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Abstract

Entanglement, Complexity, and Holography

by

Mudassir Moosa

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Raphael Bousso, Chair

It was found, by studying black holes, that the compatibility of the theory of gravity and
the laws of quantum mechanics demands that the universe must act like a hologram. That
is, all the information inside a region of the universe should be encoded on a so-called
holographic screen of one-lesser dimension. This is termed the holographic principle. In a
generic spacetime, such as an expanding universe, holographic screens depend on the choice
of an observer, which is consistent with the notion that the observer is part of the system
in cosmology. In the first part of this dissertation, we study the observer-dependence of
holographic screens. This will help us understand how the fundamental description of the
universe depends on the choice of the observer. Furthermore, we study the dynamics of the
holographic screens and their geometry in the first part of this dissertation.

An example where the holographic principle is manifest is the AdS-CFT correspondence.
This correspondence connects quantum information quantities, like entanglement and com-
plexity, to geometric quantities, like area and volume, respectively. In the second and the
third part of this dissertation, we use the AdS-CFT correspondence as a tool to calculate the
entanglement entropy and the computational complexity of a quenched CFT state. Studying
the time evolution of the entanglement entropy following a quantum quench teaches us how
a CFT state thermalizes. On the other hand, studying the time evolution of the computa-
tional complexity allows us to check the validity of various recent conjectures involving black
holes and complexity.
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Chapter 1

Introduction

The theory of quantum gravity holds the key to many of our fundamental questions of physics
that can never be answered just using quantum mechanics or general relativity separately.
Some progress in this field was made by studying black holes. Bekenstein noticed that the
second law of thermodynamics loses its operational meaning in the presence of black holes [1].
For instance, the entropy of an object, like this dissertation, can be destroyed by throwing
it into a black hole. Motivated by Hawking’s area law - area of a horizon of a black hole
can never decrease assuming certain energy conditions [2] - Bekenstein conjectured that the
black holes have a finite entropy which is proportional to the area of their event horizon [3,
4]. That is,

SBH =
A

4
, (1.1)

in Planck units. This allowed him to rescue the second law of thermodynamics by proposing
what is known as the generalized second law: the entropy of a black hole plus the entropy
of the matter outside the black hole never decreases in a physical process [3, 4]. That is,
throwing this dissertation into a black hole will increase the entropy of a black hole by an
amount more than the entropy of this dissertation.

The origin of Eq. (1.1) can only be explained using the theory of quantum gravity. Though
it is still not clear how to formulate a theory of quantum gravity that is valid for all energy
scales, we can still learn a great deal about quantum properties of black holes by treating the
gravitational degrees of freedom as classical. By studying quantum field theory in a black
hole background, Hawking verified Bekenstein’s conjecture by deriving Eq. (1.1). Moreover,
he showed that a black hole is a thermal object that emits purely thermal radiation [5, 6, 7],
known as Hawking radiation.

The proportionality of entropy of a black hole to the area rather than the volume suggests
that the degrees of freedom of a black hole ‘live’ on its horizon. This was promoted by ’t
Hooft [8] and Susskind [9] to a principle of quantum gravity - the degrees of freedom of
quantum gravity inside any region can be encoded on the boundary of that region, at a
density of no more than one bit per Planck area. This is known as the holographic principle.
This implies that a theory of quantum gravity cannot be a local field theory.
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The covariant formulation of the holographic principle is given by Bousso [10]. The
covariant entropy bound, or the Bousso bound, states that the area of a closed spacelike
codimension-2 surface, B, bounds the entropy of a quantum state on any light-sheet of B
[10, 11, 12, 13]. That is,

SL[B] ≤
A[B]

4
, (1.2)

where A[B] is the area of B and L[B] is its light-sheet. A light-sheet emitted from B
is a codimension-1 null hypersurface that is orthogonal to B and whose expansion along
each generator is everywhere non-positive [10]. In other words, a light-sheet of B is a null
hypersurface orthogonal to B as long as its cross-sectional area does not increase as one
moves away from B.

The best working example of a holographic principle is Maldacena’s AdS-CFT corre-
spondence [14]. This correspondence conjectures that a theory of quantum gravity in d+ 1-
dimensional asymptotically local Anti-de Sitter (AdS) spacetime is dual to a conformal field
theory (CFT) in a d-dimensional conformal boundary of the AdS. More precisely, this con-
jecture makes the following two claims:

1. The quantum gravity state on each slice of AdS is described by the data on the bound-
ary of that slice.

2. The unitary evolution of the boundary data from one slice to another is generated by
the Hamiltonian of the boundary CFT.

Note that only the first of these two claims is demanded by the holographic principle. To
generalize the first statement for generic spacetime, such as an expanding universe, we need
to identify what codimension-1 surface is analogous to the conformal boundary of the AdS.
Bousso showed that there exists ‘observer-dependent’ codimension-1 surfaces in a generic
spacetime which can store the information of the spacetime, slice by slice [15, 16]. We
review this construction in Sec. (1.1) and study the properties of these surfaces in part. (I)
of this thesis.

The AdS-CFT correspondence provides a definition of a theory of quantum gravity in
an asymptotically locally AdS spacetime in terms of the boundary CFT. However, it is
still not very clear how to use this theory of quantum gravity. Instead, for certain CFTs
with large central charge and sparse spectrum of light operators, the gravitational theory
reduces to the classical general relativity [17]. This semiclassical approximation of the AdS-
CFT correspondence can be used to study various properties of the quantum states of the
boundary CFT and its deformation. Two of these properties are entanglement entropy and
quantum complexity which we review in Sec. (1.2) and Sec. (1.3) respectively.
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1.1 Holography in General Spacetimes

Though we have learned a good deal about quantum gravity in asymptotically locally AdS
spacetimes from the AdS-CFT correspondence, a complete understanding still eludes us as
asymptotically locally AdS spacetimes do not describe the universe that we live in. The
difficulty in generalizing the holography in a generic spacetime is that it is not clear where
the holographic information resides. That is, what hypersurface in a generic spacetime is a
generalization of the conformal boundary of the AdS. Utilizing his covariant entropy bound,
Eq. (1.2), Bousso presented a candidate for such hypersurfaces in a spacetime satisfying the
null curvature condition,

Rabk
akb ≥ 0 , (1.3)

where Rab is the Ricci tensor and ka is any null vector. In particular, he demonstrated
the existence of codimension-1 hypersurfaces, called holographic screens, which could holo-
graphically store the information of the spacetime [15, 16]. In this sense, holographic screens
are a generalization of the conformal boundary of AdS to general spacetimes. Bousso’s
construction of a holographic screen can be summarized as follows:[15, 16]

1. Foliate the spacetime (or some region of it) by a one-parameter family of null hyper-
surfaces, N(r). One way to do this is to choose an observer and shoot past (or future)
light cones from her worldline.

2. On each null hypersurface, find a cross-section, σ(r), of maximum area. The Ray-
chaudhri equation together with the null curvature condition, Eq. (1.3), imply that the
cross-sectional area of the null hypersurface, N(r), does not increase as we move away
from σ(r) in either direction. Therefore, by definition, the segments of N(r) inside and
outside of σ(r) are two separate light-sheets of σ(r). The Bousso bound, Eq. (1.2),
then bounds the entropy of the quantum state on N(r) by the area of σ(r).

3. Find a codimension-1 surface which is foliated by σ(r).

The codimension-1 surface constructed in this way bounds the entropy of the space-
time (or some region of it), null slice by null slice. This surface is called the holographic
screen, and its cross-sections, σ(r), are called its leaves. In an asymptotically locally AdS
spacetime, the maximum area cross-sections, σ(r), coincide with the cross-sections of the
conformal boundary of the AdS for any choice of null foliation. As a result, the holographic
screen in an asymptotically locally AdS spacetime is the conformal boundary. In this sense,
holographic screens are a generalization of the conformal boundary of AdS to general space-
times. However, there are various properties of holographic screens in a generic spacetime
that are not shared by the conformal boundary of AdS. First, holographic screens can lie
inside the spacetime. Secondly, they are dynamical objects. For example, the area of the
leaves increases as we move from one leaf to another [18, 19]. Thirdly, they depend on a
choice of null slicing, N(r), and hence are not unique. This non-uniqueness can be inter-
preted as an observer-dependence. It is, therefore, instructive to study the dynamics and
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observer-dependence of the holographic screens to get more insights in our search for the
quantum gravity in general spacetimes, such as cosmology. This is the subject matter of the
part. (I) of this thesis.

In Ch. (2), we study the evolution of holographic screens, both generally and in explicit
examples, including cosmology and gravitational collapse. If a holographic theory exists,
the evolution of these variables should capture the behavior of course-grained quantities in
quantum gravity. This will give us valuable information about the structure of the theory.
We also discuss how this evolution depends on the observer used to construct the screen. We
find that this ambiguity corresponds precisely to the free choice of a single function on the
screen. We also consider the background-free construction of the screen, where the spacetime
is not given. The evolution equations then constrain aspects of the full spacetime and the
screen’s embedding in it. This chapter is based on a paper written in collaboration with
Raphael Bousso [20].

In Ch. (3), we propose that the intrinsic geometry of holographic screens should be
described by the Newton-Cartan geometry. As a test of this proposal, we show that the
evolution equations of the screen can be written in a covariant form in terms of a stress
tensor, an energy current, and a momentum one-form. We derive the expressions for the
stress tensor, energy density, and momentum one-form using Brown-York action formalism.
This chapter is based on [21].

1.2 Entanglement, Quantum Fields, and Geometry

Entanglement is one of the most fundamental properties of quantum mechanics. Suppose we
have a two-partite system (system A and system B) whose Hilbert space can be factorized
as

HAB = HA ⊗HB . (1.4)

A pure state |ψAB〉 ∈ HAB is said to be entangled if the reduced state of any subsystem is
a mixed state [22]. The reduced state of any subsystem is given by starting with the global
state and tracing over the Hilbert space of the complement of that subsystem. That is, the
reduced state of the system A is given by

ρA = TrB |ψAB〉 〈ψAB| . (1.5)

The calculation of thermal radiation from a black hole was generalized by Unruh for
an accelerating observer in a flat spacetime [23]. In particular, he showed that an observer
with constant acceleration, also known as a Rindler observer, in a vacuum state of a Lorentz
invariant quantum field theory detects particles obeying a thermal probability distribution
with a temperature proportional to her acceleration. Since the Hamiltonian for a Rindler
observer is a boost operator, HR, the thermal state that she observes is given by

ρR =
1

ZR
e−2πHR , (1.6)
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where ZR ≡ Tr e−2πHR is the normalization constant. The significance of Unruh’s calculation
is that it implies that the vacuum state of a quantum field theory is entangled. To see this,
let’s consider a scalar field theory. In this case, the full Hilbert space can be factorized as

H =
⊗

x

Hx , (1.7)

where Hx is the Hilbert space at a point x on a Cauchy slice. Now note that a Rindler
observer has access to the domain of dependence of only the half of a Cauchy slice and
hence, to only half of the Hilbert space. The reduced state on this half-space is given in
Eq. (1.6). Since this reduced state is a mixed state, we deduce that the global pure state
must be entangled.

This entanglement structure of the vacuum state of a QFT is more general than Unruh’s
result. Suppose we take a closed spacelike codimension-2 surface, called entangling surface,
that splits a codimension-1 Cauchy slice into a region, B, and its complement, Bc. This
provides a ‘bipartite’ factorization of the Hilbert space. The reduced state of either region
will then be a mixed state [24, 25]. Hence, the vacuum state of a field theory is entangled
for any spatial factorization of the Hilbert space.

A useful measure of the entanglement of a pure state is the entanglement entropy. The
entanglement entropy of system A is defined as the von Neumann entropy of the reduced
state ρA. That is, [22]

SA = −TrA ρA log ρA . (1.8)

Note that SA vanishes if the reduced state ρA is a pure state, which would be the case if the
pure state |ψAB〉 is unentangled. Though it is not clear a priori, one can show for a pure
state |ψAB〉, SA = SB [22].

The spatial entanglement entropy for a vacuum state of an arbitrary QFT is a UV
divergent quantity. This UV divergence can be attributed to the infinite short distance
entanglement between nearby modes residing on either side of the entangling surface. This
further implies that the UV divergences in the entanglement entropy should scale as the area
of the entangling surface rather than the volume of the region bounded by the entangling
surface. Therefore, the leading divergence in the entanglement entropy for an arbitrary
entangling surface in a d-dimensional curved spacetime is of the form

S ∼ A

δd−2
+ ... , (1.9)

where A is the area of the entangling surface and δ is a short distance UV cutoff. The
proportionality constant depends on the details of the field theory, entangling surface, and
the choice of regularization scheme. The similarity of the ‘area law’ of entanglement en-
tropy, Eq. (1.9), and the Bekenstein-Hawking entropy, Eq. (1.1), motivates the study of the
entanglement entropy.

The calculation of the entanglement entropy for a general entangling surface is not an
easy task. This involves first finding the reduced density matrix and then diagonalizing it.
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For field theories with a classical holographic dual, the AdS-CFT correspondence provides
an alternative prescription. This holographic method was first conjectured in [26] for time-
independent states and was generalized later in [27, 28] for general states. These conjectures
were later proven in [29, 30]. The holographic formula for the entanglement entropy of any
spatial region A is

SA =
A(ΣA)

4
, (1.10)

where A(ΣA) is the area of a codimension-2 spacelike stationary area surface, ΣA, in the
bulk subject to the conditions that it is anchored on the boundary at the entangling surface,
∂A, and that it is homologous to the boundary region A. If there are several such surfaces,
we choose the one with the minimum area.

In addition to providing an analytical tool to compute the entanglement entropy for a gen-
eral entangling surface, this holographic formula connects a quantum information quantity
to a geometric quantity. This connection has led to many new insights about the emergence
of classical spacetime [31, 32]. Moreover, it has been shown that the holographic entangle-
ment entropy satisfies several inequalities that are not valid in general [33]. Therefore, these
inequalities can be used to determine what CFTs have a classical gravitational bulk dual.

The part. (II) of this dissertation is devoted to studying of the entanglement in a time-
dependent setting. In Ch. (4), we study the time dependence of the entanglement entropy of
disjoint intervals following a global quantum quench in (1+1)-dimensional CFTs at large-c
with a sparse spectrum. We find the result agrees with a holographic calculation but differs
from the free field theory answer. In particular, a simple model of free quasiparticle propa-
gation is not adequate for CFTs with a holographic dual. We elaborate on the entanglement
tsunami proposal of Liu and Suh and show how it can be used to reproduce the holographic
answer. This chapter is based on a paper written in collaboration with Stefan Leichenauer
[34].

In Ch. (5), we study the evolution of the universal area law of entanglement entropy when
the Hamiltonian of the system undergoes a time-dependent perturbation. In particular, we
derive a general formula for the time-dependent first order correction to the area law under
the assumption that the field theory resides in the vacuum state when a small time-dependent
perturbation of a relevant coupling constant is turned on. Using this formula, we carry out
explicit calculations in free field theories deformed by a time-dependent mass, whereas for
a generic QFT we show that the time-dependent first order correction is governed by the
spectral function defining the two-point correlation function of the trace of the energy-
momentum tensor. We also carry out holographic calculations and find qualitative and,
in certain cases, quantitative agreement with the field theory calculations. This chapter is
based on a paper written in collaboration with Stefan Leichenauer and Michael Smolkin [35].
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1.3 Complexity and Geometry

The interior of a black hole keeps ‘stretching’ even after the scrambling time. According
to the AdS-CFT correspondence, this phenomenon should have a dual description in terms
of the boundary CFT. This raises the question if there is any CFT quantity that has the
property that it could keep growing after the scrambling time. Susskind argued that the
quantum complexity of the CFT state has this property [36]. The computational complexity
of a quantum state is defined as the minimum number of quantum gates to map a simple
state to that state [36, 37]. That is, the complexity of a state is the size of the smallest
circuit that is required to prepare that state. The size of a circuit is proportional to the time
that the circuit runs. Therefore, the complexity of any quantum state grows linearly with
time until the classical recurrence time [36], which is much larger than the scrambling time.

Based on these observations, Susskind conjectured that the growth of the complexity of
the CFT state is holographically dual to the growth of the size of the black hole. More
precisely, he characterized the size of a black hole by the volume of an extremal bulk Cauchy
slice [38]. In particular, the original conjecture states that the complexity, C, of a CFT state
at any time is proportional to the volume, Vext, of an extremal bulk Cauchy surface anchored
on the boundary at that time [38]

C ≡ Vext

Gℓ
, (1.11)

where ℓ is an appropriate length scale. This conjecture is known as complexity equals volume
conjecture. A more recent conjecture relates the size of a black hole, and hence the complexity
of the boundary state, to the on-shell action, A, of the domain of dependence of a bulk
Cauchy slice [39, 40]

C ≡ A
π
. (1.12)

This proposal is called the complexity equals action conjecture.
The quantum complexity has been a topic of interest for classical and quantum compu-

tational scientists for reasons independent of quantum gravity. Let’s consider a ‘classical’
circuit which is made up of gates that take a quantum state in the computational basis
(that is a classical state) into an orthogonal state in the computational basis. The Margolus-
Levitin theorem [41] states that the time that a logical gate takes to map a state into an
orthogonal state is bounded from below by the inverse of the energy of the state. This implies
that the number of gates that are implemented per unit time is bounded from above by the
energy of the system. Based on this reasoning, Lloyd conjectured that the rate of increase
of a complexity of a state is bounded from above by the energy, E, of that state. That is,

d

dt
C ≤ 2

π
E . (1.13)

This is known as the Lloyd bound [42]. Even though this bound is supposed to be true
only for gates that map a state into an orthogonal state, it is conjectured in [39, 40] that
holographic complexities satisfy this universal bound.
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We allocate the part. (III) of this dissertation to test the consistency of these holographic
conjectures. In Ch. (6), we use the complexity equals action conjecture to study the time
evolution of the complexity of the CFT state after a global quench. We find that the rate of
growth of complexity is not only consistent with the conjectured bound, but it also saturates
the bound soon after the system has achieved local equilibrium. This chapter is based on
[43].

In Ch. (7), we perturb a holographic CFT by a relevant operator with a time-dependent
coupling, and study the complexity of the time-dependent state using the complexity equals
action and the complexity equals volume conjectures. We find that the rate of complexifica-
tion according to both of these conjectures has UV divergences, whereas the instantaneous
energy is UV finite. This implies that neither the complexity equals action nor complexity
equals volume conjecture is consistent with the conjectured bound on the rate of complexi-
fication. This chapter is based on [44].
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Part I

Holography in General Spacetimes
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Chapter 2

Dynamics and Observer-Dependence
of Holographic Screens

2.1 Introduction

In the search for a quantum theory of gravity in general spacetimes, the study of holographic
screens [15] has recently led to interesting new results. An area theorem was proven for past
and future holographic screens in any spacetime satisfying the null curvature condition [18,
19]. The semiclassical extension of this theorem led to the first rigorous formulation of a
universal Generalized Second Law [45], applicable in cosmology and other highly dynamical
spacetimes. In the present chapter, we will study the classical evolution of holographic
screens in more detail.

A holographic screen H can be associated to a null foliation of a spacetime M , i.e., a
foliation of M into 2+1 dimensional hypersurfaces N(R), each with two spatial and one
light-like direction. (See Fig. (2.1).) The screen consists of a sequence of two-dimensional
surfaces σ(R) called leaves. Each leaf is the spatial cross-section of the largest area on the
corresponding slice N(R). A holographic screen is called future (past) if the area of each leaf
is decreasing (increasing) in the opposite light-like direction, i.e., if every σ(R) is marginally
trapped (anti-trapped). Future screens appear inside black holes or near a big crunch. Past
holographic screens exist in an expanding universe, for example in ours.

The covariant entropy bound (Bousso bound) [10, 11] implies that all of the information
about the quantum state on each null slice N(R) can be stored on the corresponding leaf
σ(R), at a density of no more than one bit per Planck area. This suggests that the holographic
principle [8, 9, 46] applies in all spacetimes. (Several precise semiclassical versions of this
conjecture have recently been formulated, and in some cases, proven rigorously [12, 13, 47,
48, 49].) The holographic relation between quantum information and geometry substantially
involves both GN and ~, Newton’s and Planck’s constants. Its origin can only lie in a
quantum theory of gravity, so one expects the structure of holographic screens to reflect
aspects of the underlying theory.
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In spacetimes with conformal boundaries, all or parts of the screen lie on it [15, 16]. For
example, in asymptotically Anti-de Sitter spacetimes, the screen is located on the conformal
boundary at spatial infinity. This is consistent with the AdS/CFT correspondence providing
a full quantum description. It is therefore of interest to study holographic screens in more
realistic spacetimes, where quantum gravity remains a mystery. (An interesting recent ap-
proach explores a generalization of the stationary-surface conjecture [26, 27] for computing
entanglement entropy [50, 51, 52].) In particular, it is important to understand the dynamics
of holographic screens in cosmology and in the collapsing regions inside of black holes.

Future holographic screens have already been studied in some detail under the guise of
“dynamical horizons” [53] or “future outer-trapped horizons” [54], as interesting candidates
for quasi-local boundaries of black holes. Strictly, the latter objects are more restrictive:
dynamical horizons correspond only to the spacelike portions of future holographic screens.
For the purposes of proving an area theorem, the restriction to spacelike portions is signif-
icant: the area theorem is trivial for dynamical horizons, but highly nontrivial for future
holographic screens. This is because without the spacelike assumption, the area theorem
relies on a global property that is hard to prove: the (unique) foliation of a given screen
H into leaves σ(R) uniquely defines a foliation of a (portion of) the spacetime M into null
slices N(R).

Here we will be interested in studying the evolution of local quantities, the metric and
extrinsic curvature of the leaves. For this purpose, the spacelike assumption yields no signif-
icant simplification. In fact, a number of authors have studied the local evolution problem
for dynamical horizons [53, 55, 56, 57, 58, 59], and some noted that the spacelike assump-
tion is not required for the validity of the evolution equations. For completeness, we offer a
simplified derivation of the evolution equations in the Appendix (C). In the main text, our
focus will be on their interpretation. In particular, we will emphasize the role of a gauge
choice which corresponds geometrically to a choice of null foliation, and which has a natural
interpretation as reflecting a choice of observer.

In Sec. (2.2), we establish conventions, and we define the screen variables: local geometric
quantities that can be associated to a holographic screen. They include the metric and null
extrinsic curvatures of the leaves, a tangent vector field to the leaves describing the relative
evolution of the two null normals, and a tangent vector field normal to the leaves describing
the “slope” and “rate” of the screen’s progress through the spacetime it is embedded in. We
also identify one “global” and one “gauge” transformation, which leave the screen invariant
but act nontrivially on some of the above variables.

In Sec. (2.3), we present the evolution equations for the screen variables. We then analyze
them from three different perspectives. First, we regard both the spacetimeM and the screen
H as given. This viewpoint has been examined previously, and it has led to suggestions that
the screen evolution can be interpreted as fluid dynamics. We identify a number of problems
with this interpretation.

Next, we regard the spacetime M as given but consider the evolution equations as a tool
for constructing H. We find that the equations are underdetermined by one function α on
H. We show that this function corresponds precisely to the ambiguity in choosing a null
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H

σ(R)
σ(R+ dR)

σ(R+ 2dR)

σ̄(R+ dR) σ̄(R+ 2dR)

N(R)

N(R + dR)

N(R + 2dR)

αla
βka

σ̄(R+ 2dR)

σ̄(R+ dR)

σ(R+ 2dR)

σ(R+ dR)

σ(R)
αla

βka

αla

βka

H

N(R+ dR)

N(R+ 2dR)

Figure 2.1: Left: a future holographic screen, H (blue line). Points represent topological
spheres. The dashed lines are 2+1 dimensional null slices N orthogonal to the leaves σ of
H (blue dots), along the direction ka. H can be constructed leaf by leaf, using a “zig-zag”
procedure. First, deform the leaf σ(R) along the other orthogonal null vector, l, by an
infinitesimal step α(R, ϑ, ϕ)la (green downward arrow). The function α < 0 can be chosen
arbitrarily; it reflects a kind of observer-dependence of the holographic screen. Thus one
obtains a new surface σ̄(R+ dR) (red), and from it, a new null slice N(R+ dR) orthogonal
to σ̄. The next leaf σ(R + dR) is the surface of maximal area on N(R + dR), at some
infinitesimal distance βka along N from σ̄ (orange arrow). Right: a past holographic screen
(same color coding). In this case, α > 0; the area of the leaves grows towards the future. We
show the same construction, with only one spatial direction suppressed to offer a different
visualization. The leaves σ(R) are by definition the maximal area cross-sections of N(R),
despite what the figure shows.
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slicing; see Fig. (2.1). More precisely, given a partially constructed screen up to some leaf
σ(R), we show that α can be regarded as a lapse function that describes how much the
infinitesimal step R advances the slicing away from each point on σ(R). This defines a new
null slice N(R + dR) and ultimately, a new leaf σ(R + dR), in an α-dependent way.

We can regard α as encoding a kind of generalized observer-dependence of the screen, in
the following sense. Consider a worldline, and consider the future light-cone from each point
on the worldline. If the worldline is in a collapsing region (e.g., inside a black hole), then
there will be a cross-section of the maximum area on this light-cone: a marginally trapped
surface. The sequence of such surfaces defined by the above construction yields a holographic
screen, H.

Now consider a different observer, whose worldline coincides in some interval with the
previous one, but then departs from it. The above construction still works, and in the region
where the worldlines agree it, it will yield the same leaves. Therefore the holographic screens
will also agree on those leaves. But the leaves constructed from the light-cones of points
where the worldlines do not agree will differ. Therefore there is no unique future evolution
for a holographic screen, even if we are given part of the screen and the entire spacetime M .

This mathematical description of the observer-dependence of holographic screens, as a
choice of the function α, is the central result of this chapter. It would be nice to explore
this further. For example, infinitesimally nearby screens encode nearly the same subset of
M . The transformation relating them may correspond either to a change of variables in the
underlying theory or to a change of the prescription for reconstructing spacetime from those
variables.

Finally, we consider the evolution equations from a “background-free” perspective, where
neither M nor H are given. In this case, we can regard the screen variables as given. What
was previously regarded as their evolution equations now determines aspects of the spacetime
M , and of how H is embedded inM . However, from this viewpoint, the equations are highly
underdetermined. This is not surprising since the screen variables can at most represent a
coarse grained subset of the information in the underlying quantum gravity theory.

In Sec. (2.4), we illustrate our general analysis with some examples. We construct screens
explicitly for black holes and for cosmological solutions, and we compute the screen variables.
In particular, we construct two different screens for the same cosmology, only one of which
is spherically symmetric. This illustrates the observer-dependence associated with a choice
of different worldlines and null slicings.

Relation to other work Our analysis builds on earlier studies of dynamical horizons
and future outer-trapped horizons, such as [54, 53, 55, 60, 61, 62]. In many of these works,
an analog of the first law of black hole thermodynamics was sought. (The second law holds
trivially for dynamical horizons.) However, it is not clear that physically meaningful intrinsic
and extrinsic variables, such as total energy and temperature, can be uniquely defined. We
do not pursue this direction here, though we note in Sec. (2.4) that a certain local geometric
quantity κ limits to the usual surface gravity of an event horizon, in all examples where a
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sensible comparison can be made.
Here, we focus on local parameters that arise naturally from the geometry of holographic

screens. In Sec. (2.3) we take as our starting point the evolution equations of Gourgoulhon
and Jaramillo [57, 58, 59]. (For completeness, their derivation is given in the Appendix (C).)
In Sec. (2.4), we make use of the work of Booth et al. [63], who explicitly constructed
dynamical horizons for spherical dust collapse.

