matrix. For α = 0, eq. (4.29) reproduces the known results [40].

In figure 7 we report the numerical exact solution of the Painlevé equation (4.6) for

cn(α); we focus on n = 1, 2 and plot cn(α) as a function of t. For large t, the solutions

perfectly match the asymptotic expansions (4.29) and (4.30) (for completeness we also show

the small t expansion in eq. (4.11)). Let us emphasise the presence of a discontinuity in

cn(α) for n→ 1 as a function of n: it is due to the non-commutativity of the limits n→ 1

and t→ ∞, as well known and discussed at length in the literature for α = 0 [37, 40]. We

show here that the presence of α does not cancel such a discontinuity, although for α 6= 0

the leading term is of the same order e−2t.

The charged entropy is simply given by the integral

lnZn(α) =

∫ mℓ

mǫ

cn(α)

t
dt. (4.31)

At large t, the function cn(α) goes to zero exponentially in t for any n; hence the charged

entropies approach asymptotically a finite value for large ℓ. This saturation value is deter-

mined entirely by the infrared physics, i.e. by the value of cn(α) at small t, indeed

lnZn(α) ≃ lnZ(0)
n (α) ≡

∫ ∞

mǫ

cn(α)

t
dt ≃

(

1

6

(

n− 1

n

)

+
α2

2π2n

)

lnmǫ. (4.32)

This dependence on ln(mǫ) coincides with the result in section 3.2 (following the analysis

of the properties of the energy momentum tensor on Rn,α), up to a factor 2 due to the

number of the endpoints (cf. eq. (3.17)).

The corrections in mℓ to the ℓ-independent result (4.32) are obtained expanding the

integral (4.31) in the ultraviolet. Keeping for conciseness only the leading order in t of

eqs. (4.29) and (4.30) and performing the integration, we get

lnZn(α) = lnZ(0)
n (α)− ne−2t

4πt
,

lnZ1(α) = lnZ
(0)
1 (α)− e−2t

2πt
sin2

α

2
.

(4.33)

– 19 –



J
H
E
P
0
8
(
2
0
2
0
)
0
7
3

Once again, Zn(α) are not continuous functions of n close to n = 1 (as it was already

known for α = 0, see [40]) and, above all, the correction of lnZn(α) does not depend on α

for n 6= 1 at this order. Subleading corrections to eq. (4.33) can be straightforwardly and

systematically worked out, but they are not illuminating, although they do depend on α

also for n 6= 1.

For n 6= 1, since the leading correction does not depend on α, the Fourier transform

is not affected and the symmetry resolved moments with n 6= 1 just get a multiplicative

correction to Zn(q) in eq. (3.20) (so additive for the logarithm), given by

δ lnZn(q) =
ne−2t

4πt
. (4.34)

For n = 1 the net effect of the sin2(α/2) term in eq. (4.33) is to renormalise the variance

with an exponential additive correction, i.e. the desired probability is

Z1(q) = e
− 2q2π2

4| ln(mǫ)|+πe−2t/t

√

2π

4| ln(mǫ)|+ πe−2t/t
(4.35)

The symmetry resolved Rényi entropies with n 6= 1 are straightforwardly obtained from

eq. (2.7). Indeed, plugging eqs. (4.34) and (4.35) in (2.7), we get

Sn(q) = −n+ 1

6n
ln(mǫ)− ne−2mℓ

4πmℓ(1− n)
+

lnn

2(1− n)
− 1

2
ln

(

2

π
| lnmǫ| − ne−2mℓ

(1− n)2mℓ

)

+

+O((lnmǫ)−1, e−3mℓ). (4.36)

Such a result shows exact equipartition (at this order) which is a clear consequence of the

simple form of (4.34). This is reminiscent of the exact results for integrable models studied

in ref. [20].

The limit n→ 1 for the von Neumann entropy should be handled with care. We start

rewriting eq. (2.7) as

S1(q) = lnZ1(q)−
1

Z1(q)

∫ π

−π

dα

2π
e−iqαZ1(α)∂n lnZn(α)|n=1. (4.37)

We use this equation to obtain the entire correction in t due to the Bessel function and not

only the leading exponential term (as done in eq. (4.33)). The crucial computation is

∂ncn(α)|n=1 = −∂n
∫ ∞

t
dy y

(n−1)/2
∑

k=−(n−1)/2

v2a(y)

∣

∣

∣

∣

∣

n=1

=

= −
(

2

π

)2

∂n

∫ ∞

t
dy y

(n−1)/2
∑

k=−(n−1)/2

sin2(πa)K2
2a(y)

∣

∣

∣

∣

∣

n=1

,

(4.38)

where a = k
n + α

2πn . We can use the integral representation for the Bessel function

Ka(y) =

∫ ∞

1
du e−yu (u+

√
u2 − 1)a + (u+

√
u2 − 1)−a

2
√
u2 − 1

, (4.39)
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to perform the sum over k in eq. (4.38). Once we plug eq. (4.39) into eq. (4.38) , we get

cn(α) = − 2

π2

∫ ∞

t
dy y

∫ ∞

1
du

∫ ∞

1
dv

e−y(u+v)

√
u2 − 1

√
v2 − 1

×

×
(

Fn,α((u+
√

u2 − 1)(v +
√

v2 − 1)) + Fn,α

(

(u+
√
u2 − 1)

(v +
√
v2 − 1)

))

,

(4.40)

where

Fn,α(z) =
z

π−α
nπ

4

(

z − 1

z

)

(

1 + z
2α
nπ

z
2
n − 1

+
(z

2(π+α)
nπ − 1) cos π−α

n + (z
2
n − z

2α
nπ ) cos π+α

n

1 + z
4
n − 2z

2
n cos(2πn )

)

.

(4.41)

We now study the behaviour of Fn,α(z) when n→ 1. For z = 1, the limit n→ 1 is singular.

