
17 Entanglement and Tensor Network States

Jens Eisert
Freie Universität Berlin
Dahlem Center for Complex Quantum Systems

Contents
1 Correlations and entanglement in quantum many-body systems 2

1.1 Quantum many-body systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Clustering of correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Entanglement in ground states and area laws . . . . . . . . . . . . . . . . . . . 5
1.4 The notion of the ‘physical corner of Hilbert space’ . . . . . . . . . . . . . . . 10

2 Matrix product states 11
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Definitions and preparations of matrix product states . . . . . . . . . . . . . . 13
2.3 Computation of expectation values and numerical techniques . . . . . . . . . . 17
2.4 Parent Hamiltonians, gauge freedom, geometry, and symmetries . . . . . . . . 23
2.5 Tools in quantum information theory and quantum state tomography . . . . . . 27

3 Higher-dimensional tensor network states 29
3.1 Higher-dimensional projected entangled pair states . . . . . . . . . . . . . . . 29
3.2 Multi-scale entanglement renormalization . . . . . . . . . . . . . . . . . . . . 32

4 Fermionic and continuum models 34
4.1 Fermionic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Continuum models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

E. Pavarini, E. Koch, and U. Schollwöck
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17.2 Jens Eisert

1 Correlations and entanglement in
quantum many-body systems

1.1 Quantum many-body systems

In this chapter we will consider quantum lattice systems as they are ubiquitous in the condensed
matter context or in situations that mimic condensed matter systems, as provided, say, by sys-
tems of cold atoms in optical lattices. What we mean by a quantum lattice system is that we
think that we have an underlying lattice structure given: some lattice that can be captured by
a graph. The vertices of this graph are associated with a quantum degree of freedom each, re-
ferred to as constituents, while edges correspond to neighbourhood relations. Interactions in the
physical system are usually local, which means that all constituents only directly interact with
finitely many neighbours on the lattice. Particularly important is the situation when all interac-
tions except from direct nearest neighbour interactions can be safely neglected. Quantum lattice
models of this type capture strongly correlated materials often exhibiting interesting electronic
and magnetic properties. They serve as theoretical laboratories allowing to study features of
topological order and non-conventional phase transitions. Quantum systems well modelled by
lattice models in this sense also show a wealth of phenomenology in out-of-equilibrium situa-
tions, to mention only a few reasons why this kind of physical system is interesting.

In this chapter, we will provide a brief introduction into tensor network approaches to the study
of quantum lattice models. The position taken may be slightly unusual in the sense that a
rather strong emphasis is put onto methods and ideas of description, and not so much on the
phenomenology itself (which can then be derived from such a description, needless to say).
Given that it is the very development of the toolbox of tensor network methods itself that is being
reviewed here, one that has led to many recent new insights, this seems a healthy standpoint.

But there is yet another shift of emphasis that may be somewhat unexpected: namely that rather
quantum states and not so much Hamiltonians are in the focus of attention. Here it is mostly the
very nature of ground and thermal states themselves that is being considered and studied, while
Hamiltonians primarily reenter via the concept of a parent Hamiltonian. The main message of
this book chapter can be summarised in a single paragraph:
Many natural quantum lattice models have ground states that are little, in fact very little, entan-
gled in a precise sense. This shows that ‘nature is lurking in some some small corner of Hilbert
space’, one that can be essentially efficiently parametrized. This basic yet fundamental insight
allows for a plethora of new methods for the numerical simulation of quantum lattice models
using tensor network states, as well as a novel toolbox to analytically study such systems.1

1In this book chapter, we will discuss the elements of this framework, while at the same time we cannot provide
a comprehensive review. This chapter will still contain slightly more material than what is covered in the course.
For recent reviews covering related topics, see Refs. [1–5].
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1.1.1 Quantum lattice models

We start by discussing the concept of a quantum lattice model. The underlying graph G =

(V,E) capturing the lattice may, in principle, be any graph, where V is the vertex and E the
edge set. dist(., .) is then the graph-theoretical distance, so the minimum number of steps one
has to walk on the graph in order to get from one vertex to another. Particularly important
are, however, regular graphs, and even more so particularly common regular graphs. In fact,
most of the time we will be concerned with simple cubic lattices V = LD in dimension D, and
specifically one-dimensional lines for which D = 1. But also other lattices such as triangular
lattices or Kagome lattices often emerge naturally. n = |V | is referred to as the system size.
The quantum degree of freedom at each vertex can be a spin system of dimension d – which
will be the situation in the focus of attention in this chapter – or a bosonic or a fermionic
degree of freedom (which we touch upon). The entire Hilbert space of the system is hence
given by H = (Cd)⊗n in case of spin models. For bosons and fermions we consider the Fock
space. Say, if K is the Hilbert space associated with a single fermion, then we make use of
the Fock space F = ∧∗(K). Clearly, the dimension of the Hilbert space grows exponentially
with the system size, specifically dim(H) = Ω(dn) for a spin model, which means that a
numerical exact diagonalisation of the underlying Hamiltonian is doomed to failure for already
moderately large system sizes n. In fact, a naive diagonalisation of the Hamiltonian without
exploiting any additional structure would require O(d3n) operations, clearly infeasible for large
quantum systems.

1.1.2 Local Hamiltonians

All Hamiltonians considered here will feature finite-ranged interactions, which means that they
can be written in the form

H =
∑
j∈V

hj, (1)

where each hj is non-trivially supported only on finitely many sites in V (but not necessarily
on site j only). It is called k-local if each hj is supported on at most k sites, and geometrically
k-local if each hj is supported on a Vj with maxa,b∈Vj dist(a, b) = k − 1. This is a most
natural situation: Each constituent interacts then merely with its immediate neighbours in the
lattice. We will restrict attention to such geometrically k-local Hamiltonians, in fact with few
exceptions to nearest-neighbour models. One also often writes 〈j, k〉 for neighbours, so for sites
j, k ∈ V such that dist(j, k) = 1. Similarly, one also calls any observable that is non-trivially
supported only on neighbouring sites a local observable.
There are a number of famous examples of such local Hamiltonians. A Hamiltonian that has
specifically been studied countlessly many times – for good reasons – is the XY-model Hamil-
tonian on a one-dimensional line with n sites [6], where V = {1, . . . , n} andH = (C2)⊗n,

H = −1

2

∑
〈j,k〉

(
1 + γ

4
X(j)X(k) +

1− γ
4

Y (j)Y (k)

)
− λ

2

∑
j∈V

Z(j), (2)
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where γ ∈ R is called the anisotropy parameter and λ ∈ R is the magnetic field. The matrices

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
(3)

are the familiar Pauli matrices, the index referring to the site they are supported on. It should
be clear that this Hamiltonian is a local Hamiltonian of the above form. Simple as this model
is, it can be easily analytically solved by considering it as a problem of free fermions. It already
features notions of criticality, and is indeed often studied as a paradigmatic lattice model –
not the least because everything imaginable can be said about it. The situation of γ = 0 is
particularly important; then the model is also called isotropic XY model or XX model.

1.1.3 Boundary conditions

Depending on whether one identifies for the one-dimensional line V = {1, . . . , n} the site n+1

with the site 1 or not, one says that says that one has open or periodic boundary conditions.
We will also consider open and periodic boundary conditions for other cubic lattices, where
V ∈ LD. For periodic boundary conditions, one encounters then the topology of a torus in D
dimensions.

1.1.4 Ground states, thermal states, and spectral gaps

The lowest energy eigenvectors of the Hamiltonian, so the normalized state vectors that min-
imise 〈ψ|H|ψ〉, form a Hilbert space G, the ground space; one also often refers to the ground
state manifold. If the ground space is one-dimensional, the ground state is unique, otherwise it
is called degenerate. Ground states often capture the low temperature physics and their study
is ubiquitous in theoretical physics. The energy associated with the ground space is the ground
state energy, usually denoted as E0. Ground state expectation values will be denoted as 〈O〉,
O ∈ B(H) being some observable. Particularly important are local observables OA which are
supported on finitely many sites A ⊂ V only (actually most prominently on just a single site).
The Hamiltonian gap is the energy gap from the ground space to the first excited state, so

∆E = inf
|ψ〉∈H\G

〈ψ|H|ψ〉 − E0. (4)

If ∆E = 0 for a family of Hamiltonians in the thermodynamic limit of n → ∞, then one
says that the system is gapless or critical. Such critical models can be beautifully captured in
the framework of conformal field theory which is outside the scope of this book chapter. If a
positive gap exists in the thermodynamic limit, it is gapped.

1.2 Clustering of correlations

Since direct interactions are local and constituents directly see their immediate neighbours only,
one should expect that correlation functions between different constituents somehow decay with
the distance in the lattice. The correlation functions hence should be expected to inherit the
locality of interactions. It turns out that this is indeed the case.
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1.2.1 Clustering of correlations in gapped models and correlation length

Specifically, for gapped models, correlation functions always decay exponentially with the dis-
tance. This effect is also called clustering of correlations. Nearby lattice sites will still be
correlated to some extent, but these correlations become negligible for large distances. So if for
a family of models ∆E > 0 (and under very mild conditions on the lattice G which are always
satisfied for natural finite-dimensional lattices), then [8]

|〈OAOB〉 − 〈OA〉〈OB〉| ≤ Ce−dist(A,B)∆E/(2v)‖OA‖ ‖OB‖, (5)

for some suitable constant C > 0. The length scale

ξ :=
2v

∆E
> 0 (6)

emerging here is the correlation length: it is the characteristic length scale on which correlations
disappear. The feature of clustering of correlations has long been suspected to be generically
valid in gapped models and has been ‘known’ for a long time. A rigorous proof of this can
be obtained in a quite beautiful way using Lieb-Robinson bounds [7], which are bounds to the
speed of information propagation in time in quantum lattice models with local Hamiltonians,
in terms of the Lieb-Robinson velocity v > 0. By using a clever representation in the complex
plane, one can relate this statement – which as such relates to dynamical features – to ground
state properties [8]. ‖.‖ in the above expression is the operator norm, so the largest singular
value: It grasps the ‘strength’ of the observable. Again, if A and B are far away in gapped
models, in that dist(A,B) are much larger than the correlation length, then the correlation
function will essentially disappear.