2.2 Kinematics of Holographic Screens

A future (past) holographic screen, H, is a hypersurface (not necessarily of definite signature)
that is foliated by marginally trapped (anti-trapped) codimension-2 spatial surfaces called
leaves. For simplicity, we will take spacetime to have four dimensions in what follows, and
we consider future screens unless otherwise noted, but all results are easily generalized. By
a surface we shall mean a smooth two-dimensional achronal surface. We will consider only
regular screens, which satisfy a set of further mild technical conditions [19] such as the
generic condition, Eq. (2.62) below. In this section, we will discuss the kinematic structure
underlying holographic screens and establish a number of conventions.

Tangent and Normal Vectors

In a Lorentzian manifold, every two-dimensional spatial surface has two future-directed or-
thogonal null vector fields, ka and la. It is convenient to choose their normalization such
that

kala = −1 . (2.1)

This allows for arbitrary rescalings l → γl, k → γ−1k, where γ is an arbitrary positive
function on the screen H. We show below that this gives rise to a U(1) gauge symmetry.

A surface is marginally trapped if

θ(k) = 0 , θ(l) < 0 . (2.2)

By the above definition, a future holographic screen can be thought of as a one-parameter
sequence of such surfaces, its leaves σ(R). In principle, any parameter can be used. For
example, the existence of an area theorem for holographic screens [18, 19] makes it possible
to choose R to be a monotonic function of the area of the leaves.

Next we wish to define a vector field h which is tangent to H and normal to each leaf
σ(R). The latter condition implies that

ha = αla + βka . (2.3)

A key intermediate result in the proof of the area theorem [19] is that α < 0 everywhere on
H (in our convention where l is future-directed). That is, the evolution of leaves of a future
holographic screen is towards the past or the spatial exterior. The parameter β corresponds
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to the “slope” of the holographic screen. By Eq. (2.3), the screen is past-directed if β < 0 and
spatially outward-directed if β > 0. The generic condition of [19] prevents h from becoming
collinear with k, so β is always finite. However, β has no upper bound. In the limit as
β → ∞, H approaches an isolated horizon. For example, H can approach the event horizon
of a black hole from the inside.

Because β can have any sign, H need not be of definite signature. Thus we cannot require
that h have unit norm:

haha = −2αβ . (2.4)

Instead, we normalize h by requiring that

h(R) = ha(dR)a = 1 , (2.5)

where R is the (arbitrary) foliation parameter. We also define a vector normal to H and to
every leaf:

na = −αla + βka , (2.6)

which satisfies hana = 0 and nana = 2αβ.
There are two ways to think about this normalization, corresponding to different per-

spectives on screen evolution. In one viewpoint, we consider a given screen H in a given
spacetime M . Then it is natural to choose a foliation parameter R, which fixes the product
αβ via the above two equations. The ratio β/α is fixed by the slope of the screen’s embed-
ding in M . Alternatively, we may consider only the spacetime M as given, and consider
it our task to construct the screen H. In this case, the screen will not be unique. Even
if some portion of the screen is known (as a set of leaves associated with a finite range of
R), this does not determine the remainder of the screen. We shall see that the ambiguity
is precisely associated with a choice of a negative function α on H (at a fixed choice of l).
This corresponds to a choice of null foliation of M , or physically, to a choice of observer
associated with the screen. We will later identify a constraint equation that determines β as
a function of α and other data, Eq. (2.61) below. The parameter R is then determined by
Eq. (2.5).

The induced metric on the screen H is not always well-defined:

γab = gab −
1

2αβ
nanb ; (2.7)

This is ill-defined on null portions of H, i.e., when β vanishes; and it changes signature when
β changes sign. But we will not need this metric below. By contrast, the induced spatial
metric on a leaf σ(R) is always well defined:

qab = gab + kalb + lakb . (2.8)

Extrinsic Curvature and Acceleration

We are interested in the extrinsic curvature of the leaves σ(r) in the spacetime, rather than
the extrinsic curvature of the screen H. Since the leaves are of codimension 2, the full
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extrinsic curvature data consists of the following objects: the null extrinsic curvatures in the
k and l directions, respectively; and the so-called Weingarten map, which measures how the
null normals vary with respect to each other.

The null extrinsic curvatures are defined by

B
(k)
ab = qcaq

d
b∇ckd , (2.9)

B
(l)
ab = qcaq

d
b∇cld . (2.10)

The expansion and shear are given by

θ(k) = B
(k)
ab q

ab (2.11)

σ
(k)
ab = B

(k)
(ab) −

1

2
θ(k)qab , (2.12)

and similarly for l. We recall that by definition of a future holographic screen, θ(k) = 0 and
θ(l) < 0.

Analagously one can define extrinsic curvature, expansion, and shear for any vector field
orthogonal to σ, such as ha or na. Since the definitions are linear, Eq. (2.3) implies, e.g.,

θ(h) = αθ(l) + βθ(k) = αθ(l) , (2.13)

θ(n) = −αθ(l) + βθ(k) = −αθ(l) . (2.14)

From the one-form −lb∇ak
b, one can construct the normal one-form by projection along

the leaf,
Ωa ≡ q c

a (−lb∇ck
b) , (2.15)

and the acceleration κ̃ by projection along the evolution vector field,

κ̃ ≡ hc(−lb∇ck
b) . (2.16)

This quantity is called “surface gravity” in [57, 58, 59] and is denoted κ there. We will
reserve that term and notation for a different, closely related quantity defined in Eq. (2.18)
below, because we find that it better matches the surface gravity of event horizons.

It is easy to see that the following expressions are equivalent to Eq. (2.16): κ̃ = kbh
a∇al

b =
hbh

a∇ak
b = −lbha∇a(h

b/β). Yet another equivalent expression for κ̃ can be given by extend-
ing the null vector fields k and l into a neighborhood of H (which was not needed above),
according to the following prescription: l is parallel transported along itself, and k is parallel
transported but rescaled so as to satisfy kala = −1 everywhere. With this choice, one finds

ka∇ak
b = κkb , (2.17)

where

κ ≡ κ̃

β
. (2.18)
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At points where β = 0, the above prescription fails to extend l into an open neighborhood
of such points, leading to a divergence.

Notably, Eq. (2.17) takes the same form as the definition of the surface gravity of a Killing
horizon. However, the acceleration κ is not invariant under certain allowed rescalings of k,
which we will discuss shortly. For Killing horizons, there is a similar ambiguity, which would
also rescale the surface gravity. But in some cases (e.g. asymptotically flat spacetimes), a
preferred normalization of the Killing vector field kKH exists [64]. In our case, by contrast,
the normalization is set by the choice of evolution parameter R, which is ambiguous.

In Sec. (2.4) we will consider a particularly simple choice of parametrization. Remarkably,
we will find for a large class of dynamical solutions that the acceleration defined in Eq. (2.17)
agrees with the standard Killing surface gravity of the corresponding static solutions.

Gauge and Reparametrization Transformations

There are two kinds of transformations that do not change the screen and preserve the
conventions of Eq. (2.1) and Eq. (2.5). The first transformation is analogous to a global
symmetry, in that it does not depend on the position. The second is a U(1) gauge symmetry.

The first symmetry is a trivial reparametrization of the label R of the leaves. There are
certain geometrically motivated choices one could consider in order to fix R: for example, by
linking it to the area A of the leaves, e.g. via A = 4πR2 or A = exp(R). Here we will insist
only that R grow monotonically with A. Then we can consider any transformation R → R′

with

exp[γ(R)] ≡ dR′

dR
> 0 . (2.19)

Note that γ can only depend on R, not on the angular position on each leaf. The above
conventions and definitions imply the following transformation properties:

h → e−γh (2.20)

n → e−γn (2.21)

l → e−γl (2.22)

k → eγk (2.23)

β → e−2γβ (2.24)

Ωa → Ωa (2.25)

κ̃ → e−γ(κ̃+ γ′(R)) . (2.26)

The extrinsic curvature tensors, B
(h,n,k,l)
ab , and their components (expansion and shear), trans-

form like h, k, n, l, respectively.
A second symmetry arises from rescaling α by an arbitrary positive function of R and of

the angular position, while holding h, n, and R fixed. This requires taking l → e−Γl, and by
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Eq. (2.1), k → eΓk. The remaining screen parameters transform as1

α → eΓα (2.27)

β → e−Γβ (2.28)

κ̃ → κ̃+ Γ̇ (2.29)

Ωa → Ωa +DaΓ . (2.30)

Note that the combination

Ω̂a ≡ hbq c
a ∇cnb , (2.31)

= −2αβΩa + βDaα− αDaβ . (2.32)

is invariant under the gauge symmetry.
Again, it is possible to gauge-fix this symmetry. For example, we can insist that α = −1

everywhere, or that θ(l) = −1. Below we find that different choices are convenient for different
applications. However, the most general evolution equations we display in the next section
will be invariant under any of the above transformations.

2.3 Dynamics and Observer-Dependence

A holographic screen is a codimension-one hypersurface in spacetime. Hence, it must obey
the constraint equations of General Relativity,

Gabn
b = 8πTabn

b . (2.33)

These four equations are usually expanded in a 3 + 1 formalism, as one energy constraint
plus three momentum constraints on the 3-metric and 3-extrinsic curvature.

Here we are dealing with a hypersurface of indefinite signature, but with the additional
structure of a 2+1 decomposition, the foliation into leaves. Thus it is natural to express
Eq. (2.33) in terms of the kinematic quantities defined in the previous section, which are
adapted to this foliation. One finds

α(L̂h + κ̃)θ(l) +DaΩ̂
a = 8πTabn

ahb +B
(h)
ab B

ba
(n) (2.34)

(L̂h + θ(h))Ωc −Dcκ̃+ αDcθ
(l) = 8πTabn

aqbc −DaB
(n)a
c (2.35)

−α
2
R+ αΩaΩ

a − αDaΩ
a − 2ΩaDaα +DaD

aα = 8πTabn
akb + βσ

(k)
ab σ

ab
(k) , (2.36)

where we have used θ(k) = 0 to simplify the equations. Recall that Ω̂a is not an independent
variable but given by Eq. (2.32). Here R is the Ricci scalar associated with the leaf metric,
qab. In addition, there is a dynamical equation for the metric on the leaves,

L̂hqab = B
(h)
ab . (2.37)

1Note that (κ̃,Ωa) transform like (A0,A), the electric and magnetic potential, under a gauge transfor-
mation Γ. It would be nice to relate this to a shift by Γ in the phase of a nonrelativistic wavefunction ψ [65,
66, 67] that is part of the quantum gravity theory on the screen.
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The evolution operator L̂h acts on the tensors which are purely tangent to the leaf as [57]

L̂hAab...c ≡ q a
′

a q
b′

b . . . q
c′

c LhAa′b′...c′ , (2.38)

where we consider Lh as an operator on H.
This system of equations is invariant under the symmetries described in Sec. (2.2). We

have displayed intrinsic quantities associated with the screen on the left side. Extrinsic
quantities that act like sources appear on the right hand side. We will now describe three
ways in which one might interpret this system of equations, using different gauge choices.

Viscous Fluid Analogy

We begin by regarding both the spacetime M and the screen H as fixed. In this case, we
are merely expressing the 3D intrinsic and extrinsic curvatures of H as the evolution of 2D
screen variables along H. This may nevertheless be interesting if it throws new light on the
system. In fact, the evolution equations bear some similarity to fluid equations. We will
identify a number of problems with the fluid interpretation, however.

To obtain fluid-like equations, we will set α = −1 to gauge-fix the U(1) symmetry. We
do not gauge-fix the screen parameter R. Equations (2.34-2.37) become

(L̂h + θ(h))θ(h) + (κ̃− θ(h))θ(h) − B
(h)
ab B

ba
(n) +DaΩ̂

a = 8πTabn
ahb (2.39)

(L̂h + θ(h))Ωc −Dc(κ̃− θ(h)) +DaB
(n)a
c = 8πTabn

aqbc (2.40)
1

2
R− ΩaΩ

a +DaΩ
a − βσ

(k)
ab σ

ab
(k) = 8πTabn

akb , (2.41)

L̂hqab = B
(h)
ab . (2.42)

We expand the extrinsic curvature terms using Eq. (2.11) and Eq. (2.12), to obtain2

L̂hθ(h) + θ(h)2 = −κ̃θ(h) + 1

2
θ(h)2 + σ

(h)
ab σ

(n)ba −DaΩ̂
a + 8πTabh

anb (2.43)

L̂hΩc + θ(h)Ωc = Dc(κ̃)−Daσ
(n)a
c − 1

2
Dcθ

(h) + 8πTabn
aq̃bc (2.44)

−1

2
R+ ΩaΩ

a −DaΩ
a = 8πTabn

akb + βσ
(k)
ab σ

ab
(k) , (2.45)

L̂hqab =
1

2
θ(h)qab + σ

(h)
ab . (2.46)

2The equations appear slightly simpler than in [57, 58, 59] due to a difference in conventions. There,
the evolution vector h satisfies hal

a = 1 (in our notation). This convention is not well-defined when β = 0,
i.e., at points where the screen changes signature. The convention we adopt in this subsection, hak

a = 1, is
everywhere well-defined; this follows from the area theorem [18].
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With the definitions

Πc ≡ − 1

8π
Ωc momentum density (2.47)

ǫ ≡ 1

8π
θ(h) energy density (2.48)

P ≡ 1

8π
(κ̃− θ(h)) pressure (2.49)

Qc ≡
1

8π
Ω̂c heat current (2.50)

ζ ≡ 1

16π
bulk viscosity (2.51)

µ ≡ 1

8π
shear viscosity (2.52)

fc ≡ − Tabn
aq̃bc external force density (2.53)

q ≡ Tabn
ahb external heat source (2.54)

Eq. (2.44) resembles the Navier-Stokes equation for the momentum density

L̂hΠc + θ(h)Πc = − DcP + µDaσ
(n)a
c + ζDcθ

(n) + fc ; (2.55)

and Eq. (2.43) resembles an equation governing the flux of the internal energy:

L̂hǫ+ θ(h)ǫ = −Pθ(h) + ζθ(h)θ(n) + µσ
(h)
ab σ

(n)ba −DaQ
a + q (2.56)

First, let us note that the bulk viscosity is positive. This contrasts with the negative
(hence unstable) bulk viscosity of the event horizon fluid in the membrane paradigm of Price
and Thorne [68]. This is simply because we absorbed an additional term proportional to θ(h)

into the definition of the pressure. With an analogous definition of pressure, one would also
find a positive bulk viscosity in [68]. We do not regard this as a success, however. Rather,
the fact that pressure and bulk viscosity terms cannot be uniquely identified is a first sign
that the fluid analogy fails. We will discuss additional problems below.

Note that a positive bulk viscosity was also obtained in [57, 58, 59], but for a different
reason: by defining the pressure to be κ̃, and taking θ(h) rather than θ(n) to be the expansion
rate relevant to the bulk viscosity. However, the same tensor should define both the expansion
and the shear. Since σ(n) appears in the shear viscosity term of Eq. (2.55), we require that
θ(n), and not θ(h), appear in the bulk viscosity term. Yet, this requirement, too, appears
inconsistent, since the expansion that controls the dilution of the energy and momentum
densities is θ(h).

These ambiguities and contradictions lead us to recognize that the viscous fluid analogy
has multiple, serious shortcomings:

• There is no equation of state that would determine the pressure κ̃ from other dynamical
parameters intrinsic to the fluid.
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• There is no dynamical equation for the number density or mass density of fluid particles,
analogous to the continuity equation.

• Therefore, there is no well-defined velocity vector field (“vb”).

• Therefore, the rate of shear and expansion cannot be computed from the dynamical
equations (via “Dav

b”). Rather, these rates are an arbitrary external input variable.

• The dissipation term µσ
(h)
ab σ

(n)ba in Eq. (2.56) corresponds neither to a Newtonian, nor

properly to a non-Newtonian fluid. σ
(h)
ab is entirely independent of σ

(n)
ab , so the viscous

stresses are not a function of fluid variables alone.

Some of this criticism also applies to the fluid description of event horizons in the membrane
paradigm [69, 68], as has also been noted by Strominger and collaborators [70].

Finally, it is not clear what the interpretation of Eq. (2.45) and Eq. (2.46) is, in the fluid
picture. They state that not all external input parameters are completely independent, such
as σ

(k)
ab and σ

(h)
ab , qab and Tnk. Alternatively we may regard Eq. (2.45) as a constraint equation

determining the parameter β.
To conclude, we do not find the interpretation of screen evolution as fluid dynamics to

be plausible. Moreover, the above analysis, with M and H fixed, actually ignores a crucial
degree of freedom, as we shall see next.

Observer-Dependence

An instructive way to think about the evolution equations is to consider only the 4D space-
timeM as given. Our task is to construct a holographic screen, H. Once we have started, the
equations tell us how to find the (infinitesimally) next leaf. This task is ambiguous because
each leaf is associated with a null slice and there are many ways of picking a null foliation
of M . We can regard α < 0 as a free parameter that determines a choice of a null foliation
(for a fixed, arbitrary choice of null vector field l at every leaf). There is no equation deter-
mining α, because it is a genuine ambiguity, corresponding to the “observer-dependence” of
holographic screens.

Let us define an effective stress tensor

8πT̄ab ≡ 8πTab + kakbB
cd
(l)B

(l)
cd + lalbB

cd
(k)B

(k)
cd (2.57)

= 8πTab + kakb

(
θ2(l)
2

+ σcd(l)σ
(l)
cd

)
+ lalbσ

cd
(k)σ

(k)
cd . (2.58)

This takes a form similar to the effective stress-energy of gravitational radiation in linearized
gravity. In general no local definition of energy can be given for gravitational degrees of
freedom, but here the holographic screen provides additional structure analogous to a pre-
ferred background. Thus, T̄ab can be interpreted as incorporating stress energy associated
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with gravitational radiation crossing the leaf orthogonally.3 Thus Eqs. (2.34)-(2.36) become

α(L̂h + κ̃)θ(l) +Da(−2αβΩa + βDaα− αDaβ) = 8πT̄abn
ahb (2.59)

(L̂h + θ(h))Ωc −Dcκ̃+ αDcθ
(l) =8πT̄abn

aqbc −DaB
(n)a
c (2.60)

−α
2
R+ αΩaΩ

a − αDaΩ
a − 2ΩaDaα +DaD

aα + 8παT̄abk
alb =8πβT̄abk

akb , (2.61)

Eq. (2.37) is trivial from this viewpoint, so we have not listed it again.
Geometrically, we can think of the role of α and β by considering the forward evolution

of the screen by an infinitesimal “time” step dR (see Fig. (2.1)). In order to find the next leaf
after σ(R), we transport the leaf σ(R) infinitesimally along αl to a nearby surface σ̄(R+dR).
In general this surface will not be marginally trapped, but it does define a new null slice,
N(R + dR), generated by the k-lightrays orthogonal to σ̄(R + dR). Then we find the cut
with θ(k) = 0 on N(R + dR). This gives the new leaf σ(R + dR).

Eq. (2.61) can be regarded as a constraint equation that allows us to short-circuit this
construction. It can be solved for β, because the generic condition of [18, 19] requires that

T̄abk
akb > 0 . (2.62)

Then σ(R+ dR) can be obtained directly, by transporting the surface σ(R) along the vector
h = αl + βk. Thus, the parameter β tells us how far to slide up or down N(R + dR) from
the “wrong” surface σ̄(R + dR) to get to the correct new leaf σ(R + dR).

The remaining Eq. (2.59) and Eq. (2.60) describe the evolution of the vector fields k and
l which are linked by the condition kala = −1. They provide additional structure beyond the
given spacetime M , associated with the screen H. As shown in Appendix (A), the failure of
k and l to be parallel-transported into themselves along H by h is captured by κ̃, α, β, and
the vector field Ωc:

hb∇bka = κ̃ka +Daα− αΩa (2.63)

hb∇bla = −κ̃la +Daβ + βΩa (2.64)

Note that both θ(l) and its derivative are fully determined by the arbitrary choice of the
“length” of l at each leaf. Here we take the “length” of l as input, so Eq. (2.59) acts as a
constraint that determines κ̃. [Alternatively, we could specify κ̃ and thus fix the length of l
via Eq. (2.59).] Finally, Eq. (2.60) is a dynamical evolution equation for Ωc.

Background-Free Description

Finally, we consider an interpretation where neither M nor H are given. Then we may
regard Eqs. (2.34)-(2.37) as a nonrelativistic system evolving with the time variable R. The

3In [71], Hayward derives a stress tensor for the gravitational radiation in a “quasi-spherical” approxima-
tion. We do not work in this approximation, but we not that his result takes the same form as our definition
in Eq. (2.58).
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advantage of this viewpoint is that it makes no reference to the spacetime that the screen is
embedded in, or even to an induced 2+1 metric on the screen. This minimal approach may
be appropriate if we regard the screen as a (partially) pre-geometric object that arises from
an underlying quantum gravity theory in an appropriate regime. It may be natural for the
screen to be constructed as a first step, before reconstructing the entire 4D geometry and
fields. Eqs. (2.34)-(2.37) constrain this construction.

In this case it is convenient to choose a gauge in which θ(l) = −1, so that Eqs. (2.34)-(2.37)
reduce to

−ακ̃−Da

[
αβ

(
2Ωa +Da log

β

α

)]
=8πT̄abn

ahb (2.65)

Ω̇c − αΩc −Dcκ̃+
1

2
Dcα =8πT̄abn

aqbc −Daσ
(n)a
c (2.66)

α

[
ΩaΩ

a −DaΩ
a − 2ΩaDa logα− R

2
+ α−1DaD

aα

]
=8πT̄abn

akb (2.67)

q̇ab = − α

2
qab + ασ

(l)
ab + βσ

(k)
ab . (2.68)

We have replaced the Lie-derivatives with dots, since in this viewpoint they are simple time
derivatives. Objects such as k, l, h, n are now considered to emerge in the reconstruction
of the geometry. For example, the length of integral curves of h is related to the evolution
parameterR by (dL/dR)2 = −2αβ, where positive values correspond to a spacelike signature.
Similarly, κ̃ and Ω allow us to reconstruct the null vector fields k and l by integration of
Eq. (2.63) and Eq. (2.64). None of these geometric concepts are intrinsic to the above
equations, but they can be reconstructed from them.

We may regard α, β, κ,Ωc, and the 2D metric qab as intrinsic quantities of the holographic
screen, but they are highly underdetermined. It is not clear whether σ

(k,l)
ab and Tabn

b are best
regarded as input (which happens to correspond to the matter stress tensor and gravitational
waves in the reconstructed 4D spacetime); or rather whether the above equations should be
viewed as determining certain components of the stress tensor and the shear, given arbitrary
input for the screen quantities α, β, κ,Ωc. One parameter (most naturally α) is associated
with a null foliation of the 4D spacetime. For each leaf of the screen, microscopic data should
determine the quantum state on the associated null slice.

2.4 Examples of Holographic Screens

In this section, we work out a number of detailed examples of physical interest. Several of
the holographic screens we will construct are spherically symmetric. Therefore, we will begin
by listing general results that apply to all spherical screens, before specializing further.
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Implications of Spherical Symmetry

Consider a screenH embedded in a spacetimeM , such that both are invariant under spherical
symmetry. In this case we shall choose the area radius as the evolution parameter R,

A = 4πR2 . (2.69)

We shall further choose the convention that

α = −1 , (2.70)

which can be regarded as gauge-fixing the rescaling symmetry of l. The metric qab is of the
form

qab = R2sab (2.71)

where sab is the metric on the unit two-sphere. Using the above conventions of R and α, one
finds

θ(l) = θ(n) = −θ(h) = − d

dR
logA = − 2

R
. (2.72)

The shears and the normal one form would break spherical symmetry and so must vanish,

σ
(k,l,h,n)
cd = 0 , Ωc = 0 . (2.73)

Since haha = 2β, the induced 3-metric on H is

ds2H = 2βdR2 +R2dΩ2 ; (2.74)

Again, this is only well-defined piecewise on portions with definite sign of β, and we will not
consider this metric further.

The only nontrivial intrinsic quantities associated with screen evolution are the slope, β,
and the acceleration, κ. They are determined entirely by certain stress tensor components
and by R, since Eq. (2.34) and Eq. (2.36) reduce to

κ̃ = 4πR Tabn
ahb (2.75)

β =
(8πR2)−1 − Tabk

alb

Tabkakb
. (2.76)

We have used R = 2/R2. The former equation is somewhat reminiscent of a first law, if we
write it as

κ̃

2π

d(A/4)

dR
=

∮
d2ϑ

√
q Tabn

ahb . (2.77)

The equation for β can also be written as a constraint linking the radius to a stress tensor
component:

1

8πR2
= Tabn

akb . (2.78)
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w = 0 w = 1/3 w = −9/10

t = 0

I+

t = 0

I+

t = 0

I+

Figure 2.2: Penrose diagrams for a spatially flat FRW universe dominated by matter (left)
and radiation (middle). The right diagram is an approximation to de Sitter spacetime; it
contains a fluid with positive energy and equation of state close to that of vacuum energy.
To construct a past holographic screen H, we consider the past light-cones (dotted lines) of
a comoving observer at r = 0 (left edge). The surfaces of maximum area on each of these
light cones (black dots) are the leaves of the screen H (blue curve). Note that H approaches
the event horizon (red line) at late times, in the near-de Sitter case. We find that the surface
gravity κ approaches that of de Sitter space in the limit.

Expanding Universe

Let M be a flat Friedmann-Robertson-Walker universe with fixed equation of state p = wρ,
−1 < w ≤ 1; see Fig. (2.2). The stress tensor is

Tab = ρtatb + p(gab + tatb) . (2.79)

The metric is
ds2 = −dt2 + a2(t)

(
dr2 + r2dΩ2

)
(2.80)

with
a(t) = tq (2.81)

and

q =
2

3

1

1 + w
. (2.82)

To generate a null foliation of M , we consider the past light-cone of each point on the
worldline r = 0; see Fig. (2.6)). On each cone, there is a cross-section of maximal area (since
A → 0 as the big bang is approached). This surface has vanishing expansion, θ(k) = 0, by
construction. The relevant spheres lie at (r, t) subject to the condition [15, 16]

rȧ(t)− 1 = 0. (2.83)
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The proper area radius is R = ra(t). The future-directed outgoing congruence from any
sphere in this geometry is obviously expanding, so this is a past holographic screen. There-
fore [18], we have α > 0.

In order for the screen to stay centered on the comoving worldline r = 0, we must take
α to be independent of angle, for example

α = 1 . (2.84)

We will make a different, angle-dependent choice below, corresponding to the construction
of a nonspherical screen in the same spacetime (see Sec. (2.3)).

The null normals k, l satisfying kala = −1, θ(l) = 2/R are

ka =

(
∂

∂t

)a
− 1

a(t)

(
∂

∂r

)a
, (2.85)

la =
1

2

(
∂

∂t

)a
+

1

2a(t)

(
∂

∂r

)a
. (2.86)

The vectors normal and tangent to the screen are n = −l + βk and h = l + βk with

β = q − 1

2
=

1

6

1− 3w

1 + w
(2.87)

This implies, for example, that the screen is timelike in a matter-dominated universe (q =
2/3, w = 0, β = 1/6) and null for a radiation-dominated universe (q = 1/2, w = 1/3, β = 0).
For stiffer fluids the screen will be spacelike.

The screen acceleration is

κ̃ =
q − 1

R
. (2.88)

The “surface gravity” defined in Eq. (2.18) is

κ ≡ κ̃

β
=

2q − 2

2q − 1

1

R
. (2.89)

For example, κ = −2/R for the matter dominated universe. Notably, in the limit as w → −1
(q → ∞), this approaches the surface gravity of the de Sitter Killing horizon: κ→ 1/R.