We can isolate this singularity using the polar variables (n − 1, z − 1) → (ρ cos θ, ρ sin θ)

and expanding in the radial coordinate ρ. The result of this procedure is

Fn,α(z) =
1

2
− 1

2

(z − 1)2 cosα

π2(n− 1)2 + (z − 1)2
+O(n− 1, z − 1), (4.42)

whose derivative with respect to n is

∂nFn,α(z)
∣

∣

∣

n→1
= lim

n→1

Fn,α(z)− F1,α(z)

n− 1
= π2

(

1

2
− sin2

α

2

)

δ(z − 1). (4.43)

Plugging this result in eq. (4.40) and taking the derivative w.r.t. n, we get

∂ncn(α)
∣

∣

n→1
= −

(

1− 2 sin2
α

2

)

∫ ∞

t
dyyK0(2y) = −

(

1

2
− sin2

α

2

)

tK1(2t), (4.44)

which, once integrated in t according to eq. (4.31), gives the full ultraviolet behaviour of

∂n lnZn(α)
∣

∣

n→1
, i.e.

∂n lnZn(α)
∣

∣

n→1
=

(

1

3
− α2

2π2

)

ln(mǫ) +

(

1

4
− 1

2
sin2

α

2

)

K0(2t). (4.45)

Plugging the above derivative into eq. (4.37) finally yields

S1(q) = −1

3
ln(mǫ)− 1

4
K0(2mℓ) + lnZ1(q) +

ln(mǫ)

2π2Z1(q)

∫ π

−π

dα

2π
e−iqαZ1(α)α

2+

+
K0(2mℓ)

2Z1(q)

∫ π

−π

dα

2π
e−iqαZ1(α) sin

2 α

2

≃ −1

3
ln(mǫ)− 1

4
K0(2mℓ)−

1

2
ln

(

2| ln(mǫ)|
π

)

− 1

2
+O((lnmǫ)−1). (4.46)

The first two terms in (4.46) are respectively the leading and the subleading terms in the

total entanglement entropy of a massive Dirac field, in agreement with the known results

in refs. [36, 37, 40]. The double logarithmic term appears only in the symmetry resolved

result and, as already discussed in eq. (3.21), it is related to the number entropy. The above

derivation clearly highlight this correspondence. As for the Rényi entropy, at this order in

lnmǫ, there is perfect entanglement equipartition that will be broken by higher order terms.
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5 The Green’s function approach: the complex scalar field

In this section we present a derivation of the charged moments for a complex massive

scalar by generalising to α 6= 0 the results obtained in [41, 42]. In section 3.1 we showed

that Zn(α) can be written as product of partition functions on the plane with boundary

conditions along the cut A

ϕ̃k(e
2πiz, e−2πiz̄) = e2πiaϕ̃k(z, z̄), a =

k

n
+

α

2πn
, k = 0, · · ·n− 1. (5.1)

Denoting, as usual, by ζa these partition functions we have

lnZn(α) =
n−1
∑

k=0

ln ζ k
n
+ α

2πn
. (5.2)

As for the analogous case of fermions, cf. eq. (4.3), we define the auxiliary quantities

wa ≡ ℓ∂ℓ ln ζa, cn(α) ≡
n−1
∑

k=0

w k
n
+ α

2πn
, (5.3)

that, using (5.2), allow us to write the logarithmic derivative of the partition function in

Rn,α as

cn(α) = ℓ
∂ lnZn(α)

∂ℓ
⇒ lnZn(α) =

∫ ℓ

ǫ

cn(α)

ℓ′
dℓ′. (5.4)

Even here, for n = 1, the function cn(α) is the analogue of Zamolodchikov’s c-function [56]

in the presence of the flux α.

As already discussed in section 2.2, the key observation of this approach relies on

the identity between the partition function ζa and the Green’s function (see eq. (2.13)).

Through this relation, the function wa has been obtained for generic values of a also for

bosonic free massive field theories [42]. As already found in section 3.1 using twist fields,

also this approach requires that 0 < a < 1 for the scalar theory (see [41] for details). Thus,

in order to compute Zn(α), we will use the results in [42] setting a = k
n + |α|

2πn for the

complex Klein Gordon theory.

Here we consider the complex massive non-compact bosonic field theory with action

given by (2.8) and mass m. The function wa with 0 < a < 1 defined in (5.3) can be written

as [41]

wa = −
∫ ∞

t
yu2a(y)dy, (5.5)

where t = mℓ and ua is the solution of the Painlevé V equation

u′′a +
u′a
t

=
ua

1 + u2a
(u′a)

2 + ua(1 + u2a) + 4

(

a− 1
2

)2

t2(1 + u2a)
ua. (5.6)

The solution of eq. (5.6) is showed in figure 8: the function wa for a generic value of t can

be obtained solving numerically eq. (5.6) with the initial condition for t→ 0

ua(t) =
−1

t (ln t+ κS(a))
− a(a− 1)t(ln t+ κS(a)) +O(t), (5.7)
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Figure 8. Left panel: logarithmic derivative of the charged moments, c1(α), as a function of t = mℓ

obtained by solving numerically the Painléve equation (5.6) (solid lines). The data (symbols) are

obtained fixing (from top to bottom) ℓ = 720, 620, 420, 420, 320 and varying properly m in such a

way that mℓ ∈ (0, 1). As discussed in the main text, the agreement with the numerical data worsens

as α decreases. Right panel: the same quantity is plotted as a function of α from the numerical

solution of the Painlevé equation (solid lines), showing also in this case that the agreement as α→ 0

is not excellent. The dashed lines represent the small t expansion in eq. (5.10): the smaller is t, the

better the approximation works.

where [42]

κS(a) = 2γE +
ψ(1− a) + ψ(a)

2
− ln 2. (5.8)

In the figure we compare the exact result from field theory with numerical data for a chain

of complex oscillators, obtained exploiting the techniques reviewed in appendix C. We have

a fairly good agreement between lattice and field theory, although for small values of α the

agreement gets worse and one needs a larger and larger subsystem length ℓ on the lattice

to match the continuum limit. This is not surprising, already in ref. [20] it was shown for

the massless case that the lattice results approach the CFT ones in a non uniform way.