1.2.2 Algebraic decay in gapless models

For gapless models the above is no longer true. Generically, correlation functions of gapless
models decay algebraically with the distance in the lattice. Then there is no longer a length
scale associated with the decay of correlation functions. Conformal field theory provides a
framework of systems exhibiting a conformal symmetry, which can be applied to the study of
critical quantum lattice systems.

1.3 Entanglement in ground states and area laws

Yet, there is a stronger form of locality inherited by the locality of interactions than merely
the decay of two-point correlation functions between any two sites. These stronger forms of
locality are captured using concepts of entanglement in quantum many-body systems. Indeed,
the insight that concepts and methods of entanglement theory – as they originally emerged in
quantum information theory – can be applied to the study of quantum many-body systems trig-
gered an explosion of interest in the community. The significance of this for grasping quantum
many-body systems in condensed-matter physics with tensor networks will become clear in a
minute.
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1.3.1 Entanglement entropies

Let us imagine we have a gapped lattice model prepared in the ground state, based on some
lattice G = (V,E). We now single out a certain subset A ⊂ V of sites, some region, and
consider its complement B := V \A. This subset will be associated with a reduced state ρA =

trB(ρ). The reduced state alone will allow to compute every expectation value of observables
supported on A; it is obtained by fixing an orthonormal basis in B and taking the partial trace.
Now, what will the von-Neumann entropy

S(ρA) = −tr(ρA log2 ρA) (7)

of the state ρA be? Of course, the entropy of the entire ground state ρ will vanish, so S(ρ) = 0,
it being a pure state, but this is not true for the entropy of reduced states. If the ground state is
unique, so if it is a pure state, which we are assuming here, this entropy reflects the degree of
entanglement [9] of the system A with respect to its complement. If A and B are in a product
state and no entanglement is present, then S(ρA) = 0. Otherwise, the entropy will be larger
the more entangled the sub-systems are, being bounded from above by the maximum value
S(ρA) ≤ |A| log2(d).
Quantum correlations make the entropy of reduced states become non-vanishing. In fact, ac-
cording to a meaningful axiomatic quantification of asymptotic entanglement manipulation, the
von-Neumann entropy uniquely quantifies the entanglement content [10] in a sense. This entan-
glement measure is called entropy of entanglement or entanglement entropy. Note that this is
only a meaningful measure of entanglement, an entanglement monotone, as one says, for pure
states; so in our context, if the ground state is non-degenerate. For mixed states, one can still
compute the entropy of the reduced state, but this would no longer amount to an entanglement
monotone (and this quantity then no longer captures the entanglement in the ground state, but
has to be replaced by other measures that we will discuss below).

1.3.2 Area laws for the entanglement entropy

So how does S(ρA) scale with the size of the |A| of the region A? Detailed knowledge about
the entropy will here be less important than the general scaling behavior in the asymptotic limit
of large regions. Questions of a similar type have a long tradition and were first asked in the
context of the scaling of black hole entropies [11]. Naively, but at the same time naturally,
one might expect this quantity to scale extensively with the size |A|: This would mean that
S(ρA) = O(|A|). After all, entropies of Gibbs states in statistical mechanics are known to
scale extensively, so one might think that the same intuition may be applied here. And indeed,
for ‘generic states’, so for random states, this is true with overwhelming probability. One can
rigorously define random states using the Haar measure of the unitaries acting on H, and finds
that the expected entanglement entropy indeed takes the maximum value |A| log2(d), up to a
correction that is exponentially small in the size of B.
This intuition, however, is not correct. Instead, one finds that the entropy scales as the boundary
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area of A, so

S(ρA) = O(|∂A|). (8)

One then also says that the entanglement entropy satisfies an area law for the entanglement
entropy. This boundary ∂A of the region A is defined as

∂A := {j ∈ A : ∃k ∈ B with dist(j, k) = 1} , (9)

For a one-dimensional system, this boundary consists of two sites only, in a cubic lattice of
dimension D > 1 it contains O(LD−1) many sites. That is, ground states of gapped models are
less entangled than they actually cood be, in fact much less entangled. This will be key to the
understanding for what follows. For a comprehensive review on area laws, see Ref. [2].

1.3.3 Proven instances of area laws

Such an area law has been proven to be valid for a number of cases:

• For any gapped one-dimensional system with a unique ground state [12]. The proof
again relies on Lieb-Robinson bounds mentioned before, albeit used in a much more
sophisticated way than in order to show the clustering of correlations. This proof has in
the meantime been significantly tightened using ideas of the detectability lemma [13].

• For gapped free bosonic and fermionic models, so for models where the Hamiltonian can
be written as a quadratic polynomial of bosonic or fermionic annihilation and creation
operators, the area law is known in fact for arbitrary lattices in any dimension [14, 15].

• For free bosonic models, the area law is even known to hold for critical, gapless models
for cubic lattices of dimension D > 1 [16].

• For some classes of states such as instances of so-called graph states [17] the area law
holds by construction.

• Most importantly for the purposes of these lecture notes, matrix product states in one-
dimensional systems and projected entangled pair states for higher-dimensional systems
also satisfy an area law [18]. As we will see in a minute, this insight is not a detail at all:
It is at the very heart of the insight why gapped quantum many-body systems can actually
be numerically simulated using tensor network states.
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• Once one has identified a system that satisfies an area law in higher-dimensions, one still
obtains an area law for local Hamiltonians that are in the same quantum phase. This has
been shown by making use of ideas of quasi-adiabatic evolution, Lieb-Robinson bounds
and bounds to the generation of entanglement via local dynamics [19, 20].

Having said that, it should be clear that these findings can be seen as a large body of evidence
that gapped many-body systems generically have the property that the ground state satisfies an
area law.

1.3.4 Violation of area laws

For critical (gapless) one-dimensional models, the situation is quite distinctly different: The
correlations decay too slowly in order to arrive at such a scaling of the entanglement entropy
and the area law is violated. Still, the corrections to an area law are small. Conformal field
theory suggests that [21, 22] S(ρA) = (c/3) log(l/a) + C where c is the conformal charge, a
the lattice spacing, and C > 0 a non-universal constant, so in fact

S(ρA) = O(log(|A|)). (10)

(again in Landau’s asymptotic notation): It is logarithmically divergent in the size of the subsys-
tem. For free fermionic models in 1D, and also for the XX model [23,24] and the non-isotropic
instance, the XY model [25], the precise scaling of the entanglement entropy has been rig-
orously proven using the Fisher-Hartwig machinery to compute Toeplitz determinants, again
finding a logarithmic divergence, confirming a scaling that has been numerically determined
in Ref. [26]. For a review, again see Ref. [14]; for an excellent non-technical introduction
specifically in entanglement entropies in quantum field theories, see Ref. [27].
How do entanglement area laws in higher-dimensional critical models scale? This question is
still largely open. It is known that critical free-fermionic systems violate an area law: For a
cubic lattice in D dimensions, one has

S(ρA) = O(LD−1 logL), (11)

which is (slightly) more than an area law would suggest [16,28,29]. Critical bosons, in contrast,
can well satisfy an area law, even if critical [16].

1.3.5 Other concepts quantifying entanglement and correlations

The entanglement entropy is a unique measure of entanglement for pure states according to
some axiomatic characterisation, but this does not mean that there are not a number of other
qualifiers that meaningfully capture the entanglement content. Importantly in the context dis-
cussed here, one may replace the von Neumann entropy S(ρA) by other Renyi-entropies

Sα(ρA) =
1

1− α
log2(tr(ρ

α
A)), (12)
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for α ≥ 0. For α ↘ 1, this quantity reduces to the von-Neumann entropy of ρA. One also has
S∞(ρA) = − log2 ‖ρA‖, where ‖ρA‖ is the operator norm of ρA and S0(ρA) = log2 rank(ρA).
These slightly more general entanglement entropies will become important for our understand-
ing of grasping ground states of one-dimensional models in terms of entanglement entropies.
Again, for any of the above proven instances, it is also true that a more general Renyi-entropic
area laws holds true as well.

For mixed states, such as for degenerate ground states or thermal states, the entropy of en-
tanglement is no longer physically meaningful to quantify the degree of entanglement. There
are essentially two strategies one can still pursue: On the one hand, one can look at measures
capturing all correlations, not only quantum correlations or entanglement. The most accepted
measure quantifying correlations is the quantum mutual information, defined as

I(A,B) := S(ρA) + S(ρB)− S(ρ). (13)

For every Gibbs state e−βH/tr(e−βH) of a local Hamiltonian for some inverse temperature β >
0 of a local HamiltonianH , this quantity is known to again satisfy an area law [30], albeit with a
prefactor that grows linearly in the inverse temperature. These bounds can also be exponentially
tightened for specific models such as the XX model [31]. On the other hand, mixed state
entanglement measures can be employed that still capture genuinely quantum correlations even
in mixed-state situations when quantum and classical correlations are intertwined. One of the
most prominent such entanglement measure is the so-called negativity [32–34], defined as

E(ρ) = ‖ρTA‖1 − 1, (14)

where ‖.‖1 is the trace norm (‖O‖1 = tr(|O|) for an operatorO) and ρTA is the partial transpose
of ρ, so the operator that is obtained by taking a partial transpose with respect to the tensor factor
belonging to subsystem A. Entanglement negativities have been studied in several contexts
[35–37]. Since the logarithmic version, called logarithmic negativity log2 ‖ρTA‖1 is an upper
bound to the entanglement entropy, such quantities have also extensively been used in the past
to derive area laws for entanglement entropies, even for non-degenerate ground states.