Collapsing Star

One can model a collapsing star by a finite, spherical, homogeneous dust ball. This is
described by the Oppenheimer-Snyder solution [72]; see Fig. (2.3). It can be constructed
as a portion r < r∗ of a time-reversed Friedmann-Robertson-Walker cosmology, glued to
a portion of the vacuum Schwarzschild solution. However, in order to satisfy the generic
condition, Eq. (2.62), we will study the more general collapse of spherically symmetric dust
with density ρ(r). We can take ρ(r) to become arbitrarily small outside some characteristic
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i−

i0

r = 0

Figure 2.3: Penrose diagram for collapsing dust. The dark-shaded region is the dense region,
r < r∗. The light shaded region contains arbitrarily dilute matter to satisfy the generic
condition. We construct a holographic screen H using the future light-cones (dotted lines)
of an observer at r = 0. Note that H changes signature and approaches the event horizon
(red line) from the inside. We find that κ approaches the Schwarzschild surface gravity there.

radius r∗. The holographic screens in such collapse scenarios were computed by Booth et al.
in [63]. Here we reproduce the relevant analysis and compute the screen quantities β and κ̃.

The metric describing the collapse is

ds2 = −dτ 2 + R′(τ, r)2

1− 2m(r)/r
dr2 +R2

(
dθ2 + sin2 θdφ2

)
, (2.90)

where τ is the proper time along the dust particles, and

m(r) = 4π

∫ r

0

dr′r′2ρ(r′) . (2.91)

The stress tensor is

Tab =
r2ρ(r)

R2(τ, r)R′(τ, r)
(dτ)a(dτ)b . (2.92)

The future holographic screen satisfies [63]

R(τ, r) = 2m(r). (2.93)

The null normals such that kala = −1 and θ(l) = −2/R are

ka ∼=
√

1− 2m(r)

r

(
∂

∂τ

)a
+

1− 2m(r)
r

R′(τ, r)

(
∂

∂r

)a
, (2.94)

la ∼= 1

2

1√
1− 2m(r)

r

(
∂

∂τ

)a
− 1

2R′(τ, r)

(
∂

∂r

)a
, (2.95)
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Figure 2.4: Collapsing dust cloud: plots of the radial mass profile (left), the slope parameter
β (middle), the surface gravity κ (right), for r∗ = 1, q = 1/20, and M = 1/100. The region
r < r∗ is the dense region. The change in the sign of β indicates the change in of signature
of H from timelike to spacelike. The surface gravity saturates to 1/4M in the dilute region.

where ∼= means that we impose the constraint Eq. (2.93) while evaluating the right hand
side. The slope β, and the surface gravity κ are

β ∼= 1

2m′(r)

R′ −m′(r)

1− 2m(r)/r
, (2.96)

κ ∼= 1

2m(r)

m′(r)

R′(τ, r)

(
4β2(1− 2m(r)/r)2 − 1

4β(1− 2m(r)/r)

)
. (2.97)

As an example, we consider the ‘Fermi-Dirac distribution’ for ρ(r)

ρ(r) =
M

−8πq3Li3 (−er∗/q)
1

exp(
r−r∗

q ) +1
, (2.98)

where the overall normalization is such that M is the ADM mass. This reduces to the
standard Oppenheimer-Synder solution in the limit q → 0. In the following, we fix r∗ = 1
and q = 1/20.

The profile of the mass is shown in Fig. (2.4). It shows that the most of the mass is in
r < r∗. We call this region dense region. Fig. (2.4) also shows the plots of 1/β and 4m(r)κ.
Note that β is negative for small r and then becomes positive. This implies a change in the
signature of the screen. From the plot of 4m(r)κ, we learn that the surface gravity quickly
saturates to the Schwarzschild value in the near-vacuum region:

κ→ 1

4M
. (2.99)
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Charged Black Holes

Next, we consider the Vaidya-Bonnor solution [73, 74], which describes the formation of a
black hole by an arbitrary sequence of charged spherical null shells:

ds2 = −f dv2 + 2dv dr + r2 dΩ2 (2.100)

where

f(r, v) = 1− 2m(v)

r
+
e2(v)

r2
(2.101)

and m(v) ≥ |e(v)| are integrable differentiable functions with

ṁ ≡ ∂m

∂v
> 0 , m(∞) <∞ . (2.102)

An example is shown in Fig. (2.5). The stress tensor is

Tab = − 1

8πr
ḟ(r, v)(dv)a(dv)b + T

(EM)
ab , (2.103)

where

T
(EM)
ab = − 1

8π

e2(v)

r4
(
gab − 2r2sab

)
(2.104)

is the stress tensor of the point charge of magnitude e(v), and sab is the metric on the unit
two-sphere.

v

i−

i0

r = 0 v = v0

Figure 2.5: The Penrose diagram for Vaidya solution. We show the uncharged case, e(v) = 0.
The mass function is m(v) = 0 for v < v0 and ṁ(v) ≥ 0 for v > v0. The green dashed lines
are the ingoing null shells. The red line is the event horizon. The blue line is the future
holographic screen constructed from future light-cones centered at r = 0.
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The holographic screen, H, consists of marginally trapped surfaces, with k the future
and outward directed null vector. The condition θ(k) = 0 implies r = R and f(R, v) = 0,
and thus

R = m(v) +
√
m2(v)− e2(v) . (2.105)

The null vectors normal to the leaves are found to be

ka =

(
∂

∂v

)a
, (2.106)

la = −
(
∂

∂r

)a
. (2.107)

Their linear combinations tangent and normal to H, h = −l+βk, n = l+βk are determined
by

β =
dv

dR
=

R−m(v)

Rṁ(v)− e(v)ė(v)
. (2.108)

The acceleration is

κ̃ =
(R−m(v))2

R2(Rṁ(v)− e(v)ė(v))
; (2.109)

the surface gravity, κ̃/β, is

κ =
m(v)

R2
− e2(v)

R3
, (2.110)

Note that this result has the same form as the surface gravity of a Reissner-Nordstrom
black hole with mass m and charge e. Moreover, let us define an electric potential in the
usual way,

Φ =
e(v)

R
. (2.111)

Then Eq. (2.77) takes a form similar to the first law of thermodynamics for a Reissner-
Nordstrom black hole:

κ

8π

dA

dR
=
dm

dR
− Φ

de

dR
, (2.112)

where we have used Eq. (2.108) and the chain rule, βḟ = v′(R)ḟ = f ′.

Nonspherical Screen in Cosmology

We again consider the expanding universe and specialize to the matter dominated universe:
p = 0. The metric is

ds2 = a2(η)
(
−dη2 + dx2 + dy2 + dz2

)
, (2.113)

with
a(η) = η2/9 . (2.114)
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z = 0 z = vηz = 0

Figure 2.6: Two past holographic screens in the same expanding universe, associated with two
different observers (thick black worldlines). Left: spherically symmetric screen constructed
from a comoving observer at r = 0. Right: screen constructed from the past light-cones of a
non-comoving observer.

We pick an observer whose worldline is given by

z = vη , (2.115)

for −1 < v < 1. To construct the past screen, we shoot past light cones from each point
on this worldline, and find the cross-section of maximal area on each of these light cones;
see Fig. (2.6). The collection of all these cross-section, that is the past screen, satisfies the
condition (

z − 3

2
η

)2

+ x2 + y2 − η2

4
= 0. (2.116)

We choose to work in the coordinate system

z =
3

2
vη + r cos θ , (2.117)

x = r sin θ cosφ , (2.118)

y = r sin θ sinφ , (2.119)

η = η . (2.120)

In these coordiante system, Eq. (2.116) simplifies to

r − η

2
= 0. (2.121)



32

The area-radius of the leaf of the screen is

R = ra(η) =
η3

18
. (2.122)

We pick an orthogonal basis for the one-forms tangent tn the leaf:

ê(1)a = −3v sin θ

η
(dη)a + (dθ)a , (2.123)

ê(2)a = (dφ)a , (2.124)

where q b
a ê

(i)
b = ê

(i)
a for i = {1, 2}, and ê(1) · ê(2) = 0. Similarly, we pick an orthogonal basis

for vectors normal to the leaf:

χa(1) =

(
∂

∂η

)a
− 3v cos θ

2

(
∂

∂r

)a
+

3v sin θ

η

(
∂

∂θ

)a
, (2.125)

χa(2) =

(
∂

∂r

)a
. (2.126)

where qabχ
b
(i) = 0 for i = {1, 2}, and χ(1) · χ(2) = 0. The null vectors normal to the leaf,

normalized such that kala = −1 and θ(l) = 2/R, are

ka =
1

a(η)

(
χa(1) − χa(2)

)
, (2.127)

la =
1

2a(η)

(
χa(1) + χa(2)

)
. (2.128)

The tangent and normal vectors to the screen are ha = αla + βka and na = −αla + βka,
where

α = 1 + v cos θ , (2.129)

β =
1

6
(1− 3v cos θ) . (2.130)

The normal one-form and the acceleration are

Ωa = 0 , (2.131)

Ω̂a = −2v sin θ

3
ê(1)a , (2.132)

κ̃ = − 1

3R
(1 + 3v cos θ) . (2.133)

One can easily combine this construction with that of the spherically symmetric screen in
an expanding universe. For example, we can use the worldline r = 0 up to some conformal
time η∗ to construct a portion of the screen which is centered at r = 0. We can then
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consider continuing this worldline to that of a moving observer, by substituting η → η − η∗
in Eq. (2.116) and below. This corresponds to choosing α as in Eq. (2.129), instead of α = 1,
for η > η∗. We thus obtain a nonspherical screen (above η∗), corresponding to the fact that
the observer’s worldline (and the associated null foliation) violates the spherical symmetry,
above η∗. This illustrates how the observer-dependence of H is captured by a choice of α,
as advertised in Sec. (2.3).
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Chapter 3

Non-relativistic Geometry of
Holographic Screens

3.1 Introduction

The holographic principle [8, 9], loosely speaking, asserts that the physical degrees of freedom
of quantum gravity in a region of area A cannot be more than A

4G~
. This principle was

presented in a more formal setting in terms of covariant entropy bound, or Bousso bound
[10, 11, 16, 12, 13], which bounds the entropy on the light-sheets of any spatial codimension-2
surface by the area of this surface. The AdS-CFT correspondence [14] provides an example
of this principle. The correspondence states that the quantum state on a slice of AdS is
described by the state of the CFT on the boundary of that slice.

Despite the success of the AdS-CFT correspondence, not much progress has been made in
generalizing it to general spacetimes. The reason behind the lack of progress in this direction
is that it is not clear where the information of the state of the bulk theory on a given slice
of the spacetime lives. That is, it is not clear what codimension-1 surface plays the role of
the conformal boundary of the AdS. Holographic screens [15] are believed to be a candidate
for this surface.

A holographic screen is constructed by starting with a null foliation, N(R), of the space-
time. On each null hypersurface, we choose a spatial cross-section of largest area. This
cross-section, σ(R), called leaf, is a codimension-2 spatial surface with vanishing expansion.
That is,

θ(k) = 0 , (3.1)

where ka is the null generator of the null slice, N(R). Assuming the null energy condition,
the Raychaudhri equation (see for e.g. [75]) guarantees that the portions of N(R) ‘outside’
and ‘inside’ of σ(R) are two separate light-sheets of σ(R). The covariant entropy bound then
implies that the entropy of the quantum state on the null slice is bounded by the area of the
corresponding leaf. The codimension-1 hypersurface foliated by these leaves, by construction,
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bounds the entropy of the spacetime, slice by slice. This codimension-1 hypersurface is called
holographic screen.

Recently it has been shown that the area of the leaves obeys an area law in the spacetimes
which satisfy few generic conditions [18, 19]. The area law states that the area of the leaves
is monotonic as we translate from one leaf to another. The fact that the area of leaves is not
constant seems problematic, as it indicates that the degrees of freedom of the dual theory
vary with time. This suggests that the dual theory might not be a unitary QFT.

Some progress has been made in developing the holographic theory of the general space-
times. In [50], the holographic entropy formula of [26, 27] has been generalized beyond
AdS-CFT correspondence. They proposed that the entanglement entropy of the reduced
quantum state on some subregion of the leaf is related to the area of the stationary surface
anchored on the boundary of that subregion. This proposal has been used in [52, 76] to
study the Hilbert space structure of the holographic theory.

In Ch. (2), we have studied the dynamical equations of holographic screen. These are
actually the constraints equations of GR (see Eqs. (3.13)), but we have decomposed them in
2+ 1 equations, using the additional structure of the screen in terms of foliation into leaves.
We will review these equations in Sec. (3.2). These 2 + 1 equations are invariant under the
foliation preserving diffeomorphism, but not under arbitrary coordinate transformation on
the screen. One of the main results of this chapter is to write a covariant version of these
equations.

The goal of this chapter is to understand the intrinsic geometry of holographic screen, H.
The motivation behind this is that if we hope to put a holographic field theory on H, then
we need to understand how to couple this theory with the geometry of H. For instance, we
have to define the notion of parallel transport and covariant derivative on H. If H were a
hypersurface which is nowhere null, with the normal vector normalized such that n̂an̂a = ±1,
then the induced metric on the screen would have been

γab = gab ∓ n̂an̂b . (3.2)

In this chapter, we assume the following index notation: The first half of the Latin letters
(a, b, c) denote the directions in the full 4-dimensional spacetime. The second half of the
Latin letters (i, j, k) denote the directions on the codimension-1 hypersurface (such as H).
The upper case Latin letters (A,B,C) denote the directions on the codimenison-2 surface
(such as σ(R)). Let eai be the pull-back operator that pull backs an one-form from the
spacetime to the codimension-1 hypersurface. Similarly, we define eaA and eiA. The pull-back
of the spacetime metric on H is

γij = gabe
a
i e
b
j , (3.3)

= γabe
a
i e
b
j . (3.4)

This metric would have completely described the intrinsic geometry of H. For instance, if we
were only given H with this metric, and had no information of the geometry of background
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spacetime, we could have used this metric to define various geometric quantities on H, like
connection and intrinsic Riemann curvature for example.

However, there are known examples where H does not have a fixed signature. As a result,
the induced metric becomes degenerate at the points where the hypersurface changes its
signature. Therefore, we can not invert this metric, which means we can not use the standard
formula of various geometric quantities, such as Christoffel symbols.1 This concludes that
the metric in Eq. (3.2) is not suitable to describe the intrinsic geometry of H.

Furthermore, holographic screens are not arbitrary hypersurfaces of indefinite signature.
Rather they have an additional structure of foliation into leaves. It was shown in [19] that
this foliation is unique. This hints at the non-relativistic structure of holographic screen.
Another reason to expect the non-relativistic structure of holographic screen comes from the
fact that the quantization on the light front is non-relativistic (see for e.g. [77])2.

Motivated by these observations, we propose that the geometry of holographic screen
should be described by a non-relativistic geometry. In Sec. (3.3), we will review the Newton-
Cartan (NC) geometry, an example of a non-relativistic geometry. In Sec. (3.4), we will
argue that the Riemannian metric on the leaves, the foliation structure of the screen, and
the existence of the vector field normal to the leaves but tangent to the screen, allow us to
define NC data on H, which we can use to define connection and curvature on H.

In Sec. (3.4), we will use the diffeomorphism invariance of the screen to derive a covariant
version of the dynamical equations of the holographic screens. This will be a test of our
proposal that the geometry of the screen is described by the NC formalism. These covariant
equations will be in terms of a screen ‘stress tensor’, ‘energy current’, and ‘momentum one-
form’. We will make an ansatz of these tensors in Sec. (3.4). Finally, we will follow [62] to
perform the treatment similar to that of Brown and York [78] to verify our ansatz.

3.2 Holographic Screens

A future/past holographic screen [18, 19] is constructed by starting with the world line of
an observer and shooting future/past light cones from it [15]. These light cones provide us
with a one-parameter null foliation, N(r), of some region of the spacetime. On each null
hypersurface, we choose the spatial cross-section of maximum area. These spatial surfaces
are called leaves, σ(r). The Bousso bound [10, 16] guarantees that entropy on N(r) is
bounded by the area of σ(r). The union of these leaves is called the future/past holographic
screen.

By construction, a holographic screen is a codimension-1 hypersurface, which is foliated
by the codimension-2 spacelike surfaces, σ(r), where r is the foliation parameter. Since the
background manifold is Lorentzian, there are two future directed null vectors normal to the

1Of course, one can still define various quantities as the pullback of their analogs from the full spacetime.
However, this would require the knowledge of the background spacetime, whereas we want to study the
geometry of H assuming we know nothing about the metric of the spacetime.

2We thank R. Bousso for emphasizing these points.
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leaves, la and ka. We fix their relative normalization by demanding kala = −1. The defining
property of holographic screen is that the expansion of the null congruence in ka direction
vanishes, that is

θ(k) ≡ q̃ab∇akb = 0 , (3.5)

where

q̃ab = gab + kalb + lakb , (3.6)

= eaAe
b
B q̃

AB , (3.7)

is the induced (inverse) metric on the leaves. For future/past holographic screens, the leaves
are marginally trapped/anti-trapped [18, 19]. This means that the expansion in the la

direction is negative for future holographic screens,

θ(l) < 0 , (3.8)

where as the opposite inequality holds for past holographic screen.
Given an arbitrary codimension-1 hypersurface of indefinite signature, one might ask

what data is required to describe the intrinsic geometry of the hypersurface. One candidate
is to use the induced metric on the hypersurface, defined as the pull-back of the spacetime
metric

γij = eai e
b
jgab . (3.9)

Though this works for the hypersurfaces that are nowhere null, it is not suitable for the
hypersurfaces which do not have a fixed signature. For these hypersurfaces, the metric in
Eq. (3.9) becomes degenerate, and hence non-invertible, wherever the signature changes. As
a result, we can not define the connection, curvature, or any other intrinsic quantity that
requires the inverse metric, on these hypersurfaces.

As holographic screens do not have a definite signature, it is interesting to understand
how to describe their intrinsic geometry. In this section, we will review some properties
of the holographic screens that were proven in [19]. We will see in Sec. (3.4) that these
properties allow us to propose that the intrinsic geometry of the holographic screens can be
described by the Newton-Cartan geometry. We will also review the evolution equations of
the holographic screens, that were studied in Ch. (2), in the current section.

Let hi be the vector tangent to the screen, but normal to the leaves. This means that we
can write it as a linear combination [18, 19]

eai h
i = ha = αla + βka . (3.10)

Since the signature of the screen is not fixed, we can not normalize the vector ha by fixing its
norm. Instead, we normalize it by demanding that ha(dr)a = hi(dr)i = 1. Similarly, we fix
the length of the normal vector, na, to the holographic screen by demanding nana = −haha.
This implies that the normal vector can be written as

na = −αla + βka . (3.11)
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Assuming some mild generic conditions, an area law for the holographic screens was
proven in [18, 19]. An important ingredient in the proof of this area law in [19] was the
proof of the fact that α in Eq. (3.10) does not vanish. In particular, it was shown that α < 0
for future holographic screens, while α > 0 for past screens. This important result, together
with Eq. (3.5) and Eq. (3.10), immediately yields the area law: “the area of the leaves always
increases as we move along the screen”. That is,

θ(h) = αθ(l) > 0 . (3.12)

The result α 6= 0 is important to us for one another reason. We will see in Sec. (3.4) that
this result plays a significant role in the consistency of our proposal to describe the intrinsic
geometry of the screen using Newton-Cartan geometry.

Another important theorem proven in [19] guarantees the uniqueness of the foliation of
a holographic screen into leaves. In particular, it was shown that if we take a screen and
choose a different foliation into codimension-2 closed surfaces, these surfaces will not have
vanishing null expansion. This implies that the foliation into leaves is important for the
defining property of the holographic screens, as was also emphasized in [62]. Without this
foliation, θ(k) = 0 condition is not well-defined.

Imposing Einstein equations on the spacetime puts constraints on the extrinsic geometry
of a codimension-1 hypersurface,

Gabn
aebi = 8πTabn

aebi . (3.13)

For hypersurfaces with fixed signature, Gauss-Codazzi equations (see for e.g. [79]) can be
used to write these constraint equations as

D̂j(K̂
j
i − γ ji K̂) = Tabn̂

aebi , (3.14)

where D̂j is the covariant derivative compatible with the metric γij in Eq. (3.9), and K̂ij is
the extrinsic curvature of the hypersurface. However, Eq. (3.14) is not well-defined for the
holographic screens as both the covariant derivative compatible with γij and the extrinsic
curvature tensor are defined using the inverse induced metric, γij. To resolve this problem,
it was suggested in Ch. (2) to use the foliation structure of the screen, and to use the geo-
metric quantities defined using the (Riemannian) metric on the leaves, such as the extrinsic
curvature of the leaves

B
(h)
AB = eaAe

a
BB

(h)
ab , (3.15)

B
(n)
AB = eaAe

a
BB

(n)
ab , (3.16)

with

B
(h)
ab =

1

2
q̃ ca q̃

d
b Lhq̃cd , (3.17)

B
(n)
ab =

1

2
q̃ ca q̃

d
b Lnq̃cd . (3.18)
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The extrinsic geometry of the screen is not completely fixed by that of the leaves, as
B

(n)
AB has only three components while there are six components of K̂ij. The rest of the

information of the extrinsic geometry of the screen is given in terms of the normal one-form,

ωi ≡ −eai lb∇akb , (3.19)

which can be decomposed into a scalar and a one-form on the leaf,

κ̃ =hiωi = −lbha∇akb , (3.20)

ΩA = eiAωi = −eaAlb∇akb . (3.21)

In terms of these geometric quantities, and using the foliation structure of the screen,
Eq. (3.13) can be decomposed in 2+ 1 ‘evolution’ equations of the holographic screens (also
see [57, 58, 59] for similar equations for dynamical or trapping horizons [54, 53, 55, 56])

αLhθ(l) + θ(h)2 − B(h)AB
(
B

(n)
AB − θ(n)q̃AB − κ̃q̃AB

)
+ D̃AΩ̂

A =8πTabn
bha , (3.22)

q̃BA LhΩB + θ(h)ΩA + D̃B

(
B

(n)B
A − θ(n)q̃BA − κ̃q̃BA

)
− θ(l)D̃Aα =8πTabn

beaA , (3.23)

where D̃A is the covariant derivative compatible with q̃AB, and Ω̂A ≡ eaAΩ̂a is defined as,

Ω̂a ≡ hbq̃ ca∇cnb . (3.24)

These evolution equations are invariant under diffeomorphisms on the screen that preserve
the foliation structure of the screen. These diffeomorphisms include the diffeomorphism on
the leaves, plus the reparameterization of the foliation parameter. In Sec. (3.4), we will use
the Newton-Cartan structure on the screen to write these equations in a covariant form, that
is in a form which is invariant under the full diffeomorphism on the screen.

3.3 Newton-Cartan Geometry

The Newton-Cartan geometry is an example of a non-relativistic geometry, originally devel-
oped by Cartan as the geometric formulation of Newtonian gravity [80, 81]. This has gained
popularity in the recent years owing to its many applications. For instance, it has been used
to write the effective field theory and to study the covariant Ward identities of the quantum
Hall effect in [65, 82]. It has also been used to couple non-relativistic field theories with the
background spacetime in [83, 66, 84, 67, 85], and to present the covariant formulation of
non-relativistic hydrodynamics in [86, 67, 87]. It was shown in [88] that making the Newton-
Cartan geometry dynamical gives rise to Hořava-Lifshitz gravity [89], and it has been used
to study Lifshitz holography in [90, 91, 92, 84].

In this section, we present a review of the Newton-Cartan (NC) geometry. There are
different conventions used in the literature when describing NC geometry. We will be using
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the conventions used in [65]. Consider a 2+1-dimensional manifoldM such thatM = R×Σ,
where Σ are 2-dimensional Riemannian manifolds (generalization to higher dimensions is
trivial). The NC structure on M means that there is a one-form field τi such that

τ ∧ dτ = 0 , (3.25)

a degenerate inverse metric hij such that

hijτj = 0 , (3.26)

and a vector field vi such that
viτi = 1 . (3.27)

The condition in Eq. (3.25) implies that τ is hypersurface orthogonal. The volume element
on M is given by

ǫ̂ = τ ∧ ǫ̃ , (3.28)

where ǫ̃ is the volume element on Σ.
Note that we are not provided with a metric on M. This means that the connection,

and hence covariant derivative, on M cannot be defined using the standard formulae from
any textbook of GR, such as [75]. To remedy this, we first define a unique tensor hij by
demanding

hijv
j = 0 , hikhkj = δij − viτj ≡ P i

j . (3.29)

Demanding ‘metric compatibility’ conditions

Diτj = 0 , Dih
jk = 0 , (3.30)

and ‘curl-freeness’ of vi

Divj −Djvi = 0 , (3.31)

yields the unique connection [82]

Γ̂ijk = vi∂jτk +
1

2
hil (∂jhkl + ∂khjl − ∂lhjk) . (3.32)

Note that this connection has torsion unless τi is closed:

T ijk ≡ Γ̂ijk − Γ̂ikj , (3.33)

= vi(dτ)jk . (3.34)

The Lie derivative of hij along v
i

B
(v)
ij ≡1

2
Lvhij , (3.35)

is transverse, that is viB
(v)
ij = 0 .
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Global-time Coordinates on M
All the tensors and equations in the last section holds in any coordinate system on M.
However, we may choose a coordinate system , xi = {t, xA}, where xA are coordinates on
Σ, and x0 = t is the foliation parameter. These system of coordinates are called ‘global-time
coordinates’ (GTC) in [65, 82]. In these coordinate systems, τi is of the form

τi = N(dt)i , (3.36)

for some lapse function N 6= 0, where we have used the fact that τ is hypersurface orthogonal.
The condition hijτi = 0 means h00 = h0A = 0, and hAB = q̃AB, where q̃AB is the inverse
Riemannian metric on Σ. That is

hij =

(
0 0
0 q̃AB

)
. (3.37)

The condition viτi = 1 means that

vi =

(
N−1

N−1sA

)
. (3.38)

Eq. (3.29) implies that hij is of the form

hij =

(
s2 −sA
−sB q̃AB

)
, (3.39)

where sA = q̃ABs
B, and s2 = sAs

A. The volume element in Eq. (3.28) then becomes

ǫ̂ = dt ∧ d2xN
√
q̃ . (3.40)

Currents as Response to the Geometry

For a relativistic field theory, the energy-momentum tensor is defined as the variation of the
action with respect to the metric to which the theory is coupled. Similarly, the currents in a
non-relativistic theory can be defined as the variation of the action with respect to the NC
geometry [65, 82, 66, 84, 67]. Assume that we have an action as a functional of the NC data,
INC [τ, h, v], and we want to compute its variation under a diffeomorphism generated by the
vector field ξi. The variations of τi, v

i, and hij are

δτi = Lξτi = τjDiξ
j − T kijτkξ

j , (3.41)

= τjDiξ
j − (dτ)ijξ

j , (3.42)

δvi = Lξvi = ξjDjv
i − vjDjξ

i + T ijkv
jξk , (3.43)

δhij = Lξhij =Diξj +Djξi + (T i jk + T j ik )ξk . (3.44)
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Note that only those variations are allowed for which δ(viτi) = 0 and δ(hijτj) = 0. This
means that we can keep δτi unconstrained, but demand that [82]

δvi =− vivjδτj + δui , (3.45)

δhij =− viδτ j − vjδτ i − δH ij , (3.46)

where τiδu
i = 0 and τiδH

ij = 0 . The energy current E i, the stress tensor Θij, and the
momentum one-form Pi, are then defined in terms of the variation of the action, INC [τ, h, v],

δINC ≡
∫
dtd2xN

√
q̃

{
1

2
ΘijδHij − E iδτi − Piδu

i

}
. (3.47)

Note that the stress tensor and momentum one-form are transverse:

Θijτi = 0 , Piv
i = 0 . (3.48)

Inserting the variations from Eqs. (3.41)-(3.46) in Eq. (3.47), and performing the integration
by parts lead to [82, 66, 67]

δINC =

∫
dtd2xN

√
q̃ ξj

{
−Di(Pjv

i)− PiDjv
i − (Di − T kki)Θ

i
j + τj(Di − T kki)E i + (dτ)ijE i

}
.