In the following we will further discuss this issue in the limits when we have an analytic

handle on the problem.

5.1 The expansion close to the conformal point

In the conformal limit t→ 0 we have that the solution of the Painlevé equation admits the

expansion [41]

wa = −2a(1− a)− 1

ln(t) + κS(a)
+O(t). (5.9)

Using eq. (5.3) we get

cn(α) =

n−1
∑

k=0

w k
n
+

|α|
2πn

=
1− n2

3n
+

α2

2π2n
− |α|
πn

−
n−1
∑

k=0

1

ln t+ κS(a(k))
+ . . . . (5.10)

Let us discuss first at the level of the universal function cn(α) the origin of the non uniform

behaviour in α. Eq. (5.10) is an exact asymptotic expansion valid for any α 6= 0. For

α → 0, there is a clear problem with the constant κS(a(0)) (i.e. of the mode with k = 0)
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Figure 9. Charged moments for the free massive boson close to the critical regime. We benchmark

the analytical prediction (5.11) (solid lines) with the numerical data (symbols) for different values

of n and α at fixed m = 10−10: the analytical formula matches well the data for large values of α

(left), but for smaller α (right) much larger values of ℓ are necessary to observe a fair match, as

explained in the text.

which diverges as π/|α|. Hence, since ln t grows very slowly with t, the true asymptotic

behaviour is attained only for t & eπ/|α|. For smaller values of t, the mode k = 0 looks

almost constant (∼ |α|/π) and similar to the leading term. Exactly for α = 0, the mode

k = 0 diverges, so its inverse is just zero and it does not affect the calculation. It is then

clear that the approach to the asymptotic behaviour cannot be uniform in α, as already

observed numerically in figure 8.

After having discussed this caveat with the small α behaviour, we are ready to integrate

eq. (5.10) to get the charged moments, according to eq. (5.4), obtaining

lnZn(α) =

(

1− n2

3n
+

α2

2π2n
− |α|
πn

)

ln

(

ℓ

ǫ

)

+
n−1
∑

k=0

ln

∣

∣

∣

∣

ln(mǫ) + κS(a(k))

ln(mℓ) + κS(a(k))

∣

∣

∣

∣

. (5.11)

Let us remark that when n = 1, the last sum reduces to the term with k = 0. We recall

that the cutoff ǫ depends both on n and α making the analysis even more troubling.

Even though we are in the conformal limit in which mℓ ≪ 1, the additional constant

κS(a(0)) cannot be neglected because of its divergent behaviour when k = 0 and α = 0. The

terms with k > 0 do not present any problem and κS(a(k)) can be safely neglected. The

mode with k = 0 instead has three different regimes, depending on the value of κS(k = 0)

which is governed by α as follows:

• for very small α, i.e. such that α . nπ/| ln(mǫ/2) + γE |, κS(k = 0) diverges faster

than both lnmℓ and lnmǫ. Hence, expanding the ratio in eq. (5.11), this subleading

term becomes of the same order of the leading one, i.e.

ln

∣

∣

∣

∣

ln(mǫ) + κS(a(0))

ln(mℓ) + κS(a(0))

∣

∣

∣

∣

α→0−−−→ |α|
πn

ln
ℓ

ǫ
+ . . . ., (5.12)

• for intermediate values of α, i.e. when nπ/| ln(mǫ/2)+γE | . α . nπ/| ln(mℓ/2)+γE |,
we have

ln

∣

∣

∣

∣

ln(mǫ) + κS(a(0))

ln(mℓ) + κS(a(0))

∣

∣

∣

∣

∼ ln

∣

∣

∣

∣

ln(mǫ)

κS(a(0))

∣

∣

∣

∣

+ . . . , (5.13)

and hence this produces just an additive correction in ℓ, but depending on mǫ;
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• for larger α, i.e. for α & nπ/| ln(mℓ/2) + γE |, the term κS is a correction both for

numerator and denominator and so

ln

∣

∣

∣

∣

ln(mǫ) + κS(a(0))

ln(mℓ) + κS(a(0))

∣

∣

∣

∣

≃ ln

∣

∣

∣

∣

ln(mǫ)

ln(mℓ)

∣

∣

∣

∣

+ . . . , (5.14)

as for the terms with k 6= 0. We stress that this third regime is the true asymptotic

one for large ℓ at fixed α.

This competition among the three terms makes difficult the analytical treatment of

the last sum in eq. (5.11), and, at the same time, the non trivial dependence on the cutoff

ǫ (that we recall also depends on α and n) complicates the comparison with the numerics.

For this reason, we consider only the leading term in eq. (5.11), which, strictly speaking, is

valid in the massless case and in the third regime above. Such a leading term is the same

provided as in the twist field approach (cf. eq. (3.8)) and coincides with some equivalent

ones in literature [20, 46]. The main advantage of eq. (5.11) is that it clearly shows what

are the problems one faces when considering only the leading term. The comparisons with

the numerics are shown in figure 9: we report the numerical data for different values of

n and α; as expected from our previous discussion, the agreement with the predictions is

very good for large α, but it worsens as α gets smaller and n gets larger. Smaller is α,

larger is the value of ℓ on the lattice necessary to observe the true asymptotic behaviour.