1.3.6 Entanglement spectra

The entropy of entanglement is just a single number, but it should be rather obvious that more
detailed information is revealed when the entire spectrum of ρA is considered. In fact, the
collection of all Renyi entropies of ρA gives precisely the same information as the spectrum of
ρA itself. Given a state ρA, it is meaningful to consider the entanglement Hamiltonian HA for
which ρA = e−HA . In fact, the full entanglement spectrum (so the spectrum of ρA) reveals a lot
of important information about the quantum many-body system and is receiving a significant
attention in the context of topological systems and boundary theories [38–41].
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1.4 The notion of the ‘physical corner of Hilbert space’

1.4.1 The exponentially large Hilbert space

We have seen that ground states of gapped quantum many-body models exhibit little entangle-
ment, in fact much less than they could feature. Interactions are short ranged, which not only
means that correlations decay strongly, but also that there is very little entanglement present in
the above sense. This is a basic, but at the same time very important, observation: It appears
in this light that natural ground states (and Gibbs states) seem to explore only a very tiny frac-
tion of Hilbert respectively state space that would in principle be available. Let us not forget
that Hilbert space is exceedingly big: For a spin system of size n and local dimension d, the
dimension scales as

dim(H) = O(dn). (15)

It should be clear that already for moderately sized systems, state vectors can no longer be
stored on a computer in order to numerically solve the system in exact diagonalisations (naively
requiringO(d3n) operations). Surely, one can and must heavily exploit symmetries and sparsity
patterns in the Hamiltonian to reduce the effective subspace that has to be considered, and then
for moderately sized systems, exact diagonalisations can provide impressive results [42]. In any
case, needless to say, one will encounter a scaling of the dimension of the relevant subspace that
is exponential in the system size.

1.4.2 Small subset occupied by natural states of quantum many-body models

The key insight here is that that the pure state exhibiting low entanglement in the sense of
satisfying an area law constitute a very small subset of all pure states. What is more, this subset
can be well approximated by tensor network states. In the end, the reason for tensor network
methods to provide such powerful tools is rooted in the fact that natural ground states satisfy area
laws (or show small violations thereof). In this sense, one might well say that the exponentially
large Hilbert space ‘is a fiction’, and the ‘natural corner of Hilbert space’ constitutes only an
exceedingly small fraction thereof. This somewhat wordy notion will be made more precise in
a minute. One should not forget, after all, that not only ground states occupy a tiny fraction of
Hilbert space, but the same holds true for all efficiently preparable quantum states: Not even a
quantum computer could efficiently prepare all states [43], in fact a far cry from that:
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2 Matrix product states

We now turn to exploiting this insight when grasping quantum many-body states in terms of
tensor network states. We start by introducing a commonly used and quite illustrative graphical
notation. We will then discuss in great detail the concept of a matrix product state which features
in the highly successful density-matrix renormalisation group (DMRG) algorithm [1,44–47]. It
is worth noting that the history of this concept is actually quite remarkable. It did appear several
times independently in the literature: Finitely correlated states as formulated in an algebraic
picture in the language of mathematical physics [48] can be viewed as translationally invariant
infinite matrix product states. In the same year as finitely correlated states were proposed, they
independently emerged implicitly in the seminal work on DMRG by Steve White [44] in the
context of condensed-matter physics – even if it took until much later until the close connection
was spotted [46, 49]. In the meantime, the DMRG method is routinely explained in terms of
matrix product states [1], a mindset that we will also follow. Yet independently, the concept of a
tensor train decomposition [50] emerged in the mathematics literature, which was again found
to be essentially equivalent to the concept of a matrix product state.

2.1 Preliminaries

2.1.1 Graphical tensor notation

A tensor can be represented as a multi-dimensional array of complex numbers. The dimension-
ality of the array required to represent it is called the order of the tensor. A scalar can be viewed
as a tensor or order 0, a vector is seen as a tensor of order 1, a matrix would be tensor of order
2, and so on. We will make extensive use of the graphical notation that goes back to Penrose
to represent tensors: We will graphically represent tensors as boxes, having a number of edges
defined by the order of the tensor. This is then how a scalar looks like,

these are vectors and dual vectors,

and this

corresponds to a matrix. A contraction of an index amounts to summing over all possible val-
ues an index takes corresponding to a shared edge. For example, a matrix product A = BC of
matrices A,B,C ∈ CN×N amounts to

Cα,β =
N∑
γ=1

Aα,γBγ,β, (16)

so here the common index γ is being contracted. Again, we can graphically represent this as
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The trace is a contraction of two indices of the same tensor, graphically

and a partial trace is

A scalar product looks like this:

The beauty and ease of this picture should be rather obvious.2 An index that is not contracted is
naturally called an open index. A contraction of a tensor network, like this one

amounts to contracting all indices that are not open. Where would one best start with such a
contraction? Indeed, the order very much matters as far as the complexity of the problem is
concerned. The scaling of the effort of contraction in the dimension of the involved tensors is
highly dependent on the contraction order, and to find the optimal order of pairwise contractions
is a computationally hard problem in its own right. In practice, one often finds good contraction
orders by inspection, however.

We now turn to the graphical representation of what we are mainly interested in, namely state
vectors of quantum many-body spin-systems with n degrees of freedom. An arbitrary state
vector |ψ〉 ∈ (Cd)⊗n

|ψ〉 =
d∑

j1,...,jn=1

cj1,...,jn|j1, . . . , jn〉 =
d∑

j1,...,jn=1

cj1,...,jn|j1〉 ⊗ · · · ⊗ |jn〉 (17)

with coefficients cj1,...,jn ∈ C for all indices can be represented by

so by a box with n edges (sometimes also called ‘physical edges’ for obvious reasons).

2We will take a pragmatic viewpoint here and will swipe some mathematical fine print concerning such graph-
ical tensor network representations of tensors over complex vector spaces under the rug which we should not too
much worry about, however.
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2.2 Definitions and preparations of matrix product states

2.2.1 Definition for periodic boundary conditions

The definition of matrix product states takes the above tensor and ‘breaks it down’ to smaller
components that are being contracted. A matrix product state [48, 51] of ‘bond dimension’ D
(with periodic boundary conditions) is a pure state with a state vector of the form

cj1,...,jn =
D∑

α,β,...,ω=1

A
(1)
α,β;j1

A
(2)
β,γ;i2

. . . A
(n)
ω,α;jn

= tr(A
(1)
j1
A

(2)
j2
. . . A

(n)
jn

), (18)

where the trace and the matrix product are taken over the contracted indices, leaving the physi-
cal indices j1, . . . , jn open. For a fixed collection of physical indices, the coefficients are hence
obtained by considering matrix products of matrices, hence ‘matrix product state’. In a graphi-
cal notation, this can be represented as

That is to say, each individual tensor is represented as

and via contraction one arrives at the above expression. The line connecting the end tensors
reflects the trace in the above expression. This graphical notation will remain very handy in
what follows.
So what is D, the bond dimension? As such, it does not have a direct physical correspondence;
this parameter can be viewed as a ‘refinement parameter’. It will also soon become clear why
it is called a bond dimension and we will turn to its significance in a minute. Matrix product
states constitute the, in many ways, most important instance of a tensor network state. They are
of key importance both in analytical approaches as well as in numerical ones, most prominently
in the density-matrix renormalisation group approach. Since we will frequently refer to such
states, we will from now on commonly abbreviate them as MPS.

2.2.2 Variational parameters of a matrix product state

We note a first important property of a matrix product state: It is described by very few numbers.
While a general state vector of a system composed of n spin-d systems is defined byO(dn) real
parameters, an MPS of bond dimension D can be represented by O(ndD2) real parameters.
For constant D, this is linear in n, as opposed to exponential in n: so this ansatz gives rise
to a drastic reduction of the number of variational parameters, to say the least. At the same
time it is true that D can be taken large enough that every state vector of a finite system can be
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represented as an MPS, if one allows D to grow exponentially in n as well. Yet, this is actually
not the main point of the definition of a matrix product state.
The key insight – one that should become increasingly clear – is that already for small bond
dimension D, an MPS is an extraordinarily good approximation of natural states emerging in
physical systems. The larger the bond dimension, so the ‘refinement parameter’ D, the larger is
the set of states that can be represented, and hence usually the quality of the approximation of
natural states. If one takes D = 1, then the above matrices merely become complex numbers
and one obtains a product state, in a variational set that is sometimes referred to as a Gutzwiller
variational state, a variant of a mean-field approach.

2.2.3 Matrix product states with open boundary conditions

The above expression corresponds to matrix product states for periodic boundary conditions.
For open boundary conditions, the matrix A(1) is taken to be no longer a matrix from CD×D,
but A(1) ∈ C1×D so as a row vector. Similarly A(n) ∈ CD×1 so it is a column vector. Then the
expression becomes

cj1,...,jn =
D∑

α,...,ω=1

A
(1)
α;j1

A
(2)
β,γ;i2

. . . A
(n)
ω;jn

= A
(1)
j1
A

(2)
j2
. . . A

(n)
jn
, (19)

and the graphical expression

2.2.4 Area laws and approximation with matrix product states

What is the significance of area laws in the context of matrix product states? It is easy to
see that for any subset A of consecutive sites of the lattice S(ρA) = O(log(D)) for a matrix
product state, so the entanglement entropy is bounded from above by a constant in n. That is to
say, MPS satisfy an area law. The behaviour of the entanglement scaling is therefore the same
for matrix product states as for ground states of gapped models. But indeed, an even stronger
converse statement is true: Every state that satisfies an area law can be efficiently approximated
by a matrix product state.
There is a bit of fine-print associated with this statement: On the one hand, the precise wording
of this statement makes use of Renyi entropic entanglement entropies as discussed above, and
not the more standard entanglement entropies based on the von-Neumann entropy. (Yet, for
all situations where a detailed understanding has been reached, this does not make a difference
anyway, so we can be rather relaxed about it.) On the other hand, any such statement is surely
one about a family of states of lattice systems of increasing system size, rather than for a single
state. So precisely, if for a family of state vectors |ψn〉 there exist constants c, C > 0 such
that for all 0 < α < 1 the Renyi entropies of the reduced state of any subsystem A of the
one-dimensional system satisfy

Sα(ρA) ≤ c log(n) + C, (20)
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then it can be efficiently approximated by an MPS (so the bond dimension will have to grow
polynomially with n, the system size, and 1/ε, where ε > 0 is the approximation error).

