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Abstract
Entanglement-assisted quantum error-correcting codes (EAQECCs) constructed from
Reed–Solomon codes and BCH codes are considered in this work. It is provided
a complete and explicit formula for the parameters of EAQECCs coming from any
Reed–Solomon code, for theHermitianmetric, and from anyBCHcodewith extension
degree 2 and consecutive cyclotomic cosets, for both the Euclidean and the Hermitian
metric. The main task in this work is the computation of a completely general formula
for c, the minimum number of required maximally entangled quantum states.

Keywords EAQECC · Entanglement-assisted quantum codes · Reed–Solomon
codes · BCH codes · Subfield subcodes · Cyclotomic cosets

1 Introduction

Quantum error-correcting codes (QECCs) are mostly defined using classical linear
codes [4,13]. They were first introduced over the binary field and then the construction
was extended to an arbitrary finite field [15]. Namely, QECCs over Fq , the finite field
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with q elements, are usually constructed from self-orthogonal classical codes. We can
consider classical codes over Fq if we decide to use the Euclidean metric, and over
Fq2 , when using the Hermitian metric.

Brun et al. [2] proposed to share entanglement between encoder and decoder to sim-
plify the theory of quantum error-correction and increase the communication capacity,
giving rise to entanglement-assisted quantum error-correcting codes (EAQECCs). An
important advantage of this new construction is that one may consider an arbitrary
classical linear code, without the self-orthogonality restriction. EAQECCs were also
first defined over the binary field and then the constructionwas extended to an arbitrary
finite field [11].

The main difficulty for determining the parameters of an EAQECC, with respect
to QECCs, is the computation of the parameter c, the minimum number of required
maximally entangled quantum states in C

q ⊗ C
q . Computationally speaking, given

a concrete EAQECC, the computation of c is not intense but it is a difficult task to
provide a formula for a given family of codes. This is the main goal of the article.

Several articles have explored the construction of EAQECCs from classical linear
codes as binary BCH codes [8,18,21], constacyclic codes [17,27], constacyclic LCD
codes [24], cyclic codes [25], generalizedReed–Solomon codes [14,19,20], negacyclic
BCH codes [6,7] and algebraic-geometry codes [23]. These papers address particular
cases and determine their parameters but no general formula for the parameters of
EAQECCs using the previous families of codes is known. Amore general procedure is
given in [22], which provides parameters for EAQECCs obtained fromReed–Solomon
(RS) codes both for the Euclidean and Hermitian metric, however not all RS codes in
the Hermitian case are considered. In this regard and in this paper, we give a formula
for the parameters of all the EAQECCs that can be obtained from RS codes with
respect to the Hermitian metric (see Sect. 4).

The main aim of this article is to consider BCH codes over an arbitrary field Fq ,
that can be understood as cyclic codes but also as subfield subcodes of RS codes. We
consider BCH codes defined from consecutive cyclotomic cosets and hence we can
bound their minimum distance by the well-known BCH bound. We give a complete
and explicit formula for the parameters of the EAQECCs coming from any BCH
code (defined by consecutive cyclotomic cosets) with extension degree 2, both for
the Euclidean and the Hermitian metric. Moreover, we also determine the parameters
when we extend the classical codes by evaluating at zero. With our formulae, the
reader can easily determine the parameters of the EAQECCs obtained as mentioned.

The computation of c is performed following the geometric decomposition of a
linear code [26], thatwas stated in [11] forEAQECCs.The computations are carried out
by a careful analysis of the involved cyclotomic cosets and the q-adic decomposition
of its elements that allow us to compute the geometric decomposition of a linear
code. The geometric decomposition of a linear code endowed with an inner product
provides a basis of the code included in a specific basis of the ambient linear space.
This last basis {vi }i∈I satisfies that each vi is either orthogonal to v j for all j �= i
(symmetric) or orthogonal to v j for all j except for a unique reciprocal element vk
with k �= i (asymmetric). This means that one can determine the hull, or radical, of
the linear code easily. In this article, we compute such a decomposition by identifying
symmetric and asymmetric cosets (see Definition 4) with respect to the inner product
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considered. We notice that the method is similar to the one in [18] for quaternary BCH
codes.

In Sect. 5, we give a general formula for the parameters of EAQECCs coming from
BCH codes with the Euclidean metric and extension degree 2. We show that they have
parameters that are worse than the ones obtained with RS codes with Hermitian metric
(studied in Sect. 4). Namely, they have the same length, q2 − 1 or q2, and bound for
the minimum distance but the dimension is lower for BCH codes with the Euclidean
metric. However, BCH codes with the Euclidean metric have still some interest since
one may obtain codes whose parameter c is greater than the one obtained with RS
codes. In this way, we increase the constellation of known EAQECCs that is limited
at this moment. Moreover, the computation of c for BCH codes with the Euclidean
metric helps understanding the computation of c for BCH codes with the Hermitian
metric treated in Sect. 6, that is rather technical.

Finally, the main results of this article are given in Sect. 6, where BCH codes with
the Hermitian metric and extension degree 2 are considered. We give a completely
general formula for their parameters. Furthermore, using that formula we present
some EAQECCs with good parameters, by giving tables of them over different finite
fields whose parameters exceed the Gilbert–Varshamov (GV) bound [11]. We also
compare their parameters with the codes available in the literature, when it is possible.
We obtain long codes over Fq , with length q4 − 1 and q4, and with good parameters
[[n, k, d; c]]q . Our codes satisfy k > c and thus, they give rise to catalytic quantum
codes [3]. Note that one cannot consider the Singleton bound, n+2 ≥ k +2d + c, for
EAQECCs defined over a non-binary field since that bound is only proved for codes
defined over a binary field with d ≤ (n + 2)/2 [16], despite several articles in the
literature consider it for arbitrary fields.

The article is organized as follows: we introduce RS and BCH codes in Sect. 2 and
EAQECCs coming from them in Sect. 3. Section 4 is devoted to the study of EAQECCs
fromRS codes with respect to the Hermitian metric. To conclude, EAQECCs obtained
from BCH codes with extension degree 2 are presented in Sect. 5 in the Euclidean
case and in Sect. 6 for the Hermitian case.

2 RS and BCH codes

We introduce RS codes and BCH codes in this section. We regard BCH codes as
subfield subcodes of evaluation codes as in [1,5] instead of as cyclic codes. This
construction has the advantage that it can be extended to evaluation by polynomials
in several variables.

Let p be a prime number and consider the finite field Fp� with p� elements. Let
n = p� − 1 and Fp� [X ] the ring of polynomials in one variable with coefficients in
Fp� . Consider classes of univariate polynomials in the quotient ring Fp� [X ]/J , where
J is the ideal of Fp� [X ] generated by Xn − 1. Define

ev : Fp� [X ]/J → F
n
p�; ev( f ) = ( f (P1), f (P2), . . . , f (Pn)) ,
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where Z = {P1, P2, . . . , Pn} is the zero locus of J in Fp� . Let Δ be a subset of
H := {0, 1, . . . , n − 1}. Then, the RS code, DΔ ⊆ F

n
p� , is the code generated by

{
ev

(
Xi

)
| i ∈ Δ

}
.

Usually, one considers Δ = {0, 1, . . . , k − 1} and the RS code has parameters [p� −
1, k, p� − k]q . Moreover, one can extend the previous code by evaluating at 0 as well
and therefore, one obtains a code with parameters [p�, k, p� + 1 − k]q .

Let r be a positive integer such that r divides �.We consider first codes over the field
Fp� and then their subfield subcodes over the field Fpr . BCH codes can be defined as
subfield subcodes of the form DΔ ∩ (Fpr )

n and extend RS codes in the sense that one
can consider that a RS code is a BCH with extension degree one, that is, r = �. This
is why we may consider the same notation for both families of codes in this article.

In the ring Zn , we consider minimal cyclotomic cosets with respect to q = pr ,
minimal means that it contains exactly the elements of the form xqt , t ≥ 0, in Zn

for some x ∈ Zn under the identification Zn = H. We denote by Ix the minimal
cyclotomic coset {xqt : t ≥ 0}. For every minimal cyclotomic coset, pick its least
element, then let A be the set of all minimal representatives and {Ix }x∈A is the set
of minimal cyclotomic cosets with respect to q. Moreover, let ix := #(Ix ), with #
denoting the cardinality of a set. For convenience, we write

A = {m0 = 0 < m1 < m2 < · · · } = {m j }zj=0.