5.1.1 Symmetry resolution

The symmetry resolved moments of the RDM can be computed through the Fourier trans-

form of the leading term of the charged moments in eq. (5.11)

Zn(q)=

∫ π

−π

dα

2π
e−iqαZn(α)=Zn(0)

∫ π

−π

dα

2π
e−iqαe

(

α2

2π2n
−

|α|
πn

)

ln ℓ
ǫ (5.15)

=Zn(0)

(

ℓ

ǫ

)− 1
2n
√

nπ

8ln(ℓ/ǫ)
(−1)qe

nπ2q2

2ln(ℓ/ǫ)

[

Erfi

(

ln(ℓ/ǫ)−nπiq
√

2nln(ℓ/ǫ)

)

+Erfi

(

ln(ℓ/ǫ)+nπiq
√

2nln(ℓ/ǫ)

)]

,

where Erfi(x) is the imaginary error function (the overall result is real and positive for

q ∈ Z)

Erfi(x) =
−2i√
π

∫ ix

0
dt e−t2 x→∞−−−→ ex

2

√
πx
. (5.16)

In the large ℓ limit, using the expansion in eq. (5.16), the charged moments in eq. (5.15)

can be can be approximated as

Zn(q) = Zn(0)
n ln ℓ/ǫ

n2π2q2 + ln2 ℓ/ǫ
, (5.17)

and hence the symmetry resolved entropies are given by

Sn(q) =
1

1− n
ln

Zn(q)

Z1(q)n
≃ Sn − ln ln

ℓ

ǫ
+

lnn

1− n
, S1(q) ≃ S1 − ln ln

ℓ

ǫ
− 1. (5.18)

The leading behaviour is described by the total Rényi entropies, with the usual correction

ln ln ℓ that is independent on q, confirming the equipartition of the entanglement entropy
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for a complex massive scalar field theory, in agreement with the result for massive harmonic

chains [20] (although the critical limit considered there is different from the one here). Let

us mention that a further expansion of eq. (5.15) leads to subleading corrections behaving

as q2/(ln ℓ)2 which explicitly depend on q, breaking the equipartition of the entanglement.

This kind of terms has been already found for bosonic systems in [20].

Let us now discuss the effect of the term that we disregarded in eq. (5.11), namely

the sum over k. The mode with k 6= 0 would provide double logarithimic corrections

encountered also in other contexts, like non unitary CFTs [57, 58]. These in principle

are calculable and partially under control. We mention that such terms have a non-trivial

dependence on n in Zn(q) and hence they are responsible of a further breaking of equiparti-

tion. Unfortunately, the determination of this correction is not easy because it is influenced

by the precise dependence on α and n of the non-universal cutoff ǫ (as it should be clear

from eq. (5.11)). Finally, as discussed for the charged moments, the effect of the mode

k = 0 is even more dramatic and too difficult to keep under control.

5.2 The long distance expansion

The boundary condition for eq. (5.6) in the limit in which t→ ∞ is [41]

ua(t) ∼
2

π
sin(πa)K1−2a(t). (5.19)

The solution of eq. (5.6) in the long distance regime together with eq. (5.5) gives

wa(t) = −e−2t sin
2(aπ)

π

(

1 +
3− 16a+ 16a2

4t

)

. (5.20)

Summing over a = k
n + |α|

2πn , we get

cn(α) =
e−2t

2πnt

(

−n2t− 8 + n2

12
+

2|α|
π

− α2

π2
+ 2

(

csc2
π

n
− |α|

π

)

cos
α

n
+

2α

π
cot

π

n
sin

α

n

)

,

c1(α) = −e
−2t

π
sin2

α

2

(

1 +
3 + 4α2

π2 − 8|α|
π

4t

)

. (5.21)

The long distance leading term in eq. (5.21) is showed in figure 10 for two different values

of n: it approximates well the solution of the Painlevé equation (5.6) in the regime t≫ 1.

The same feature was observed in section 4.3 for the corresponding equations in fermionic

systems as also the discontinuity for n→ 1, which can be ascribed to the non-commutativity

of the limits n → 1 and t → ∞. Also for a complex scalar field, eqs. (5.21) show that the

functions cn(α) vanish for large t and the charged moments stop growing. Hence,

lnZn(α) ≃ lnZ(0)
n (α) ≡

∫ ∞

mǫ

cn(α)

t
dt ≃ −

(

1− n2

3n
+

α2

2π2n
− |α|
πn

)

lnmǫ. (5.22)

As expected, the dependence on ln(m) coincides with the one reported in eq. (3.18), up to

a factor 2 due to the number of endpoints.
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Figure 10. The solid lines are the functions cn(α) as solutions of eq. (5.6). The dashed lines are

the short (red) and long (black) distance leading terms we evaluated analytically in eq. (5.10) and

eq. (5.21), respectively.

Integrating cn(α), we obtain up to order O(e−2t/t)

lnZn(α) = lnZ(0)
n (α)− ne−2t

4πt
,

lnZ1(α) = lnZ
(0)
1 (α)− e−2t

2πt
sin2

α

2
,

(5.23)

which are the same expressions found for fermions in section 4.3. The expression for δZn(q)

is the same as in eq. (4.34) for fermions, while Z1(q) is given by

Z1(q) =
| lnmǫ|

π2q2 + ln2mǫ
+O(1/(ln2mǫ)), (5.24)

so that all contributions coming from the long-distance behaviour are negligible at order

O(1/(lnmǫ)). The resolved entropies are the ones given in (3.24), where Sn also takes into

account the term ne−2t

4πt . The limit n→ 1 can be solved through a technique similar to the

one used in section 4.3.

6 Charged moments across the hyperplane: massive scalar field

In this last section, we provide a result for the charged moments of a free massive scalar

theory across a hyperplane in d Euclidean dimensions using a generalisation of the method

reported in [5, 59]. The action for a free complex massive scalar field is

S =

∫

ddx[∂µϕ
†(x)∂µϕ(x) +m2ϕ†(x)ϕ(x)]. (6.1)

We denote the space coordinates by xi, i = 1, · · · , d − 1, and the Euclidean time by x0.

Let A and Ā be regions with x1 > 0 and x1 ≤ 0, respectively. The entangling surface Σ is

chosen to be a (d− 2)-dimensional hyperplane at x1 = 0: Σ = {(x0, xi)|x0 = x1 = 0}. Let
us introduce the metric of the spacetime

ds2 = dr2 + r2dτ2 +

d−1
∑

i=2

dx2i , (6.2)
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where we have used the polar coordinates for the plane parametrised by (x0, x1). The

metric of the n-fold cover Mn,α of the original spacetime pierced by a flux α, that is

constructed by gluing n copies of the sheet with a cut along A, is still (6.2) with r ≥ 0

and 0 ≤ τ ≤ 2πn. Thus, Mn,α = Cn,α × R
d−2, where Cn,α is the two-dimensional cone

parametrized by (r, τ).