2.2.5 Preparation from maximally entangled pairs

There are two alternative convenient descriptions of MPS. The first one originates from a hy-
pothetical preparation from maximally entangled states. This prescription explains why MPS
can also be captured as ‘projected entangled pair states’ for one-dimensional spin chains. Let
us assume, for that purpose, that each site of a one-dimensional spin chain is not composed of
a single d-dimensional system, but in fact of two ‘virtual systems’ of dimension D. Each one
of the pair of virtual systems is maximally entangled with the respective neighbouring system,
which means that the state of this pair is described by the state vector

|ω〉 =
d∑
j=1

|j, j〉. (21)

Such a pure state is indeed ‘maximally entangled’ in that the entanglement entropy of each
subsystem takes the maximum value log2(D). These entangled states are referred to as ‘bonds’,
further motivating the above term of a ‘bond dimension’. On this system, we apply linear maps
P (j) : CD⊗CD → Cd for each of the sites j = 1, . . . , n, projecting twoD-dimensional systems
to a single system of the physical dimension d. We can hence capture the state vector as

|ψ〉 = (P (1) ⊗ · · · ⊗ P (n))|ω〉⊗(n−1). (22)

This prescription, even though it may look somewhat baroque at this point, surely defines a
valid state vector in (Cd)⊗n. The claim now is that this is an alternative description of a matrix
product state. How can that be? Let us write each of the the linear maps as

P (j) =
d∑

k=1

D∑
α,β=1

A
(j)
α,β;k|k〉〈α, β| (23)

for j = 1, . . . , n, for periodic boundary conditions, graphically

Then a moments thought reveals that we again end up in a state vector with coefficients precisely
of the form of Eq. (18). So the matrices that define the linear projection reappear in a different
role in the definition of the matrix product state. An interesting side remark is that in this picture
it is also particularly clear that MPS satisfy area laws, with log2(D) being the maximum value
the entanglement entropy can take. This picture will be particularly intuitive when generalising
the idea of MPS to higher dimensional physical systems.
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2.2.6 Sequential preparation picture

The second alternative convenient description of MPS relates to a sequential preparation of
quantum states, an idea that was implicitly already present in Ref. [48]. Here, one starts off
in a spin chain of local dimension d prepared in |0〉⊗n and lets a quantum system of dimen-
sion D sequentially interact with each of the n constituents. At the end, one makes sure
that the system is disentangled. It turns out that the state vectors generated in this way are
exactly the MPS with open boundary conditions (see, e.g., Ref. [51]). More specifically, let∑d

j=1

∑D
α,β=1A

(k)
α,β;j|α, j〉〈β, 0| be an operation on CD ⊗ Cd with

d∑
j=1

(A(k))†jA
(k)
j = I (24)

(we will see below that this can always be chosen to be true) for each k, then one obtains an MPS
with open boundary conditions of the form as in Eq. (19). This construction is interesting in
many ways: To start with, this procedure gives rise to an efficient preparation of MPS, and there
are several physical systems where one can readily think of systems sequentially interacting
in this way (for example for atoms passing through cavities). In fact, in a slightly different
language, MPS are discussed in the context of quantum memory channels, where the memory
is encoded in the D-dimensional system passed from one site to the other. The second insight is
that this sequential interaction picture plausibly motivates the exponential decay of correlation
functions that we will learn about soon: All quantum correlations have to be mediated to the
D-dimensional ‘ancilla’ system that is sequentially interacting.

2.2.7 Translationally invariant matrix product states

In the above definition, we have taken all matrices to be different. Of course, we can also in a
translationally invariant ansatz choose them to be all the same, so take for periodic boundary
conditions

A
(j)
α,β;k = Aα,β;k (25)

for all α, β = 1, . . . , D, all k = 1, . . . , d and all sites j = 1, . . . , n. Such translationally invariant
MPS make a lot of sense in analytical considerations, and obviously capture translationally
invariant models well. They are specifically important when considering the thermodynamic
limit n→∞. In numerical considerations, it is often advisable to break the symmetry and use
different matrices per site even if the Hamiltonian as such is translationally invariant.

2.2.8 Successive Schmidt decompositions

The canonical form of an MPS can also be reached by making use of a successive Schmidt
decomposition. This was first highlighted in Ref. [52]. We will be brief here, but explain the
basic idea: Generally, a Schmidt decomposition of a state vector |ψ〉 ∈ CdA ⊗ CdB of a system
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consisting of two parts A and B can be written as

|ψ〉 =

min(dA,dB)∑
j=1

λj|ψ(A)
j 〉 ⊗ |ψ

(B)
j 〉, (26)

with suitable orthonormal bases {|ψ(A)
j 〉} and {|ψ(B)

j 〉} of the respective Hilbert spaces, called
left and right Schmidt vectors and λj ≥ 0 for all j. Why is this remarkable? Because there
is only a single sum, not a double sum. One can indeed now arrive at the canonical form in a
one-dimensional MPS by starting from the left side and performing the Schmidt decomposition
between site {1} and the complement {2, . . . , n} in V . Then one can expand the left Schmidt
vectors in the original basis and continue by performing a Schmidt decomposition of the right
Schmidt vectors between {2} and {3, . . . , n} and so on, to arrive at the normal form.

2.3 Computation of expectation values and numerical techniques

2.3.1 Computation of expectation values

How can we compute expectation values of MPS? Of course, the entire idea of a tensor network
state only makes sense if we have a handle on meaningfully (at least approximately) computing
expectation values 〈ψ|O|ψ〉 of local observables O. At this point, we have good reasons to
hesitate, however, and to become a bit worried. The fact that we can describe an MPS by a few
parameters alone does not necessarily imply that we can also efficiently compute the expectation
value. For example, there are operations known, such as the permanent of a matrix, that cannot
be computed in time polynomial in the dimension of the matrix (permanent is in the complexity
class #P ).
But let us see how far we get: Let us assume that O is a local term that is supported on neigh-
bouring sites l, l + 1 only, so

O =
d∑

jl,jl+1=1

d∑
kl,kl+1=1

Ojl,jl+1;kl,kl+1
|jl, jl+1〉〈kl, kl+1|. (27)

We suppress an index specifying the support. It should be clear that the same strategy can be
applied to local terms with larger locality regions, so let us stick to nearest neighbour interaction
terms for simplicity of notation. We pick open boundary conditions (but not necessarily a
translationally invariant ansatz) to render the discussion more transparent. We now start from

〈ψ|O|ψ〉 =
d∑

j1,...,jn=1

d∑
k1,...,kn=1

c̄k1,...,kncj1,...,jnδj1,k1 . . . δjl−1,kl−1
Ojl,jl+1,kl,kl+1

δjl+2,kl+2
. . . δjn,kn .

(28)
This expression looks quite messy. Resorting the the graphical notation, it can be more trans-
parently be represented as
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Naively formulated, we would clearly encounter 2n independent sums. In the light of this
observation, one would hence be tempted to think that an effort exponential in n is needed to
compute expectation values. Needless to say that much of the advantage of a tensor network
state would disappear.
It is one of the key insights that expectation values of local observables can nevertheless be
efficiently computed – one only needs to contract the tensor network in a smart order. Let us
remind ourselves that the contraction effort is not independent on the actual order by which the
contraction is performed. We start by investigating the left hand side of the tensor network: We
can contract one index and write for the left boundary condition

Lα,β :=
d∑
j=1

A
(1)
α;jĀ

(1)
β;j, (29)

graphically represented as

Now this again gives rise to a vector from C1×D2: We have ‘doubled’ the indices and hence
encounter an edge associated with dimension D2 instead of D. We can now proceed as before,
again contracting physical indices. In this way, we arrive at the transfer operator E(k)

I . This
operator has components

(E
(k)
I )α,β;γ,δ :=

d∑
j=1

A
(k)
α,β;jĀ

(k)
γ,δ;j. (30)

At this point, the graphical notation seems straightforward

We can progress until we come to the sites on which the local observable O is supported. But
of course, we can still contract all physical indices and treat it as one new tensor, to get EO
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Finally, the right boundary condition can be captured as

Rα,β :=
∑
j=1d

A
(n)
α;jĀ

(n)
β;j , (31)

graphically

So the above graphical representation can also be sequentially read as a representation of the
expression

〈ψ|O|ψ〉 = LE
(2)
I E

(3)
I . . . E(l−1)EOE

(l+2)
I . . . E

(n−1)
I R. (32)

Of course, not only all these operators can be efficiently computed, but also the product be
performed with the same effort as it is needed to multiply a vector from CD2 with matrices from
CD2×D2 , namelyO(dD4). Since there are n sites, the total effort to compute a single expectation
value can be bounded byO(ndD4). For a local Hamiltonian withO(n) termsH this amounts to
an effortO(n2D4) to compute 〈ψ|H|ψ〉. That is to say, one can efficiently compute expectation
values of local Hamiltonians. It is easy to see that this can be further improved to O(nD3), by
using an appropriate gauge, to be specified below, and altering the contraction order still.