We will use the following two results which can be found in [9,10].

Proposition 1 Set Δ = ∪t
j=t ′ Im j , t

′ < t . Then, the subfield subcode of DΔ over Fq ,

EΔ = DΔ|Fq = EΔ ∩ (Fq)
n,

has dimension
∑t

j=t ′ im j .

The forthcoming Proposition 2 uses duality with respect to the two metrics we
consider in this work. These metrics are induced by two inner products: the Euclidean
inner product, where x · y = ∑n

i=1 xi yi and the source code is defined over the finite
field with q elements, and the Hermitian inner product, where x · y = ∑n

i=1 xi y
q
i and

the source code is defined over the finite field with q2 = pr elements (for a suitable r
that divides �); in this last case, we have to replace q with q2 in the above description.
Both cases, will allow us to obtain EAQECCs over the finite field with q elements by
[11].

For the sake of clarity, we consider a toy example through the article only for
illustrating the main concepts and notation.

Example 1 Let p = 2, � = 4 and r = 2. We consider the Hermitian inner product,
thus q2 = pr = 4 and n = p� − 1 = 15. The cyclotomic cosets in Z15 with respect
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to 4 are:

I0 = {0}, I1 = {1, 4}, I2 = {2, 8}, I3 = {3, 12}, I5 = {5},
I6 = {6, 9}, I7 = {7, 13}, I10 = {10}, I11 = {11, 14}.

And therefore, the set of all minimal representatives is A = {0, 1, 2, 3, 5, 6, 7, 10,
11}.

�
Proposition 2 The minimum distance of the (Euclidean or Hermitian) dual code of
EΔ, CΔ, where Δ = ∪t

j=0 Im j , is larger than or equal to mt+1 + 1 (BCH bound).

Therefore, for Δ = �(t) = ∪t
j=0 Im j , the code CΔ is known as a BCH code and it

has parameters [n, n − ∑t
j=0 im j ,≥ mt+1 + 1]pr .

For the Euclidean case, set I⊥
x := In−x and define

�(t)⊥ := (Im0 ∪ Im1 ∪ · · · ∪ Imt )
⊥

:= H\(I⊥
m0

∪ I⊥
m1

∪ · · · ∪ I⊥
mt

)

= H\(In−m0 ∪ In−m1 ∪ · · · ∪ In−mt ).

Analogously, for the Hermitian case with base field Fq2 , we set I
⊥
x := In−qx and

�(t)⊥ := H\(In−qm0 ∪ In−qm1 ∪ · · · ∪ In−qmt ). With the above notations, by [9,12],
it holds

C�(t) = E⊥
�(t) = E�(t)⊥ .

Example 2 This is a continuation of Example 1 with p = 2, � = 4, r = 2, q2 = 4 and
n = 15, we consider the Hermitian inner product. Let t = 6, then m6 = 7 and

�(6) = I0 ∪ I1 ∪ I2 ∪ I3 ∪ I5 ∪ I6 ∪ I7.

Moreover, we have that

�(6)⊥ = H\(In−0q ∪ In−1q ∪ In−2q ∪ In−3q ∪ In−5q ∪ In−6q ∪ In−7q)

= {0, 1, . . . , 14}\(I0 ∪ I7 ∪ I11 ∪ I6 ∪ I5 ∪ I3 ∪ I1)

= I2 ∪ I10.

Therefore, C�(6) = E�(6)⊥ has parameters [15, 3, 11]4. �
As for RS codes, we can extend BCH codes by evaluating at 0 as well. Then, we

obtain a code with parameters [n+1, n+1−∑t
j=0 im j ,≥ mt+1+1]pr . In this paper,

we only consider extension degree 1 or 2 (i.e., � = r or � = 2r ) and the length n of
our codes will be p� − 1 or p�.
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3 EAQECC

We compute in this section parameters of entanglement-assisted quantum error-
correcting codes coming from RS codes and BCH codes. As we have mentioned
in the previous section, for easing the notation, we consider RS codes as BCH codes
with extension degree 1. That is, for RS codes one has that r = �, n = p�−1 = pr −1,
and all the cyclotomic cosets have size 1.

From Corollary 1 and Theorem 4 in [11], we have

Theorem 3 Let E be a linear code over Fq (over Fq2 ) with length n and dimension k
and let C be its Euclidean (Hermitian) dual code that has minimum distance d. Then,
there exists an EAQECC with parameters

[[n, n − 2k + c, d; c]]q ,

where c = dim E − dim(E ∩ C).

This implies that, for Δ = �(t) = ∪t
j=0 Im j , there exists an EAQECC with param-

eters
⎡
⎣

⎡
⎣n, n − 2

t∑
j=0

im j + c,≥ mt+1 + 1; c
⎤
⎦

⎤
⎦
q

.

Hence, the only task for completely determining its parameters remains computing c.
It is not feasible to give a formula for c in the general case. The aim of this article

is to provide closed formulas for extension degree equal to 1 (RS codes) and 2. Thus,
assuming that we do not evaluate at 0, in the first case � = r , n = q − 1 when
considering codes over Fq and Euclidean duality and n = q2 − 1 when we use codes
over Fq2 and Hermitian duality, and in the second case � = 2r , n = q2 − 1 when
we consider subfield subcodes over Fq from codes over Fq2 and Euclidean duality
and n = q4 − 1 when we use subfield subcodes over Fq2 from codes over Fq4 and
Hermitian duality.

For RS codes, one can find a formula for c in [22] for the Euclidean case and a
partial result for the Hermitian case. We give a general formula for the Hermitian case
in the next section. First, we need to introduce some notation.

Definition 4 We say that a minimal cyclotomic coset is symmetric if I⊥
x = In−x = Ix

in the Euclidean case (I⊥
x = In−qx = Ix , in the Hermitian case), and asymmetric

otherwise. Let Ix be asymmetric and Iy = In−x (Iy = In−qx , in the Hermitian
case). Moreover, assume that x and y are the minimal representatives of Ix and Iy ,
respectively. Without loss of generality, we may assume that x < y, then we say that
Ix and Iy are asymmetric reciprocal cosets, that Ix is the first reciprocal asymmetric
coset (FR-asymmetric coset) and that Iy is the second reciprocal asymmetric coset
(SR-asymmetric coset).

Let IR consists of the asymmetric cosets in Δ whose reciprocal coset does not
belong to Δ and IL of the symmetric cosets in Δ and the asymmetric cosets whose
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reciprocal coset belongs to Δ as well. We have that Δ = �(t) = IR  IL (that is,
Δ = IR ∪ IL and IR ∩ IL = ∅), and in this way it holds that EIR = EΔ ∩ E⊥

Δ is the
hull, or radical, of EΔ since E⊥

Δ = EΔ⊥ (see the paragraph after Proposition 2). Note
that IR and IL are a union of minimal cyclotomic cosets. In this way, the value c is
given by #IL (see Sect. 2 in [11] for more details) since

c = dim EΔ − dim (EΔ ∩ CΔ) = #Δ − #(Δ ∩ Δ⊥) = #Δ − #(IR) = #(IL).

For a cyclotomic coset Ix that belongs to IR , we have that Ix ⊆ Δ⊥ and, on the other
hand, for a cyclotomic coset Ix that belongs to IL , we have that Ix � Δ⊥. Therefore,
for obtaining regular quantum codes, one considers a set Δ such that IL = ∅ and
hence EΔ ⊆ E⊥

Δ . On the contrary, for constructing LCD codes, one considers a set Δ
such that IR = ∅ and hence EΔ ∩ E⊥

Δ = {0}.
Remark 5 Notice that sincewe are considering consecutiveminimal cyclotomic cosets
for constructing our codes, the cardinality of IL will be given by the cardinality of the
symmetric cosets in Δ plus two times the cardinality of the SR-asymmetric cosets in
Δ.

Example 3 This is a continuation of Examples 1 and 2, with p = 2, � = 4, r = 2,
q2 = 4, n = 15, t = 6 and m6 = 7, where we consider the Hermitian inner product.

The symmetric cosets in Z15 are I0 = {0}, I5 = {5}, I10 = {10} and the pairs
of asymmetric cosets are: I1 = {1, 4} (FR-asymmetric) and I7 = {7, 13} (SR-
asymmetric), I2 = {2, 8} (FR-asymmetric) and I11 = {11, 14} (SR-asymmetric),
and I3 = {3, 12} (FR-asymmetric) and I6 = {6, 9} (SR-asymmetric).