In order to compute the charged moments, we can consider the theory with action

in eq. (6.1) in terms of two real scalar fields ϕ1(x) and ϕ2(x) [20]. The logarithm of the

normalised charged moments lnZR
n (α) of each real scalar field on Mn,α is given by

lnZR
n (α) = −1

2
ln det(−∇2

α +m2) = −1

2
tr ln(−∇2

α +m2)

=
1

2

∫ ∞

ǫ2

ds

s
tr
[

e−s(−∇2
α+m2) − e−s

]

,
(6.3)

where the parameter ǫ2 ≪ 1 is introduced as a regulator for the UV divergences. Because

of the direct product structure of Mn,α, the Laplacian decomposes into the sum of those

on Cn,α and R
d−2: ∇2

α = ∇2
Cn,α

+∇2
Rd−2 . The rotational symmetry of the cone Cn,α allows

the Fourier decomposition of the real fields by the modes exp(iτa), where a = l
n + |α|

2πn ,

with integer l, such that, after a period 2πn, they acquire a phase eiα, in agreement with

the Aharonov-Bohm effect. Therefore, the eigenfunctions ϕk,a(r, τ) of the Laplacian are

parametrized by (k, a) satisfying

∇2
Cn,α

ϕk,a(r, τ) = −k2ϕk,a(r, τ), k ∈ R
+,

ϕk,a(r, τ) =

√

k

2πn
eiτaJ|a|(kr),

(6.4)

where Ja is the Bessel function of the first kind. The eigenfunctions form an orthonormal

basis on the cone Cn,α, namely
∫

Cn,α

d2xϕk,a(x)ϕ
∗
k′,a′(x) = δna,na′δ(k − k′). (6.5)

The orthonormal basis of the eigenfunctions of the Laplacian on R
d−2 is spanned by the

plane waves, ϕk⊥(y) = exp(ik⊥ · y)/(2π)(d−2)/2, with eigenvalues −k2⊥. Exploiting these

two sets of eigenfunctions, the trace of the kernel in eq. (6.3) is

tr[e−s(−∇2+m2)] =

∫

Cn,α

d2x

∞
∑

l=−∞

∫ ∞

0
dke−s(k2+m2)ϕk,a(x)ϕ

∗
k,a(x)

×
∫

Rd−2

dd−2y

∫

dd−2k⊥e
−sk2⊥ϕk⊥(y)ϕ∗

k⊥(y)

=
Vol(Rd−2)

n

e−sm2

(4πs)(d−2)/2

(

−ζ
(

−1,
|α|
2π

)

+ n

∫ ∞

0
dr

1√
2π

)

.

(6.6)

The IR divergence emerges from the following integrals
∫ ∞

0
dk ke−sk2Ja(kr)

2 =
e−r2/(2s)

2s
Ia

(

r2

2s

)

,

∫ ∞

0
dr re−r2Ia(r

2) = −a
2
+

∫ ∞

0
dr

1√
2π
,

(6.7)
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where Ia is the modified Bessel function of the first kind. The second term on the right-hand

side of eq. (6.7) is divergent, but it gives rise to a term proportional to n and independent

on α, so it does not contribute to lnZn(α). On the other hand, the UV divergence arises

from the summation over the angular momentum l, which can be regularised, for example,

by using the Hurwitz zeta function

∞
∑

l=−∞

∣

∣

∣

∣

l +
|α|
2π

∣

∣

∣

∣

= 2ζ

(

−1,
|α|
2π

)

. (6.8)

The definition of the Hurwitz zeta function for complex arguments s with Re(s) > 1 and

q with Re(q) > 0 is

ζ(s, q) =
∞
∑

j=0

1

(q + j)s
, (6.9)

whose analytic continuation satisfies the remarkable identity

ζ

(

−1,
|α|
2π

)

= − α2

8π2n
+

|α|
4πn

− 1

12
. (6.10)

The other kernel tr(e−s) is still divergent because it is proportional to the volume of Mn,α

but it is also proportional to n coming from the volume of the cone, so, being independent

on α, it does not contribute to lnZn(α).

Thus, using eqs. (6.3), (6.6), and (6.8) we obtain the logarithm of the charged moments

across a hyperplane R
d−2 for a free complex massive scalar field [20]

lnZn(α) = lnZR
n (α) + lnZR

n (−α) =

= 4πVol(Rd−2)

(

− 1

n
ζ

(

−1,
|α|
2π

)

− n

12

)∫ ∞

ǫ2
ds

e−sm2

(4πs)d/2

= 4πVol(Rd−2)

(

α2

8π2n
− |α|

4πn
− 1

12

(

n− 1

n

))∫ ∞

ǫ2
ds

e−sm2

(4πs)d/2
.

(6.11)

Very remarkably, the dependence on α in eq. (6.11) is the same in any dimension and hence

the symmetry resolved entropies are also the same in any dimension.

As a consistency check, let us focus our attention on d = 2: for a semi-infinite line, we

obtain

lnZn(α) =

(

α2

8π2n
− |α|

4πn
− 1

12

(

n− 1

n

))

(−Ei(−m2ǫ2)), (6.12)

where we have used the definition of the exponential integral function

Ei(x) = −
∫ ∞

−x
dt
e−t

t
. (6.13)

By expanding around ǫ = 0, −Ei(−m2ǫ2) ≃ γE + 2 ln(mǫ) and considering n = 1 we end

up into

lnZ1(α) =

(

α2

4π2
− |α|

2π

)

(

− ln(mǫ)− γE
2

)

, (6.14)

where γE is the Euler-Mascheroni constant. This coincides with what found previously in

eq. (3.18) up to O(1). In d = 3, eq. (6.11) coincides with the leading term obtained in [33]

for the critical limit of a two-dimensional harmonic lattice.
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7 Conclusions

In this manuscript we characterised the symmetry resolved entanglement for free massive

fields in two dimensions, presenting the results for a Dirac field and a complex scalar theory.