2.3.2 Decay of correlations in infinite matrix product states

We have seen above that MPS capture ground states of local one-dimensional gapped models
well. As such, one should expect that also common features of such models are appropriately
reflected. In particular, one should expect correlation functions to decay exponentially with the
distance in the lattice. In fact, the object we need in order to see this is the transfer operator
encountered earlier. We stick to the situation of a infinite translationally invariant MPS, so the
transfer operator

EI =
d∑
j=1

(Aj ⊗ Āj), (33)

graphically

will not carry a site index. We will consider correlation functions between two sites that we
label A and B as above. The observables supported on A and B are again OA and OB. In line
with the above definitions, we set

EOA
=

d∑
j,k=1

〈k|OA|j〉(Aj ⊗ Āk), (34)
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graphically

and similarly for OB. Then the correlation function is obtained as

〈OAOB〉 =
tr(EOA

E
dist(A,B)−1
I EOB

E
n−dist(A,B)−1
I )

tr(En
I )

. (35)

We are now specifically interested in the limit n→∞ in infinite translationally invariant MPS.
We have that

Ek
I = |r1〉〈l1|+

D2∑
j=2

λkj |rj〉〈lj|, (36)

where λ1 = 1, λ2, . . . , λD2 are the eigenvalues of EI in non-increasing order and |rj〉 and 〈lj|
the respective right and left eigenvectors. To assume that the largest eigenvalue λ1 = ‖EI‖ = 1

does not restrict generality – this merely amounts to a rescaling. We also assume that this is the
unique eigenvalue that takes the value 1. Then, in the limit n→∞,

〈OAOB〉 = 〈l1|EOA
E

dist(A,B)−1
I EOB

|r1〉. (37)

This is nothing but

〈OAOB〉 = 〈l1|EOA
|r1〉〈l1|EOB

|l1〉+
D2∑
j=2

λ
dist(A,B)−1
j 〈l1|EOA

|rj〉〈lj|EOB
|l1〉, (38)

where the first term can be identified as 〈OA〉〈OB〉. This means that |〈OAOB〉 − 〈OA〉〈OB〉|
decays exponentially in the distance dist(A,B), and the correlation length ξ > 0 is given by
the ratio of the second largest λ2 to the largest λ1 (here taken to be unity) eigenvalue of EI, so

ξ−1 = − log |λ2|. (39)

This is a very interesting observation: The decay of correlations is merely governed by the
spectral gap between the two largest eigenvalues of the transfer operator. All other details of the
transfer operator do not matter asymptotically as far as the decay of correlations is concerned.
This also means that whenever this gap is not vanishing, correlation functions always decay
exponentially. Positively put, this may be taken as yet another indication that MPS represent
ground states of gapped models well (for which correlation functions are similarly decaying).
Higher order correlation functions of the form 〈OAOBOC〉 and so on can also be efficiently
computed from the MPS representation in the same way. There is an interesting structural
insight related to this: In order to fully specify an MPS of any bond dimension, generically, the
collection of all correlation functions of order up to merely three need to be specified [53], and
not of all orders, as one would naturally expect.
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In fact, MPS cannot represent algebraically decaying correlation functions, even though one
should not forget that for sufficiently large bond dimension, MPS can well approximate states
with algebraically decaying correlation functions well. One might be tempted to think that
this is different whenever the gap is vanishing, meaning that whenever λ2 = 1 and λ1 = 1

are degenerate. This is not so, however. Then one rather encounters constant contributions to
correlation functions (we will learn about an example of this form in form of the GHZ state
below).

2.3.3 Computation of scalar products between matrix product states

It is an interesting exercise to verify that the scalar product of two different (non-translationally
invariant, open boundary condition) MPS of bond dimension D can be computed with an effort
O(ndD3). This fact can be quite helpful in practical computations.

2.3.4 Density-matrix renormalisation method in several invocations

The workhorse of the numerical study of strongly correlated one-dimensional systems is the
DMRG method, introduced in the seminal Ref. [44]. Albeit this was not the way this method
has originally been formulated, it has become clear [46,49] that it can be viewed as a variational
method over MPS: In one way or the other, one varies over MPS state vectors |ψ〉 of a given
bond dimension until for a given local Hamiltonian H =

∑
j∈V hj a good approximation of

min
〈ψ|H|ψ〉
〈ψ|ψ〉

(40)

is reached. We can describe the MPS by polynomially many (in fact in n linearly many) pa-
rameters that can be stored in a computer, and we can efficiently compute expectation values.
Since the optimisation over all parameters at once amounts to a non-convex global optimisa-
tion problem (and is hence infeasible), this task is broken down to a sequential updating of the
matrices {A(k)

jk
} of the MPS. For example, starting from randomly picked matrices in the MPS,

if one holds all matrices except those {A(j)
1 , . . . , A

(j)
d } of a site j fixed, then one can write the

optimisation problem of Eq. (40) as a minimisation over

E :=
〈ψ|H|ψ〉
〈ψ|ψ〉

=
〈A(j)|K1|A(j)〉
〈A(j)|K2|A(j)〉

(41)

with |A(j)〉 denoting the vectorized forms of the matrices and K1 and K2 being the kernels of
the respective quadratic forms. This is not only a convex quadratic optimisation problem, but
in fact an eigenvalue problem K1|A(j)〉 = EK2|A(j)〉. In this way, by ‘sweeping through the
lattice’, going from one site to the next and coming back, until convergence is reached, one can
find ground state properties essentially up to machine precision. In practice, often surprisingly
few sweeps are needed to reach a stable minimum, even if one starts off with random MPS. See
Refs. [1, 3, 45] for reviews.3

3As a side remark, strictly speaking, it is not guaranteed by this procedure that one really obtains the global
minimum when performing local variations. In fact, practically one may get stuck, and it can be beneficial to insert
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Having said that, there are, needless to say, many different methods of how to proceed and
many different ways in which one can improve this basic method. To start with, a clever use of
the gauge (as we will discuss later) is crucial to arrive at a practical implementation avoiding
ill-conditioned matrices along the way. Then, one does not have to vary over one set of matrices
per step, but can vary over pairs of matrices, in a double variational site, leading in particular
to a faster convergence and a better error control. One can employ instances of time-evolving
block decimation (TEBD) [57–59] in imaginary-time evolution (see the next subsection), or
the time-dependent variational principle [60] avoiding Trotter errors. Some variants of DMRG
avoid errors from finite-size scaling by directly referring to infinite MPS (possibly with a broken
symmetry with a finite period), such as the iDMRG method [61, 62] or iTEBD [63].

2.3.5 Matrix-product operators and mixed states

Tensor network states can not only represent pure states, but mixed quantum states as well. A
matrix product operator O ∈ B((Cd)⊗n) relates to a tensor network

O =
d∑

j1,...,jn=1

d∑
k1,...,kn=1

tr(A
(1)
j1,k1

. . . A
(n)
jn,kn

)|j1, . . . , jn〉〈k1, . . . , kn|, (42)

These operators contain mixed quantum states (and also other operators which are not positive
in the sense that eigenvalues can be negative; in fact, checking positivity of such an matrix
product operator is not straightforward). Graphically they can be represented as

One can now devise algorithms that represent mixed states such as Gibbs states e−βH/tr(e−βH)

in variants of the DMRG algorithm [64–66]. There is a second picture capturing mixed states,
which are obtained from MPS with a special structure by taking a partial trace over the purifying
degrees of freedom, here depicted in the form of an isomorphism between purified MPS and
positive instances of MPO [67]

2.3.6 Time evolution

Time evolution algorithms provide numerical computations of expectation values

〈OA〉(t) := 〈eitHOAe
−itH〉 (43)

manually artificial fluctuations [44]. In practice, this is usually not much of a problem, however. The computational
complexity of actually finding the optimal MPS, given a fixed family of Hamiltonians and a given bond dimension,
has been addressed in Refs. [54–56].
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for a local HamiltonianH and a local observableOA supported on several sites. Basically, there
are two major strategies known to proceed here, as far as MPS simulations are concerned:

• On the one hand, one can decompose the HamiltonianH = H1+H2 into a sum of an even
and an odd part, such that both Hamiltonians contain non-overlapping Hamiltonian terms
only. One can then approximate e−itH by (eitH1/keitH2/k)m for a suitable large m ∈ N,
with good control of errors. The time-evolving block decimation (TEBD) [57–59] and
variants thereof make use of that idea.

• On the other hand, one can make use of the time-dependent variational principle [60],
which relies on the variational manifold of uniform MPS mentioned above and which
avoids Trotter errors altogether.

Such methods have provided significant new insights into non-equilibrium dynamics of strongly
correlated quantum systems and have given new impetus to the study old questions of equili-
bration or thermalisation. Specifically, quenched quantum lattice models have been extensively
studied, resulting in much progress on questions of far-from-equilibrium dynamics (see, e.g.,
Refs. [68–71]).
For short times, starting from clustering initial conditions, these methods again provide very
reliable information about the evolution of the strongly correlated many-body systems. The
reason is again rooted in the above mentioned Lieb-Robinson bounds: One can show that under
local Hamiltonian dynamics, for any fixed time, an area law for Renyi entanglement entropies
holds true [72]. Hence, an efficient approximation of the true time evolved states with an MPS
is possible. The prefactor in the area law grows with time, however, leading to the situation
that the entanglement effectively increases linearly in time in worst case [73]. That is, for long
times, one cannot capture time evolution of quantum many-body systems with MPS: One hits
the ‘barrier of entanglement growth’. So-called folding methods that contract the emerging
tensors in a different way soften this problem to some extent [74]. Still, to grasp long time
dynamics is infeasible, and it is one of the interesting open problems to see to what extent this
challenge can be overcome.