(3.49)
This is an important result that we will use in Sec. 3.4 to write the covariant form of the
screen equations, Eqs. (3.22)-(3.23). We will also use the general form of the variation in
Eq. (3.47) to identify the currents on holographic screens.

3.4 Newton-Cartan Geometry on Holographic

Screens

This section is the most important part of this chapter. In this section, we will combine the
ideas from the last two sections to propose that the geometry of the holographic screen, H,
can be described by the NC geometry. In particular, we suggest that the Riemannian metric
on the leaves, σ(r), the vector field, hi, normal to the leaves, and a non-vanishing scalar α
in Eq. (3.10), play the role of NC data on H.

The foliation structure of H into leaves allows us to pick a coordinate system on H:
{r, xA}, where r is the foliation parameter, and xA are angular coordinates on σ(r). These
are the GTC of Sec. (3.3). The foliation parameter, r, acts as the ‘screen time’. One can
always define a one-form, (dr)i, which is normal to the leaves. We use this to write a one-form

τi = α(dr)i . (3.50)

This means that α plays the role of the lapse function, N . This proposal would have been
inconsistent if α were allowed to vanish anywhere. Recall that α is indeed non-vanishing, as
was proven in [19] assuming certain generic conditions.
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The second ingredient in the NC data is the vector field vi, such that viτi = 1. We use
the vector field hi to define vi ≡ α−1hi. The coordinate representation of this vector field in
the GTC, {r, xA}, is

vi =

(
α−1

0

)
. (3.51)

Finally, we use the metric on the leaves, q̃AB, and its inverse q̃AB, to construct a (2, 0)
symmteric tensor on H, whose coordinate representation is

hij =

(
0 0
0 q̃AB

)
. (3.52)

We combine τi in Eq. (3.50), vi in Eq. (3.51), and hij in Eq. (3.52) to put a NC structure
on the screen. This allows us to define geometric quantities like connection and covariant
derivatives on H. The non-zero components of the connection in Eq. (3.32) are

Γ̂0
i0 = ∂i logα , (3.53)

Γ̂AB0 = Γ̂A0B =
1

2
q̃AC∂0q̃BC , (3.54)

Γ̂ABC = Γ̃ABC ≡ 1

2
q̃AD (∂B q̃CD + ∂C q̃BD − ∂Dq̃BC) , (3.55)

where Γ̃ABC are the Christoffel symbols of the metric q̃AB.
Note that we have only presented the NC data in the GTC. The representation of τi,

vi, and hij in any arbitrary coordinate system can be determined using the transformation
law of tensors. This is an important result, as this allows us to describe the geometry of H
without using the foliation structure of H.

Also note that the scalar β in Eq. (3.10), unlike α, does not appear in Eqs. (3.50)-(3.52).
This means that the intrinsic geometry of H is not dependent on β. This is consistent with
the interpretation of β as the “slope” of H in Ch. (2). That is, it tells us how much the
screen bends in the spacetime it is embedded in. Therefore, β is an extrinsic quantity.

To finish this section, we want to compare the NC geometry with the geometry described
by the induced metric for screens which are nowhere null. The advantage of NC geometry
is that the foliation structure of screen is implicit in it through one-form field τ . Another
advantage of using NC geometry will be apparent in Sec. (3.5), where we will find that
the boundary conditions on NC data are more suitable for holographic screens than the
boundary conditions on the induced metric.

Covariant Screen Equations

The evolution equations of holographic screen, Eqs. (3.22)-(3.23), are the decomposition of
constraint equations, Eq. (3.13), into directions normal and transverse to the leaves. These
equations are invariant under the foliation-preserving diffeomorphisms. In this section, we
will show that we can use the NC geometry to write a covariant version of these equations.
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Before we derive the covariant screen equations, recall how the constraint equations,
Eq. (3.14), for the hypersurface of a fixed signature arise from diffeomorphism invariance.
Imagine taking the spacetime and truncating it at the hypersurface. As a result, the Einstein-
Hilbert (EH) action has to be compensated with the Gibbons-Hawking-York (GHY) bound-
ary term living on the hypersurface,

I = IEH [g] + IGHY [g, γ] . (3.56)

The variation of this action is [78]

δI =
1

16π

∫

M

d4x
√
g Gabδg

ab +
1

16π

∫

∂M

d3x
√
γ
(
K̂ij − K̂ γij

)
δγij . (3.57)

Now we take a vector field tangent to the hypersurface, ξi, and generate diffeomorphism by
it. The variation of the total action under this transformation is

δI = − 1

8π

∫

M

d4x
√
g Gab∇aξb − 1

8π

∫

∂M

d3x
√
γ
(
K̂ij − K̂ γij

)
D̂iξj , (3.58)

where ξa = eai ξ
i is the push-back of the vector field on the full spacetime. Performing the

integration by parts yields

δI =
1

8π

∫

M

d4x
√
g ξb∇aG

ab − 1

8π

∫

∂M

d3x
√
γ ξi

[
Gabn

aebi − D̂j

(
K̂ij − K̂ γij

) ]
. (3.59)

Demanding that the action is invariant under diffeomorphisms generated by ξi gives us
Bianchi identity and Gauss-Codazzi constraint. The latter, when combined with the Einstein
equations, becomes Eq. (3.14).

Now we repeat the similar analysis for holographic screens, H. That is, we take a
spacetime in which the holographic screen is embedded in, and truncate it at H. The
variational principle requires that we add a boundary action on H, whose variation cancels
the boundary term in the variation of the EH action. In the next section, we will follow
[62] and study this variational problem. For now, simply assume that there exists a screen
action as a functional of NC data such that the combination

I = IEH [g]− IH [g, τ, h, v] . (3.60)

has a well-defined variation, and is given by

δI =
1

16π

∫

M

d4x
√
g Gabδg

ab −
∫

H

drd2xα
√
q̃

{
1

2
ΘijδHij − E iδτi − Piδu

i

}
, (3.61)

where we have used Eq. (3.47). If we take the variation to be a diffeomorphism generated
by a vector field ξi on H, then we get

δI = − 1

8π

∫

M

d4x
√
g Gab∇aξb

−
∫

H

drd2xα
√
q̃ ξj

{
−Di(Pjv

i)− PiDjv
i − (Di − T kki)Θ

i
j + τj(Di − T kki)E i + (dτ)ijE i

}
,

(3.62)
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where we have used Eq. (3.49) in the second term. Performing the integration by parts,
and demanding δI = 0 leads to a Bianchi identity, and a constraint equation which when
combined with Einstein equations becomes

Di(Pjv
i) + PiDjv

i + (Di − T kki)Θ
i
j − τj(Di − T kki)E i − (dτ)ijE i = α−1 Tabn

aebj . (3.63)

In the following, we will show that this tensor equation is a covariant version of the screen
equations, Eqs. (3.22)-(3.23). In particular, we will show that this equation reduces to
Eqs. (3.22)-(3.23) when we expand it in the GTC. Note that Eq. (3.48) implies that the
momentum one-form Pi, stress tensor Θij, and energy current E i have the following repre-
sentation in the GTC

Pi =
(
0, PA

)
, (3.64)

Θij =

(
0 0
0 ΘAB

)
, (3.65)

E i =
(
E0

EA
)
. (3.66)

The contraction of Eq. (3.63) with vi is

α−1 Tabn
avb = − (Di − T kki)E i + T kkiE i −Θ j

i Djv
i (3.67)

= −DiE i + 2T kkiE i −ΘijB
(v)
ij . (3.68)

By writing this equation in the GTC, and using the relation vi = α−1hi, we get

Tabn
ahb = −αLh(αE0)− α2E0θ(h) − D̃A(α

2EA)− αΘABB
(h)
AB . (3.69)

Similarly, the contraction of Eq. (3.63) with hij is

α−1 Tabn
aebjh

ij =hij LvPj + hijPjθ
(v) + (Dj − T kkj)Θ

ij − hij(dτ)kjEk . (3.70)

Writing this equation in the GTC leads to

Tabn
aebA = q̃BA LhpB + pAθ

(h) + D̃B(αΘ
B
A ) + αE0D̃Aα . (3.71)

With the identifications

PA =
1

8π
ΩA , (3.72)

E0 = − 1

8π α
θ(l) = − 1

8π α2
θ(h), (3.73)

EA = − 1

8π α2
Ω̂A , (3.74)

ΘAB =
1

8π α

(
B

(n)
AB − θ(n)q̃AB − κ̃q̃AB

)
. (3.75)
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Eq. (3.69) and Eq. (3.71) reduces to Eq. (3.22) and Eq. (3.23) respectively. This confirms
our claim that Eq. (3.63) is a covariant generalization of the screen evolution equations. We
view this as an application of the Newton-Cartan formalism to describe the geometry of the
screen. However at this point, the identifications that we have made in Eqs. (3.72)-(3.75)
seem arbitrary. In the next section, we will follow [62] to write the variation of the total
action in a form similar to Eq. (3.61). This will allow us to verify the identifications that we
have made for PA, E0, and ΘAB.

3.5 Derivation of PA, ΘAB, and E0 from Gravitational

Action

In the spacetime with boundaries, the Einstein-Hilbert action has to be compensated with a
boundary term which depends on the boundary conditions. For instance, Dirichlet conditions
on a boundary of fixed signatures lead to Gibbons-Hawking-York term. Brown and York
studied this problem in [78], where they assumed that the spacetime is bounded by four
boundaries: an outer timelike, an inner timelike, a future spacelike, and a past spacelike
boundary. This analysis was generalized in [93], where the corner contributions from the
interaction of two different boundaries were also considered. This was further generalized in
[62], where the inner timelike boundary was replaced with the codimension-1 hypersurface
which

• is foliated by the codimension-2 marginally trapped or anti-trapped closed surfaces,

• is of indefinite signature.

Note that these are exactly the properties of holographic screens. In this section, we will
follow the calculations of [62]. However, our analysis will be different from that of [62] in
two ways. As we only care about the boundary contributions to the Einstein-Hilbert action
coming from the holographic screen, we will assume that there are no other boundaries of
the spacetime. The other, and more important, difference in the two analysis is that we will
be assuming slightly different boundary conditions.

We now discuss the boundary conditions that we are imposing on the holographic screens.
The Dirichlet condition on the induced metric is, of course, not suitable as the signature
of screens is allowed to change. There is another reason for why Dirichlet conditions are
inapplicable. Note that we are only allowed to impose six boundary conditions on the
screen. If we fix the induced metric on the screen, then we cannot fix any other geometric
data. However, holographic screens are special as the leaves have vanishing null-expansion,
θ(k) = 0. Following [62], we do not impose any boundary conditions on the induced metric.
Rather, we assume a Dirichlet condition on θ(k). This boundary condition also fixes the
foliation structure of the holographic screen.

We still need to choose five more boundary conditions. We fix three of those by imposing
Dirichlet condition on the metric on the leaves, q̃AB, which also fixes its inverse, q̃AB. So far,
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our four boundary conditions are same as those of [62]. Next, we choose to impose boundary
conditions on the variation of the evolution vector field, hi. Note that the normalization
hi(dr)i = 1 implies that δhi is transverse,

δhi = eiA δs
A . (3.76)

We now impose the Dirichlet conditions on sA. These are our last two boundary conditions.
Note that these conditions are different from those of [62] where they had imposed Dirichlet
conditions on ΩA. As we will see below, our boundary conditions not only result in the
well-defined variation of the action, it will also help us to compare the variation of the total
action with Eq. (3.61).

As emphasized in [62], we also have to fix the ‘length’ of the null vector ka. Note that
this is not an additional boundary condition. We need to impose this condition because
the extrinsic quantities like κ̃ and ΩA depend on the ‘length’ of the null vectors. This is
equivalent to the case of the boundary with a fixed signature, where we fix the norm of
the normal vector to be ±1. Without fixing the norm of the normal vector, the extrinsic
curvature and hence the GHY boundary term have ambiguities and are not well defined. We
can fix the ‘length’ of the null vectors by imposing the Dirichlet condition on α .

After discussing the boundary conditions in detail, we now consider the variation of EH
action on the spacetime with the holographic screen as the boundary. We copy from [62]

δIEH [g] =
1

16π

∫

M

d4x
√
g Gab δg

ab

+
1

16π

∫

H

drd2x
√
q̃
(
−2(δθ(n))− (δq̃AB)B

(n)AB − 2(δα)θ(l) − 2(δκ̃) + 2(δhi)ωi
)
,

(3.77)

which we re-write as [62]

δIEH [g] =
1

16π

∫

M

d4x
√
g Gab δg

ab − 1

8π
δ

{∫

H

drd2x
√
q̃
(
κ̃+ θ(n)

)}

− 1

8π

∫

H

drd2x
√
q̃

(
1

2
(δq̃AB)

(
B(n)AB − θ(n)q̃AB − κ̃q̃AB

)
− (δsA)ΩA + (δα)θ(l)

)
.

(3.78)

Note that if we impose our boundary conditions, then the second line in the above equation
vanishes. The second term in the first line is a total variation, and should be added to EH
action as the boundary term. Therefore, the total gravitational action in the spacetime with
holographic screen as the boundary is

I =
1

16π

∫

M

d4x
√
g R +

1

8π

∫

H

drd2x
√
q̃ (κ̃+ θ(n)) . (3.79)
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The variation of this total action follows from Eq. (3.78)

δI =
1

16π

∫

M

d4x
√
g Gab δg

ab

− 1

8π

∫

H

drd2xα
√
q̃

(
1

2
(δq̃AB)

1

α

(
B(n)AB − θ(n)q̃AB − κ̃q̃AB

)
− 1

α
(δsA)ΩA + (δα)

1

α
θ(l)
)
.

(3.80)

By comparing the above expression for the total variation with Eq. (3.61) (or Eq. (3.47)),
we can deduce the expressions for momentum one-form Pi, stress tensor Θij, and energy
current E i. However, all the calculation that we have done in this section are in the GTC
gauge, Eq. (3.36)-(3.39). In this gauge, the variation δτi, δu

i in Eq. (3.45), δH ij in Eq. (3.46),
are of the form

δτ0 = δα , (3.81)

δτA =0 , (3.82)

δui =α−1 eiAδs
A (3.83)

δH ij = eiAe
i
B δq̃

AB . (3.84)

With these variations, Eq. (3.61) becomes

δI =
1

16π

∫

M

d4x
√
g Gabδg

ab−
∫

H

drd2xα
√
q̃

{
1

2
ΘABδq̃AB − α−1PA δs

A − E0 δα

}
. (3.85)

Comparison of this expression with Eq. (3.80) leads us to conclude that

PA =
1

8π
ΩA , (3.86)

E0 = − 1

8π α
θ(l) = − 1

8π α2
θ(h), (3.87)

ΘAB =
1

8π α

(
B

(n)
AB − θ(n)q̃AB − κ̃q̃AB

)
, (3.88)

which agrees with the identifications that we made in Eqs. (3.72)-(3.73) and in Eq. (3.75).
However, note that we have failed to derive the expression for EA using the above formalism.
The reason behind this failure is that we have been working in the GTC gauge, in which
δτA = 0. To derive the spatial components of the energy current, EA, we need to vary the
action of the theory with respect to τA. This requires going away from the GTC at least to
the first order. It is not clear how to perform the above analysis in a fully covariant way.
We leave understanding this task to future work.

3.6 Discussion

We have seen that the induced metric on a holographic screen is degenerate, and is not
applicable to define geometric structure such as connection and covariant derivative. We have



49

proposed that the intrinsic geometry should, instead, be described by the Newton-Cartan
geometry. We have used some results from [19] to argue that this proposal is consistent.
Using the NC connection on H, we have presented the screen evolution equations of Ch. (2)
into a covariant form. There are many possible directions which we intend to pursue in the
future. We briefly discuss these in the following.

The natural next step would be to couple a (non-relativistic) field theory to a holographic
screen. The coupling of field theories to Newton-Cartan geometry has been studied in [66,
84, 67]. It would be interesting to know if there are any constraints on the field theory that
we can define on the screen. One possible way to find these constraints might be to compare
the entanglement structure of the field theory with the screen entanglement conjecture of
[50].

In AdS spacetime, metric near the conformal boundary can be written as a power series
in the bulk coordinate [94]. This type of expansion has also been studied in [90] for Lifshitz
gravity, where the geometry of the boundary is Newton-Cartan. It would be fascinating if
a metric of a spacetime can be expanded in a similar fashion near the screen. One-to-one
correspondence between the screen and the null foliation of the spacetime suggests that the
affine parameter on null slices can be used as a bulk coordinate.

As discussed in Sec. (3.5), we also plan to understand how to generalize the calculations
of [62] without using the GTC gauge, Eq. (3.36)-(3.39). This would be important as this
will allow us to derive the spatial components of the energy currents, EA, which we failed to
do in Sec. (3.5).
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Part II

Entanglement and Holography
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Chapter 4

Entanglement Tsunami in
(1+1)-Dimensions

4.1 Introduction

Computation of entanglement entropy in quantum field theory is a topic of growing interest.
Unfortunately, in many situations, it is an extremely difficult quantity to compute. For
strongly coupled systems, one of our best analytical tools is holography. In a holographic
theory, entanglement entropy is evaluated as the area of an extremal surface in the dual ge-
ometry [26, 27]. In some cases, especially in (1+1)-dimensional CFTs, purely field-theoretical
arguments can be given for the form of the entanglement entropy.

We will be using entanglement entropy to study the approach to equilibrium following
a global quantum quench. Calabrese and Cardy [95, 96] famously showed that, in (1+1)-
dimensions, the entanglement entropy of an interval increases linearly with time until it
saturates at the thermal value. The field-theoretical results could be reproduced by a simple
intuitive model: the growth and saturation of the entanglement entropy were effectively
modeled by the free propagation of quasiparticle excitations, which we will review below.

This linear growth in (1+1)-dimensions was confirmed in holographic calculations, first
numerically [97], and then analytically [98, 99], where it was also extended to higher dimen-
sions (see also [100]). In [101, 102], it was noted that a free-streaming quasiparticle picture
was inadequate to explain the rate of growth beyond the (1+1)-dimensional case and it was
suggested that the linear growth could be thought of in terms of an “entanglement tsunami,”
represented by an effective wavefront which propagates into the region under consideration
and entangles interior degrees of freedom with exterior degrees of freedom. An underlying
free-streaming quasiparticle model for the entanglement tsunami yielded a wavefront veloc-
ity smaller than the velocity calculated holographically in dimensions higher than (1+1). In
(1+1) dimensions, the holographic calculation and quasiparticle model both said that the
effective wavefront moved at the speed of light. At this level, then, it seemed that quasipar-
ticles were sufficient to explain the time dependence of the entanglement entropy of a single
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interval in (1+1) dimensions, even for holographic CFTs which are strongly interacting.
However, when multiple disjoint intervals are considered, there is a qualitative difference

between the holographic calculation and the quasiparticle model of Calabrese and Cardy
(as noted in [103, 104], and also present in [105]): the holographic calculation gives a non-
decreasing entropy, while the quasiparticle model has both increasing and decreasing behav-
ior as a function of time. Therefore already in (1+1)-dimensions, there is a need to replace
the quasiparticle picture. We will elaborate on the entanglement tsunami proposal, showing
how it can be used as a rule to calculate the entanglement entropy of one or two intervals in
holographic CFTs and provide a natural upper bound for more than two intervals. We will
make no attempt to derive the entanglement tsunami from underlying physical excitations,
quasiparticle-like or otherwise.

The remainder of this chapter is organized as follows. In Sec. (4.2) we will review the
setup for the problem and the results from both the quasiparticle and holographic viewpoints.
In Sec. (4.3) we will provide a CFT argument for the holographic result, showing how CFTs
with large-c and a sparse spectrum differ from weakly coupled CFTs, and in particular do not
follow the quasiparticle prediction. In Sec. (4.4) we will propose an entanglement tsunami
prescription for the entanglement entropy as a function of time. Finally, in Sec. (4.5) we will
describe how these results may be extended to higher dimensions, where there are still some
unresolved issues, and speculate on possible derivations of the entanglement tsunami from
interactions.

4.2 Setup and Review

Quasiparticle Model

We are interested in the entanglement entropy of a subregion A of the real line following a
global quench in a CFT. Note that A is always the union of a collection of disjoint intervals.
Let Ac denote the complement of A. Globally, the system is in a pure state |Ψ〉 and the
entanglement entropy for the region A as given by

S = −Tr ρA log ρA, with ρA = TrAc |Ψ〉〈Ψ| . (4.1)

|Ψ〉 is a time-dependent state, and so S will be time-dependent. A global quench is defined
by beginning in the vacuum state of one theory, and then suddenly changing the Hamiltonian
to that of a different theory. The result is that the initial state from the point of view of the
second theory (the CFT) is a highly excited state, but has a simple entanglement structure.
We are interested in the time dependence of the finite part of the entanglement entropy, so
we will assume that the UV-divergent parts can be subtracted in a consistent way, whether
or not they are modified by the quench. Henceforth when we refer to the entropy we will
mean the finite part of the entropy, or the vacuum-subtracted entropy. At t = 0, then, we
have S = 0.
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At late times, the system will effectively thermalize and we should find S(t → ∞) =
Stherm = seqVol(A). In (1+1)-dimensions Vol(A) is just the sum of the lengths of the intervals
that make up A, but we are emphasizing that the thermal entropy is extensive with the
volume of the system. seq is the thermal entropy density, which is a property of the state.
At intermediate times, either a CFT calculation or a holographic calculation can be used
to describe the transition from zero entropy to the thermal result. We will discuss both of
these calculations below, but for now, we will record the expected answer as predicted by
the quasiparticle model.

Calabrese and Cardy showed [95, 96] that, following a global quench, the time-dependence
of the entropy can be effectively modeled by the propagation of entangled quasiparticles, at
least for weakly coupled CFTs. At the time of the quench, we imagine that a uniform density
of EPR pairs of quasiparticles is produced, where each pair begins localized at a point and
consists of a left-mover and right-mover. These quasiparticles move in opposite directions at
the speed of light, and there are no interactions between pairs. To compute the entanglement
entropy of A, we only have to count the number of unpaired particles in the region at any
given time:

S(t) ∝
∫

x′∈A

dx′
∫

x′′∈Ac

dx′′
∫ ∞

−∞

dx
{
δ(x′−x−t)δ(x′′−x+t)+δ(x′−x+t)δ(x′′−x−t)

}
. (4.2)

The constant of proportionality is related to the initial density of EPR pairs, which deter-
mines seq. When A consists of a single interval of length L, computing the above integral
gives the following time dependence:

S(t) = 2seq ×





t, t ≤ L
2
,

L
2
, t > L

2
.

(4.3)

First there is a linear growth phase, and then saturation at the thermal value.
The behavior is a little more complicated when A consists of two disjoint intervals. For

simplicity, consider the case where the two intervals have equal lengths L and are separated
by a distance R > L. Then the quasiparticle model gives (see Fig. (4.1) for a plot)

S(t) = 2seq ×





2t, t ≤ L
2
,

L, L
2
< t < R

2
,

L−
(
t− R

2

)
, R

2
< t < L+R

2
,

L+
(
t− L− R

2

)
, L+R

2
< t < 2L+R

2
,

L, t > 2L+R
2
.

(4.4)

In particular, this result tells us that the entanglement entropy is not monotonic in time.
We can understand the drop in the entanglement entropy in the following way. Consider an
EPR pair that started propagating from the region between the two intervals which make up
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Quasiparticle prediction
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L

Figure 4.1: The entropy production as a function of time for a region consisting of two
disjoint intervals of length L, separated by a distance R > L. The quasiparticle model (left)
shows decreasing behavior between 2t = R and 2t = L + R. The holographic calculation
(right) is monotonically increasing before saturation at 2t = L, after which the entropy
remains constant.

time

L LR

A A

Figure 4.2: An EPR pair produced at the points marked as green at the bottom of the figure.
When the constituent particles are at the positions marked as red at the intermediate time,
they contribute to the entanglement entropy. At the later time when the particles are at the
positions marked as blue, they do not contribute to the entanglement entropy. This process
leads to a decrease in the entanglement entropy in the quasiparticle picture.

A at the time of quench, t = 0 (see Fig. (4.2)). At some time t < R/2, one of the particles
will enter region A and while the other remains in the complement. At that time, and for
times immediately following, this pair contributes one unit to the entanglement entropy.
However, at a later time the second particle will enter the region A as well, and so there is
an opportunity for both particles to be inside A at the same time. Then they will no longer
contribute to the entanglement entropy. This results in decreased entanglement.
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z∞

Figure 4.3: Penrose diagram of the time-dependent geometry following the quench. The red
vertical line on the right is the AdS boundary (z = 0 in Poincare patch). The green diagonal
line is the infalling shell, and the blue diagonal line is the horizon. The dashed curve is a
late time extremal surface, which asymptotes to the critical surface, indicated by the solid
curve. The linear growth of entanglement entropy comes from the portion of the extremal
surface lying along the critical surface behind the horizon.

Holographic Calculation

The time evolution of entanglement entropy after a global quench can also be studied using
the AdS-CFT correspondence [97, 98, 99, 101, 102]. According to the AdS-CFT dictionary,
a global quench in the boundary theory is dual to throwing a spatially homogeneous and
isotropic shell of matter into the bulk. This shell will eventually collapse to form a black
hole, which is the gravity dual to a thermal state in the CFT.

After the quench, the geometry of the bulk is given by the time-dependent AdS-Vaidya
geometry (displayed as a conformal diagram in Fig. (4.3)). As a result, the area of the
boundary-anchored extremal surfaces, and hence the entanglement entropy of the boundary
region, will depend on time. Though we are concerned with a (1+1)-dimensional CFT, and
hence a 2+1-dimensional bulk, Liu and Suh were able to perform the calculation in arbitrary
dimensions and with different types of black hole.

The local equilibrium length is given by the horizon radius, zh. Consider a spatial interval
on the boundary of length L ≫ zh. For times t ≫ zh, but smaller than L/2, the extremal
surface in the bulk anchored to the endpoints of the interval has an area that grows linearly
with time. Geometrically, the linear growth is tied to the existence of a critical extremal
surface behind the black hole horizon. The extremal surface anchored to the boundary
interval goes behind the horizon and approaches the critical surface. The length of the
portion of the extremal surface lying along the critical surface increases linearly with t,
which leads to a linear growth in the area. At t ≈ L/2, there is a transition (the details of
which do not concern us here), after which the extremal surface lies outside of the horizon
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in the black hole portion of the geometry and is no longer influenced by the collapsing shell.
The symmetries of this geometry ensure that the area is time-independent in this region,
and so this represents thermal saturation of the entropy.

To summarize, the vacuum subtracted entropy for a single interval as computed holo-
graphically is given by

S(t) = 2seq ×
{

t, t ≤ L
2
,

L
2
, t > L

2
.