Thus, for Δ = �(6) = I0 ∪ I1 ∪ I2 ∪ I3 ∪ I5 ∪ I6 ∪ I7 = IR  IL , we have that

IR = I2, and IL = I0 ∪ I1 ∪ I3 ∪ I5 ∪ I6 ∪ I7,

because IL = I2 since I2 is an FR-asymmetric coset whose reciprocal coset, I11, does
not belong to Δ and because IL is a union of symmetric cosets, I0 and I5, and pairs of
asymmetric cosets, I1 and I7 and I3 and I6 included in Δ. Therefore, c = #IL = 10.
Moreover, byRemark 5, one can alternatively compute c by considering the cardinality
of the symmetric cosets, I1 and I5, plus two times the cardinality of the SR-asymmetric
cosets, I6 and I7 in Δ: 1+ 1+ 2(2+ 2) = 10. This second form of computing c is the
method that we follow in the rest of the article to obtain a general formula for c. In
particular, for this code, c may be computed following our forthcoming Theorem 26,
case (2), since (q4 − 1)/(q + 1) = 5 ≤ mt < q3 + q = 10.

Finally, one has that considering Δ = �(6), one obtains an EAQECC with param-
eters

⎡
⎣

⎡
⎣n, n − 2

t∑
j=0

im j + c,≥ mt+1 + 1; c
⎤
⎦

⎤
⎦
2

= [[15, 1,≥ 11; 10]]2 .

�
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Furthermore, we can also consider RS codes and BCH codes where we evaluate at
zero to construct EAQECC, that is, the ideal J at the beginning of Sect. 2 is generated
by Xn+1 − X . In this case, we obtain an EAQECC with parameters

⎡
⎣

⎡
⎣n + 1, n − 2

t∑
j=0

im j + c,≥ mt+1 + 1; c − 1

⎤
⎦

⎤
⎦
q

,

because the length is increased by one unit and the parameter c is decreased by one
unit since the cyclotomic coset I0 = {0} is symmetric when we do not evaluate at zero
and it is FR-asymmetric otherwise by [9] (because the reciprocal coset of I0 = {0}
is In that is not contained in H). The dimension of the EAQECC remains therefore
the same as before. This allows us to increase the constellation of codes that we may
construct.

4 Hermitian RS codes

We give in this section a general formula for c in the case of EAQECCs coming from
RS codes with respect to the Hermitian metric.

Theorem 6 LetΔ = {0, 1, . . . , t} ⊆ H and consider the RS code DΔ = EΔ over Fq2 .
Let b0 + b1q be the q-adic expression of t , then the parameters of the corresponding
EAQECC are:

[[q2 − 1, (q − b1)
2 − 2b0 − 2, t + 2; b21 + 1]]q

when b0 + b1 < q − 1. And

[[q2 − 1, (q − b1 − 1)2, t + 2; b21 + 2(b0 + b1 − q) + 4]]q

otherwise (b0 + b1 ≥ q − 1).

Proof We start by noticing that, in this case and with the notation as in Sect. 2, every
considered coset has cardinality one andmt = t . By Theorem 3, it suffices to compute
the value c corresponding to the entanglement and by Remark 5 we need to decide
which values a in Δ determine a symmetric coset (contributing one to c) and which
ones determine SR-asymmetric cosets (contributing two in the computation of the
value c).

Let a ∈ Δ, with q-adic expression a = a0 + a1q, then a represents an SR-
asymmetric (respectively, a symmetric) coset if and only if a0 + a1 < q − 1
(respectively, a0 +a1 = q −1). Indeed, a represents an SR-asymmetric (respectively,
a symmetric) coset if and only (q2 − 1) − qa < a (respectively, (q2 − 1) − qa = a).
Noticing that the q-adic expression of q2 − 1 is (q − 1)q + (q − 1) and that of qa is
qa = a1 + a0q, the result follows straightforwardly.
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Then, for computing c we only need to compute twice number of values (in Δ)
a = a0 + a1q, 0 ≤ a0, a1 ≤ q − 1 such that a0 + a1 ≥ q − 1 plus the number of
values (in Δ) a = a0 + a1q, 0 ≤ a0, a1 ≤ q − 1 such that a0 + a1 = q − 1.

Δ contains the number 0 whose coset is symmetric, thus we add 1 to our compu-
tations.

The number of elements a giving rise to symmetric cosets satisfying a1 ≤ b1 − 1
equals to b1 because each value a1 determines the corresponding a0.

Next, we compute how many values a satisfy a0 + a1 ≥ q − 1 and a1 ≤ b1 − 1.
Since for any fixed a1, it holds that a0 satisfies q − 1− a1 < a0 ≤ q − 1, the number
of solutions is

∑b1−1
a1=0 a1. This sum equals (1/2)b1(b1 − 1) giving a contribution to c

of b1(b1 − 1). We have proved the first part of the result because we have obtained
c = 1+ b1(b1 − 1) + b1 = 1+ b21. Note that we cannot obtain a0 + a1 ≥ q − 1 when
b0 + b1 < q − 1 and a1 = b1.

For proving our second statement, where b0 + b1 ≥ q − 1, it suffices to add to the
value 1+b21 twice the number of integers a with q-adic expression a0 +b1q, a0 ≤ b0,
such that a0 + b1 > q − 1 plus the number of integers a with q-adic expression
a0 + b1q such that a0 + b1 = q − 1, which is exactly one. As a consequence,

c = 1 + b21 + 2(b0 + b1 − q + 1) + 1 = b21 + 2(b0 + b1 − q) + 4.

�
Considering the ideal J introduced in Sect. 2 but now generated by Xn+1 − X

instead of Xn − 1, a very similar argument proves the following result.

Theorem 7 Let Δ = {0, 1, . . . , t} ⊆ H and consider the RS code DΔ = E� over
Fq2 . Set t = b0 + b1q, then the parameters of the corresponding EAQECC are:

[[q2, (q − b1)
2 − 2b0 − 2, t + 2; b21]]q

when b0 + b1 < q − 1. And

[[q2, (q − b1 − 1)2, t + 2; b21 + 2(b0 + b1 − q) + 3]]q
otherwise (b0 + b1 ≥ q − 1).

Remark 8 In [22, Theorem 5], parameters for EAQECCs with length q2 coming from
Reed–Solomon codes were given for some intervals. Hence, our Theorem 7 extends
[22, Theorem 5] in the sense that we consider all possible cases.

5 Euclidean BCH EAQECCwith extension degree 2

We consider in this section BCH codes over Fq with extension degree equal to 2.
Hence, the cyclotomic cosets have one or two elements. Namely, n = q2 − 1, q = pr

and l = 2r , and the cyclotomic coset whose minimal representative is x is equal to
Ix = {x, xq}. In addition, its reciprocal cyclotomic coset is In−xq = {n − xq, n − x},
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where n − xq is the minimal representative of In−qx since x ≤ xq. Moreover, Ix has
cardinality 1 if and only if x = xq.

Lemma 9 Let Ix be such that x is its minimal representative. One has that

• Ix is an FR-asymmetric coset if and only if n − xq > x.
• Ix is a symmetric coset if and only if n − xq = x.
• Ix is an SR-asymmetric coset if and only if n − xq < x.

Proof We have that In−qx is the reciprocal coset of Ix and that n − xq is the minimal
representative of In−qx . Hence, one has that

Ix = In−x if and only if n − xq = x .

Let Ix be asymmetric, then x �= n−xq (otherwise it would be symmetric). Then, Ix
is an SR-asymmetric cyclotomic coset if x > n−xq, otherwise it is an FR-asymmetric
cyclotomic coset. �

The following proposition characterizes symmetric and SR-asymmetric cosets by
the q-adic representation of its minimal representative.

Proposition 10 Let Ix be such that x is its minimal representative. Let x = a0 + a1q
with 0 ≤ a0, a1 < q, the q-adic representation of x. Then,

• Ix is a symmetric coset if and only if a0 + a1 = q − 1.
• Ix is an SR-asymmetric coset if and only if a0 + a1 > q − 1.

Proof By Lemma 9, we have that Ix is symmetric if and only if n − xq = x . That is,
if n − (a0 + a1q)q = a0 + a1q, that is equivalent to n = (a0 + a1)(q + 1) since q2

is equivalent to 1 modulo q2 − 1. Moreover, since n = q2 − 1, we have that Ix is a
symmetric coset if a0 + a1 = q − 1.