2.4 Parent Hamiltonians, gauge freedom, geometry, and symmetries

At this point, it should have become clear that MPS are primarily meant to approximate natural
states, specifically ground states of gapped one-dimensional local Hamiltonian models. Yet, a
natural question that arises at this point is whether there are meaningful Hamiltonians that have
an MPS as their exact ground state. We will now take a look at this question. Starting from this
observation, we will hint at the insight that indeed, MPS (and more generally tensor network
states) are by no means only powerful tools in numerical simulations, but also give rise to a
very versatile tool in analytical considerations. Since so many questions can be fully analyti-
cally assessed (in contrast to many actual Hamiltonian problems), an entire research field has
emerged of ‘studying condensed matter physics in the MPS world’. For example, complete clas-
sifications of quantum phases have been given [75–77], new instances of Lieb-Schultz-Mattis
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theorems proven [78], fractional magnetisation considered [79] phase transitions of arbitrary
order identified [80], or a ‘Wick’s theorem’ for MPS be formulated [53]. It will be beyond the
scope of this book chapter to give a comprehensive overview of this development.

2.4.1 The AKLT and the Majumdar Gosh models

Surely, any product state is an MPS with bond dimension D = 1, so every state that has a
product state as an exact ground state will provide an example of that sort. This is not very
exciting yet, however. The most famous model that has an MPS ground state with a bond
dimension different from D = 1 is the AKLT model, named after Affleck, Kennedy, Lieb, and
Tasaki [81]. Here, the bond dimension is D = 2 while the local physical dimension is d = 3: It
is a spin-1 chain. There are many ways to progress to see that this model indeed has an MPS as
its ground state. One particularly transparent way makes use of the above projected entangled
pair picture – historically, this is actually where this construction originates from. The linear
projections are all the same for all sites and taken to be

P = ΠS=1(I⊗ iY ) (44)

where ΠS=1 is the projection onto the spin-1 subspace of two sites, and Y is the Pauli matrix.
This might look a bit awkward at first, but it is a sanity check that it takes a state defined on two
spin-1/2 systems (with Hilbert space C2 ⊗ C2) to one spin-1 state (defined on C3). The Pauli
matrix is just added here for the convention that we always start in the maximally entangled
state as defined in Eq. (21). So what this linear map essentially does is that it takes bonds
prepared in singlets and projects them into the S = 1 subspace. This surely gives rise to a valid
MPS with state vector |ψ〉 .
Why does this help to construct a Hamiltonian that has this MPS as the ground state? We can
simply take as the local Hamiltonian term hj = ΠS=2, so that surely hj|ψ〉 = 0 for all j. That is
to say, the Hamiltonian terms are the projections onto the S = 2 subspace. For the same reason,

H|ψ〉 =
∑
j

hj|ψ〉 = 0 (45)

(mildly disregarding some fine-print on the boundary conditions). But we have that hj ≥ 0,
so that each term has non-negative eigenvalues, which means that |ψ〉 must be a ground state
vector. There is some fine print involved here, as strictly speaking, we have only seen that
it constitutes a valid ground state vector, not really whether it is a unique one. This can be
shown to be true, however, by identifying the Hamiltonian in Eq. (45) as the so-called parent
Hamiltonian of the given MPS, a concept we will turn to later.
How does the resulting Hamiltonian then look like? A moment of thought reveals that it can be
written as

hj =
1

2
S(j) · S(j+1) +

1

6
(S(j) · S(j+1))2 +

1

3
, (46)

The matrices of the MPS are found to be A1 = X , A2 = (X + iY )/
√

2, A3 = −(X − iY )/
√

2.
In fact, one of the motivations to study the AKLT model is also the close resemblance to the
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spin-1 Heisenberg model the Hamiltonian of which has local terms

hj = JS(j) · S(j+1) (47)

for some J ∈ R. This model is important for numerous reasons. It is also connected to the fa-
mous Haldane conjecture, which states that integer-spin anti-ferromagnetic Heisenberg chains
are gapped [82].
Another important local Hamiltonian that has an exact MPS ground state is the one of the
Majumdar-Gosh model [83], a nearest-neighbour spin-1/2 chain of local dimension d = 2 with
Hamiltonian

H =
∑
j

(
2σ(j) · σ(j+1) + σ(j) · σ(j+2)

)
, (48)

where σ is the vector of Pauli matrices. It turns out that its ground state can be represented with
matrices of bond dimension D = 3.

2.4.2 Gauge freedom and canonical forms

An MPS is uniquely defined by the matrices defining it, but the converse is not true: There is
more than one set of matrices that give rise to the same pure state. Since

A
(k)
jk
A

(k+1)
jk+1

= A
(k)
jk
XX−1A

(k+1)
jk+1

(49)

for any X ∈ Gl(D,C), graphically represented as

one can introduce between any pair of MPS matrices an invertible matrix. Choosing a specific
X , or rather choosing such matrices for an entire MPS, amounts to choosing a so-called gauge.
This insight, basic as it is, is very helpful in many circumstances. Canonical forms, so special
forms of MPS that are particularly simple and which can be achieved by picking a suitable
gauge, are very useful in analytical considerations. They are also helpful in numerical methods:
For example, the above reduction of the effort when computing expectation values from the
naive O(n2D4) to O(nD3) is also partially due to picking the right gauge. For MPS with open
boundary conditions and bond dimension D, one can, for example, always pick a gauge in
which ∑

j

A
(k)
j (A

(k)
j )† = I, (50)∑

j

(A
(k)
j )†Λ(k−1)A

(k)
j = Λ(k), (51)

Λ(0) = Λ(n) = 1 (52)

and each Λ(k) ∈ CD×D for k = 1, . . . , n − 1 is diagonal, positive, has full rank and unit
trace. This can be shown by a successive singular value decomposition. For periodic boundary
conditions, finding appropriate normal forms is more involved, see Ref. [51].
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2.4.3 Injectivity and parent Hamiltonians

We have seen that the AKLT model has a unique MPS as its ground state, and so does the
Majumdar-Gosh model. Indeed, these are examples of a more general framework that goes
back to the seminal work of Ref. [48], where the question has been solved for infinite systems.
Here, we ask, for a finite MPS, when is it the unique ground state of a gapped local Hamiltonian?
The latter is usually called parent Hamiltonian of the MPS. Let us assume we have a MPS state
vector in the canonical form of Subsection 2.4.2

|ψ〉 =
d∑

j1,...,jn=1

A
(1)
j1
. . . A

(n)
jn
|j1, . . . , jn〉. (53)

We assume now that we can group the constituents such that the grouped MPS, now no longer
of n but of m new sites of larger local dimension, to get

|ψ〉 =
∑

j1,...,jm

B
(1)
j1
. . . B

(m)
jm
|j1, . . . , jm〉. (54)

We require that each sets of matrices {B(k)
jk
} has the property that it generates the respective

entire space of matrices.4 Then one can find local Hamiltonian terms {hj} each supported
on L + 1 sites of the original lattice such that |ψ〉 is the unique ground state vector of H =∑

j hj . This is in fact a generalisation of the above idea that we encountered in the AKLT
model (strictly speaking, there injectivity sets in at k = 2, so one would in principle arrive at
a 3-local Hamiltonian, but one can show that this Hamiltonian and the given nearest-neighbour
Hamiltonian of the AKLT model are in fact identical). The existence of a gap can for finite
systems be shown in essentially the same way as for infinite finitely correlated states [48]. The
idea that one can (under the above mild technical conditions) find a gapped local Hamiltonian
of which the MPS is the unique ground state is a very powerful one in analytical uses of MPS.

2.4.4 Group symmetries

Significant progress has been made in recent years in the study tensor networks – and specif-
ically MPS – under symmetry constraints. Here the emphasis is pushed from the study of
symmetries in Hamiltonians to those of states, but there is a close connection (making use of
the concept of a parent Hamiltonian of the previous subsection): If an MPS state is invariant
under a representation of a group, then one can choose its parent Hamiltonian to be invariant
under the same representation.
One of the key features of a translationally invariant state vector |ψ〉 on n sites is the symmetry
group G under which it is invariant: This is the group for which

u⊗ng |ψ〉 = eiφg |ψ〉, (55)

4Let {A(k)
jk
, . . . , A

(k+L−1)
jk+L−1

} correspond to the block called B(s) for some suitable s, then the above means

that the map ΓL : Gl(D,C) → (Cd)⊗L with ΓL : X 7→
∑d

jk,...,jk+L−1=1 tr(XAjk . . . Ajk+L−1
)|j1, . . . , jL〉 is

injective [51]. If for a state vector such an L can be found, then the state vector is called injective.
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where g ∈ G and ug is a unitary representation on H. It turns out that for translationally
invariant MPS that fulfill the injectivity condition this symmetry is reflected also by a group
symmetry in the tensors that define the MPS: The action of the unitary ug on the physical index
corresponds to an action of a Vg on the virtual level. More specifically, ugP = P (Vg ⊗ V̄g)

for the linear operators P defining the MPS (P = P (j) for all j in a translationally invariant
ansatz). This picture has shed new light on the concept of string order [84]. It also plays an
important role in the classification of phases [75–77], when two gapped systems are defined to
be in the same phase if and only if they can be connected by a smooth path of gapped local
Hamiltonians.

2.4.5 Manifold of matrix product states

There is an interesting geometrical structure associated with (translationally invariant) MPS. We
have seen that there is a gauge freedom in MPS, leading to an over-parametrisation. Due to this
redundancy in parametrisation, MPS have the structure of a principal fiber bundle. The bundle
space corresponds to the entire parameter space, that is, the collection of all tensors associated
with the physical sites. The base manifold, in turn, is embedded in in the Hilbert space. This
geometrical structure is fleshed out in detail in Ref. [85].