We showed that two well known techniques in the framework of the replica trick can be

adapted — by modifying the n-sheeted Riemann surface and the corresponding partition

function — to the calculation of charged moments. Both computations (via modified twist

fields and the Green’s function approach of ref. [42]) mainly rely on the boundary conditions

of the fields at the endpoints of the entangling region. In the first framework, the conformal

dimensions of the twist fields get modified as in eq. (3.8). In the second setting the change

induced by the flux α lies in the precise form of the Painlevé V equations (4.6) and (5.6)

providing the generalised partition function. These Painlevé equations are easily solved

numerically for arbitrary values of the mass, but they can be also handled analytically in the

limit of small masses, leading to the charged moments (4.12) for the Dirac field and (5.11)

for the scalar theory. The opposite limit of mass much larger that the interval length can

also be treated analytically. For the free complex scalar, we also obtain general results for

the charged moments in arbitrary dimension when the entangling surface is an hyperplane.

From the Fourier transform of these charged moments, we extract the symmetry re-

solved Rényi entropies, stressing the relevant universal aspects. At leading order for small

m, the symmetry resolved entropies for both theories satisfy equipartition of entangle-

ment [16]. We also show that the entanglement equipartition is broken by the mass at

order (ln ℓ)−2, which is the same one found in other circumstances [17, 18, 20, 33].

There are two main aspects that our manuscript leave open for further study. The first

one concerns the calculation of charged and symmetry resolved entropies in free scalars

and fermions in arbitrary dimension and for entangling surfaces that are more complex

than the simple hyperplane of section 6. To this aim, we expect that some of the exist-

ing techniques in the literature, as e.g. in refs. [60–70], should be readily adapted to our

problem. Furthermore, important insights could also come from the holographic correspon-

dence for the entanglement entropy [59, 71, 72]. The other point is whether interacting

QFTs can be handled in two dimensions, e.g. exploiting integrability techniques as those

of refs. [36, 37, 51, 73, 74].

Acknowledgments
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A Conformal dimensions of twist fields

The goal of this section is to find the conformal dimension of the twist field Tn,k,α defined

in eq. (3.4). We will call it generically Ta, where a = k
n + α

2πn , with a ∈ [0, 1]. As already

discussed in section 3.1, in the neighbourhood of a twist field the k-th component of φ
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undergoes a phase rotation

φ̃k(e
2πiz, e−2πiz̄) = e2πiaφ̃k(z, z̄). (A.1)

Let us start from the case of the free complex scalar CFT with fields (ϕk, ϕ
∗
k) and, follow-

ing [39], consider the correlation function in the presence of four Zn twist-fields

g(z, w; zi) =
〈−1

2∂zϕk∂wϕ
∗
kTa(z1)T̃a(z2)Ta(z3)T̃a(z4)〉

〈Ta(z1)T̃a(z2)Ta(z3)T̃a(z4)〉
. (A.2)

Imposing that for z → w we have g(z, w; zi) ∼ (z − w)−2 and that for z → zi we have

g(z, w; zi) ∼ (z − zj)
−a for j = 1, 3 and g(z, w; zi) ∼ (z − zj)

−(1−a) for j = 2, 4, we can

write (up to an additional constant independent of z and w, A(zj , z̄j))

g(z, w; zi) = ωa(z)ω1−a(w)

[

a
(z − z1)(z − z3)(w − z2)(w − z4)

(z − w)2
(A.3)

+ (1− a)
(z − z2)(z − z4)(w − z1)(w − z3)

(z − w)2
+A(zj , z̄j)

]

,

where

ωa(z) = [(z − z1)(z − z3)]
−a[(z − z2)(z − z4)]

−(1−a). (A.4)

In the limit w → z

lim
w→z

[g(z, w)− (z −w)−2] =
1

2
a(1− a)

(

1

z − z1
+

1

z − z2
+

1

z − z3
+

1

z − z4

)2

+ · · · (A.5)

This is exactly the expectation value of the insertion of the stress energy tensor of the field

ϕk in the four-point correlation function. From the comparison with the conformal Ward

identity, we can understand that Ta and T̃a are primary fields with scaling dimensions

∆a = ∆̄a =
1

2
a(1− a) =

1

2

(

k

n
+

|α|
2πn

)(

1− k

n
− |α|

2πn

)

. (A.6)

In order to obtain the conformal dimensions of the twist fields of the free Dirac field

theory, let us apply a similar procedure for the chiral or anti-chiral complex fermionic

fields, (ψk, ψ
∗
k). The scaling dimension of Ta can be extracted from the Green’s function in

presence of two Zn twist fields

g(z, w; zi) =
〈−1

2(ψ
∗
k∂zψk − ∂wψ

∗
kψk)Ta(z1)T̃a(z2)〉

〈Ta(z1)T̃a(z2)〉
. (A.7)

Using the results in [75], the previous expression can be explicitly written as

g(z, w; zi) = ωa(z)ω−a(w)

[

a
(z2 − z1)(w

2 + z2 + 2z1z2 − (z1 + z2)(w + z))

2(z − w)
+

− (w − z1)(w − z2)(z − z1)(z − z2)

(z − w)2

]

,

(A.8)
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where

ωa(z) = [(z − z1)]
−a−1[(z − z2)]

a−1. (A.9)

In the limit w → z

lim
w→z

[g(z, w) + (z − w)−2] =
1

2
a2
(

1

z − z1
− 1

z − z2

)2

+ · · · (A.10)

This is the expectation value of the insertion of the stress energy tensor of the field ψk in

the two-point correlation function and, as before, the comparison with the conformal Ward

identity gives the dimensions of the primary twist fields Ta and T̃a as

∆a = ∆̄a =
1

2
a2 =

1

2

(

k

n
+

α

2πn

)2

. (A.11)