By Lemma 9, we have that Ix is an SR-asymmetric coset if and only if n− xq < x .
That is, if n − (a0 + a1q)q < a0 + a1q, that is equivalent to n < (a0 + a1)(q + 1).
Thus, we have that Ix is an SR-symmetric coset if and only if a0 + a1 > q − 1. �

For computing c, first we compute how many minimal cyclotomic cosets are sym-
metric or SR-asymmetric. Afterward, we will determine the number of symmetric
and FR-asymmetric cosets and their cardinality. The coset I0 is always in IL since
it is symmetric and hence, it will not be considered in the following computations.
We have a characterization of the cyclotomic cosets in IL by Proposition 10, namely
a0 + a1 ≥ q − 1 (i). Moreover, given a cyclotomic coset Ix we should check whether
the cyclotomic coset Ix is in Δ = �(t) = ∪t

j=0 Im j , that is, we should check that
x ≤ mt (ii). Finally, we should consider that x is a minimal representative of Ix ,
which is equivalent to a0 ≥ a1 (iii), since x = a0 + a1q ≤ a1 + a0q = xq if and only
if a0 ≥ a1.

Summarizing, setting b0 + b1q the q-adic expression of mt , we have to count the
number of elements a0 + a1q, with 0 ≤ a0, a1 ≤ q − 1 (and (a0, a1) �= (0, 0)), such
that
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(i) a0 + a1 ≥ q − 1,
(ii) a0 + a1q ≤ b0 + b1q, and
(iii) a0 ≥ a1.

We first consider the case a1 < b1. Note that in this case, condition (ii) always
holds. Our strategy consists of computing the number of pairs that satisfy (i) and
then subtracting the number of pairs that do not satisfy (iii). Let a1 = i , with i ∈
{0, 1, . . . , b1 − 1}. We have that (i) is equivalent to q − 1− i ≤ a0 ≤ q − 1 and hence
the number of possible values for a0 is i + 1 and the total number of possible values
for a0 and a1 is

b1−1∑
i=0

i + 1 = b1(b1 + 1)

2
. (1)

Now we consider pairs that do not satisfy equation (iii), that is, a0 < a1. Again, let
a1 = i , with i ∈ {0, 1, . . . , b1−1}, thus we have that q−1− i ≤ a0 ≤ i−1. Note that
the previous inequalities are satisfiedonlywhen (i−1)−(q−1−i)+1 = 2i−q+1 ≥ 1,
that is, when i ≥ q/2. This is equivalent to i ≥ q/2 when the characteristic is 2 and
i ≥ (q + 1)/2 when the characteristic is odd. Summarizing, both inequalities are
equivalent to i ≥ �q/2� in arbitrary characteristic. Thus, the total number of pairs that
satisfy (i) and do not satisfy (iii) is equal to

b1−1∑
i=�q/2�

2i − q + 1

=
⎧⎨
⎩
0, if b1 ≤ �q/2�,
(b1 − q/2)2, if q is even and b1 > �q/2�,
(b1 − (q + 1)/2)(b1 − (q + 1)/2 + 1), if q is odd and b1 > �q/2�,

which, in arbitrary characteristic, equals

(
max

{
0, b1 −

⌈q
2

⌉}) (
b1 −

⌊q
2

⌋)
. (2)

Let us now consider the case a1 = b1. In this case, condition (i) is equivalent to
a0 ≥ q−1−b1, condition (ii) is equivalent to a0 ≤ b0, and condition (iii) is equivalent
to a0 ≥ b1. Summarizing, we have that

max{q − 1 − b1, b1} ≤ a0 ≤ b0.

Thus, for a1 = b1 the number of pairs that satisfy (i)–(iii) is

max{0, b0 − max{q − 1 − b1, b1} + 1}. (3)

Asmentioned, we have counted the number of cyclotomic cosets that are symmetric
or SR-asymmetric, but we do not know yet their cardinality and how many of them
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are symmetric and SR-asymmetric. With respect to the number of symmetric cosets
of cardinality one, we have that x = xq and n − x = x , hence (q2 − 1) − x = x
that implies that x = (q2 − 1)/2. Therefore, there is a unique symmetric coset with
cardinality one, Ix with x = (q2 − 1)/2, if the characteristic of Fq is different from
2. Otherwise, there is no symmetric coset with cardinality one. Therefore, the number
of symmetric cosets of cardinality one in Δ is

{
0, if q is even
1, if q is odd and mt ≥ (q2 − 1)/2.

(4)

We compute now the number of SR-asymmetric cosets that have cardinality one.
For an asymmetric coset (FR or SR) with cardinality one, we have that x = xq, hence
x(q − 1) is zero modulo q2 − 1, and this implies that x is a multiple of (q + 1).
Therefore, the number of asymmetric cosets with cardinality one is �(mt )/(q + 1)�.
However, we are interested in the number of SR-asymmetric cosets with cardinality
one. To compute it, we should subtract the number of FR-asymmetric cosets with
cardinality one. Actually, among the q − 2 multiples of q + 1 (we recall that we do
not consider 0) the first half are minimal representatives of FR-asymmetric cosets
and the second half are the minimal representatives of SR-asymmetric cosets. Thus,
if the characteristic of Fq is even, there are (q − 2)/2 FR-symmetric cosets with
cardinality one. If the characteristic of Fq is odd, we should take into account that the
coset {(q2 − 1)/2} is the only symmetric coset with cardinality one. Hence, there are
(q − 3)/2 + 1 FR-asymmetric cosets with cardinality one. Therefore, for arbitrary
characteristic, the number of SR-asymmetric cosets with cardinality one in Δ is

max

{
0,

⌊
mt

q + 1

⌋
−

⌊
q − 1

2

⌋}
. (5)

Finally, we compute the number of symmetric cosets with cardinality 2. In this
case, n − xq = x , hence n = x(q + 1) and therefore x is a multiple of q − 1. Since
we are not considering 0, there are q possible multiples. However, not all of them are
minimal representatives, and only a half of them will be minimal representatives of a
coset. Hence, the number of symmetric cosets with cardinality 2 in Δ is

min

{⌊
mt

q − 1

⌋
,
⌊q
2

⌋}
. (6)

Thus, we are ready to state and prove the main result in this section.

Theorem 11 Consider the BCH code EΔ over the field Fq with extension degree 2 and
length q2 −1 given byΔ = �(t) = ∪t

j=0 Im j ⊆ H. Set b0 +b1t the q-adic expression
of mt . Then, the parameters of the corresponding EAQECC are

⎡
⎣

⎡
⎣q2 − 1, q2 − 1 − 2

t∑
j=0

im j + c,≥ mt+1 + 1; c
⎤
⎦

⎤
⎦
q

,
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where c is equal to

c = 1 + 4

(
b1(b1 + 1)

2
−

(
max

{
0, b1 −

⌈q
2

⌉}) (
b1 −

⌊q
2

⌋)

+max{0, b0 − max{q − 1 − b1, b1} + 1})
−3δ − 2

(
max

{
0,

⌊
mt

q + 1

⌋
−

⌊
q − 1

2

⌋})
− 2

(
min

{⌊
mt

q − 1

⌋
,
⌊q
2

⌋})
,

and where δ is equal to 1 if q is odd andmt ≥ (q2−1)/2, and it is equal to 0 otherwise.

Proof By Remark 5, we have that c is equal to the sum of the cardinality of the
symmetric cosets in Δ plus two times the cardinality of the SR-asymmetric cosets in
Δ.

The coset I0 = {0} is symmetric and it always contributes with 1 to the value of
c. Consider the above referenced values from (1) to (6). Then, (1)−(2)+(3) are the
number of symmetric and SR-asymmetric cosets inΔ. If they were all SR-asymmetric
cosets with cardinality 2, they would contribute with 4 times (1)−(2)+(3) to the value
c. However, this may not be the case and we should adjust the previous computation.

Note that a coset with cardinality one contributes 1 to c if it is symmetric and it
contributes 2 to c if it is SR-asymmetric. Finally, a coset with cardinality 2 that is
symmetric contributes 2 to c.

Therefore,

c = 1 + 4 × ((1) − (2) + (3)) − 3 × (4) − 2 × (5) − 2 × (6),

and the result holds. �
If one constructs the above codes as described in Sect. 2 but with the ideal J

generated by Xn+1−X instead of Xn−1, a very similar argument proves the following
result.