(4.5)

where seq is related to the AdS-radius, LAdS, horizon radius, zh, and Newton’s constant, GN ,
by

seq =
1

4GN

2LAdS

zh
. (4.6)

This holographic result for a single interval agrees with the predictions of the quasiparticle
picture Eq. (4.3).

We can deduce the holographic result for an arbitrary collection of intervals by using the
answer for a single interval. For example, consider the case of a pair of intervals, [x1, x2]
and [x3, x4]. We need to find the bulk extremal surface with minimal area anchored to those
intervals on the boundary. This is called the HRT surface [27]. There are two candidate HRT
surfaces, which we display in Fig. (4.4). First, there is the union of the bulk extremal surfaces
associated to the two intervals [x1, x2] and [x3, x4] individually (A1 and A2 in Fig. (4.4)). But
the union of the bulk extremal surfaces associated to [x1, x4] and [x2, x3] is a second choice
(A3 and A4 in Fig. (4.4)). The holographic prescription is to compute the total area in both
cases and take the minimum value. But in each case, the extremal surfaces are just unions of
extremal surfaces associated to intervals, and the time-dependence of those surfaces is given
by Eq. (4.5).

Let L1 = x2 − x1, L2 = x4 − x3, and R = x3 − x2. Suppose L1 < L2. Then the first
possible pair of extremal surfaces (A1 and A2 in Fig. (4.4)) would have a time-dependence
given by

S(1)(t) = 2seq ×





2t, t < L1

2
,

t+ L1

2
, L1

2
< t < L2

2
,

L1+L2

2
, t > L2

2
,

(4.7)

while the second choice of extremal surfaces (A3 and A4 in Fig. (4.4)) has

S(2)(t) = 2seq ×





2t, t < R
2
,

t+ R
2
, R

2
< t < L1+L2+R

2
,

L1+L2+2R
2

, t > L1+L2+R
2

.

(4.8)

At each time we take the minimum of S(1)(t) and S(2)(t) to get S(t). The interesting case is
when R is the smallest of the three lengths, which means that our two disjoint intervals are
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x1 x2 x3 x4

A1 A2
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A A

Figure 4.4: Here we display the extremal surfaces for two intervals. The first candidate HRT
surface is the union of the two smaller arcs (marked in red and labeled A1 and A2). The
second candidate is the union of the two larger arcs (marked in green and labeled A3 and
A4).

close together. Then we have

S(t) = 2seq ×





2t, t < R
2
,

t+ R
2
, R

2
< t < L1+L2−R

2
,

L1+L2

2
, t > L1+L2−R

2
.

(4.9)

In the other two cases, L1 < R < L2 and L1 < L2 < R , we have

S(t) = 2seq ×





t, t < L1

2
,

t+ L1

2
, L1

2
< t < L2

2
,

L1+L2

2
, t > L2

2
.

(4.10)

A plot of the case L1 = L2 < R is in Fig. (4.1). Unlike the quasiparticle model, the
holographic calculation gives a non-decreasing answer for the entropy. It is easy to see why
this is the case. For an arbitrary boundary region, each of the candidate HRT surfaces is the
union of a collection of extremal surfaces anchored on boundary intervals. But each surface
anchored on a boundary interval has a non-decreasing area. Therefore each candidate HRT
surface has a non-decreasing area, and so the true HRT surface has a non-decreasing area
(even though the identity of the true surface may change as a function of time).
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4.3 Large-c CFT Calculation

Vacuum State Entanglement

In this section, we review the standard machinery for calculating the entanglement entropy
of disjoint intervals in a (1+1)-dimensional CFT. The idea is to use the replica trick [96, 106,
107] to write the entanglement entropy as a limit of correlation functions of twist operators.
The symmetries of the CFT are used to evaluate those correlation functions, which lets us find
the entropy. In this section, the correlation functions will be vacuum correlation functions,
and we will review how the large-c, sparse spectrum assumption reproduces the holographic
answer in these cases. In the following section, we will consider the time-dependent situation
of a global quench, where the relevant correlation functions are those of a BCFT.

We calculate the entanglement entropy of a region A using the replica trick, which realizes
the entropy as a limit of traces of powers of the density matrix:

S = lim
n→1

1

1− n
log TrρnA (4.11)

A standard way to compute TrρnA is via a path integral on an n-sheeted cover of the original
surface, with branch points located at the endpoints of A. This means that the sheets
of the cover are sewn together along A, which is the path integral representation of the
matrix multiplication that defines ρnA. Alternatively, TrρnA can be computed as a certain
correlation function in the theory CFTn, consisting of n copies of the original CFT. The
twist operator Tn(x) is defined in the CFTn theory as the operator which implements the
boundary conditions of the n-sheeted cover: monodromy around the twist operator shifts a
local operator Ok(x) in the kth copy of the CFT to the same operator Ok+1(x) in the k+1st
copy of the CFT. When the region A consists of a union of intervals, TrρnA can be computed
(up to a constant of proportionality) as the correlation function of twist operators inserted at
the endpoints of the intervals. The twist operator Tn is inserted at all of the left endpoints,
and the anti-twist operator T−n (which sends Ok → Ok−1) is inserted at the right endpoints.
To actually evaluate these correlation functions, we make use of the fact that twist operators
are primary with scaling dimension

∆n =
c

12n
(n2 − 1), (4.12)

where c is the central charge of the CFT.
As an illustration, consider the region A consisting of two intervals, [x1, x2] and [x3, x4],

with xi < xi+1. Then TrρnA can be computed as a four-point function of twist operators.
Defining the cross-ratio η as

η =
(x2 − x1)(x4 − x3)

(x3 − x1)(x4 − x2)
, (4.13)

noting that η ∈ [0, 1], and the new coordinate w,

w(z) =
(z − x1)(x4 − x3)

(x3 − x1)(x4 − z)
, (4.14)
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we can write the required four-point function as

〈Tn(x1)T−n(x2)Tn(x3)T−n(x4)〉 =
∣∣∣∣

η

(x2 − x1)(x4 − x3)

∣∣∣∣
2∆n

〈Tn(0)T−n(η)Tn(1)T−n(∞)〉
(4.15)

=

∣∣∣∣
1− η

(x3 − x2)(x4 − x1)

∣∣∣∣
2∆n

〈Tn(0)T−n(η)Tn(1)T−n(∞)〉 ,
(4.16)

where the correlation function appearing on the right-hand side is defined via the limit

〈Tn(0)T−n(η)Tn(1)T−n(∞)〉 ≡ lim
w→∞

|w|2∆n 〈Tn(0)T−n(η)Tn(1)T−n(w)〉 . (4.17)

A general four-point function can be evaluated using the conformal block decomposition:

〈O1(0)O2(η)O3(1)O4(∞)〉 =
∑

p

Cp
12C

p
34F(c, hp, {hi}, η)F(c, hp, {hi}, η). (4.18)

The sum is over all primary operators in the theory, with hp (hp) being the (anti-) holomor-
phic scaling dimension of the primary operator. This sum is sometimes called the s-channel
decomposition, but there is also a t-channel decomposition which features the coefficients
Cp

23C
p
14 instead. Evaluating this sum requires an expression for the conformal blocks F ,

which there are efficient algorithms for computing, as well as knowledge of the coefficients
Cp
ij, which depend on the theory in question. We are only interested in correlations of twist

operators, so we can set all of the hi equal to the same value hi = hi = h = ∆n/2. For small
η, the Taylor series of the conformal block gives F = ηhp−2h(1 + O(η)). So at small η, the
dominant term in the sum comes from hp = 0, which is the identity block [108]. This is the
disconnected part of the four-point function: keeping this term alone reduces it to a product
of two two-point functions:

〈Tn(x1)T−n(x2)Tn(x3)T−n(x4)〉 ≈
∣∣∣∣

1

(x2 − x1)(x4 − x3)

∣∣∣∣
2∆n

= 〈Tn(x1)T−n(x2)〉 〈Tn(x3)T−n(x4)〉 . (4.19)

This is a manifestation of the cluster decomposition principle. A nontrivial fact about large-c
CFTs with a sparse spectrum is that this is the dominant contribution even for finite values
of η, all the way to η = 1/2 [108]. This can be proved by looking at a large-c expansion of
the conformal blocks, where it is seem explicitly that the identity block makes the largest
contribution. Here the assumption of a sparse spectrum means that the number of operators
with scaling dimensions less that O(c) should not scale with c.

For η ≈ 1, the contribution of the identity block in the t-channel decomposition says

〈Tn(x1)T−n(x2)Tn(x3)T−n(x4)〉 ≈
∣∣∣∣

1

(x3 − x2)(x4 − x1)

∣∣∣∣
2∆n

= 〈Tn(x3)T−n(x2)〉 〈Tn(x4)T−n(x1)〉 . (4.20)
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Again, at large-c with a sparse spectrum this formula is expected to hold down to η = 1/2.
In the c → ∞ limit there is a sharp phase transition between the s-channel and t-channel
results at η = 1/2. Finite-c corrections should smooth this transition, but consideration of
those effects is beyond the scope of this work. Taking the appropriate limit as n→ 1, these
results show that the vacuum entanglement entropy of a pair of intervals at large-c is given
by

S = min
( c
3
log

(x2 − x1)(x4 − x3)

ǫ2
,
c

3
log

(x4 − x1)(x3 − x2)

ǫ2

)
, (4.21)

where ǫ is the UV cutoff scale. This matches the holographic answer [26].
When there are N intervals, we must compute a 2N -point function of twist operators.

There are many possible decomposition channels, and the dramatic simplification at large-c
with a sparse spectrum is that there is always some channel in which the identity block
provides the dominant contribution. In this channel, the 2N -point function decomposes as
a product of N two-point functions. Taking the n → 1 limit to extract the entanglement
entropy, this precisely reproduces the Ryu-Takayanagi formula for arbitrary numbers of
intervals [108, 109].

Global Quench

Following the setup of [96, 110, 111], the global quench is effectively modeled as a BCFT
calculation. The correlation functions we need can be computed at large-c with a sparse
spectrum using the techniques of [108]. The leading-order holographic result is obtained
by assuming that the only primary operator of scaling dimension less than O(c) is the
identity, which contributes an amount of O(c) to the entanglement entropy. This will also be
the dominant contribution when the spectrum is sparse since other primary operators will
contribute at O(1) to the entropy. If the number of operators scales with c, then clearly this
will compete with the identity contribution and the holographic result does not apply.

We wish to compute the four-point function of the twist operators after a quantum
quench, where we take the state to be |Ψ(t)〉 = U(t) |Ψ〉. We are interested in times well after
the local equilibration time, and so it turns out to be useful to model the local equilibration
by an initially Euclidean evolution over a small imaginary time τ0, which can be thought of
as a regulator for the calculation. Introducing the coordinate z = x + iτ , the path integral
preparing the ket state at t = τ = 0 is then a path integral over the strip Imz ∈ [−τ0, 0), with
a boundary wavefunction at z = −iτ0, while the bra state can be obtained by integrating
over the strip Imz ∈ (0, τ0]. To find the correlation functions at real times t ≫ τ0, we
would continue to path-integrate over a real-time contour before inserting our operators, as
in the Schwinger-Keldysh formalism. Alternatively, we can compute correlation functions
in the strip Imz ∈ [−τ0, τ0] for arbitrary values of the imaginary time τ and then afterward
analytically continue the answers to real time.

For a collection of N intervals, we need to compute a 2N -point function of twist operators
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in the strip Imz ∈ [−τ0, τ0]:

Tr ρn = 〈Tn(x1 + iτ)T−n(x2 + iτ) · · · Tn(x2N−1 + iτ)T−n(x2N + iτ)〉strip , (4.22)

for arbitrary values of the imaginary time τ ∈ [−τ0, τ0]. We will take τ to be a real number
initially, and then analytically continue τ → it in the final answer to extract the real-time
post-quench correlation functions.

We can conformally transform the strip to the upper half plane by setting

w(z) = exp

[
π

2τ0
(z + iτ0)

]
. (4.23)

Then the lines z = ∓iτ0 map to the positive and negative real w axes, respectively. The
z = iτ line maps to argw = π/2 + τ/2τ0. We can write the correlation function as

Tr ρnA =

∣∣∣∣∣

(
π

2τ0

)2N

e
π

2τ0

∑
xi

∣∣∣∣∣

∆n

〈Tn (w1) T−n (w2) · · · Tn (w2N−1) T−n (w2N)〉UHP , (4.24)

where the wi are the images the xi.
The upper half plane correlation functions should be computed in the context of BCFT,

which tells us that each primary operator in the upper half plane can be thought of as the
product of a holomorphic operator at its location times another holomorphic operator at the
conjugate location (reflected over the real axis) [112, 113]. Then the 2N -point function in
the upper half-plane can be computed as a 4N -point function in the full plane, which is just
a vacuum correlation function. It is useful to parametrize the four-point function in terms
of
(
2N
2

)
real parameters ηij, which are invariant cross-ratios characterizing the separation of

wi and wj,

ηij ≡ 1− wīiwjj̄
wij̄wjī

=
wijwj̄ī
wij̄wjī

, (4.25)

where we have used the notation wij = wi−wj and wij̄ = wi−wj. Note that ηij ∈ [0, 1]. Also,
the UHP 2N -point function we started with should only depend on 4N − 3 real degrees of
freedom (after making use of the part of the conformal symmetry which maps the real axis to
itself), so the ηij parameters are not all independent. They are still a useful parametrization,
however. When ηij ≈ 1, the operators at wi and wj are much closer to their respective image
points than to each other. Likewise, at ηij ≈ 0 the operators at wi and wj are closer to
each other than to their respective images. This behavior helps determine efficient OPE
expansion channels, as we will see below.

The time-dependence of the correlation function is reflected in the time-dependence of
the ηij cross-ratios, which in the τ0 → 0 limit are given by

ηij(t) = 1− 2 cosh2(πt/2τ0)

cosh(π|xi − xj|/2τ0) + cosh(πt/τ0)
≈ 1

1 + exp
[
π
τ0

(
t− |xi−xj |

2

)] . (4.26)
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We see that there are sharp transitions between ηij ≈ 1 and ηij ≈ 0, which occur at half the
light-crossing time, |xi − xj|/2.

At early times (meaning for times less than the length scales defining the intervals, but
still much greater than the local equilibrium scale τ0), all of the ηij are approximately equal
to one. Then the upper half-plane 2N -point function approximately factorizes into 2N full-
plane two-point functions: this is the cluster decomposition limit where each operator in the
upper half plane is paired with its image point in the lower half plane. Then we find

Tr ρn =

∣∣∣∣
π

2τ0
e−πt/2τ0

∣∣∣∣
2N∆n

. (4.27)

This leads to a linear growth of the entanglement entropy at a rate which is N times as fast
as it would have been for a single interval (in agreement with the quasiparticle picture).

At very late times, all of the ηij parameters are very small. One can check that this
corresponds to a different cluster decomposition limit: now adjacent operators in the upper
half-plane are paired with each other, and their image points are paired with each other. So
again we find a product of 2N full-plane two-point functions. One can check that in this
limit the thermal entropy formula S = seqVA is produced.

At intermediate times, when some of the ηij are small and others are approximately equal
to one, we need to be more careful. This is where the real difference between holographic
and weakly coupled CFTs lies. To simplify the notation, we will restrict ourselves to N = 1
and N = 2, though similar arguments hold for all N .

At N = 1 there are no real surprises, but it is useful to go through it to illustrate some of
the key points. There is only a single interval and a single cross-ratio η, and the two-point
function in the upper half-plane can be written as a four-point function in the full plane,
which we analyzed above. The conformal block decomposition of the four-point function
implies that we can write the UHP two-point function as

〈Tn (w1) T−n (w2)〉UHP =
1

|w11̄w22̄η|2∆n
Fn(η). (4.28)

Even though Fn(η) may be a very complicated function, the cluster decomposition limits
tell us that Fn → 1 both when η → 0 and η → 1, since the prefactor alone reproduces both
of those limits. This makes the global quench computation easy to perform when τ0 → 0
(i.e., at times and distances much greater than the equilibration scale), since η makes a
rapid transition from zero to one in that case. Then for arbitrary CFTs, the factor Fn(η) is
completely inconsequential and can be dropped; the result agrees with both the quasiparticle
model and the holographic calculation. However, we would like to point out that a stronger
statement can be made about large-c CFTs with a sparse spectrum. In the limit c→ ∞, we
have an exact formula for Fn(η) that comes from demanding that the full-plane four-point
function always factorize in either the s-channel or t-channel:

Fn(η) =

{
η∆n , η > 1/2,

(1− η)∆n , η < 1/2.
(4.29)
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Although this formula did not make a difference for a single interval, we will now see how
things change with multiple intervals.

With two intervals, N = 2, the relevant correlation function is a four-point function in
the upper half-plane. Following [114], we will parametrize the four-point function as

〈Tn (w1) T−n (w2) Tn (w3) T−n (w4)〉UHP =
1∏

i |wi − w̄i|∆n

(
η13η24

η12η23η14η34

)∆n

Fn({ηij}).
(4.30)

The function Fn (different from above, but with the same name) is in principle very compli-
cated, but since we only care about ηij ≈ 1 or ηij ≈ 0, only the values of Fn at those points
are necessary to find the entanglement entropy. So as time passes and the ηij transition from
one to zero, Fn effectively becomes a piecewise constant function of time. This translates
into an additive term in the entropy, which is usually argued to be subleading in the τ0 → 0
limit. However, this reasoning does not apply if the leading constant term in Fn is zero
during any given phase. Then we have to consider terms which are proportional to some
of the nearly-vanishing ηij, which are exponentially small and in particular time-dependent.
This is what happens for theories with a holographic dual. At large-c and with a sparse
spectrum, the eight-point function in the full plane, which is equal to the four-point func-
tion we wish to compute in the upper half-plane, always factorizes in some channel into a
product of two-point functions [108]. By comparing this result to Eq. (4.30), we find that
the effective Fn factors are proportional to the ηij whenever the quasiparticle model (i.e., the
prefactor in Eq. (4.30)) says that the entropy should decrease. In particular, the resulting
time dependence of Fn precisely cancels out the time dependence of the prefactor, meaning
that the entropy remains saturated at its thermal value and does not decrease.

4.4 Entanglement Tsunami

It would be desirable to have a picture of propagating interacting quasiparticles to replace
the free-streaming quasiparticle picture that seems to work well for free theories. Such a
picture should reproduce the linear growth rate evident at early times, but avoid decreases
in entropy. We have not been able to derive such a picture in terms of particles, but a simple
heuristic which gives the correct answer is the “entanglement tsunami” of [101, 102], which
we will elaborate on here. We will begin with a discussion that applies to one or two disjoint
intervals, where the holographic entropy can be reproduced exactly, and then explain how
to extend the idea to arbitrary numbers of disjoint intervals where we only have an upper
bound on the entropy.

One or Two Intervals

Our picture of the entanglement tsunami is as a wave which begins at each of the endpoints
of A at t = 0 and flows outward in both directions (see Fig. (4.5)). This wave is not
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Figure 4.5: The quench for two intervals of length L separated by a distance R when L > R.
On the left, we show the entanglement tsunami wavefront as a function of time (jagged black
line.) The region A is marked as red. The intervals between the disconnected components
of A are marked as blue. On the right, we show the entanglement entropy as a function of
time.

a physical wave representing the propagation of particles or energy: it is merely a tool for
understanding the entanglement. In particular, note that the quenched state is homogeneous,
while the wave begins at particular locations picked out by the region A we have chosen.
At any time t > 0, the wave divides the space into two regions: one which has already been
overtaken by the wave, and one which has yet to be overtaken by the wave. We will call
the former region the “entangled” region, and the latter region the “unentangled” region.
This picture is reminiscent of a vacuum decay, where at t = 0 we have tunneling events at
each of the endpoints of A and the entanglement tsunami wavefront is like a bubble wall
which converts the metastable vacuum (the unentangled region) into the true vacuum (the
entangled region). (Though we should emphasize once more that there is no physical sense
in which the entanglement tsunami is changing the vacuum; it just has the same cartoon
picture.) If A has more than one endpoint, i.e., it is not just a half-line, then eventually
the entanglement tsunami wavefronts starting from adjacent endpoints will collide. For all
times after the collision, the entire interval between those two endpoints will be part of the
entangled region.

We still have to give a rule for computing the entanglement entropy of the region A
given this tsunami picture. Let the entangled region at time t be denoted by E(t). When A
consists of just one or two intervals, then its entanglement entropy is

S(t) = seq ×min
(
Vol(E(t) ∩ A),Vol(E(t) ∩ Ac)

)
. (4.31)

It is not hard to see that this rule agrees with the holographic prescription for entanglement
entropy: for one interval it is trivial, and for two intervals the two options essentially coincide
with the two possible HRT surfaces. Also, note that the entropy is symmetric with respect
to A and Ac, which is as it should be for a globally pure state.

Although we have emphasized that the entanglement tsunami does not represent the
propagation of a physical excitation, there is a suggestive interpretation in which we do
imagine a collection of excited particles living in E(t). Suppose that a finite density of



65

qubits populates the region E(t) and that those qubits are in a typical pure state. Then
the entanglement entropy of the qubits in E(t) ∩ A will follow the Page rule, meaning that
their entanglement entropy will be proportional to either the number of qubits in E(t)∩A or
E(t)∩Ac, whichever is smaller [115]. This is precisely the entanglement tsunami prescription.

Multiple Intervals

When A consists of more than two intervals, there does not appear to be a simple rule like
Eq. (4.31) which correctly reproduces the holographic answer. One can attempt the following
simple and natural generalization, which involves a refinement of our notion of the entangled
region E(t). Instead of a single region, the entangled region is naturally the union of disjoint
intervals:

E(t) =
⋃

i

Ei(t), (4.32)

where each Ei(t) is an interval representing a single connected component of E(t). The
number of Ei(t) regions changes with time. For N intervals, E(t) has N + 1 connected
components at early times (each being a small neighborhood around an endpoint of an
interval) and only a single connected component at late times. A collision of entanglement
tsunami wavefronts indicates that two of the Ei(t) are merging, and thereafter will be treated
as a single unit. We illustrate this behavior in Fig. (4.6).

With this refinement of the entangled region, we have the following upper bound on the
holographic entanglement entropy1:

S(t) ≤ seq
∑

i

min
(
Vol(Ei(t) ∩ A),Vol(Ei(t) ∩ Ac)

)
. (4.33)

In other words, we have a separate minimization problem for each connected component
of the entangled region, and at the end, we add them all up. This rule is numerically the
same as Eq. (4.31) for one or two intervals, and so there is equality. For more than two
intervals, Eq. (4.33) corresponds to the area of one of the candidate HRT surfaces, though
not necessarily the minimal one. Therefore it represents only an upper bound on the entropy.
(See [116] for a discussion on such an upper bound beyond the context of holography.) We
also note that Eq. (4.33) is manifestly symmetric with respect to A and Ac, even though
each minimization subproblem is free to choose to use region A or Ac independently for its
contribution to the entropy.

There is also still a suggestive qubit picture for the right-hand side of Eq. (4.33). Now
instead of one collection of qubits in E(t), there is an independent collection of qubits in each
of the Ei(t), and the total qubit state is a product state over the connected components. We
can imagine that the qubits are somehow being emitted at the endpoints of the intervals,
and when two chains of qubits come into contact (i.e., when two wavefronts merge), they

1We would like to thank Mark Mezei for providing us with an example of three disjoint intervals where
equality fails.
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t1

t3

t2

Figure 4.6: Entanglement tsunami for many intervals. The region A is marked as red.
The intervals between the disconnected components of A are marked as blue. Note that
at time t1, E(t) consists of four disconnected components (orange solid lines) separated by
the entanglement tsunami wavefront (jagged black line). But at time t2, the first pair and
second pair have merged, leaving two disconnected regions. At time t3, there is only a single
connected region.

undergo a very rapid mixing and end up in a typical pure state of the composite system.
Even though this picture only provides an upper bound on the entropy, it could be that a
similar picture is accurate for the real system.

4.5 Discussion

Summary

We have seen that for a (1+1)-dimensional CFT in the limit of large-c, with a sparse spectrum
of operators, the time-dependence for the entanglement entropy of multiple intervals is not
correctly captured by the quasiparticle model of [95, 96]. The correct answer, which is
correctly reproduced holographically, is non-decreasing with time, whereas the quasiparticle
model features crops in the entropy. A heuristic model which gives the correct time evolution
is provided by the entanglement tsunami, a picture originally introduced in [101, 102] which
we have developed into a rule for calculating the entanglement. There are many unanswered
questions about this model, which we will now discuss.

Higher Dimensions

In higher dimensions, as in (1+1)-dimensions, the entanglement entropy for disjoint regions
in the quasiparticle picture will experience periods of decrease that are not present in the
holographic calculation. The entanglement tsunami picture will solve this problem since, like
the holographic calculation, it does not allow for decreases in the entropy. There remains
the puzzle of the velocity of the entanglement tsunami wavefront. In (1+1)-dimensions, it
seems natural to say that the wavefront moves at the speed of light. But this would cause
the entanglement to grow more quickly than the holographic calculation indicates. At the



67

same time, a wavefront made up of quasiparticles traveling in random directions moves too
slowly. A field-theoretic derivation of the entanglement tsunami velocity would do much to
clarify the picture.

Interacting Quasiparticles?

A natural guess for fixing up the quasiparticle picture is simply to add interactions. Instead
of free-streaming, the particles would bump into each other and generate multipartite en-
tanglement. It is not clear whether a simple picture of this type can accurately reproduce
the holographic calculation, but the entanglement tsunami prescription may provide a use-
ful starting point. In the entanglement tsunami, it appears as though there are clouds of
particles being emitted by the endpoints of the region A (or, in higher dimensions, by the
boundary of A), beginning at the quench time. The unphysical aspect of this model is that
it is not homogeneous: the boundaries of A are not preferred locations in the state, so it
doesn’t make sense to say that they are the sources of particles. Instead, the state should
describe a finite density of interacting particles everywhere at once. However, since we are
asking about the entanglement entropy of A, there may be a sense in which the particles in
a neighborhood of the boundary of A are the only ones that matter. Then the entanglement
tsunami would represent a growing sphere of influence, picking out the parts of the homoge-
nous matter distribution which determine the entanglement. We leave an exploration of this
possibility to future work.
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Chapter 5

Dynamics of the Area Law of
Entanglement Entropy

5.1 Introduction

In recent years, the study of the time-dependence of entanglement entropy has received a
considerable attention [95, 98, 99, 100, 101, 102, 117, 116, 118]. In the simplest scenario,
one studies the evolution of the spatial entanglement entropy under the assumption that
the system begins in the vacuum state in the asymptotic past while a relevant (i.e., positive
mass dimension) coupling constant in the Hamiltonian is given a non-trivial time dependence
which asymptotes to a constant value in the far future.

Although the assumption that the system starts in the vacuum state might seem to be an
oversimplification, certain questions about the entanglement may still be addressed without
loss of generality. For example, in quantum field theory the entropy of a region is always UV
divergent [24, 25], whereas the structure of these divergences is state independent, see e.g.,
[119]. Hence, assuming that the system resides in the vacuum state is enough to determine
the pattern of divergences in any state. Indeed, this pattern is fixed by the entanglement of
degrees of freedom near the UV cutoff scale, δ, and therefore the characteristic scale of an
excited state plays no role in this regime. Furthermore, the dynamics of the divergent part
of the entanglement entropy in a time-dependent setup is not trivial, since the asymptotic
vacua, in general, are not identical.