Putting together the monodromy conditions (A.1) and the scaling dimension of the twist

field in eq. (A.11), we deduce that the twist field of a fermionic field admits a bosonisation

formula. We can write the complex fermionic field as ψk ∼ eiϕk and the twist field as

Tn,k,α(z) = ei(
k
n
+ α

2πn)ϕk . By introducing the vertex operators Vβ(z) = eiβϕ(z), the twist

fields take the form Tn,k,α(z) = V k
n
+ α

2πn
(z) and T̃n,k,α(z) = V− k

n
− α

2πn
(z) [46, 75]. Let us

observe that at first sight this result could be misleading since the outcome for bosons in

eq. (A.6) does not appear to agree with that of fermions in eq. (A.11) given that they

are related by bosonisation in 1+1 dimensions [76–78]. However, via bosonisation of U(1)

complex fermions, the corresponding bosons transform by translation, and thus should

instead satisfy the boundary condition ϕk(e
2πiz) = ϕk(z) + a. Therefore, our computation

for charged bosons is not related to charged fermions by bosonisation.

Before concluding this appendix, let us emphasise that while CFTs are well understood

objects, n-copies of a CFT after modding out the ZN symmetry among the replicas form

a more complicated object known as orbifold [38, 39]. The operator product expansions

of the twist fields with other fields have been extensively explored (e.g., see [79–88]), but,

unless a bosonisation procedure for free theories can be used, as for the compact boson,

they remain elusive in general and require a case-by-case study.

B Details for the analytic continuation for the Dirac field

In this appendix we provide some details about the analytic continuation of the quantities

defined in eq. (4.10). First, we rewrite Ω(n, α) (a similar result also holds for Λ(n, α)) as

Ωn(α) ≡
1

n2

(n−1)/2
∑

k=−(n−1)/2

(

k +
α

2π

)2
(

ψ

(

k

n
+

α

2πn

)

+ ψ

(

−k
n
− α

2πn

))

= (B.1)

=
1

n2

n−1
∑

k′=0

(

k′ +
α

2π
− n− 1

2

)2(

ψ

(

k′

n
− n− 1

2n
+

α

2πn

)

+ ψ

(

−k
′

n
+
n− 1

2n
− α

2πn

))

,

where we set k′ ≡ k + n−1
2 . After this manipulation, the functions Ω(n, α) and Λ(n, α)

in (4.10) can be split as

Ω(n, α) =
∑

i

Bi(n, α), Λ(n, α) =
∑

i

Ci(n, α), (B.2)
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where

B0(n,α)=
1

n2

n−1
∑

k=0

(

α

2π
− n−1

2

)2(

ψ

(

k

n
+
1

2
+

1

2n
+

α

2πn

)

+ψ

(

−k
n
+
3

2
− 1

2n
− α

2πn

))

,

B1(n,α)=
2

n2

n−1
∑

k=0

(

α

2π
− n−1

2

)

k

(

ψ

(

k

n
+
1

2
+

1

2n
+

α

2πn

)

+ψ

(

−k
n
+
3

2
− 1

2n
− α

2πn

))

,

B2(n,α)=
1

n2

n−1
∑

k=0

k2
(

ψ

(

k

n
+
1

2
+

1

2n
+

α

2πn

)

+ψ

(

−k
n
+
3

2
− 1

2n
− α

2πn

))

,

C0(n,α)=
1

n2

n−1
∑

k=0

(

α

2π
− n−1

2

)2(

ψ

(

k

n
+
1

2
+

1

2n
+

α

2πn

)

+ψ

(

−k
n
+
3

2
− 1

2n
− α

2πn

))2

,

C1(n,α)=
2

n2

n−1
∑

k=0

(

α

2π
− n−1

2

)

k

(

ψ

(

k

n
+
1

2
+

1

2n
+

α

2πn

)

+ψ

(

−k
n
+
3

2
− 1

2n
− α

2πn

))2

,

C2(n,α)=
1

n2

n−1
∑

k=0

k2
(

ψ

(

k

n
+
1

2
+

1

2n
+

α

2πn

)

+ψ

(

−k
n
+
3

2
− 1

2n
− α

2πn

))2

. (B.3)

We used the relation ψ(x) = ψ(x+ 1) − 1
x so that all the terms are in a suitable form for

the use of the following integral representation of the digamma function, i.e.

ψ(x) = −γE +

∫ 1

0
dt
1− tx−1

1− t
, x > 0. (B.4)

Let us start from the analysis of the function Ω(n, α). By inverting sums and integrals, we

get

B0(n,α)=

(

α

2πn
− n−1

2n

)2(

−2nγE+

∫ 1

0
dt

2n

1− t+
t

1
2n

− 1
2

t1/n−1
2cosh

α log t

2nπ

)

, (B.5)

B1(n,α)=

(

α

πn
− n−1

n

)[

(1−n)γE

+

∫ 1

0
dt
n−1

1− t −
t−

(−1+n)π+α
2nπ [(1− t)(−1+ t

π+α
nπ ) +n(−1+ t1/n)(−1+ t1+

α
nπ )]

n(1− t)(−1+ t1/n)2

]

,

B2(n,α)=
1

3n2

[

n(1−n)(−1+2n)γE+

∫ 1

0
dt
n(1−n)(1−2n)

1− t − 3t−
(−1+n)π+α

2nπ

(1− t)(−1+ t1/n)3

×
(

(−1+ t)(1+ t1/n)(1+ t
π+α
nπ

))+2n(1− t1/n)(1+ tπ+nπ+α
nπ )−n2(1− t1/n)2(1− t1+ α

nπ )

)]

.