Theorem 12 Consider the BCH code EΔ over the field Fq with extension degree 2 and
length q2 given by Δ = �(t) = ∪t

j=0 Im j ⊆ H. Set b0 + b1t the q-adic expression of
mt . Then, the parameters of the corresponding EAQECC are

⎡
⎣

⎡
⎣q2, q2 − 2

t∑
j=0

im j + c,≥ mt+1 + 1; c
⎤
⎦

⎤
⎦
q

,

where c is equal to

c = 4

(
b1(b1 + 1)

2
−

(
max

{
0, b1 −

⌈q
2

⌉}) (
b1 −

⌊q
2

⌋)

+max{0, b0 − max{q − 1 − b1, b1} + 1})
−3δ − 2

(
max

{
0,

⌊
mt

q + 1

⌋
−

⌊
q − 1

2

⌋})
− 2

(
min

{⌊
mt

q − 1

⌋
,
⌊q
2

⌋})
,
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and where δ is equal to 1 if q is odd andmt ≥ (q2−1)/2, and it is equal to 0 otherwise.

Note that considering an RS code over the finite field with q2 elements and the
Hermitianmetric produces an EAQECCwith better parameters than the corresponding
one obtained with a BCH over the field with q elements and the Euclidean metric,
because both have the same length and bound for the minimum distance and the
dimension is larger for the RS code with the Hermitian metric. However, we notice
that it is possible to obtain a BCH code with a higher value for c, which increases the
constellation of known EAQECCs.

6 Hermitian BCH EAQECCwith extension degree 2

We consider now BCH codes over Fq2 and the Hermitian inner product to construct
EAQECCs. Set � = 2r and n = q4 − 1 in this section. Thus, the cyclotomic coset
with minimal representative x is equal to Ix = {x, q2x}, and the reciprocal cyclotomic
coset of Ix is equal to In−qx .

We can again characterize symmetric cosets and SR-asymmetric cosets in Δ =
�(t) = ∪t

j=0 Im j , but such a characterization is not as precise as for the Euclidean
case for cosets with cardinality 2. Let x be the minimal representative of Ix with
cardinality 2. In the Euclidean case, we have that n−qx is the minimal representative
of its reciprocal coset In−x . However, in the Hermitian case the reciprocal coset of
Ix is In−qx = {n − qx, n − q3x} and we do not know a priori which is its minimal
representative because any one of them can be the smallest element modulo q4 − 1.

Let (a0, a1, a2, a3) be the q-adic expansion of x , i.e., x = a0 + a1q + a2q2 +
a3q3, with 0 ≤ ai < q for 0 ≤ i ≤ 3. We denote in this section by x the 4-tuple
(a0, a1, a2, a3) as well. Note that y = q2x has q-adic expansion (a2, a3, a0, a1). We
begin by studying the cosetswith cardinality one since they can be easily characterized.

Lemma 13 Ix = {x} holds if and only if (q2 + 1) | x. Moreover, Ix has cardinality 1
if and only if the q-adic expansion of x is of the form (a, b, a, b), with 0 ≤ a, b < q.

Proof Ix = {x} if and only if x = q2x . That is, x(q2−1) = 0 modulo n = q4−1. Let
x = (a0, a1, a2, a3), since Ix = {x} we have that x = q2x and q2(a0, a1, a2, a3) =
(a2, a3, a0, a1). Therefore, (a0, a1, a2, a3) = (a2, a3, a0, a1) and the result holds. �

Next, we characterize symmetric and SR-asymmetric cosets with cardinality one.

Lemma 14 Let x = (a0, a1, a2, a3) with Ix = {x}, then
• Ix is a symmetric coset if and only if a2 + a3 = q − 1.
• Ix is an SR-asymmetric coset if and only if a2 + a3 > q − 1.

Proof Since Ix = {x}, one has that Ix is symmetric if n − qx = x , that is, if

(q − 1, q − 1, q − 1, q − 1) − (a3, a2, a3, a2) = (a2, a3, a2, a3),

which is equivalent to a2 + a3 = q − 1. Analogously, Ix is an SR-asymmetric coset
if n − qx < x , that is, if

(q − 1, q − 1, q − 1, q − 1) − (a3, a2, a3, a2) < (a2, a3, a2, a3),
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which is equivalent to a2 + a3 > q − 1. �
Thus,wehave completely characterized the cosetswith cardinality one.Weconsider

now cosets with cardinality two. As we have mentioned before, its study will be more
elaborated and complicated, although we have some positive news described in the
following result.

Lemma 15 There is no symmetric coset with cardinality 2 in the Hermitian case.

Proof Let Ix be with cardinality 2 and symmetric, then n − qx = q2x or n − qx = x .
Let us show, by contradiction, that these equalities do not hold. If n− qx = q2x , then
q4 − 1 = q(q − 1)x which implies that q divides q4 − 1, contradiction.

If n − qx = x , then n = (q + 1)x . This implies that x = (q − 1)(q2 + 1) =
−1 + q − q2 + q3 = (q − 1, 0, q − 1, 0) and, by Lemma 13, Ix has cardinality 1,
contradiction. �

Hence, among the cosetswith cardinality two,we should only count SR-asymmetric
cosets.

Lemma 16 Let Ix be with cardinality 2 and such that x is its minimal representative.
Then, Ix is an SR-asymmetric coset if and only if there exists z ∈ Ix such that n−qz <

x.

Proof Let Ix = {x, y}. Note that the minimal representative of the reciprocal cyclo-
tomic coset of Ix is n − qx or n − qy and the result follows as in Lemma 9. �

The following result is used to characterize which element is the minimal repre-
sentative of the reciprocal coset of a coset with two elements.

Lemma 17 Let Ix = {x, y} be with cardinality 2 and such that x = (a0, a1, a2, a3) is
its minimal representative. One has that:

• qx > qy if and only if a2 > a0 or a2 = a0 and a1 > a3.
• qx < qy if and only if a2 < a0 or a2 = a0 and a1 < a3.

Proof We have that qx = (a3, a0, a1, a2) and qy = (a1, a2, a3, a0). We prove the
case qx > qy, because the case qx < qy is analogous. The inequality qx > qy
holds if and only if (a3, a0, a1, a2) is greater than (a1, a2, a3, a0) with respect to the
lexicographical ordering. That is, if a2 > a0 or if a2 = a0 and a1 > a3. Note that
since qx �= qy, we cannot have that a2 = a0 and a1 = a3 and the result holds. �

Next, we characterize the cyclotomic cosets with two elements that are SR-
asymmetric cosets.

Lemma 18 Let Ix = {x, y}with cardinality 2,where x = (a0, a1, a2, a3) is itsminimal
representative. Then, Ix is an SR-asymmetric coset if and only if

• either a2 + a3 > q − 1, or a2 + a3 = q − 1 and a1 + a2 > q − 1, if qx > qy,
• either a0 + a3 > q − 1, or a0 + a3 = q − 1 and a3 + a2 > q − 1, if qx < qy.
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Proof Let us assume that qx > qy, the case qx < qy follows analogously. In this case,
the minimal representative of In−qx is n− qx . We should compute when n− qx ≤ x ,
that is, when (q − 1, q − 1, q − 1, q − 1) − (a3, a0, a1, a2) ≤ (a0, a1, a2, a3), since
n = (q − 1, q − 1, q − 1, q − 1). That is,

(q − 1, q − 1, q − 1, q − 1)

≤ (a3 + a0) + (a0 + a1)q + (a1 + a2)q
2 + (a2 + a3)q

3. (7)

We claim that (7) holds if a2 +a3 > q −1, or if a2 +a3 = q −1 and a1 +a2 > q −1.
Equivalently, we are claiming that if a2 + a3 = q − 1 and a1 + a2 = q − 1, then
Inequality (7) does not hold. Indeed, in that case we would have that a1 = a3 and,
by Lemma 17, a2 > a0 (since qx > qy). As a consequence, (7) is not true since
a0 + a1 < a2 + a1 = q − 1. �

The following definition is a key concept to study cosets with cardinality 2.