Even though the time dependence of the full entanglement entropy in a generic setup is
very complicated, we expect that evolution of the UV divergences is quasi-adiabatic, and
therefore tractable. Our expectation rests on the locality of UV divergences when all length
scales, ℓi, including the characteristic time scale of the change in couplings, are much longer
than the UV cut off, ℓi ≫ δ, i.e., when the system is found in the physical regime.1 In

1In principle, one could study situations when the coupling varies over time scales of order the UV cut
off. However, the interpretation of these results might be questionable, and we leave this regime outside the
scope of the current work.
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particular, the divergent part of the entropy at time t will only depend on the instantaneous
value of the coupling and its time derivatives.

There is an additional outcome that stems directly from the locality of divergences. It
is now a well-established fact that entanglement entropy is sensitive to the geometry of the
background and shape of the entangling surface [120, 121, 122, 123, 124, 125, 126, 127, 128].
The full answer can be expressed as a sum of certain geometric structures with coefficients
fixed by QFT data. Not all of these structures are necessarily local, however, those which
are multiplied by divergent coefficients as δ → 0 should be local.

The ubiquitous ‘area law’ [24, 25] is probably the most prominent and simple example of
a local geometric structure. In a static d-dimensional CFT it is proportional to δ2−dA since
δ in this case is the only admissible scale at hand, while entropy is dimensionless and area of
the surface, A, has length dimension d− 2. Therefore the ‘area law’ term is not universal in
a CFT – it is sensitive to the choice of regularization scheme. However, the presence of an
additional scale in a non-conformal field theory may overturn this conclusion and result in a
universal ‘area law’ of entanglement, e.g., a logarithmically divergent term proportional to
the area multiplied by an appropriate power of some built-in scale.

In this chapter, we focus on the evolution of the ‘area law’ terms when a QFT undergoes
a quantum quench, and calculate the time-dependence of the universal coefficients in a va-
riety of examples. To make the field theory analysis analytically tractable, we expand the
entanglement entropy to linear order in the time-dependent coupling λ(t). This is not nec-
essary to recover the exact pattern of the universal divergences in the holographic approach
since it is completely fixed by the asymptotic region of the dual geometry. Even though our
focus is on the ‘area law’ only, we expect qualitatively similar behavior from the subleading
divergences as well.

If the mass dimension of λ(t) is α, then for α = (d − 2)/k we may have a universal
term proportional to λk(t)A. Similarly, if α = (d − 2 − l)/k with l being a non-negative
integer, then a term proportional to λk−m(t)∂ltλ

m(t)A with 1 ≤ m ≤ k is allowed. It may
happen that for a given α there is more than one choice of l and k, in which case there
is a proliferation of possible universal structures. Generically, one would expect all allowed
terms to appear, and with independent coefficients. Note, however, that for a given α there
are only finitely many allowed terms.

In Sec. (5.2) and Sec. (5.3) we carry out explicit calculations for a set of special values of
k and l in holographic and free field theories. In both cases, we observe the quasi-adiabatic
behavior that we had argued for. Moreover, our holographic and free field calculations exactly
match in some cases. Such an agreement between the time-dependent terms of entanglement
entropy in the weakly and strongly coupled regimes resembles similar match in the static
case [129, 130] and can be attributed to the universality of certain two- and three-point
correlation functions in a CFT. In particular, we observe explicit match when α = 1, 2 and
k = 2 in various dimensions.2 These values of α correspond to the Dirac and scalar mass

2In fact, there is also a trivial match when k = 1. The universal term, in this case, is independent of λ0,
and therefore the final answer remains intact if we set λ0 = 0. However, if the theory is conformal at λ0 = 0
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operators, respectively. Recalling now that α = (d − 2 − l)/k results in the following cases
explicitly elaborated in the text:

• α = 1, d = 4, l = 0. This case corresponds to a 4D massive Dirac field. Up to a
numerical factor the universal entanglement entropy is given by ∼ λ2(t)A, where λ(t)
is the time-dependent mass of the Dirac field.

• α = 2, d = 6, l = 0. This case of a 6D massive scalar field is analogous to the previous
case, i.e., the entanglement entropy is given by ∼ λ2(t)A, except that λ(t) is mass
squared this time.

• α = 1, d = 6, l = 2. In six dimensions, there is a universal term involving two
time derivatives of the Dirac mass ∼ λ(t)λ̈(t)A. We calculate the numerical coefficient
for the first time both holographically and in the free field theory, and find exact
agreement.

• α = 2, d = 8, l = 2. The behavior of the universal term for the massive scalar field in
eight dimensions ∼ λ(t)λ̈(t)A resembles the massive Dirac field in six dimensions, and
again we calculate the precise numerical coefficient holographically and in free field
theory, finding agreement.

The remainder of this chapter is organized as follows. In Sec. (5.2) we build on the
holographic proposal [26, 27] to compute the time-dependent universal entanglement entropy
for holographic field theories. Since we are only interested in divergent terms, the gravity
calculation is localized in the asymptotic region of the dual geometry; this feature allows us
to calculate the universal coefficients exactly even though the geometry is only determined
perturbatively. We calculate the coefficients of the terms for which agreement with the free
fields is expected, as well as for the terms where agreement is not anticipated. In the latter
case, the answer on the field theory side depends on more than just the universal correlation
functions of the underlying CFT.

In Sec. (5.3) we derive a general expression for the time-dependent first order correction
to the ‘area law’, and show that for a generic QFT it can be expressed in terms of the spectral
function defining the two-point correlation function of the trace of the energy-momentum
tensor. We use these formulas to calculate the universal ‘area law’ for massive free fields with
time-dependent masses. We end with conclusions in Sec. (5.4), and a number of Appendices
detailing some of the more technical aspects of the calculation.

such terms must vanish independently of the values of α and l for the same reason as in the static case [131],
see Sec. (5.3).
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5.2 Holographic Calculation

Setup

We consider a CFT in d spacetime dimensions on the boundary, dual to Einstein gravity in
the d+1-dimensional bulk. The computation of the entanglement entropy of some boundary
region, B, can be done using HRT prescription [26, 27]. The prescription tells us to find the
codimension-2 surface in the bulk of the extremal area, ΣB, subject to the condition that
B and ΣB are homologous. If there are multiple extremal surfaces, we must choose the one
with the minimum area. We will call this minimal extremal surface the HRT surface from
now on. The entanglement entropy of B and the area of the HRT surface are related by

S =
Area(ΣB)

4Gd+1

. (5.1)

Beginning with the vacuum state of the CFT, we turn on a relevant operator O of
dimension ∆ < d at t = 0 by giving it a nonzero, time-dependent, spatially homogeneous
coupling λ(t). It will be useful to express our results in terms of the mass dimension of
the coupling, α ≡ d − ∆. The operator O is dual to a scalar field Φ in the bulk of mass
m2 = ∆(∆ − d) [132, 133]. A nonzero coupling λ(t) corresponds to nontrivial boundary
conditions for Φ. Through the Einstein-scalar field equations, this will change the bulk
metric and therefore affect the calculation of the HRT surface and its area.

The Einstein-scalar equations are given by the variation of the bulk action [119]

I(gλν ,Φ) =
1

16πGd+1

∫
dd+1x

√−g
{
R− 1

2
gλν∂λΦ∂νΦ− V (Φ)

}
, (5.2)

V (Φ) =− d(d− 1) +
1

2
m2Φ2 +

κ

6
Φ3 +

ω

24
Φ4 +O(Φ5) , (5.3)

where we have set LAdS = 1. We have chosen to normalize the bulk scalar action so that
there is an overall factor of 1/16πGd+1 in front; this amounts to a normalization condition
on the operator O. In particular, with this normalization, we can read off Newton’s constant
from the two-point function of O [134]:

〈O(x)O(y)〉 = 2∆− d

8πGd+1

Γ(∆)

Γ(∆− d/2)

1

πd/2|x− y|2∆ . (5.4)

This will allow us to make contact with the free field calculations in Sec. (5.3).3 The bulk
interaction parameters κ, ω, etc., are similarly determined by the three, four, and higher-
point functions of O. The most interesting terms in the entanglement entropy are the ones

3Alternatively, we could have left the normalization unspecified at the cost of introducing another pa-
rameter η which multiplies the bulk scalar field action. The normalization we have chosen is convenient
because it simplifies the Einstein-scalar equations of motion.
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which depend only on the two-point function, since these may be the same across theories
once the normalization has been fixed using Eq. (5.4). Thus we should pay special attention
below to those terms which depend only on Gd+1.

The coupled Einstein-scalar equations are

Rµν =
1

2
∂µΦ∂νΦ +

1

d− 1
gµνV (Φ) , (5.5)

1√−g∂µ
(√−ggµν∂νΦ

)
− δ

δφ
V (Φ) =0 . (5.6)

Following [94], we choose our bulk ‘radial’ coordinate z to be orthogonal to all of the boundary
coordinates. This corresponds to the gauge fixing

gzt = gzi = 0 , (5.7)

where xi for i = 1, ..., d − 1 are the spatial coordinates of the boundary, and t is the time
coordinate in the bulk. We also rescale the bulk coordinate to fix gzz =

1
z2
.

Since our quench is homogenous and isotropic, the bulk geometry must be homogenous
and isotropic as well. Then we can write the bulk metric as

ds2 =
1

z2

(
dz2 − f(t, z)dt2 + h(t, z)

d−1∑

i=1

dx2i

)
, (5.8)

with the boundary conditions that f(t, z = 0) = h(t, z = 0) = 1, and f(t < 0, z) = h(t <
0, z) = 1.

With this choice of metric, Eq. (5.5) and Eq. (5.6) take the following form4:

0 =
d− 1

4

ḣ

h

h′

h
+
d− 1

4

ḣ

h

f ′

f
− d− 1

2

ḣ′

h
− 1

2
Φ̇Φ′ , (5.9)

0 =
d− 1

4

( ḣ
h

)2
− d

2

f ′

z
+
d− 1

4

ḟ

f

ḣ

h
− 1

4

f ′2

f
+

d

z2
f − d− 1

2

f

z

h′

h

− d− 1

2

ḧ

h
+
d− 1

4

f ′h′

h
+

1

2
f ′′ − 1

2
Φ̇2 +

1

d− 1

f

z2
V (Φ) , (5.10)

0 = z2Φ′′ − z2

f
Φ̈− (d− 1)zΦ′ +

z2

2
Φ̇
ḟ

f
+
z2

2
Φ′f

′

f
+ (d− 1)

z2

2
Φ′h

′

h

− (d− 1)
z2

2

Φ̇

f

ḣ

h
− δ

δφ
V (Φ) , (5.11)

where prime and dot denote the derivative with respect to z and t respectively.

4These equations are the zt-component Eq. (5.9) and tt-component Eq. (5.10) of the Einstein equation,
and the scalar field equation of motion Eq. (5.11). We will not need the remaining equations in our analysis.
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The UV divergences in the entanglement entropy arise from the divergences of the area
functional of the HRT surface, ΣB, near the asymptotic boundary (z = 0). To compute these
divergences, we need to find the area functional, or the induced metric on ΣB, near z = 0.
In [119], the authors studied the solutions of Eqs. (5.9)-(5.11) as a power series in z. They
have shown that the solutions can be written as the sum of two separate power series. One
of them is independent of the state of the boundary theory, whereas the other series solution
carries information about the state of the boundary theory. They also showed that the latter
solution does not contribute to the divergences in the entanglement entropy, which implies
that the divergences in the entanglement entropy are state-independent (as expected).

Having learned that the state-dependent power series solution does not contribute to the
divergences, we will only be writing the state-independent solution in the following analysis.5

In [119], all the powers of z that arise in the asymptotic solution have been identified. Using
their result, we make the following ansatz for the metric and the scalar field:

h(z, t) = 1 +
∑

m=2

∑

n=0

zmα+n hm,n(t) , (5.12)

f(z, t) = 1 +
∑

m=2

∑

n=0

zmα+n fm,n(t) , (5.13)

Φ(z, t) = zα
∑

m=0

∑

n=0

zmα+n φm,n(t) , (5.14)

where φ0,0(t) is equal to the time-dependent coupling, λ(t). That is,

φ0,0(t) = λ(t) . (5.15)

HRT Surface

In this chapter, we will only consider terms which are independent of the curvature of the
entangling surface. Then it will be enough to consider the entanglements of a half-space in
the field theory, which means the entangling surface is a flat plane. That is, the region B in
the boundary is given by

B : x1 > 0, t = t . (5.16)

The natural coordinates on the codimension-2 HRT surface in the bulk are {z, xi} for i =
2, ..., d−1, with t and x1 left as functions determining the position of the surface in the bulk.
The HRT surface must be invariant under translation in xi direction, for i = 2, ..., d − 1.
This means t = t(z) and x1 = x1(z) are functions of z alone. The state is also translation-
invariant in the x1 direction, and so we can fix x1(z) = 0. To summarize, the HRT surface,
ΣB, is

ΣB : x1 = x1(z) = 0 , t = t(z) , (5.17)

5This is not to say that the state-dependent terms are unimportant for the non-divergent parts of the
entropy or that they are actually equal to zero in the solutions we consider, but only that we do not need to
keep track of them in our analysis.
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with the boundary condition, t(z = 0) = t, the time at which we are computing the entropy.
The area functional of the HRT surface is given by

Area(ΣB) = 2A
∫ ∞

δ

dz
h

d−2

2 (z, t(z))

zd−1

√
1− f(z, t(z))(t′(z))2 , (5.18)

where A is the area of the entangling surface in the boundary, and prime denotes the deriva-
tive with respect to z. Also note that we have introduced a cut-off surface near the boundary
at z = δ.

Applying the variational principle to the above functional gives us an equation for t(z).
As mentioned above, we are only interested in the asymptotic behavior of the solution near
z = 0. As we will show in Appendix (D.1), the lowest nontrivial power of z that appears
in the solution of t(z) is z2+2α. That is, at the lowest order, the solution of the stationary
surface is

t(z) = t+ z2+2α t2+2α + . . . , (5.19)

where t2+2α is a constant.

By expanding the integrand of Eq. (5.18) in z, we see that we can see that t2+2α in
Eq. (5.19) enters as the coefficient of z4α+3−d. This will not affect the divergent terms in the
entropy as long as

α >
d− 4

4
. (5.20)

In the following, we will perform explicit calculations for α = 1, 2 in d = 4, 5, 6, and for α = 2
in d = 8. These values of α corresponds to the mass term of a Dirac fermion and scalar
boson, respectively. For these values of α and d, the above inequality is true. This allows us
to forget about the details of the HRT surface, and simply set t(z) = t in Eq. (5.18). With
this simplification, Eq. (5.18) becomes

Area(ΣB) = 2A
∫ ∞

δ

dz
h

d−2

2 (z, t)

zd−1
. (5.21)

The entanglement entropy of the boundary region B is then given by

S(t) =
A

2Gd+1

∫ ∞

δ

dz
h

d−2

2 (z, t)

zd−1
, (5.22)

where we can give Gd+1 a field-theory definition by relating it to the two-point function of
the operator O as in Eq. (5.4), reproduced here:

〈O(x)O(y)〉 = 2∆− d

8πGd+1

Γ(∆)

Γ(∆− d/2)

1

πd/2|x− y|2∆ . (5.23)



75

Scalar Mass Operator: α = 2

In this subsection, we specialize to the case where α = 2. In the free field case, this corre-
sponds to a time-dependent mass:

O(x) = φ2(x) , (5.24)

λ(t) =
1

2
m2(t) . (5.25)

The entanglement entropy is given by Eq. (5.22). The ansatz for h(z, t) given in Eq. (5.12)
becomes

h(z, t) = 1 + z4h2,0(t) +O(z6) . (5.26)

By counting powers of z in the integral Eq. (5.22), we deduce that there is no time-dependent
universal log-divergence in the entanglement entropy for d = 4 and d = 5. This result is
consistent with the time-independent holographic calculations [119]. Now we turn to d = 6
and d = 8. To facilitate comparison to the free field case (wherever applicable), we will use
Eq. (5.4) and the result [129]

〈φ2(x)φ2(y)〉boundary =
2

(d− 2)2Ω2
d

1

|x− y|2(d−2)
, (5.27)

which says that the effective value of Newton’s constant is

Gd+1 =
(d− 2)2(d− 4)2πd/2−1

16(d− 1)

Γ(d)

(Γ(d/2))3
. (5.28)

d = 6

Using Eq. (5.22), we get

S(t) =
A
2G7

∫ ∞

δ

dz
h2(z, t)

z5
. (5.29)

After inserting Eq. (5.26) in the above expression, and extracting the log-divergence, we get

Slog(t) = − A
G7

h2,0(t) log δ . (5.30)

Using Eq. (D.7), we get

h2,0(t) = − 1

20
φ2
0,0(t) = − 1

20
λ2(t) , (5.31)

and hence

Slog(t) =
A

20G7

λ2(t) log δ . (5.32)
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This is an example of a result which depends only on Newton’s constant and not any of the
other parameters in V (Φ). Then it depends only on the two-point function of O, through
Eq. (5.4). Using Eq. (5.28), we get G7 = 12π2. Then the holographic result, extrapolated to
the free scalar, is

Slog(t) =
A

240π2
λ2(t) log δ =

A
960π2

m4(t) log δ . (5.33)

If m2(t) is constant, this agrees with the well-known answer for the static case [119]. We will
see below in Sec. (5.3) that we have full agreement also in the time-dependent case.

d = 8

Using Eq. (5.22), we get

S(t) =
A
2G9

∫ ∞

δ

dz
h3(z, t)

z7
. (5.34)

After inserting Eq. (5.26) in the above expression, and extracting the log-divergence, we get

Slog(t) = − 3A
2G9

(
h2,2(t) + h3,0(t)

)
log δ . (5.35)

Using Eq. (D.10) and using Eq. (5.15), we get

h2,2(t) + h3,0(t) =
κ

126
λ3(t) +

1

168
λ̇2(t) +

1

84
λ(t)λ̈(t) , (5.36)

and hence

Slog(t) = − A
2G9

( κ
42
λ3(t) +

1

56
λ̇2(t) +

1

28
λ(t)λ̈(t)

)
log δ , (5.37)

where G9 = 120π3 is given by Eq. (5.28). Note that the coefficent of the λ3(t) term is
proportional to κ and hence it’s not expected to be universal for all unperturbed CFTs.

Fermionic Mass Operator: α = 1

In this subsection, we turn to the case α = 1. This corresponds in the free field limit to a
Dirac mass for a fermion:

O(x) = ψ̄(x)ψ(x) , (5.38)

λ(t) = m(t) . (5.39)

The ansatz for h(z, t) given in Eq. (5.12) for α = 1 is

h(z, t) = 1 + z2h2,0(t) + z3h3,0(t) + z4
(
h2,2(t) + h4,0(t)

)
+O(z5) . (5.40)

By a power counting argument, we find that there is a log divergence for all d > 3. The
absence of the log term in d = 3 is consistent with the known result [119, 131] that the
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change in the entanglement entropy to first order in a perturbation away from a CFT is
zero: the coefficient of the log term, if present, would have been proportional to m.

To determine the effective value of Gd+1 using Eq. (5.4), we will use the following two
point function of Oψ(x) = ψ̄(x)ψ(x) with itself [129]:

〈Oψ(x)Oψ(0)〉 =
2⌊d/2⌋

Ω2
d

1

x2(d−1)
. (5.41)

d = 4

The log divergence in Eq. (5.22) in d = 4 is equal to

Slog(t) = − A
2G5

h2,0(t) log δ , (5.42)

where h2,0(t) is given in Eq. (D.12):

h2,0(t) = − 1

12
φ2
0,0(t) = − 1

12
λ2(t) . (5.43)

Using Eq. (5.4) and Eq. (5.41), we get G5 =
π
2
. Then we have

Slog(t) =
A
12π

λ2(t) log δ . (5.44)

d = 5

In this case, the log divergence in the entanglement entropy is equal to

Slog(t) = − 3A
4G6

h3,0(t) log δ . (5.45)

We copy the result for h3,0(t) from Eq. (D.15):

h3,0(t) =
κ

36
φ3
0,0(t) . (5.46)

Using Eq. (5.4) and Eq. (5.41), we get G6 = 8. Therefore, the entanglement entropy becomes

Slog(t) = − A
384

κφ3
0,0(t) log δ = − A

384
κλ3(t) log δ . (5.47)

In this case the answer depends on the bulk interaction strength κ, and hence is not expected
to be universal across all theories.
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d = 6

In this case, the entanglement entropy in Eq. (5.22) simplifies to

S(t) =
A
2G7

∫ ∞

δ

dz
h2(z, t)

z5
. (5.48)

By expanding Eq. (5.40) in the above expression and extracting the log term, we get

Slog(t) = − A
2G7

(
h22,0(t) + 2h2,2(t) + 2h4,0(t)

)
log δ . (5.49)

Using Eq. (D.19), we get

h22,0(t) + 2h2,2(t) + 2h4,0(t) =
(117− 65κ2 + 45ω)

7200
φ4
0,0(t) +

1

80
∂2t

(
φ2
0,0(t)

)
. (5.50)

Using Eq. (5.4) and Eq. (5.41), we get G7 = 3
2
π2. Combining these results gives us the log

term divergence which not only depends on the instantaneous value of the coupling, but
also on the instantaneous values of its derivatives. Notice that the derivative term does not
depend on the higher-point interactions. Putting together the above results gives

S∂2,log(t) = − A
240π2

∂2
t

(
λ2(t)

)
log δ . (5.51)

5.3 Field Theory Calculation

In this section, we use the Hamiltonian formalism to find the time evolution of the log term
in the entanglement entropy for a general field theory to first order in perturbation theory.
We will identify the linear term in the time-dependent entropy with a certain correlation
function in the original theory. Using the free scalar field as a guiding example, we will
go on to evaluate the divergent parts of this correlation function in terms of the spectral
function c(0)(µ) of the theory, defined in terms of the two-point function of the trace of the
energy-momentum tensor [135]. Finally, we use this general prescription to calculate the
answer for a free Dirac field.

Entropy Perturbation as a Correlation Function

The time-dependent Hamiltonian of our theory is

H(t) = H0 + λ(t)O , (5.52)

where H0 is the Hamiltonian of the unperturbed theory, and λ(t ≤ 0) = 0.
We start with the system in the vacuum state, |0〉, of the unperturbed Hamiltonian.

The global state at any time t > 0 is given by the time-dependent density matrix, ρ̂(t) =
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|χ(t)〉 〈χ(t)|, where |χ(t)〉 solves the Schrödinger equation generated by H(t) with initial
condition |χ(t = 0)〉 = |0〉. The time-dependent reduced density matrix of some spatial
region B is given by the tracing over the Hilbert space of complementary region, B̄. That is

ρ(t) = TrB̄ |χ(t)〉 〈χ(t)| . (5.53)

We define the time-dependent modular Hamiltonian K(t) of region B as

ρ(t) ≡ e−K(t) , (5.54)

where K(t) has only support in the region B. In other words, this operator acts as the
identity operator on the Hilbert space on the region B̄.

The entanglement entropy of B can be written using the modular Hamiltonian:

S(t) = − TrB ρ(t) log ρ(t) , (5.55)

= TrB

(
K(t)TrB̄ |χ(t)〉 〈χ(t)|

)
, (5.56)

= TrB∪B̄

(
K(t) |χ(t)〉 〈χ(t)|

)
, (5.57)

= 〈χ(t)|K(t) |χ(t)〉 . (5.58)

To extract the term linear in λ(t), we define the state in the interaction picture. That is

|χ̃(t)〉 ≡ eiH0t |χ(t)〉 , (5.59)

where the interaction picture state solves the equation

i∂t |χ̃(t)〉 = λ(t)Õ(t) |χ̃(t)〉 , (5.60)

where Õ(t) = eiH0tOe−iH0t. We can solve the above equation perturbatively

|χ̃(t)〉 = |0〉+
∣∣χ̃(1)(t)

〉
+

1

2

∣∣χ̃(2)(t)
〉
+ . . . , (5.61)

where the first order correction is

∣∣χ̃(1)(t)
〉
= −i

∫
t

0

dt′ λ(t′)Õ(t′) |0〉 . (5.62)

We expand the modular Hamiltonian in the same fashion

K(t) = K0 +K(1)(t) +
1

2
K(2)(t) + · · · , (5.63)

where K0 is the modular Hamiltonian of the vacuum state of the CFT, and hence is time-
independent, and K(n) involves n powers of λ.
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x⊥

t
′

−t
−

K0

O(t′)

∂B

Figure 5.1: Two dimensional cross-section of our setup illustrating equation Eq. (5.67). The
entangling surface, ∂B, is at t

′ = 0 and x⊥ = 0 (marked as the black dot). The modular
Hamiltonian of the unperturbed state lives entirely in the region B at t′ = 0, indicated by
the red line. We first compute the correlation function of K0 with the relevant operator,
O, inserted at the blue line, and then integrate over the shaded region. The dashed line at
t
′ = −δ serves as the UV cutoff.

Combining these expansions we get the first order change in the entanglement entropy:

S(1)(t) =
〈
χ̃(1)(t)

∣∣ eiH0tK0 |0〉+ 〈0|K0e
−iH0t

∣∣χ̃(1)(t)
〉
+ 〈0|K(1)(t) |0〉 . (5.64)

The normalization of the reduced density matrix provides a constraint on the modular Hamil-
tonian:

TrB e
−K(t) = 1 . (5.65)

Expanding this constraint to leading order yields

〈0|K(1) |0〉 = 0 , (5.66)

which simplifies Eq. (5.64) to

S(1)(t) = 2Re
[
〈0|K0e

−iH0t
∣∣χ̃(1)(t)

〉]
= −2

∫ 0

−t

dt′λ(t′ + t) Re
[
i 〈0|K0Õ(t′) |0〉

]
. (5.67)

This is one of our main results. The content of this formula is summarized in Fig. (5.1).
The formula (5.67) is applicable for any spatial region B. However, the vacuum modular

Hamiltonian K0 is not known for a general region. We will therefore again restrict ourselves
to the case where an entangling surface is an infinite plane so that the region B is a half-
space. In that case, the modular Hamiltonian of the vacuum state is well known [136, 137,
138, 139]

K0 = 2π

∫
dx‖

∫ ∞

0

dx⊥ x⊥T00(t = 0, x⊥,x‖) . (5.68)
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Here we have adopted the following notation for spatial vectors, v. We write v = (v⊥,v‖),
where v⊥ is the component of v in the direction orthogonal to the entangling surface and v‖

is the projection of v parallel to the entangling surface.
Putting this together, we see that the first-order change in the entropy is related to the

commutator of the energy density and the perturbation:

S(1)(t) = −2πi

∫ 0

−t

dt′
∫
dx‖

∫ ∞

0

dx⊥ x⊥λ(t
′ + t) 〈0|

[
T00(0, x⊥,x‖), Õ(t′)

]
|0〉 . (5.69)

Notice that the interaction picture operator Õ(t) is identical to the Heisenberg operator
O(t) in the original λ(t) = 0 theory, i.e., when the total Hamiltonian is equal to H0. In
the following, O itself will be the integral of a local operator, so we effectively reduce the
problem to a commutator of local operators (or equivalently the imaginary part of a two-point
function) in the original theory.