The same strategy also works for Cj(n, α), j = 1, 2, 3 in eqs. (B.3), however this

computation is longer and cumbersome and we do not report here. In figure 11 we plot

Λ(n, α) (left top panel) and Ω(n, α) (right top panel) as function of α for some n and

compare it with the quadratic approximation given in eqs. (4.10). The closeness of the two

curves shows that the quadratic approximation is enough for most of the applications. The

quadratic approximation depends non trivially on n, as evident from the plot of ωn and λn
in the bottom panels of figure 11.
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Figure 11. Top panels: Λ(n, α) (left) and Ω(n, α) (right) in eq. (4.10) as a function of α for

n = 1, 2, 3, 4. The exact forms (full lines) are compared with the quadratic approximation (dashed

lines) showing that, although very close, they are definitively different. Bottom panels: ωn and λn
reported in eq. (4.10) are plotted as a function of n. Their non trivial dependence on n gives rise

to the subleading terms breaking the equipartition of entanglement in a massive Dirac field theory,

as illustrated in section 4.1.

C The lattice models

For the numerical test of our field theory results we consider the following lattice discreti-

sation of the Dirac fermion [40]

H = − i

2

L−1
∑

j=0

(c†j+1cj − c†jcj+1) +m
L−1
∑

j=0

(−1)jc†jcj , (C.1)

where cj satisfy the anti-commutation relations {cj , c†k} = δjk and L denotes the number

of sites of the chain. The correlators in the thermodynamic limit, i.e. for L→ ∞, are

〈c†jck〉 =
1

2
δ(j−k),0 + (−1)j

∫ 1
2

0
dx
m cos(2πx(j − k))
√

m2 + sin(2πx)2
for |j − k| even,

〈c†jck〉 = i

∫ 1
2

0
dx

sin(2πx)
√

m2 + sin(2πx)2
sin(2πx(j − k)) for |j − k| odd.

(C.2)

Denoting by εj the eigenvalues of the correlation matrix restricted to the subsystem Amade

by ℓ sites (with j ∈ [1, ℓ]), simple algebra leads to the moments TrρnA and to the Rényi
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entropies [89, 90]. The α-dependent moments Zn(α) can be also easily written in terms of

the eigenvalues of the correlation matrix Cjk = 〈c†jck〉. For this purpose, it is necessary to

write down the charge operator QA in terms of cj and c†j operators in eq. (C.1), i.e. [91]

QA =
ℓ−1
∑

j=0

(

c†jcj −
1

2

)

=
ℓ−1
∑

j=0

c†jcj −
ℓ

2
. (C.3)

Therefore, the charged moments read

Zn(α) =
ℓ
∏

j=1

[(εj)
neiα/2 + (1− εj)

ne−iα/2], (C.4)

which provides a very simple formula for its numerical computation. The Fourier transform

of Zn(α) gives the symmetry resolved moments and entropies.

For the discretisation of the scalar field theory, we consider a chain of oscillators of

mass M = 1 with frequency ω0, coupled together by springs with elastic constant κ = 1.

They are described by the Hamiltonian

HB =
1

2

L−1
∑

i=0

p2i + ω2
0q

2
i + (qi+1 − qi)

2, (C.5)

where the pi and qi satisfy the canonical commutation relations [qi, qj ] = [pi, pj ] = 0 and

[qi, pj ] = iδij . In the thermodynamic limit, the correlators can be written in terms of the

hypergeometric functions [92]

〈qiqj〉 =
ζi−j+1/2

2

(

i− j − 1/2

i− j

)

2F1

(

1/2, i− j + 1/2, i− j + 1, ζ2
)

, (C.6)

〈pipj〉 =
ζi−j−1/2

2

(

i− j − 3/2

i− j

)

2F1

(

− 1/2, i− j − 1/2, i− j + 1, ζ2
)

, (C.7)

where the parameter ζ is defined by

ζ ≡
(

ω −
√
ω2 + 4

)2

4
. (C.8)

Let us denote as X and P the matrices of the correlators of positions and momenta (i.e.

Xij = 〈qiqj〉 and Pij = 〈pipj〉). The moments of the reduced density matrix of A can be

written in terms of the eigenvalues of
√
XP that we call σi (with i ∈ [1, ℓ]).

To have a continuous symmetry, we consider a complex bosonic theory which on the

lattice is a chain of complex oscillators. It is the sum of two real harmonic chains in the

variables (p(1), q(1)) and (p(2), q(2)), i.e.

HCB(p
(1) + ip(2), q(1) + iq(2)) = HB(p

(1), q(1)) +HB(p
(2), q(2)). (C.9)

The Hamiltonian (C.9) can be also written in terms of particles and antiparticles mode

operators, ak and bk, satisfying [ak, a
†
j ] = δj,k, [bk, b

†
j ] = δj,k. In terms of these operators,

the Hamiltonian (C.9) is

HCB =

L−1
∑

k=0

ωk(a
†
kak + b†kbk), ωk =

√

ω2
0 + 4 sin2

(

πk

L

)

, (C.10)
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while the charge operator reads

Q =
L−1
∑

k=0

(a†kak − b†kbk), (C.11)

i.e. the total number of particles minus the number of antiparticles. The conserved charge

can be as well written in real space and its value in a given subsystem A is the same sum

restricted to A, i.e.

QA =
∑

j∈A

a†jaj − b†jbj . (C.12)

For the charged moments, we need to compute Tr(ρnAe
iQAα), but using the form in eq. (C.12)

for QA, the trace factorises as

Zn(α) = TrρnAe
iQAα = Tr[(ρaA)

neiN
a
Aα]× [Tr(ρbA)

ne−iNb
Aα], (C.13)

where Na
A =

∑

j∈A a
†
jaj and N b

A =
∑

j∈A b
†
jbj . Using the relations between the number

operator NA and the eigenvalues of the correlation matrix σi, one finds [20]

Zn(α) =

ℓ
∏

j=1

1
(

σj +
1
2

)n − eiα
(

σj − 1
2

)n
1

(

σj +
1
2

)n − e−iα
(

σj − 1
2

)n . (C.14)

Again, this is the starting point for the computation of the symmetry resolved moments

and entropies by a Fourier transform.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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