Definition 19 We define an interlude as the set of natural numbers that are between
two consecutive cosets of cardinality one and that are minimal representatives of a
coset with cardinality 2. By Lemma 13, the cyclotomic cosets of cardinality 1 are of
the form {(a, b, a, b)}, with 0 ≤ a, b < q. Hence, an interlude is formed by integers
x of the form

(a, b, a, b) < x < (a + 1, b, a + 1, b), with 0 ≤ a < q − 1 and 0 ≤ b < q,

or

(q − 1, b, q − 1, b) < x < (0, b + 1, 0, b + 1) with 0 ≤ b ≤ q − 2, and x < q2x,

to ensure that x is the minimal representative. We denote the interlude bounded by
(a, b, a, b) and (a + 1, b, a + 1, b) by [(a, b, a, b), (a + 1, b, a + 1, b)]M .

We now characterize the elements in an interlude. We will see that they are all
consecutive which explains the name.

Lemma 20 Let 0 ≤ a < q − 1 and 0 ≤ b < q, then

[(a, b, a, b), (a + 1, b, a + 1, b)]M
= {(i, j, a, b) : 0 ≤ i < q and b < j < q, or a < i < q and j = b}.

Let 0 ≤ b ≤ q − 2, then

[(q − 1, b, q − 1, b), (0, b + 1, 0, b + 1)]M
= {(i, j, q − 1, b) : 0 ≤ i < q and b < j < q}.

Proof Let us consider (a, b, a, b) < x < (a + 1, b, a + 1, b), then x can be written
in two different ways:
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(i) x = (i, j, a, b), with 0 ≤ i < q and b < j < q, or a < i < q and j = b.
(ii) x = (i, j, a + 1, b), with 0 ≤ i < q and 0 ≤ j < b, or 0 ≤ i < a + 1 and j = b.

We claim that all elements of the form described in (i) are minimal representatives,
and thus they are in an interlude, and that all the elements in (ii) are not minimal
representatives, and hence they are not in an interlude. Then, x = (i, j, a, b) is the
minimal representative of its cyclotomic coset if x < q2x and then q2(i, j, a, b) =
(a, b, i, j) > (i, j, a, b) if and only if b < j or j = b and a < i . That is, we get
all the elements in (i). Consider now x = (i, j, a + 1, b), again x is the minimal
representative of its coset if q2(i, j, a + 1, b) = (a + 1, b, i, j) > (i, j, a + 1, b),
which implies that b < j , or that a + 1 < i and b = j . Note that these conditions are
not satisfied by any element in (ii).

We consider now (q − 1, b, q − 1, b) < x < (0, b + 1, 0, b + 1), then x can be
written in two different ways:

(iii) x = (i, j, q − 1, b), with 0 ≤ i < q and b < j < q.
(iv) x = (i, j, 0, b + 1), with 0 ≤ i < q and 0 ≤ j < b + 1.

Again, we claim that the elements in (iii) are in an interlude and all the elements in (iv)
are not. One has that x = (i, j, q−1, b) is theminimal representative of its cyclotomic
coset if x < q2x and then q2(i, j, q−1, b) = (q−1, b, i, j) > (i, j, a, b) if and only
if b < j . That is, we obtain all the elements in (iii). Consider now x = (i, j, 0, b+1),
again x is theminimal representative of its coset ifq2(i, j, 0, b+1) = (0, b+1, i, j) >

(i, j, 0, b + 1), which implies that b + 1 < j . This condition is not satisfied by any
element in (iv), which concludes the proof. �
Remark 21 Let Ix be with cardinality 2 and x = (a0, a1, a2, a3) its minimal rep-
resentative, then x is in the interlude [(a2, a3, a2, a3), (a2 + 1, a3, a2 + 1, a3)]M if
a2 < q − 1, and in [(q − 1, a3, q − 1, a3), (0, a3 + 1, 0, a3 + 1)]M if a2 = q − 1.

FR-asymmetric cosets were described in [9, Theorem 3.11], where they were used
to construct regular quantum codes:

Lemma 22 Let 0 < x < (q4 − 1)/(q + 1), then Ix is an FR-asymmetric coset and x
is its minimal representative.

Next, we characterize the SR-asymmetric cyclotomic cosets whose minimal rep-
resentative is in the interlude [(q4 − 1)/(q + 1), q3 + q]M .

Lemma 23 Let x be the minimal representative of Ix , a coset with cardinality 2, with
(q4 − 1)/(q + 1) < x < q3 + q. Then, Ix is an SR-asymmetric coset. Furthermore,
there are q2 − q minimal representatives of SR-asymmetric cosets in the interlude
[(q4 − 1)/(q + 1), q3 + q]M.

Proof Note that (q4 − 1)/(q + 1) = (q − 1, 0, q − 1, 0) and q3 + q = (0, 1, 0, 1).
By Lemma 20, an element x in [(q4 − 1)/(q + 1), q3 + q]M is given by x =
(a0, a1, a2, a3) = (i, j, q − 1, 0), with 0 ≤ i < q and 0 < j < q. Hence, there
are q(q − 1) elements in the interlude that are minimal representatives of cosets, we
claim that all these cosets are SR-asymmetric.
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In fact, qx = (0, i, j, q − 1) and qy = ( j, q − 1, 0, i), where Ix = {x, y}. Thus,
qx > qy and by Lemma 17, it holds that a2 > a0 or a2 = a0 and a1 > a3. By
Lemma 18, the result follows because a2 + a3 = q − 1 and a1 + a2 > q − 1 since
(q − 1) + 0 = (q − 1) and j + (q − 1) > q − 1 (because j > 0). �

Our aim in the following lemmas is to count the quantity of SR-asymmetric cosets
in an arbitrary interlude. We divide our study in two cases, for a2 + a3 < q − 1 and
a2 + a3 ≥ q − 1. These results will be used when proving the main theorem.

Lemma 24 There are a3(q − a3) minimal representatives of SR-asymmetric cosets
with cardinality 2 in the interlude [(a2, a3, a2, a3), (a2 + 1, a2, a2 + 1, a3)]M, with
a2 + a3 < q − 1.

Proof Let x ∈ [(a2, a3, a2, a3), (a2 + 1, a2, a2 + 1, a3)]M . By Lemma 20, x =
(i, j, a2, a3), with 0 ≤ i < q and a3 < j < q, or a2 < i < q and j = a3.
Since a2 + a3 < q − 1, by Lemmas 15 and 18, we have that Ix is an SR-asymmetric
coset with cardinality two if and only if qx < qy. Therefore, we have that qx < qy.
By Lemma 18, Ix is an SR-asymmetric coset if i + a3 > q − 1 or if i + a3 = q − 1
and a2 + a3 > q − 1. Therefore, Ix is an SR-asymmetric coset if i + a3 > q − 1
because we are assuming that a2 + a3 < q − 1.

Let a3 < j < q, then there are a3 possible values for those i such that i+a3 > q−1,
since i < q, namely q−1−a3+1, q−1−a3+2, . . . , q−1.We consider now the case
j = a3, then there are also a3 values i satisfying i+a3 > q−1, but we have a stronger
restriction: a2 < i < q in this case, however, the assumption a2 + a3 < q − 1 implies
that all possible values of i satisfy the restriction a2 < i < q as well. Summarizing,
j can take q − a3 possible values and, for all of them, i may take a3 values. Hence,
there are (q −a3)a3 SR-asymmetric cosets with cardinality 2 in the given interlude. �
Lemma 25 There are q2 − qa3 − a2 − 1 minimal representatives of SR-asymmetric
cosets with cardinality 2 in the interlude [(a2, a3, a2, a3), (a2 + 1, a2, a2 + 1, a3)]M,
with a2+a3 ≥ q−1, and in the interlude [(q−1, a3, q−1, a3), (0, a3+1, 0, a3+1)]M
(considering a2 = q − 1). Actually, every cyclotomic coset generated by an element
in these interludes is an SR-asymmetric coset.