Example: Free Scalar Field

In the static perturbation theory, the first order change in the entanglement entropy after
perturbing a CFT by a relevant operator vanishes [131]. It follows from Eq. (5.69) that similar
conclusion holds in the time-dependent case. To resolve this difficulty, we will start with the
free scalar with non-zero mass, m, and then introduce a time-dependent perturbation to the
mass, m2(t) = m2 + 2λ(t).6 The action of our theory is7

I[φ(t,x)] =

∫
dtdx

(1
2
(∂φ(t,x))2 − 1

2
m2φ2(t,x)− λ(t)φ2(t,x)

)
, (5.70)

where λ(t ≤ 0) = 0. The perturbing operator is O(t′) =
∫
dx′ φ2(t′,x′), where the time

dependence of these operators is governed by the free Hamiltonian with λ = 0. From (5.69)
we see that the entropy is determined by correlation functions of T00 and φ2. The energy-
momentum tensor of the free scalar field is given by

Tµν = ∂µφ∂νφ− 1

2
ηµν

(
(∂φ)2 −m2φ2

)
+ ξ
(
ηµν∂

2 − ∂µ∂ν

)
φ2 , (5.71)

where the last term is a possible improvement term. The energy-momentum tensor is trace-
less if it is massless and ξ = ξc ≡ d−2

4(d−1)
, in which case the scalar field is said to be con-

formally coupled. The other noteworthy case is the minimally coupled scalar, where ξ = 0.
The required correlation functions are easily computed using Wick’s theorem:

〈0|T00(x)φ2(x′) |0〉 = (∂tG)
2 + (∇G)2 +m2G2 − 2ξ∇2G2 , (5.72)

where

G(x− x′) = 〈0|φ(x)φ(x′) |0〉 =
∫

dp

(2π)d−1

1

2Ep

e−ip·(x−x
′) (5.73)

6The factor of two is so our definition of λ remains consistent with the previous section.
7We use mostly minus signature.
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is the (unordered Lorentzian) two-point function of the scalar field. The expectation value
of the commutator [T00(x), φ(x

′)2] is simply twice the imaginary part of the correlation
function, up to a factor of i. Before taking the imaginary part, we first perform the required
integrations, the details of which we leave to Appendix (E). From Eq. (E.5) we find

∫ 0

−t

dt′
∫
dx′

∫
dx‖

∫ ∞

0

dx⊥ x⊥λ(t
′ + t) 〈0|T00(0, x⊥,x‖)φ

2(t′,x′) |0〉 (5.74)

= A
∫

t

0

dt′ λ(t′)

∫
dp

(2π)d−1

(
1− p2⊥/E

2 − 4ξ

8E2

)
e2iE(t′−t) . (5.75)

Using this result in Eq. (5.69) yields

S
(1)
scalar(t) =

Ωd−1

4(2π)d−2
A
∫

t

0

dt′λ(t′)

∫ ∞

0

dp
(
4(ξc − ξ)

pd−2

E2
+

m2

d− 1

pd−2

E4

)
sin
(
2E(t′ − t)

)
,

(5.76)

where Ωd =
2πd/2

Γ(d/2)
.

To isolate UV divergences in the above expression, we expand the integrand around
x ≡ E/m≫ 1

S
(1)
scalar(t) =

Ωd−1

4(2π)d−2(d− 1)
md−3A

∞∑

n=0

(−1)nΓ
(
d−1
2

)

Γ
(
d−1−2n

2

)
Γ(n+ 1)

∫
t

0

dt′λ(t′)

×
∫ ∞

1

dx xd−6−2n
(
4(ξc − ξ)(d− 1)x2 + 1

)
sin
(
2(t′ − t)mx

)
. (5.77)

Next, we note that for any given d, the integral over x in the above expression results in
a UV-divergent S(1) if and only if d − 4 − 2n ≥ 0. There are only a finite number of such
terms, and therefore we regularize them by assuming that n is sufficiently large, carry out
the integral over x and treat the special values of n by analytic continuation.

The final result depends on the parity of d. For odd d there are no divergences, and S(1)

is finite.8 On the other hand, for even d we obtain

S
(1)
scalar(t) =

Ωd−1

4(2π)d−2(d− 1)
md−3A

∑

0≤n≤ d−4

2

(−1)
d
2Γ
(
d−1
2

)

Γ
(
d−1−2n

2

)
Γ(n+ 1)

∫
t

0

dt′λ(t′) (5.78)

×
(
4(ξc − ξ)(d− 1)Γ(d− 2n− 3)

(
2(t′ − t)m

)d−2n−3
− Γ(d− 2n− 5)
(
2(t′ − t)m

)d−2n−5

)
+ finite terms .

8The non-universal divergences vanish for our choice of regularization scheme.
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Introducing a UV cut off surface t
′ = t− δ to ensures that the integral over t′ is finite, and

expanding λ(t′) in the vicinity of the cutoff yields

S
(1)
scalar(t) =

(−1)
d
2

(16π)
d−3

2 Γ
(
d−1
2

)A


(ξc − ξ)λ(d−4)(t)−

∑

0≤n≤ d−6

2

(4m2)nΓ
(
d−1
2

)

Γ
(
d−1
2

− n
)
Γ(n+ 1)

× m2 λ(d−2n−6)(t)
(2(d− 2n− 3)

n+ 1
(ξ − ξc) +

1

d− 1

))
log δ + finite terms .(5.79)

There are two points to make about this result: (i) It gives us the expected adiabatic ex-
pansion of the time-dependence of the divergent terms in the entanglement entropy, wherein
accord with local nature of the divergences only the instantaneous value of the coupling and
its derivatives matter. (ii) Only even numbers of derivatives appear in the divergent terms,
which is consistent with the holographic result.

As an initial check of our calculations, let us consider a static mass perturbation, i.e.
λ(t) = λ. In this case only n = (d− 6)/2 term in Eq. (5.79) survives, and we get

S
(1)
scalar = (1− 6ξ)

(−1)
d
2A

3(4π)
d−2

2 Γ
(
d−2
2

) md−4λ log δ + finite terms . (5.80)

For ξ = 0 this formula matches the well-known first-order expansion of the static result [140,
141, 142], while for ξ 6= 0 it agrees with [143, 144, 145] .

For the time-dependent λ(t) in d = {4, 6, 8}, the explicit form of the first order correction
is

S
(1)
scalar(t)

∣∣∣
d=4

= (ξc − ξ)
A
2π

λ(t) log δ + finite terms . (5.81)

S
(1)
scalar(t)

∣∣∣
d=6

=
−A
48π2

(
(ξc − ξ)λ̈(t) +

(
6(ξc − ξ)− 1

5

)
m2λ(t)

)
log δ + finite terms .

S
(1)
scalar(t)

∣∣∣
d=8

=
A

1920π3

(
(ξc − ξ)λ(4)(t) +

(
10(ξc − ξ)− 1

7

)
m2λ̈(t)

+10

(
3(ξc − ξ)− 1

7

)
m4λ(t)

)
log δ + finite terms .

Setting ξ = ξc we find that terms proportional to m2λ and m2λ̈ in d = 6 and d = 8
respectively agree with their holographic counterparts.9 Furthermore, linear terms in λ(t)
and its derivatives vanish in all dimensions which is also in full agreement with holography.
Such a match between the calculations for the free field theory and strongly coupled N = 4
SYM might seem surprising at first sight. However, as we argue in the next section, similarly
to the time-independent case [119, 146], this match can be attributed to the universality of
〈TµνO〉, 〈OO〉 and 〈TµνOO〉 in a conformal field theory [129, 130]. We note that tuning ξ to
a conformal value ξc was important to ensure tracelessness of the stress tensor in a CFT.

9To see matching recall that m2(t) = m2 + 2λ(t).



84

Spectral Representation

The scalar field theory example of the previous section suggests that the time-dependent
universal terms of EE can be easily identified if we rewrite Eq. (5.69) as an integral over
energy states. The main goal of this section is to perform such spectral analysis for an
interacting QFT which is driven by the action with only one operator, O(x), of scaling
dimension ∆ < d. The corresponding relevant coupling will be denoted by λ. We assume
that λ is equal to some fixed value plus a time-dependent perturbation: λ(t) = λ0 + δλ(t).

We start by noting that our main result Eq. (5.67) (or equivalently, Eq. (5.69) in the case
of a planar entangling surface) can be written as follows

S(1)(t) = −2

∫ 0

−t

dt′λ(t′ + t) Re [i〈0|Kλ0O(t′)|0〉λ0 ] . (5.82)

where 〈...〉λ0 denotes the correlator in the unperturbed theory with coupling λ0.
Recalling now that by definition Kλ0 is sitting at the t = 0 slice, we deduce that the above

correlator can be easily obtained from its Euclidean counterpart by analytic continuation.
One simply evaluates the Euclidean correlator 〈Kλ0O(t′E)〉λ0 and then substitutes Euclidean
time, t′E, with i(t

′ + iǫ).
Moreover, if we implement conformal perturbation theory and expand this correlator

around λ0 = 0, we will get [129]

〈0|Kλ0O|0〉λ0 = −λ0
(
〈K0OO〉0 − 〈OO〉0

)
+O(λ20) . (5.83)

where we have used the fact that the correlator 〈K0O〉0 vanishes for the CFT 10. This
observation implies that the result for S(1)(t) to linear order in λ0 will be independent of
the underlying CFT.11 This follows from the universality of conformal correlators 〈OO〉 and
〈TµνOO〉 [147, 148]. Thus we conclude that all terms of S(1)(t) which are proportional to
λ0 δλ(t) (or λ0 ∂

2
t
δλ(t) and so on) are identical for any perturbed CFT. In particular, this

explains the perfect matching, mentioned in the previous section, between certain terms
in the holographic and free field theory calculations. This can be seen in the following
way: Note that the terms proportional to λ0 δλ(t) in S

(1)(t) complete into terms which are
quadratic in λ(t) or its derivatives in the full time-dependent entropy, S(t). Recall from the
Sec. (5.2) that the terms that are quadratic in λ(t) or its derivatives (eg. λ2(t) or λ(t)λ̈(t))
in the holographic entanglement entropy only multiply the effective Newton constant, Gd+1,
whereas λ3(t) contributions also multiply κ and λ4(t) also multiply ω, where κ and ω are
coupling constants in Eq. (5.2). Since the effective Newton constant is determined by the
boundary two-point function according to Eq. (5.4), the coefficients of terms quadratic in
λ(t) or its derivatives in the holographic calculation are therefore universal. See [129, 130]
where this universality was observed in a static setup.

10This just means that the first order change in the entanglement entropy after perturbing a CFT by a
relevant operator vanishes. [131]

11In fact, this conclusion also holds in the presence of multiple relevant couplings in the theory.
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By assumption, there is only one relevant coupling, g, in the action. Hence, it can be
shown that [149, 150, 143]

〈O(t′E, x⊥,x‖)K0 〉 =
Ωd

g (d−∆+ β)2d−1(d− 1)(d+ 1)Γ(d)

∫ ∞

0

dµ µ2 c(0)(µ)K0

(
µ
√

t
2
E + x2⊥

)
,

(5.84)
where c(0)(µ) is the spectral function defined by the 2-point function of the energy-momentum
trace [135], K0 on the right-hand side is the modified Bessel function of the second kind12,
β is the anomalous dimension of g and Ωd = 2πd/2/Γ(d/2).

Like in the free scalar case we first integrate this correlator over x‖ and x⊥,

∫
dd−2x‖

∫
dx⊥〈O(x)K0 〉 =

πΩdA
g (d−∆+ β)2d−1(d− 1)(d+ 1)Γ(d)

∫ ∞

0

dµ µ c(0)(µ) e−|tE|µ .

(5.85)
Next, we analytically continue this result back to Lorentzian signature tE → i(t′ + iǫ),
substitute it into Eq. (5.82) and get the following spectral representation of the general
formula Eq. (5.69)

S(1)(t) =
2πΩdA

g (d−∆+ β)2d−1(d− 1)(d+ 1)Γ(d)

∫ ∞

0

dµ µ c(0)(µ) Λ(t, µ) , (5.86)

where we have absorbed the time-dependence in the function Λ(t, µ) defined as

Λ(t, µ) =

∫ 0

−t

dt′λ(t′ + t) sin(t′µ) . (5.87)

The divergences of Eq. (5.86) depend on the µ → ∞ behavior of c(0)(µ). Expanding c(0)(µ)
near µ = ∞ results in a finite number of terms of the form µs for s > 0, and upon substituting
these terms into Eq. (5.86) we find integrals of the form

∫ ∞

0

dµ

∫ 0

−t

dt′ µs+1λ(t′ + t) sin(t′µ) . (5.88)

Note that the oscillatory nature of the integrand means that integrating over µ alone is
not enough to give a divergence: integrating over µ would only produce a factor ∝ |t′|−s−2,
but the subsequent integral over t

′ could have a divergence near t
′ = 0, depending on the

behavior of λ(t+ t
′).

12On the left-hand side, as in all other equations, K0 is the unperturbed modular Hamiltonian.
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To isolate the divergent terms, we begin by integrating Eq. (5.87) by parts with respect
to t

′ a total of 2N + 1 times. This results in the identity

∫ 0

−t

dt′ λ(t′ + t) sin(t′µ) = −λ(t)
µ

+
λ(2)(t)

µ3
+ · · · − (−1)N

λ(2N)(t)

µ2N+1

+ sin(µt)

(
λ(1)(0)

µ2
− λ(3)(0)

µ4
+ · · · − (−1)N

λ(2N−1)(0)

µ2N

)

+ cos(µt)

(
λ(0)

µ
− λ(2)(0)

µ3
+ · · ·+ (−1)N

λ(2N)(0)

µ2N+1

)

− (−1)N
∫ 0

−t

dt′ µ−2N−1λ(2N+1)(t′ + t) sin(t′µ) . (5.89)

If 2N > s + 1, then the last line produces no UV divergences upon substitution back into
Eq. (5.88). The oscillatory terms in the middle two lines likewise produce no divergences
in Eq. (5.88). All that remains is the first line. There we see clearly that a logarithmic
divergence is produced if and only if s is an odd integer, with the coefficient of the divergence
proportional to λ(s+1)(t). The non-universal coefficients can also be determined this way.

Thus we learn that the quasi-adiabatic expansion holds for the divergences in the entan-
glement entropy in a general interacting theory to this order in perturbations, and that the
coefficients are entirely determined by the large-µ behavior of the spectral function c(0)(µ).

Example: Free Dirac Field

Let us implement Eq. (5.86) in the case of free massive Dirac field with a time-dependent
mass deformation. In this case ∆ = d− 1, β = 0, and the spectral function is given by [135]

c
(0)
Dirac(µ) = 2[d/2]

2(d+ 1)(d− 1)

Ω2
d

m2 µd−5

(
1− 4m2

µ2

)(d−1)/2

Θ(µ− 2m) . (5.90)

Or equivalently,

c
(0)
Dirac(µ) = 2[d/2]

2(d+ 1)(d− 1)

Ω2
d

m2 µd−5Θ(µ− 2m)
∞∑

n=0

(−1)nΓ
(
d+1
2

)

Γ
(
d+1−2n

2

)
Γ(n+ 1)

(
2m

µ

)2n

.

(5.91)
This representation is useful for analyzing the UV divergences, which are built from the
modes satisfying µ/(2m) ≫ 1.

Thus, for the free Dirac fermion we get

S
(1)
Dirac(t) =

2[d/2]π

ΩdΓ(d)
md−2A

∞∑

n=0

(−1)nΓ
(
d+1
2

)

Γ
(
d+1−2n

2

)
Γ(n+ 1)

∫ 0

−t

dt′λ(t′ + t)

×
∫ ∞

1

dx xd−4−2n sin
(
2mt

′x
)
, (5.92)
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where we introduced a dimensionless integration variable x = µ/(2m). From the above
expression, it is obvious that only terms satisfying d− 4− 2n ≥ 0 result in UV divergences,
whereas for d− 4− 2n < 0 integrals over t′ and x are finite.

In fact, the universal divergences can be readily isolated. We assume that n is sufficiently
large and carry out integral over x. Small values of n are treated by analytic continuation.
Hence,

S
(1)
Dirac(t) =

2[d/2]π

ΩdΓ(d)
md−2A

∑

0≤n≤ d−4

2

(−1)nΓ
(
d+1
2

)
Γ(d− 3− 2n) cos

(
(d− 2n)π

2

)

Γ
(
d+1−2n

2

)
Γ(n+ 1)

×
∫ −δ

−t

dt′
λ(t′ + t)

(2mt′)d−2n−3
+ finite terms . (5.93)

In particular, there are no universal divergences for odd d,13 while for even d the above
formula reads

S
(1)
Dirac(t) =

2
6−d
2 π

ΩdΓ(d)
A

∑

0≤n≤ d−4

2

4n(−1)
d
2Γ
(
d+1
2

)
m2n+1

Γ
(
d+1
2

− n
)
Γ(n+ 1)

λ(d−2n−4)(t) log δ + finite terms .

(5.94)
For a static perturbation λ(t) = λ, only n = (d− 4)/2 contributes

S
(1)
Dirac =

(−1)
d
2

3(2π)
d−2

2 Γ
(
d−2
2

) md−3λA log δ + finite terms . (5.95)

This result is in full agreement with known calculations in the literature [140, 141, 142]. For
the time-dependent case, we find

S
(1)
Dirac(t)

∣∣∣
d=4

=
Amλ(t)

6π
log δ + finite terms , (5.96)

S
(1)
Dirac(t)

∣∣∣
d=6

= − Am

120π2

(
λ̈(t) + 10m2λ(t)

)
log δ + finite terms . (5.97)

Note that if we take the holographic result in d = 4, Eq. (5.44), and set m(t) = m + λ(t),
then we find agreement with Eq. (5.96). Similarly, the double derivative term in d = 6 in
Eq. (5.51) matches with that in Eq. (5.97). The precise match between the calculations for
the free field theory and strongly coupled holographic CFT has to do with the universality
of certain correlators that we discussed in the previous section, see also [129, 130].

5.4 Conclusions

In this chapter, we studied the evolution of the ‘area law’ of the spatial entanglement when
the relevant coupling of the field theory undergoes a quantum quench. Our main results,

13Recall that non-universal divergences vanish within our choice of regularization scheme.
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Eq. (5.67) and Eq. (5.69), for the time-dependent first order correction to the area law were
derived under the assumption that the relevant coupling satisfies δλ(t)/λ0 ≪ 1, where λ0
is the unperturbed value and δλ(t) is a time-dependent perturbation which vanishes in the
past and asymptotes to a constant value in the future.

We argued that if λ0 is the only relevant parameter in the system, then further simplifi-
cation takes place and the final expression Eq. (5.86) for the time-dependent correction to
the area law can be expressed in terms of the spectral function, c(0)(µ), which is defined in
terms of the two-point correlation function of the trace of the energy-momentum tensor in
the theory.

As an application of these general formulas, we scrutinized the time dependence of the
area law in a generic QFT. In particular, we illustrated that ‘area law’ divergences reveal a
quasi-adiabatic behavior, i.e., they are local and depend on the instantaneous value of the
relevant coupling and finitely many derivatives. We showed that this qualitative behavior is
in full agreement with the holographic prediction based on the HRT proposal [27].

We also carried out explicit calculations of the universal terms in the case of free fields
perturbed by a time-dependent mass and found quantitative agreement with the HRT pre-
dictions of the coefficient of λ2(t) in the entanglement entropy.14 From the point of view of
the holographic calculation, we observed in Sec. (5.2) that the coefficients of the terms which
are quadratic in λ(t) or its derivatives ( eg. λ2(t) or λ(t)λ̈(t)) in the entanglement entropy
only multiply the effective Newton’s constant, which is fixed by the boundary two-point
functions. Since CFT two-point functions have a universal form, this ensures that coeffi-
cients of these terms are independent of the exact nature of the unperturbed CFT. From the
purely field-theoretic point of view, we observed in equation Eq. (5.83) that the coefficient
of λ0 δλ(t) in S

(1)(t) is fixed by the universal CFT correlation functions 〈TµνOO〉 and 〈OO〉.
As the term proportional to λ0δλ(t) in S

(1)(t) completes into the terms quadratic in λ(t) and
its derivative, this explains the matching of the coefficients of these quadratic terms between
free field theory and holographic calculations.

It would be interesting to extend our analysis to the next-to-leading order correction
in δλ(t)/λ0 ≪ 1. Such an extension might shed light on the fundamentals of the linear
growth of entanglement entropy sufficiently far from the instant of quench [95, 98, 99, 100,
101, 102, 117, 116, 118], and help to uncover the underlying reason for the universality of
this behaviour. To make a step in this direction, it is necessary to establish a consistent
perturbative expansion for the modular Hamiltonian. In fact, this problem is interesting
by itself since it has many valuable practical applications beyond the analysis of the time-
dependent program studied in this work, and we plan to address it in the future.

14For a similar match in the static case see [129, 130].
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Part III

Computational Complexity and
Holography
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Chapter 6

Evolution of Complexity Following a
Global Quench

6.1 Introduction

The quantum complexity of a state is defined as the minimum number of gates required to
prepare this state starting from some reference state [36, 37]. The complexity was introduced
in the context of AdS-CFT correspondence to describe the growth of the interior of a two-
sided black hole from the CFT perspective. More precisely, it was proposed that the growth
of the interior of the black hole is dual to the growth of the complexity of the dual CFT
state [36].

These ideas were made more precise in [39, 40], where it was conjectured that the com-
plexity C(t) of the boundary state at time t is proportional to the value of the on-shell
gravitational action A(t) of a certain bulk region. This bulk region is the domain of depen-
dence of a Cauchy slice anchored on the boundary at time t (see Fig. (6.1) for an example).
This conjecture is known as complexity equals action (CA) conjecture and the bulk region is
called the Wheeler-DeWitt (WDW) patch. The CA conjecture asserts that

C(t) = A(t)

π
. (6.1)

A universal bound, known as Lloyd’s bound [42], conjectures that the energy in the
system bounds the rate of computation by the system. Inspired by this, [39, 40] conjectured
an analogous bound on the rate of the growth of the complexity. The bound states

d

dt
C(t) ≤ 2

π
E , (6.2)

where E is the average energy of the state at time t. The original works [39, 40] performed
various calculations to test this conjecture. These works used CA conjecture, Eq. (6.1),
to find the rate of complexification at late times for isolated two-sided black hole and for
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two-sided black hole perturbed by shock waves [151]. Since then, the CA conjecture has
been studied in detail. It was shown in [152] that the rate of complexification for two-sided
black hole satisfies the bound of Eq. (6.2) at late times if the matter fields only appear
outside the killing horizon. The bound is also saturated for BTZ black holes in minimally
massive gravity model [153]. The complexity of entangling two CFTs was computed in [154]
by calculating the difference between the complexity of a thermo-field double state and the
complexity of a product state of vacua of two CFTs. Recently, the late time analysis of [39,
40] was extended in [155, 156], where the full time-dependence of the rate of complexification
for a two-sided black hole was calculated. It was shown in these papers that the conjectured
bound of Eq. (6.2) is violated at earlier times. Similar violations were also observed for the
dual of the non-commutative gauge theories in [157]. A generalization of Eq. (6.1) for the
reduced state of some subsystem of the CFT was proposed in [158]. The CA conjecture
has also sparked interests to study quantum complexity for quantum field theories without
making a connection to holography [159, 160, 161, 162].

Even though the CA conjecture, Eq. (6.1), and the bound of the rate of complexification,
Eq. (6.2), are not consistent in general, our goal in this chapter is to check their consistency
for a quenched quantum system. The study of global quenches has gained considerable
attention in recent years as a tool to understand how a closed quantum system equilibrates.
The idea behind quantum quenches is to excite the system out of equilibrium and let it
evolve under unitary time evolution. The global quenches have been extensively studied
using both field-theoretic methods and holography [95, 96, 97, 163, 98, 99, 103, 105, 100,
101, 102, 104, 164, 118, 165, 166, 167, 168, 169, 170, 171]. Previous works on this topic focus
on studying the time evolution of the correlation functions, Wilson loops, and entanglement
entropy of subregions. Since the complexity does not stop growing even after the system has
achieved equilibrium, we do not expect to get new insights about the system’s approach to
equilibrium. Nevertheless, we expect quantum quenches to provide a non-trivial test of the
bound in Eq. (6.2).

Our approach in this chapter is to use AdS-CFT correspondence to study the quantum
quench of the CFT. This allows us to use the CA conjecture, Eq. (6.1), to calculate the
complexity of the boundary state. Recall that the time evolution of the quenched CFT state
and its approach to thermalization can be described by a black hole formed by a collapse in
the bulk [97, 98, 103, 105, 100, 102, 104, 164, 118]. The Penrose diagram for this spacetime
is shown in Fig. (6.1), where the WDW patch corresponding to boundary state at time t

is shown as the shaded region. We describe in detail the quench protocol and the bulk
geometry in Sec. (6.2).

We carry out the main calculations of this chapter in Sec. (6.3). Here, we summarize
the results of our calculation. For two-dimensional CFTs, we find the full time-dependence
of the complexity of the quenched state (see Eq. (6.55)). For CFTs in higher spacetime
dimensions, we derive an analytical expression for the rate of complexification as a function
of time. Our expression for the rate of complexification is in terms of the position of the
codimension-2 plane where the null boundary of the WDW patch intersects the infalling
shell. This plane is labeled P in Fig. (6.1) and Fig. (6.2). We find that the fact that the
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plane P never crosses the event horizon is equivalent to the bound of Eq. (6.2). This provides
a non-trivial consistency check of the CA conjecture, Eq. (6.1), and the conjectured bound,
Eq. (6.2), for a quenched quantum system. We further find, using numerical analysis, that
the growth of complexity of the quenched state saturates this bound when the system has
approached local equilibrium.

We end with a summary and some possible extensions of our work in Sec. (6.4).

6.2 Setup

We consider a CFT with a holographic dual in a d-dimensional flat spacetime. We start with
the vacuum state of this CFT and at time t = 0 globally quench the system by suddenly
injecting energy with finite density everywhere in the system. We can achieve this by turning
on a global source for a small amount of time. We assume that the quench is homogeneous
and isotropic to preserve the symmetries of the system. The state of the system after the
quench is no longer an eigenstate of the Hamiltonian of our CFT. Hence, it evolves with
time until it equilibrates.

The global quench and the approach to thermalization of the quenched state have a
simpler description in the bulk side of the AdS-CFT correspondence. The quench in the
CFT corresponds to introducing a planar ‘shell’ of matter near the boundary of the AdS
spacetime. This shell then collapses to form a black hole in the bulk, which represents the
equilibrium state in the boundary CFT. We follow [97, 98, 103, 105, 100, 102, 104, 164, 118]
and model the global quench by a (d+ 1)-dimensional planar AdS-Vaidya metric 1,

ds2 =
1

z2

(
− f(v, z) dv2 − 2dvdz + dx2

d−1

)
, (6.3)

where

f(v, z) =




1 for v < 0 ,

1− zd

zdh
for v > 0 ,

(6.4)

and z = zh is the position of the event horizon. This metric describes the AdS-Schwarzschild
black hole for v > 0 and the vacuum AdS for v < 0. The Penrose diagram of this spacetime
is shown in Fig. (6.1).