2.5 Tools in quantum information theory and quantum state tomography
2.5.1 Matrix product states in metrology

Many multi-particle entangled states that are interesting in the context of quantum informa-
tion theory and metrology can also be represented as matrix product states. The well-known
Greenberger-Horne-Zeilinger (GHZ) state with state vector

|ψ〉 = (|0, . . . , 0〉+ |1, . . . , 1〉)/
√

2, (56)

for example, can be written as a MPS with bond dimension D = 2 and A1 = |0〉〈0| and
A2 = |1〉〈1|. For practical applications in metrology, GHZ states are too fragile with respect to
noise, and other states which can also be represented as MPS are more useful [86].

2.5.2 Matrix product states in measurement based quantum computing

Cluster states are also MPS: These states are an important class of states in quantum information
theory, most prominently featuring (in their two-dimensional instance) in ideas of measurement-
based quantum computing [87, 88]: This is the idea of performing quantum computing without
the need of actual unitary control over arbitrary pairs of constituents, but rather by sequentially
(and adaptively) measuring single sites. Since read-out has to be done anyway at some stage
even in the circuit model, this amounts to an appealing picture of quantum computing. All
the entanglement ‘consumed’ in the course of the computation is already present in the initial,
rather simple, resource state. Cluster states are an instance of the more general graph states
[17], which constitute a helpful theoretical ‘laboratory’: They can be viewed as prepared in the
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following way: One starts with preparing the vertices in a lattice V in |+〉 = (|0〉+ |1〉)/
√

2 and
applying controlled phase gates |j, k〉 7→ |j, k〉eiδj,1δk,1φ to neighbouring systems; in the original
definition, the phase φ = π is chosen.5 In one-dimension, a cluster state vector is (with obvious
adaptions at the boundaries) the unique eigenvector of a set of mutually commuting stabiliser
operators

K(j) = Z(j−1)X(j)Z(j+1) (57)

for j = 2, . . . , n − 1. It is left as an interesting and not very difficult exercise to the reader to
find out how this state vector can be represented as an MPS with local dimension d = 2 and
bond dimension D = 2.
In Ref. [88] new models for measurement-based computing have been proposed, taking the idea
seriously that the matrices used in the parametrization of an MPS can be directly understood as
quantum gates on a logical space. Indeed, this mindset gives rise to a wealth of novel models,
an idea that has turned out to be fruitful since then. For example, resource states can be found
exhibiting long-range correlations and variants of the ground state of the AKLT model can
be taken to be resource states [90, 91]. In Ref. [92] a complete classification of qubit wires
(spin systems allowing for a transport of quantum information) is given in an instance where a
physically well-motivated class of universal resources can be fully understood, using ideas of
classifications of quantum channels.

2.5.3 Localizable entanglement

The ideas of the previous subsection also relate to the concept of localizable entanglement [93]:
This is the characteristic length scale with which two sites A,B ∈ V can be entangled by mak-
ing local projective measurements on all other sites V \{A,B}. This length scale can be much
longer than the traditional correlation length as in Eq. (6). In fact, there are gapped quantum
Hamiltonians the unique ground state of which exhibits an infinite localisable entanglement, but
a finite correlation length.

2.5.4 Matrix product states in quantum state tomography

The same reason why MPS (and again more general tensor network states) are so powerful
in numerical approaches to problems in condensed matter physics render them also optimally
suited for another purpose: For quantum state (or process) tomography. This is the important
and natural task of estimating an unknown state (or process) from measurements. This is ob-
viously one of the key tasks that experimentalists routinely face when performing experiments
with precisely controlled quantum systems. It is beyond the scope of the present chapter to
give a comprehensive overview over this important field of research. Still, from the above it

5In fact, even states that can be prepared by applying arbitrary non-local phase gates associated to any interac-
tion graph applied to an arbitrary MPS can be efficiently contracted. This is possible by suitably defining transfer
operators that absorb the phases in such a way that the long-range entanglement is not an obstacle to an efficient
contraction. The schemes arising from this variational set of states are referred to as renormalisation schemes with
graph enhancement [89]. Such states are efficiently contractable states strongly violating an area law.
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should be clear where the insights developed here come in: In order to faithfully reconstruct
an unknown pure generic many-body state of local dimension d and n sites from expectation
values, one needs to know O(dn) different expectation values. In order to reconstruct an un-
known MPS, in sharp contrast, merely O(nD2d) expectation values are needed, an exponential
improvement. What is more, one can obtain the relevant information from learning suitable
reduced density operators alone [94]. Similar ideas can also applied to quantum fields and con-
tinuum systems, using the concept of continuous matrix product states that we will encounter
later [53]. Without such tools, it seems that the certification of quantum experiments can soon
no longer keep up with experimental progress with controlled quantum systems.

3 Higher-dimensional tensor network states

The idea of a tensor network is by no means confined to one-dimensional quantum systems. In
fact, one would usually rather refer to an actual ‘tensor network’ if the topology is not that of a
one-dimensional chain. We start with the higher-dimensional analogue of matrix product states
and then turn to other approaches such as multi-scale entanglement renormalisation.

3.1 Higher-dimensional projected entangled pair states

3.1.1 Definition of projected entangled pair states

A projected entangled pair state (PEPS) [95], closely related to the older concept of a tensor
network state [96–98], is the natural generalisation of an MPS to higher-dimensional systems.
For a cubic lattice V = LD for D = 2 and open boundary conditions, the tensor network can be
graphically represented as

with the natural analogue for periodic boundary conditions on the torus. Similarly as before,
each of the tensors – now five index tensors A(k)

α,β,γ,δ;j – can be chosen all different for all sites
k ∈ V , with α, β, γ, δ = 1, . . . , D and j = 1, . . . , d. But they can again also all be the same
(possibly with the exception of the tensors at the boundary) in a translationally invariant ansatz
class.

Again, one can formulate an actual projected entangled pair picture: Imagine again that each
pair of physical sites in V shares with each nearest neighbour a maximally entangled state, as
defined in Eq. (21), in the virtual degrees of freedom. To this state again a linear map P (j) is
applied for each site, now (with variations at the boundary for open boundary conditions) a map
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P (k) : (CD)⊗4 → Cd, defined as

P (k) =
D∑

α,β,γ,δ=1

d∑
j=1

A
(k)
α,β,γ,δ;j|j〉〈α, β, γ, δ|. (58)

Again, one ‘projects entangled pairs’,

3.1.2 Properties of projected entangled pair states

A number of natural properties emerge that render this class of variational states a natural one:

• PEPS satisfy area laws, and it takes a moment of thought to see that the entanglement
entropy of a subset A is bounded from above by O(L logD) for D = 2: one simply
needs to disentangle as many bonds as the boundary ∂A of A contains.

• Again, if the bond dimension D is large enough, then one can approximate (or for finite
systems explicitly write out) every state as a PEPS.

• One can also again have exponential clustering of correlations. Interestingly, here al-
ready a difference emerges to MPS in one dimension: One can construct PEPS that
have algebraically decaying correlations with dist(A,B) between two sites or regions
A,B ⊂ V [18].

Such a strong statement on how well general states can be approximated with PEPS as it is
available for MPS is lacking: One expects, however, that states satisfying area laws – so pre-
sumably ground states of gapped models – can be well approximated with PEPS with a small
bond dimension D. Also, the body of numerical evidence available shows that this class of
states indeed meaningfully describes strongly correlated quantum many-body systems.

3.1.3 Approximate contraction of projected entangled pair states

Again similarly to the situation before, one can define transfer operators EI, graphically repre-
sented as

and similarly EOA
in case of the presence of a local observable. In contrast to MPS, PEPS can-

not be efficiently contracted exactly, however. Strictly speaking, the contraction is contained in
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the complexity class #P , again giving rise to a computationally hard problem [99]. It is also in-
tuitive why naive exact contractions cannot work: No matter what contraction order one picks,
one will end up with an object having a number of edges that is linear in L. Therefore, computa-
tions such as the determination of expectation values of observablesOA are, differently from the
situation in MPS, strictly speaking inefficient. This is no reason for panic, however: There are
promising results on approximate contraction techniques that allow for a good practical descrip-
tion of gapped local two-dimensional Hamiltonians. For example, one can work oneself through
the scheme and contract each row with the subsequent one: Before progressing, however, one
approximates the bond dimensions of the new tensors by those the tensors had previously [95].
This is no longer exact, but feasible and efficient (the best known such scheme displays an effort
of O(D8) in the bond dimension). Another approximate way of contracting amounts to renor-
malising the cubic lattice to a new cubic lattice of smaller system size, and again approximates
the obtained tensors of higher bond dimension by the previous ones [100, 101]. There has also
been recent insight into why such approximation methods should be expected to provide good
service, using ideas of local topological order [102].

3.1.4 Infinite methods

Again, the basic ideas have been generalised to the situation of having an infinite system to
start with, to avoid the need for finite size scaling. A number of methods have been suggested,
among them boundary-MPS methods [103], corner transfer matrix methods [96], as well as
again tensor coarse-graining methods [100,101]. These methods provide competitive numerical
simulations of two-dimensional lattice models, for a review, see Ref. [104].6

3.1.5 Exact models

It goes without saying that again PEPS are not only a useful tool in numerical studies, but in
analytical ones as well. Cluster states in two dimensions [87] are instances of PEPS, and so
are a number of other classes of states important in quantum information theory. The models of
Refs. [88,90] for measurement-based quantum computing are also based on PEPS. The possibly
most important Hamiltonian with PEPS as ground states is the toric code Hamiltonian

H = −Ja
∑
s

As − Jb
∑
p

Bp (59)

defined on the edges of a two-dimensional cubic lattice, where {As} and {Bp} are star and
plaquette operators, respectively, defined as

As =
∏
j∈s

X(j), Bp =
∏
j∈p

Z(j), (60)

6To be fair, one should add that at present, one-dimensional approaches based on matrix product states are
still better developed than those based on higher-dimensional tensor networks. The ‘crime story’ of the precise
nature of ground state of the spin-1/2 Heisenberg anti-ferromagnet on the Kagome lattice with local Hamiltonian
terms as in Eq. (47) – it is a spin liquid ground state – has finally been resolved using DMRG and a ‘snake-like’
one-dimensional ordering of the tensors of the two-dimensional Kagome lattice, and not using an algorithm using
PEPS or multi-scale renormalisation [105, 106].
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so by the product of Pauli operators around a star or around a plaquette. On the one hand, this
model is interesting in that it can be viewed as a lattice instance of a Z2 lattice gauge theory. On
the other hand, it is the most prototypical quantum lattice model exhibiting topological order.
It may hence by no surprise that the literature on this model is very rich, to say the least.
There are also models considered in the literature that can not be exactly solved by means of
PEPS, but for which variational approaches of PEPS with few variational parameters already
give good energies and significant physical insight into the model at hand, so have a somewhat
analytical flavour. Such a mindset has been followed, e.g., in the study of resonating valence
bond wave-functions [107].