Proof We start by proving our first statement. Let x ∈ [(a2, a3, a2, a3), (a2 +
1, a2, a2+1, a3)]M . ByLemma20, x = (i, j, a2, a3),with 0 ≤ i < q anda3 < j < q,
or a2 < i < q and j = a3. We consider first the case qx > qy. If a2 + a3 > q − 1
then Ix is an SR-asymmetric coset by Lemma 18. If a2 + a3 = q − 1, Ix is an SR-
asymmetric coset if j + a2 > q − 1 by Lemma 18. Note that j + a2 > q − 1 if and
only if j > a3, by Lemma 20, since we are assuming that a2 +a3 = q−1 in this case.
We consider now the case qx < qy. By Lemma 17, i > a2 since j ≥ a3. Moreover,
since we assume that a2 + a3 ≥ q − 1 and i > a2, one has that i + a3 > q − 1 and by
Lemma 18, Ix is an SR-asymmetric coset. Finally, we determine how many minimal
representatives of SR-asymmetric cosets are. For every j such that a3 < j < q we
have q possible values for i (since 0 ≤ i < q), hence we have (q − 1− a3)q minimal
representatives. For a3 = j , we have q − a2 − 1 minimal representatives and then the
first statement of this result holds.
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We prove now the second statement. Assume that x is in [(q − 1, a3, q −
1, a3), (0, a3+1, 0, a3+1)]M . By Lemma 20, x = (a0, a1, a2, a3) = (i, j, q−1, a3),
with 0 ≤ i < q and a3 < j < q, and hence there are q(q − 1 − a3) possible values
for i and j . It remains to prove that Ix is an SR-asymmetric coset for all x . The case
a3 = 0 follows from Lemma 23, hence we can assume that a3 > 0. Moreover, we
have that qx > qy by Lemma 17, since a2 = q−1 ≤ a0 and a1 = j > a3. Therefore,
Ix is an SR-asymmetric coset by Lemma 18, because a2 + a3 = q − 1 + a3 > q − 1
(since a3 > 0). �

We can now prove the main result that gives the parameters of the EAQECCs we
construct in the Hermitian case.

Theorem 26 Consider the BCH code EΔ over the field Fq2 with extension degree 2
and length q4 − 1, where Δ = �(t) = ∪t

j=0 Im j ⊆ H. Set (b0, b1, b2, b3) the q-adic
expression of mt . Then, considering the Hermitian inner product, the parameters of
the corresponding EAQECC are

⎡
⎣

⎡
⎣q4 − 1, q4 − 1 − 2

t∑
j=0

im j + c,≥ mt+1 + 1; c
⎤
⎦

⎤
⎦
q

,

where

1. If mt <
q4−1
q+1 , then c = 1.

2. If q4−1
q+1 ≤ mt < q3 + q, then c = 2 + 4

(
mt − q4−1

q+1

)
.

3. If q3 + q ≤ mt , then

c = 1 + 4q(q − 1) + b23 + max{0, 2(b2 + b3 − q + 2) − 1}

+4

⎛
⎝

b3−1∑
j=1

[
(q − 1 − j)(q − j) j + ( j + 1)(q2 − q j − 1)

− (2(q − 1) − j)( j + 1)

2

]

+δ (b2b3(q − b3) + b3(b1 − b3) + max{0, b0 + b3 − q + 1)})
+(1 − δ)

[
(q − 1 − b3)b3(q − b3) + (b2 + b3 − q + 1)((q2 − qb3 − 1)

−(b2 + q − b3 − 2)/2) + (mt − (b2 + b3q + b2q
3 + b3q

3))
])

,

δ being 1 if b2 + b3 < q − 1 and δ = 0 otherwise.

Proof By Remark 5, we have that c is equal to the cardinality of the symmetric cosets
in Δ plus two times the cardinality of the SR-asymmetric cosets in Δ. Note that the
symmetric cosets of cardinality 1 contribute 1 to c and the SR-asymmetric cosets of
cardinality 1 contribute 2 to c. The SR-asymmetric cosets of cardinality 2 contribute
4 to c and that there are no symmetric cosets with cardinality 2 by Lemma 15.
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We have that the coset I0 = {0} is symmetric and it always contributes 1 to the
value of c.

1. Let mt <
q4−1
q+1 , then the results holds by Lemma 22.

2. Let (q4 −1)/(q+1) ≤ mt < q3 +q = (q4 −1)/(q+1)+q2 +1. By Lemma 13,
the cyclotomic coset generated by (q4 − 1)/(q + 1) has cardinality 1 and it is
symmetric by Lemma 14.
By Lemma 23, an element greater than (q4 − 1)/(q + 1) and smaller than or
equal to mt , that is a minimal representative of a cyclotomic coset, generates an
SR-asymmetric coset. Hence, there are mt − (q4 − 1)/(q + 1) SR-asymmetric
cosets.

3. Let q3 + q ≤ mt , by Lemma 23 we have q(q − 1) minimal representatives of
SR-asymmetric cosets in the interlude [(q4 − 1)/(q + 1), q3 + q]M , that together
with the symmetric coset with one element of (q4 − 1)/(q + 1) contribute

4q(q − 1) + 1

to c.

We count first the symmetric and SR-asymmetric cosets with cardinality 1, that is
Ix = {x} with (i, j, i, j) = x ≤ mt = (b0, b1, b2, b3). Note that (q − 1, 0, q − 1, 0)
has been already considered in part (2). By Lemma 14, we have that Ix is symmetric
if i + j = q − 1 and that Ix is an SR-asymmetric coset if i + j > q − 1.

• Let 1 ≤ j < b3, we have that Ix is symmetric for i = q − 1 − j and that is an
SR-asymmetric coset for q − j ≤ i < q. Hence, for 1 ≤ j < b3, we have b3 − 1
symmetric cosets and

∑b3−1
j=1 j = b3(b3 − 1)/2 SR-asymmetric cosets.

• For the case j = b3, we should consider (i, b3, i, b3) ≤ (b0, b1, b2, b3) that is
equivalent to i ≤ b2 by Lemma 20. Moreover, one has that i +b3 ≥ q −1. Hence,
there are max{0, b2+b3−q+2} possible values for i . Only one of them generates
a symmetric coset and the others are SR-asymmetric cosets.

Hence, the cosets with cardinality one, excepting (q4 − 1)/(q + 1), contribute

b3 − 1 + b3(b3 − 1) + max{0, 2(b2 + b3 − q + 2) − 1}
= −1 + b23 + max{0, 2(b2 + b3 − q + 2) − 1}

to c.
Now, we focus on the rest of the SR-asymmetric cosets with cardinality 2. We

first count the number of different interludes that are smaller than the interlude that
containsmt and then count the number of SR-asymmetric cosets in each interlude. By
Remark 21,mt = (b0, b1, b2, b3) is in the interlude [(b2, b3, b2, b3), (b2 +1, b3, b2 +
1, b3)]M if b2 < q − 1 and in [(q − 1, b3, q − 1, b3), (0, b3 + 1, 0, b3 + 1)]M if
b2 = q −1. Thus, the interludes that we should count are of the form [(i, j, i, j), (i +
1, j, i + 1, j)]M or [(q − 1, j, q − 1, j), (0, j + 1, 0, j + 1)]M with 0 ≤ i < q and
0 < j < b3, or 0 ≤ i < b2 and j = b3. We divide the study in two cases j < b3 and
j = b3.
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Let j < b3. We divide again the study in two cases, the first one where we can use
Lemma 24 and the second one where we can use Lemma 25.

• There are q − 1 − j interludes of type [(i, j, i, j), (i + 1, j, i + 1, j)]M , with
i+ j < q−1. By Lemma 24, they contain (q− j) j SR-asymmetric cosets. Hence,
the case j < b3 and i + j < q − 1 contributes

4
b3−1∑
j=1

(q − 1 − j)(q − j) j

to c.
• We consider now the opposite case, i + j ≥ q − 1, where we know that every
minimal representative in the interlude is an SR-asymmetric coset by Lemma 25.
Namely, there are q2 − q j − i − 1 elements in the interlude with first element
(i, j, i, j) with 0 < j < b3 and q − 1 − j ≤ i < q. Therefore, we have in total

q−1∑
i=q−1− j

(q2 − q j − i − 1) = ( j + 1)(q2 − q j − 1) −
q−1∑

i=q−1− j

i,

which means that the case j < b3 and i + j ≥ q − 1 contributes

4

(
( j + 1)(q2 − q j − 1) − (2(q − 1) − j)( j + 1)

2

)

to c.

Let j = b3. As above, we divide the study in two cases.

• We consider first the case b2 + b3 < q − 1. Note that there are b2 interludes of
the form [(i, j, i, j), (i + 1, j, i + 1, j)]M with 0 ≤ i < b2 and j = b3 that are
smaller than (b2, b3, b2, b3). Moreover, by Lemma 24, they contain b3(q − b3)
minimal representatives.
Furthermore, we should count how many elements in the interlude containing

mt , [(b2, b3, b2, b3), (b2 + 1, b3, b2 + 1, b3)]M (recall Remark 21), are smaller
than or equal to mt . In this interlude the elements are (i, k, b2, b3) with 0 ≤ i < q
and b3 < k < q, or b2 < i < q and k = b3.
Those elements that are minimal representatives of an SR-asymmetric coset

satisfy i+b3 > q−1 byLemma18, because b2+b3 < q−1 (we have thatqx > qy
does not hold if b2+b3 < q−1).Hence, combining both restrictionswe have either
q − b3 ≤ i < q and b3 < k < q or max{b2 + 1, q − b3} ≤ i < q. Note that under
the hypothesis that b2 + b3 < q − 1, we have that max{b2 + 1, q − b3} = q − b3
holds. Hence, the restrictions for belonging to the interlude and generating an
SR-asymmetric coset are either

q − b3 ≤ i < q and b3 < k < q
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or

q − b3 ≤ i < q.

Moreover, these elements are smaller than or equal tomt , that is, k < b1 or k = b1
and i ≤ b0. From these restrictions, we get (note that b3 ≤ b1 by Lemma 20):

q − b3 ≤ i < q and b3 < k < b1,

or

q − b3 ≤ i ≤ b0 and k = b1,

or

q − b3 ≤ i < q and k = b3.

Thus, the number of possible representatives of an SR-asymmetric coset is:

b3(b1 − b3 − 1) + max{0, b0 + b3 − q + 1} + b3
= b3(b1 − b3) + max{0, b0 + b3 − q + 1}.

Hence, this case contributes

4(b2b3(q − b3) + b3(b1 − b3) + max{0, b0 + b3 − q + 1)})

to c.
• We consider now the case b2 + b3 ≥ q − 1. Note that there are b2 interludes of
the form [(i, j, i, j), (i + 1, j, i + 1, j)]M with 0 ≤ i < b2 and j = b3 whose
elements are smaller than (b2, b3, b2, b3). For 0 ≤ i < q − 1 − b3, we have that
i+b3 < q−1, and by Lemma 24, they contain b3(q−b3)minimal representatives,
whichmeans that the first q−1−b3 interludes have a total of (q−1−b3)b3(q−b3)
minimal representatives of SR-asymmetric cosets.
For the remaining cosets, q − 1 − b3 ≤ i < b2, we have that i + b3 ≥ q − 1

holds and thus we should consider Lemma 25. Every minimal representative of
these interludes generates an SR-asymmetric coset and there are q2 −qb3 − i −1.
Therefore, the number of minimal representatives in this case is

b2−1∑
i=q−1−b3

(q2 − qb3 − i − 1)

= (b2 + b3 − q + 1)(q2 − qb3 − 1) −
b2−1∑

i=q−1−b3

i

= (b2 + b3 − q + 1)(q2 − qb3 − 1) − (b2 + q − b3 − 2)(b2 + b3 − q + 1)/2.
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Furthermore, we should count how many elements in the interlude that contains
mt , [(b2, b3, b2, b3), (b2 + 1, b3, b2 + 1, b3)]M , are smaller than or equal to mt .
Since, byLemma25, all elements in the interlude ofmt areminimal representatives
of anSR-asymmetric coset,we conclude that there aremt−(b2+b3q+b2q3+b3q3)
elements.
Hence, this case contributes

(q − 1 − b3)b3(q − b3) + (b2 + b3 − q + 1)((q2 − qb3 − 1)

−(b2 + q − b3 − 2)/2) + (mt − (b2 + b3q + b2q
3 + b3q

3))

to c.

Summing all contributions to c, we get the formula given in the statement for this
part (3). �

As above, if the ideal J introduced in Sect. 2 is generated by Xn+1 − X , with a
very similar proof to that of the previous theorem, the following result holds.

Theorem 27 Consider the BCH code EΔ over the field Fq2 with extension degree 2
and length q4, where Δ = �(t) = ∪t

j=0 Im j ⊆ H. Set (b0, b1, b2, b3) the q-adic
expression of mt . Then, the parameters of the corresponding EAQECC are

⎡
⎣

⎡
⎣q4, q4 − 2

t∑
j=0

im j + c,≥ mt+1 + 1; c
⎤
⎦

⎤
⎦
q

,

where

1. If mt <
q4−1
q+1 , then c = 0.

2. If q4−1
q+1 ≤ mt < q3 + q, then c = 1 + 4

(
mt − q4−1

q+1

)
.

3. If q3 + q ≤ mt , then

c = 4q(q − 1) + b23 + max{0, 2(b2 + b3 − q + 2) − 1}

+4

⎛
⎝

b3−1∑
j=1

[
(q − 1 − j)(q − j) j + ( j + 1)(q2 − q j − 1)

− (2(q − 1) − j)( j + 1)

2

]

+δ (b2b3(q − b3) + b3(b1 − b3) + max{0, b0 + b3 − q + 1)})
+(1 − δ)

[
(q − 1 − b3)b3(q − b3) + (b2 + b3 − q + 1)((q2 − qb3 − 1)

−(b2 + q − b3 − 2)/2) + (mt − (b2 + b3q + b2q
3 + b3q

3))
])

,

where δ = 1 if b2 + b3 < q − 1 and δ = 0 otherwise.
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Table 1 Parameters of
EAQECCs over F3

n k d ≥ c n k d ≥ c

80 75 3 1 80 71 4 1

80 67 5 1 80 63 6 1

80 47 11 1 80 45 12 1

80 41 13 1 80 37 14 1

80 21 18 1 80 17 21 1

80 16 22 2 80 16 23 6

80 16 24 10 80 16 25 14

Table 2 Parameters of
EAQECCs over F4

n k d ≥ c n k d ≥ c

255 250 3 1 255 246 4 1

255 242 5 1 255 238 6 1

255 194 18 1 255 192 19 1

255 176 23 1 255 172 24 1

255 148 30 1 255 144 31 1

255 136 35 1 255 134 36 1

255 118 40 1 255 114 41 1

255 81 54 6 255 81 55 10

255 81 56 14 255 81 57 18

255 81 64 46 255 81 69 50

255 79 70 50 255 75 71 50

This family of codes contains codes with good parameters. As a sample, to finish
this section and the paper, we present several tables (Tables 1, 2, 3 and 4) containing
parameters of codes obtainedwith our formulae, over different finite fields, that exceed
the Gilbert–Varshamov (GV) bound for EAQECCs [11].

Most of the EAQECCs in the literature (see Sect. 1) are binary or q-ary with
length smaller than or equal to q2. Hence, we cannot compare our codes with them.
Other articles about BCH codes consider just concrete subfamilies. To the best of
our knowledge, the only article with EAQECCs having the same length as ours is
[25]. There, the authors provide a few codes with length q4 − 1. Indeed, for a given
finite field Fq , they give two codes, with parameters [[q4 − 1, q4 − 1− 5, 3; 1]]q and
[[q4 − 1, q4 − 1 − 7, 4; 1]]q . These codes are constructed from almost MDS consta-
cyclic codes using the Hartmann–Tzeng bound. We notice that those with minimum
distance 3 are contained in the set of codes presented in this section but the ones with
minimum distance 4 are not contained in the codes presented in this section, and have
better parameters. Notice also that the cyclotomic cosets presented in this section are
consecutive to bound the minimum distance with the BCH bound but the codes with
minimum distance 4 in [25] are constructed from non-consecutive cyclotomic cosets.
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Table 3 Parameters of
EAQECCs over F5

n k d ≥ c n k d ≥ c

624 619 3 1 624 615 4 1

624 611 5 1 624 607 6 1

624 527 27 1 624 525 28 1

624 521 29 1 624 517 30 1

624 513 31 1 624 509 32 1

624 489 37 1 624 485 38 1

624 395 63 1 624 391 64 1

624 273 97 1 624 269 98 1

624 261 100 1 624 257 105 1

624 256 107 6 624 256 108 10

624 256 113 30 624 256 114 34

624 256 115 38 624 256 116 42

Table 4 Parameters of
EAQECCs over F7

n k d ≥ c n k d ≥ c

2400 2399 2 1 2400 2395 3 1

2400 2391 4 1 2400 2387 5 1

2400 2383 6 1 2400 2379 7 1

2400 2207 51 1 2400 2205 52 1

2400 2201 53 1 2400 2197 54 1

2400 2141 68 1 2400 2137 69 1

2400 1919 126 1 2400 1915 127 1

2400 1911 128 1 2400 1907 129 1

2400 1907 130 1 2400 1899 31 1

2400 1829 152 1 2400 1825 153 1

2400 1781 164 1 2400 1777 165 1

2400 1737 175 1 2400 1733 176 1
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