3.2 Multi-scale entanglement renormalization

So far, we have been discussing tensor networks that had the same topology as the underlying
physical lattice. Needless to say, there are good reasons to choose other topologies as well. A
guideline is served by the criteria that (i) the tensor network should be described by polynomi-
ally many parameters, (ii) it should be efficiently contractible, either exactly or approximately,
and (iii) the corresponding class of quantum states should be able to grasp the natural entangle-
ment or correlation structure.

3.2.1 Tree tensor networks

Specifically, for critical models, one would expect a scale invariant ansatz class to be reasonable,
one that reflects the scale invariant nature of the ground state. A first attempt in this direction
is to think of tree tensor networks [108, 109]. For example, one can think of a binary tree
tensor network: Here, one introduces a fictious time in a renormalisation scheme where in each
step, two sites are mapped into a single one by an isometry. At the top layer of this hierarchy,
one prepares two systems in some initial pure state. This scheme has several of the above
advantages: (i) It is described by polynomially many parameters, (ii) one can efficiently contract
the network, and (iii) the states generated inherit the scale invariance of the ansatz class. There
are also disadvantages: notably, there are sites in the physical lattice that are nearest neighbours;
yet, in the tensor network they are only connected via the top layer in the hierarchy. Tree tensor
networks with an entire symmetric subspace on the top layer and not only a single state naturally
emerge as exact ground states of frustration-free spin Hamiltonians [110].

3.2.2 Multi-scale entanglement renormalisation

A generalisation has been suggested in Ref. [111], referred to as multi-scale entanglement
renormalisation (MERA). The idea can be viewed as a refinement of the binary tree mentioned
above, to what is called a binary MERA. For clarity of notation, we consider one-dimensional
chains. Again, one thinks of a tensor network having different layers or temporal steps. Let
us imagine that n = 2T , meaning that we think of T temporal layers, labeled t = 1, . . . , T .
t = 1 corresponds to the physical layer, t = T to the top layer. However, a new ingredient is
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added. Each temporal step now consists of two elementary steps. One elementary step is again
a renormalisation step, invoked by an isometry I : Cdj⊗dj → Cdj+1 satisfying I†I = I (with
d1 = d) In addition, the elementary step of a layer of disentanglers is introduced, so unitaries
U ∈ U(d2j) that let respective pairs of nearest neighbours interact, again satisfying U †U = I,

The rationale behind this approach is that one first disentangles neighbours as much as possible
before they are renormalised separately. (i) Again, one has polynomially many degrees of free-
dom, if dmax = max{dj}, actuallyO(d2maxn log(n)) many real parameters. (ii) Then contraction
is still efficient. This might not be entirely obvious. The key insight is that when computing
expectation values 〈ψ|hj|ψ〉 for a Hamiltonian term hj , since all steps are either unitary or iso-
metric, one can remove all tensors outside the causal cone of the Hamiltonian term hj , and the
tensors within the causal cone can be sequentially contracted following the temporal order: It is
clear by construction that the causal cone will have a finite width

Therefore, the contraction is possible with polynomial effort in n and in dmax. This statement
remains true for dimensions D > 1: Hence, MERA constitute an efficiently contractible net-
work in fact in any dimension. It turns out that for D > 1 and cubic lattices, MERA can
always be mapped onto a PEPS of finite bond dimension, so the set of MERA states may be
viewed as a subset of PEPS [112]. However, MERA can always be exactly contracted effi-
ciently and they exhibit a very special and meaningful structure. (iii) Indeed, MERA can be put
into contact with critical systems and conformal field theories. In several ways, one can view
a MERA as a lattice instance of a conformal field theory, an insight that has been fleshed out
in quite some detail [113–115]. First numerical implementations of this idea of a MERA were
presented in Refs. [116, 117]; in the meantime, these approaches have also been generalised to
higher-dimensional systems [118–121].
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4 Fermionic and continuum models

4.1 Fermionic models
4.1.1 Fermionic tensor networks

Models that have fermionic degrees of freedom associated with the lattice sites can be mapped
onto spin models with C2 constituents by virtue of the Jordan Wigner transformation. How-
ever, only for one-dimensional models this approach is practical, as only then a local fermionic
model is mapped again onto a local spin model. For two-dimensional fermionic models on LD

with D = 2, say, in contrast, one encounters highly non-local terms that have a locality region
growing as Ω(L), no matter what specific ordering is chosen, rendering the methods discussed
here inappropriate (and the computation of expectation values inefficient). This seems unfortu-
nate, in particular since some of the challenging and at the same time most interesting models
such as the two-dimensional fermionic Hubbard model with Hamiltonian

H = −t
∑
〈j,k〉,σ

(f †j,σfj,σ + h.c.) + U
∑
j

f †j,↑fj,↑f
†
j,↓fj,↓ (61)

for t, U ∈ R are exactly of this kind.
There is a way to overcome this obstacle, however. The prejudice to be overcome is that one
should not fix a global order beforehand, but rather update the local order ‘on the fly’, in a
way such that all expectation values 〈OA〉 are correctly reproduced and give the same values as
if one had (inefficiently) mapped the system onto a non-local spin model. This idea has been
introduced in Refs. [120–123] and further applied in Refs. [124, 125]. One way of formulating
the problem is in terms of fermionic operator circuits, more general objects than standard tensor
networks that also specify information about the local order of edges, correctly accounting for
the signs encountered when swapping fermionic modes.

4.1.2 Tensor networks in quantum chemistry

An emergent field of research is the study of systems of quantum chemistry with tensor network
methods. These are again interacting fermionic models, but this time with a Hamiltonian that
is lacking an obvious structure of locality. In second quantisation, Hamiltonians in quantum
chemistry can be written as

H =
∑
i,j∈V

Ti,jf
†
i fj +

∑
i,j,k,l∈V

Vi,j,k,lf
†
i f
†
j fkfl (62)

where V and T are some tensors that do not necessarily reflect geometrically local interactions
of spinless fermionic modes. Yet, one can still order the orbitals suitably and consider this
now as a one-dimensional quantum system, albeit one with intricate interactions, and run a
DMRG algorithm [126, 127]. Also, one can employ tree-tensor network and complete graph
approaches [128]. It is an interesting emerging field to make use of tensor network ideas to
capture such models of quantum chemistry.
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4.2 Continuum models
4.2.1 Quantum fields

We finally very briefly sketch how tensor network methods can be applied to capture continuous
systems, as they arise in quantum field theory; obviously, we will not be able to be fair to
this subject, but rather provide a glimpse into it. The type of systems that can most naturally
be captured in the way described below is constituted by one-dimensional systems of bosons
or fermions on line segments of length L, associated with field operators Ψ(x) and Ψ †(x),
where [Ψ(x), Ψ †(y)] = δ(x − y) for bosons and {Ψ(x), Ψ †(y)} = δ(x − y) for fermions,
for x, y ∈ [0, L]. A common Hamiltonian in this context is the Lieb-Liniger model, a non-
relativistic model of a continuous bosonic system with a contact interaction, with Hamiltonian

H =

∫ L

0

dx

(
dΨ †(x)

dx

dΨ(x)

dx
+ cΨ †(x)Ψ †(x)Ψ(x)Ψ(x)

)
, (63)

for some c > 0. This model is Bethe-integrable and physically important – it models, for
example, the situation of interacting cold bosonic atoms on top of atom chips – so serves as a
meaningful benchmark.

4.2.2 Continuous matrix product states

Continuous matrix product states are variational states meaningfully describing such systems.
Their state vectors are defined as

|ψ〉 = tr2

(
P exp

(∫ L

0

dx(Q(x)⊗ I +R(x)⊗ Ψ †(x))

))
|∅〉. (64)

where |∅〉 denotes the vacuum, {R(x) ∈ CD×D : x ∈ [0, L]} and {Q(x) ∈ CD×D : x ∈ [0, L]}
are position-dependent matrices reflecting a bond dimension D [129–131], and P denotes path-
ordering. How can they be seen to reflect the meaningful continuum limit of MPS? In the
translationally invariant setting – giving for simplicity of notation rise to the situation that R
and Q are not position dependent – one can think for a given L > 0 of n = L/ε lattice sites
with infinite-dimensional local Hilbert spaces of bosonic modes, and consider the limit n→∞.
For a given bond dimension D and for R,Q ∈ CD×D one can take as the matrices of the family
of translationally invariant MPS

A1 = I + εQ, A2 =
√
εR, Ak =

√
ε
k
Rk/k! , (65)

for k ≥ 1, and identify Ψj = aj/
√
ε for j = 1, . . . , n, which indeed yields Eq. (64) in the

limit n → ∞. Again, in order to compute expectation values of polynomials of field opera-
tors, one does not have to perform computations in the physical Hilbert space, but merely in
the correlation space of the (continuous) MPS. Equilibrium properties of a one-dimensional
quantum field are found to relate to non-equilibrium properties of a zero-dimensional quantum
field [129–131].
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