The parameter zh can be interpreted as the local equilibrium scale after which time the
system achieves local equilibrium [102]. The temperature and energy of the equilibrium state
in the boundary are same as those of the black hole formed in the bulk and are given in
terms of zh as

Td =
d

4π zh
, Ed =

d− 1

16πG

Ld−1

zdh
, (6.5)

1We set ℓAdS = 1.
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t = 0

t

P

Figure 6.1: The Penrose diagram of the time-dependent geometry as a result of a collapse of
a null shell (shown as a double line). The dashed line is the event horizon, and the shaded
region denotes the WDW patch corresponding to boundary time t. The intersection of the
past null boundary of the WDW patch and the collapsing null shell is denoted by a black
dot and is labeled by P .

where we have defined

Ld−1 ≡
∫
dd−1x , (6.6)

as the volume of our boundary system.
Our goal is to compute the complexity of the boundary state after the global quench as a

function of time. According to the CA conjecture, Eq. (6.1), this complexity of the boundary
state at time t is related to the action of the WDW patch corresponding to the boundary
time t. This patch is shown as the shaded region in Fig. (6.1). Note that the on-shell action
of a null dust vanishes [172, 173]. Moreover, since the stress-energy tensor only has a Tvv
component, the trace of the Einstein’s equations implies that the Ricci scalar is non-singular
at v = 0. This allows us to use the additive property of the gravitational action [174], and
split our WDW patch into two parts. One that lies entirely inside the infalling null shell
(v > 0) and the other that lies outside the null shell (v < 0). That is,

A = A(v>0) +A(v<0) , (6.7)

where A(v>0) and A(v<0) are the gravitational actions of the shaded regions in the left
and right columns of Fig. (6.2) respectively. As a result, instead of working with the
time-dependent metric of Eq. (6.3), we can simply do our calculations in stationary AdS-
Schwarzschild and vacuum AdS spacetimes. We carry out these calculations in the next
section.
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t = 0

t

P

v = 0

v = t

A

B

t = 0

t

P

v = 0

Figure 6.2: The Penrose diagrams for AdS-Schwarzschild black hole (left) and vacuum
AdS (right). The shaded region on the left/right corresponds to the part of the WDW
inside/outside the collapsing null shell in Fig. (6.1). We have also included a cut-off sur-
face at z = δ (shown as a blue line) in the Penrose diagram of AdS-Schwarzschild. The
intersections of the WDW patch with the cut-off surface are labeled A and B, whereas the
intersection of the past null boundary of the WDW patch and the collapsing null shell is
denoted by a black dot and is labeled P .

6.3 Calculations

In this section, we perform the main calculations of this chapter. In Sec. (6.3), we consider
the part of the WDW patch that lies inside the infalling shell (left column of Fig. (6.2))
and we calculate its action, A(v>0). We then calculate the action A(v<0) of the part of the
WDW patch that lies outside the infalling shell (right column of Fig. (6.2)). We combine
the results of these calculations in Sec. (6.3) and show that the rate of complexification,
determined using the CA conjecture, Eq. (6.1), satisfies the bound of Eq. (6.2).

Calculation of A(v>0)

The shaded region inside the collapsing shell has one spacelike, one timelike, and three null
boundaries. The spacelike boundary is the singularity (z = ∞). The timelike boundary is
the cut-off surface (z = δ) that we have introduced to regulate the UV divergence in the
gravitational action. Two of the null boundaries are v = 0 and v = t, while the third null
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boundary is the plane joining points B and P in Fig. (6.2). Let’s assume that this null
boundary is described by z1(v; t). The function z1(v; t) then satisfies the integral equation

1

2
(t− v) =

∫ z1(v;t)

0

dz
1

f(z)
, (6.8)

where f(z) = f(v > 0, z) in Eq. (6.4). The coordinates of the points A, B, and P are

A : vA = t , zA = δ , (6.9)

B : vB = t− 2δ , zB = δ , (6.10)

P : vA =0 , zP (t) = z1(0, t) . (6.11)

In the case of d = 2, the Eq. (6.8) can be exactly solved and the solution is given by

z1(v; t) = zh tanh

(
t− v

2zh

)
, for d = 2 . (6.12)

However, the closed form solution of Eq. (6.8) is not available for d ≥ 3.
We now focus our attention to compute the gravitational action A(v>0) of the shaded

region in the left column of Fig. (6.2). The bulk contribution to the gravitational action is
given by the Einstein-Hilbert term. Since the Ricci scalar of the AdS-Schwarzschild black
hole is constant, the bulk contribution to A(v>0) is proportional to the volume V(v>0) of the
shaded region in the left column of Fig. (6.2). That is,

Abulk
(v>0) =

1

16πG

(
R− 2Λ

)
V(v>0) , (6.13)

where R is the Ricci scalar and Λ is the cosmological constant. The volume of the shaded
region is given by

V(v>0) =

∫
dd−1x

∫
t−2δ

0

dv

∫ ∞

z1(v;t)

dz
1

zd+1

+

∫
dd−1x

∫
t

t−2δ

dv

∫ ∞

δ

dz
1

zd+1
,

=
Ld−1

d

2

δd−1
+
Ld−1

d

∫
t−2δ

0

dv
1

zd1(v; t)
, (6.14)

where we have used Eq. (6.6).
In the case of d = 2, we can use Eq. (6.12) to get

V (d=2)
(v>0) =

2L1

δ
+
L1

2z2h
t− L1

zh tanh
(

t

2zh

) . (6.15)
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Since we do not have a closed form formula of z1(v; t) for d ≥ 3, we cannot perform the
integrals in Eq. (6.14). Regardless, we can still calculate the contribution of the Einstein-
Hilbert term to the rate of complexification. To do this, we take the time derivative of the
volume in Eq. (6.14). We get

d

dt
V(v>0) =

Ld−1

d

1

zdP (t)
. (6.16)

In deriving this result, we have used the following property of the derivatives of z1(v; t)

d

dt
z1(v; t) = − d

dv
z1(v; t) . (6.17)

Our approach in this and the next subsection is to write all the contributions to the grav-
itational action in terms of zP (t). We then analyze these results in Sec. (6.3) where we
numerically solve for zP (t) for d ≥ 3.

Recall that the cosmological constant is equal to Λ = −1
2
d(d−1). The vacuum Einstein’s

equations then imply R = −d(d+ 1). We combine Eq. (6.13) and Eq. (6.15) to get

Abulk
(v>0) =

L1

8πG

(
2

zh tanh
(

t

2zh

) − 1

z2h
t− 4

δ

)
, for d = 2 , (6.18)

and we combine Eq. (6.13) and Eq. (6.16) to get

d

dt
Abulk

(v>0) = − Ld−1

16πG

2

zdP (t)
. (6.19)

We now consider the boundary contributions to A(v>0). There are two contributions to
the action from a null boundary. The first contribution is proportional to the surface integral
of the ‘surface gravity’ κ of the null generator ka of the null surface (see for e.g. [174]). The
second contribution is a counterterm which ensures that the action is independent of a
choice of the parameterization of the null surface [174, 175]. The ‘surface gravity’ κ of the
null generator ka is defined as

ka∇ak
b = κ kb . (6.20)

Let’s denote the generator of the null boundaries v = 0 and v = t by kain and that of
the null boundary between points B and P in Fig. (6.2) by kaout. We choose the following
normalization of the null generators

kain = − z2
(
∂z
)a
, (6.21)

kaout =
2z2

f(z)

(
∂v
)a − z2

(
∂z
)a
. (6.22)

The advantage of this particular normalization of the null generators is that the surface
gravity of both of these null generators vanishes. Therefore, we only have to focus on the
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counterterms. The contributions from the counterterms is [174]

Anull
(v>0) =

1

8πG

∫
dd−1x

∫ ∞

δ

dz

z2
√
q θin log θin −

1

8πG

∫
dd−1x

∫ ∞

zP (t)

dz

z2
√
q θin log θin

+
1

8πG

∫
dd−1x

∫ zP (t)

δ

dz

z2
√
q θout log θout , (6.23)

where
√
q = z1−d is the determinant of the induced metric of the codimension-2 cross-

sections of the null hypersurface, and θin (θout) is the null expansion of kain (kaout). Using
Eqs. (6.21)-(6.22), we find

θin = θout = (d− 1) z . (6.24)

With this result, Eq. (6.23) becomes

Anull
(v>0) =

Ld−1

4πG

1

d− 1

1

δd−1

(
1 + (d− 1) log

[
(d− 1)δ

])

−Ld−1

4πG

1

d− 1

1

zd−1
P (t)

(
1 + (d− 1) log

[
(d− 1)zP (t)

])
. (6.25)

Next, we consider the cut-off boundary (z = δ) that we have introduced to regulate the
UV divergences. The contribution of this timelike boundary to the gravitational action is
given by the Gibbons-Hawking-York (GHY) term. The normal vector to the cut-off boundary
is

sa = δ
(
∂v
)a − δ

(
∂z
)a
. (6.26)

The GHY term for the cut-off surface is

A(z=δ)
(v>0) =

1

8πG

∫
dd−1x

∫
t

t−2δ

dv
√
|γ| γab∇asb , (6.27)

where γab ≡ gab − sasb is the inverse induced metric on the cut-off surface. Solving this
surface integral yields

A(z=δ)
(v>0) =

Ld−1

8πG

2d

δd−1
. (6.28)

The last boundary that we have to consider is the spacelike spacetime singularity (z = ∞).
The contribution of this boundary is also given by GHY term. To compute this term, we
first consider the spacelike surface at z = z∞ ≫ zh and then take the limit z∞ → ∞. The
future-directed vector normal to the z = z∞ surface is

na = − z
d/2
h

z
d/2−1
∞

(
∂v
)a − z

d/2+1
∞

z
d/2
h

(
∂z
)a
. (6.29)

The GHY term is then given by

A(z=∞)
(v>0) = lim

z∞→∞
− 1

8πG

∫
dd−1x

∫
t

0

dv
√
|γ̃| γ̃ab∇anb , (6.30)
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where γ̃ab ≡ gab + nanb is the inverse induced metric on the z = z∞ surface. The negative
sign in Eq. (6.30) is due to the fact that the shaded region is to the past of the z = z∞
boundary. (See [174] for a summary of the rules to assign the sign to each of the terms in
the gravitational action.) Solving the integrals in Eq. (6.30) yields

A(z=∞)
(v>0) =

Ld−1

16πG

d

zdh
t . (6.31)

Lastly, we consider the contributions of the corner terms to A(v>0). The corners where
null boundaries v = 0 and v = t intersect the singularity do not contribute because the
volume density of the codimension-2 corners falls as z1−d. The total contribution to A(v>0)

from the corners is [174]

Acorner
(v>0) = − 1

8πG

∫

A

dd−1x
√
q aA − 1

8πG

∫

B

dd−1x
√
q aB +

1

8πG

∫

P

dd−1x
√
q aP , (6.32)

where
√
q = z1−d is the determinant of the induced metric of the codimension-2 corners, and

aA = log |kin · s| , (6.33)

aB = log |kout · s| , (6.34)

aP = log

∣∣∣∣
kin · kout

2

∣∣∣∣ . (6.35)

Using Eqs. (6.9)-(6.11) and Eq. (6.21)-(6.26), we get

Acorner
(v>0) = −Ld−1

8πG

2

δd−1
log δ +

Ld−1

8πG

1

zd−1
P (t)

(
2 log zP (t)− log f

(
zP (t)

)
)
. (6.36)

The total gravitational action of the shaded region on the left side of Fig. (6.2) is given
by the sum of the contributions from the bulk, surfaces, and corners. For d = 2, we use the
expression of zP (t) from Eq. (6.12) to get

A(d=2)
(v>0) =

L1

4πG

1

δ
+ 4E2 zh coth

(
t

2zh

)
log

(
cosh

(
t

2zh

))
, (6.37)

where we have used Eq. (6.5). We also compute the time derivative of A(v>0) for general
dimensions. Using the differential equation for zP (t)

d

dt
zP (t) =

1

2
f
(
zP (t)

)
, (6.38)

we get

d

dt
A(v>0) = 2Ed

{
1 +

(
zdh
zdP (t)

− 1

) (
log
(
d− 1

)
+

1

2
log
(
f
(
zP (t)

))
)}

, (6.39)

where we have once again used Eq. (6.5).
This finishes our discussion of the gravitational action of the shaded region on the left

column of Fig. (6.2). Next, we repeat the analysis of this subsection for the shaded region
on the right column of Fig. (6.2).
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Calculation of A(v<0)

We now consider the shaded region on the right side of Fig. (6.2). This shaded region has
three boundaries. One of these is the Poincaré horizon (z = ∞), the other is the infalling
null shell (v = 0), and the third is the null boundary that connects plane P with the past
Poincaré horizon. This third boundary is described by the equation

z = zP (t)−
v

2
. (6.40)

The bulk contribution to A(v<0) is given by the Einstein-Hilbert term. This term is
proportional to the volume of the shaded region on the right side of Fig. (6.2). That is,

Abulk
(v<0) =

1

16πG

(
R− 2Λ

)
V(v<0) , (6.41)

where the volume is

V(v<0) =

∫
dd−1x

∫ 0

−∞

dv

∫ ∞

zP (t)− v
2

dz
1

zd+1
,

=
Ld−1

d(d− 1)

2

zd−1
P (t)

. (6.42)

Using R− 2Λ = −2d, we get

Abulk
(v<0) = − Ld−1

4πG(d− 1)

1

zd−1
P (t)

. (6.43)

We now consider the boundary contributions to A(v<0). Note that the Poincaré horizon
(z = ∞) does not contribute to A(v<0) [154]. For the null boundary at v = 0, we use the
following normalization of the null generator

k̄ain = −z2
(
∂z
)a
, (6.44)

and for the other null boundary, we use the following normalization of the null generator

k̄aout = 2 z2
(
∂v
)a − z2

(
∂z
)a
. (6.45)

As was the case in Sec. (6.3), the surface gravity of these null generators vanish. Therefore,
we only have to focus on the null counter terms [174, 175]. The contributions from the
counterterms is [174]

Anull
(v<0) =

1

8πG

∫
dd−1x

∫ ∞

zP (t)

dz

z2
√
q θ̄in log θ̄in +

1

8πG

∫
dd−1x

∫ ∞

zP (t)

dz

z2
√
q θ̄out log θ̄out ,

(6.46)
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where θ̄in and θ̄out are the null expansion of k̄ain and k̄aout respectively. Using θ̄in = θ̄out =
(d− 1)z, we simplify Eq. (6.46) as

Anull
(v<0) =

Ld−1

4πG

1

d− 1

1

zd−1
P (t)

(
1 + (d− 1) log

[
(d− 1)zP (t)

])
. (6.47)

Now let’s consider the corner terms. The corners at the intersection of the Poincaré
horizon with the null boundaries do not contribute because the volume density of the
codimension-2 surfaces falls off as z1−d. Therefore, the only corner contribution comes from
the corner P and is given by [174]

Acorner
(v<0) = − 1

8πG

∫

P

dd−1x
√
q āP , (6.48)

where
√
q is the volume density of the codimension-2 corner, and

āP = log

∣∣∣∣
k̄in · k̄out

2

∣∣∣∣ . (6.49)

With this, we get

Acorner
(v<0) = −Ld−1

4πG

1

zd−1
P (t)

log
(
zP (t)

)
. (6.50)

After calculating all the contributions to the gravitational action of the shaded region on
the right side of Fig. (6.2), we add them to get

A(v<0) =
Ld−1

4πG
log
(
d− 1

) 1

zd−1
P (t)

. (6.51)

In the case of d = 2, the above result vanishes. That is

A(d=2)
(v<0) = 0 . (6.52)

To find the contribution to the rate of complexification from the shaded region on the right
side of Fig. (6.2), we take the time derivative of Eq. (6.51)

d

dt
A(v<0) = −2Ed

(
zdh
zdP (t)

− 1

)
log
(
d− 1

)
, (6.53)

where we have once again used Eq. (6.38).
In the next subsection, we combine the results of this and the previous subsections to

find the total action of the WDW patch and hence, the complexity of the boundary state.
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Calculation of the Total Action

The total gravitational action of the WDW patch is given by Eq. (6.7). In the case of d = 2,
we add Eq. (6.37) and Eq. (6.52) to get

A(d=2) =
L1

4πG

1

δ
+ 4E2 zh coth

(
t

2zh

)
log

(
cosh

(
t

2zh

))
. (6.54)

The CA conjecture, Eq. (6.1), then implies that the complexity of the perturbed state at
time t is given by

C(d=2)(t) =
L1

4π2G

1

δ
+

4

π
E2 zh coth

(
t

2zh

)
log

(
cosh

(
t

2zh

))
. (6.55)

The analytical expression for the time-dependence of the complexity in d = 2 is one of the
main results of this chapter. For d ≥ 3, we do not have the analytical result for the time-
dependence of the complexity. The reason for this is that we do not have the closed form
solution of Eq. (6.8). In spite of that, we can still study the time evolution of the complexity
in d ≥ 3 by studying its rate of growth. We add Eq. (6.39) and Eq. (6.53) and use CA
conjecture to get

d

dt
C(t) = 2

π
Ed

{
1 +

1

2

(
zdh
zdP (t)

− 1

)
log
(
f
(
zP (t)

))
}
, (6.56)

We use this expression to study the bound on the rate of complexification. As is evident from
Fig. (6.1) and from the left side of Fig. (6.2), the plane P never crosses the event horizon
(i.e. zP (t) ≤ zh). This means that the second term inside the parenthesis on the right side
of Eq. (6.56) can never be positive. This gives us the following bound

d

dt
C(t) ≤ 2

π
Ed , (6.57)

which is in agreement with the bound of Eq. (6.2). Furthermore, note that the plane P
approaches the event horizon (i.e. zp(t) → zh) at late times (t ≫ zh). This means that the
above inequality eventually saturates. This analytical consistency check of the CA conjecture
and the conjectured bound on the rate of complexification is another main result of this
chapter.

Another interesting question that one may ask is how long does it take for the rate of
growth of complexity to approach its maximum possible value. To answer this question,
we need to find how long does it take for the plane P to reach the event horizon. Recall
that the function zP (t) satisfies the differential equation, Eq. (6.38), with the boundary
condition zP (t = 0) = 0 (see Eq. (6.8)). We numerically solve this differential equation for
d = {3, 4, 5, 6}. The plots of zP (t) as a function of time are shown in Fig. (6.3). It is clear
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from these plots that the plane P approaches the event horizon when t ∼ zh. This time scale
is same as the inverse temperature of the CFT state (see Eq. (6.5)) or the local equilibrium
scale. This result, together with Eq. (6.56), implies that the rate of complexification attains
its maximum value soon after the system has achieved local equilibrium.
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Figure 6.3: The plots showing the position of the plane P as a function of time for d =
{3, 4, 5, 6}. It is evident from these plots that zP (t) → zh when t ∼ zh.

6.4 Discussion

In this chapter, we have excited the vacuum state of a d-dimensional CFT by a global
quench and studied the growth of the complexity of the resultant time-dependent state. We
quenched the system by injecting homogeneous and isotropic energy globally in the system.
In the gravity side of the AdS-CFT correspondence, this quench is described as an infalling
null shell which collapses to form a black hole [97, 98, 103, 105, 100, 102, 104, 164, 118]. We
used the CA conjecture, Eq. (6.1), to study the growth of the complexity of the boundary
state.

For d = 2, we derived an expression of the time-dependence of the complexity. This
expression is given in Eq. (6.55). For d ≥ 2, we derived the rate of growth of complexity
in terms of single time-dependent function, zP (t). This is given in Eq. (6.56). The function
zP (t) is the position of the codimension-2 plane where the WDW patch corresponding to
boundary state at time t intersects the infalling null shell. One can deduce from Fig. (6.1) and
Fig. (6.2) that the plane P never crosses the event horizon. That is, zP (t) ≤ zh. With this
inequality, our general expression for the rate of complexification reduces to the conjectured
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bound of Eq. (6.2). Furthermore, we found the time-dependence of zP (t) by numerically
solving Eq. (6.38). The plots for zP (t) for d = {3, 4, 5, 6} are shown in Fig. (6.3). This
numerical analysis allowed us to deduce that the quenched state saturates the bound on the
rate of complexification soon after the system has achieved local equilibrium.

There are few possible directions in which the present work can be extended. One possible
direction is explored in the next chapter. Here, we now propose another possible extension of
our work: The complexity equals action was generalized in [158] for reduced states of some
subsystem of the CFT. This proposal relates the complexity of the reduced state of some
boundary subregion A with the on-shell action of the bulk region defined as the intersection
of the entanglement wedge of A and the WDW patch of a boundary slice that includes
region A. One may consider repeating the analysis of this chapter for the time-dependence
of the complexity of some fixed boundary region. However, it is known [163, 101, 102] that
there can be discontinuities in the position of the HRT surface [27], and consequently in the
entanglement wedge, when the time t is of the order of the size of the boundary subregion.
This is due to the presence of more than one boundary anchored extremal surfaces. This
jump in the HRT surface of the subregion can result in the discontinuity of the complexity of
the reduced state of the subregion. It will be interesting to investigate if this really happens,
and if it does, then how it is compatible with the bound on the rate of complexification.
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Chapter 7

Divergences in the Rate of
Complexification

7.1 Introduction

The complexity of a quantum state is defined as the minimum number of gates that map a
reference state to that quantum state [36, 37]. It was conjectured in [36] that the growth of
the complexity of a boundary CFT state as a function of time is holographically dual to the
stretching of the interior of a black hole in the bulk. To make this connection more concrete,
various holographic definitions for the complexity have been put forward. One such proposal,
known as the complexity equals action (CA) conjecture, relates the holographic complexity
with the on-shell gravitational action of a certain bulk region [39, 40]. This region, called the
Wheeler-DeWitt (WDW) patch, is defined as the domain of dependence of a bulk Cauchy
surface. More precisely, this conjecture states that the complexity of a CFT state at time t

is related to the on-shell action of the WDW patch corresponding to time t, A(t), as [39, 40]

CA(t) =
A(t)

π
. (7.1)

Another such proposal relates the complexity with the volume of an extremal Cauchy surface
[38, 176]. In particular, it is conjectured that the complexity of a CFT state at time t is
related to the volume of an extremal Cauchy surface anchored on the boundary at time t,
Vext(t), according to [38]

CV (t) ≡
Vext(t)

GℓAdS

. (7.2)

This proposal is called the complexity equals volume (CV) conjecture.
The earliest checks [39, 40] for these conjectures were the observations that the rate of

growth of these holographic complexities at late times is consistent with a universal bound
by Lloyd. The Lloyd bound conjectures that the rate of complexification is bounded from



105

above by the energy of the system [42]. That is,

d

dt
C(t) ≤ 2

π
E , (7.3)

where E is the instantaneous average energy of the system. The consistency of the holo-
graphic conjectures for complexity, Eqs. (7.1)-(7.2), with the Lloyd conjecture, Eq. (7.3), has
been verified in various contexts, e.g., see [152, 153, 177]. However, some cases have been
identified where the CA conjecture and the Lloyd bound are not compatible with each other
[155, 156, 157]. Moreover, it has been argued that the holographic gates for which the CA
conjecture is true do not satisfy the assumptions of the Lloyd bound [178]. In particular,
these holographic gates are infinitesimal unitary transformations whereas the Lloyd bound
is applicable for quantum gates that map a state into an orthogonal state [178]. Therefore,
there is no reason to expect that the holographic complexity conjectures satisfy the Lloyd
bound.

In this chapter, our goal is to present another example where the growth of the complexity
computed using either the CA or the CV conjecture does not respect the Lloyd bound. More
precisely, we consider starting from the vacuum state of a (3 + 1)-dimensional CFT and
perturb the Hamiltonian at t = 0 by a relevant operator with a time-dependent coupling.
The Hamiltonian is given by

H(t) = HCFT + λ(t)O , (7.4)

where λ(t ≤ 0) = 0. For simplicity, we only consider the case where the conformal dimension
of the relevant operator is ∆ = 3. The subsequent state evolves according to the perturbed
Hamiltonian. We claim that the complexity of the evolved state has time-dependent UV
divergences. As a result, the rate of complexification is UV divergent. The instantaneous
energy, on the other hand, is UV finite. Therefore, it does not even make sense to compare
the rate of complexification with the instantaneous energy of the state as required by the
Lloyd bound. For this reason, we consider this example to be a more violent violation of the
Lloyd bound than those discussed in [155, 156, 157].

This time-dependent perturbation of a CFT is described using the AdS-CFT correspon-
dence by the introduction of a (tachyonic) scalar field in the bulk [133, 134, 179]. The
conformal dimension ∆ of the relevant operator fixes the mass whereas the coupling ‘con-
stant’ λ(t) fixes the boundary condition for this scalar field. The scalar field back-reacts on
the bulk spacetime and changes the bulk geometry. Since the boundary condition for the
scalar field is time-dependent, the bulk geometry is also time-dependent. Consequently, the
on-shell action of the WDW patch and the volume of a Cauchy slice evolve as a function of
time.

The bulk geometry is determined by solving the Einstein-Klein-Gordon equations in the
bulk. Finding the full solution of these equations is not an easy task. Luckily, the UV
divergences in the on-shell action of the WDW patch and in the volume of a Cauchy slice
only depend on the asymptotic geometry near the boundary [158, 175]. This means that it
is sufficient to solve the bulk equations perturbatively in the radial coordinate. This method
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was also used in [119] to investigate the UV divergences in the entanglement entropy. We
perform this perturbative analysis in Sec. (7.2).

We calculate the divergences in the rate of complexification in Sec. (7.3) and in Sec. (7.4).
In Sec. (7.3), we find the divergences in the time-derivative of the action of the WDW patch.
This allows us to use the CA conjecture to find the divergences in the rate of complexification.
In Sec. (7.4), we find the Cauchy slice with maximum volume anchored on the boundary
at time t and extract the divergences from its volume. Combining this result with the CV
conjecture yields the divergences in the rate of complexification. We find that the structure
of the divergences in the complexity is the same as that identified in [158, 175] but the
coefficients of these divergences depend on the instantaneous value of the coupling ‘constant’,
λ(t).

The instantaneous energy of the boundary state is the expectation value of the Hamilto-
nian in Eq. (7.4). Like any other correlation function, the energy is a UV finite quantity once
the renormalization procedure is performed. The response of the one-point function of the
boundary stress-tensor to the time-dependent perturbation is studied using the AdS-CFT
correspondence in [180, 181]. This requires variation of the on-shell renormalized action of
the bulk theory with respect to the metric of the boundary. For our purposes in this chapter,
the details of the time-dependence of the energy are not significant. All we need to know for
the violation of the Lloyd bound is the fact that the energy is a UV finite quantity.

7.2 Holographic Setup

In this chapter, we consider starting with a CFT (with a holographic dual) and deforming it
by a relevant operator with a time-dependent coupling. The Hamiltonian of the perturbed
theory is given in Eq. (7.4). The time-dependent perturbation of a CFT is studied exten-
sively using the AdS-CFT correspondence in [180, 181, 182]. According to the AdS-CFT
correspondence, a relevant operator on the boundary is dual to a (tachyonic) scalar field
in the bulk [133, 134, 179]. This means that perturbing the boundary CFT by a relevant
operator can be described by a scalar field in the bulk. The mass of this scalar field is fixed
by the conformal dimension ∆ of the relevant operator according to1 [133, 134, 179]

m2 = ∆(∆− 4) . (7.5)

For simplicity, we only focus on the relevant operator with conformal dimension ∆ = 3 in
this chapter. In this case, we have m2 = −3.

This scalar field couples with the metric in the bulk, and the bulk theory is governed by

1We set ℓAdS = 1 .



107

the action [119, 180, 181, 182]

A [Φ, g] =
1

16πG

∫

M

d5x
√−g

(
R + 12− 1

2
(∂Φ)2 − V (Φ)

)

+
1

8πG

∫

∂M

d4x
√−γ K , (7.6)

where

V (Φ) = −3

2
Φ2 +

∑

n

1

n!
κnΦ

n . (7.7)

The Newton’s constant that appears in the overall factor of the action in Eq. (7.6) can be
fixed by demanding that the boundary two-point function of O matches the holographic
two-point function. That is, we can read off G from [133, 134, 179]

〈O(x)O(y)〉 = 1

2π3G

1

|x− y|6 . (7.8)

Similarly, the coupling constants κn in Eq. (7.7) can be determined by comparing the bound-
ary n-point functions with the holographic n-point functions. The term in the second line of
Eq. (7.6) is the standard Gibbons-Hawking-York (GHY) boundary term without which the
gravitational action does not have a well-defined variation [183]. No such boundary term is
required for the scalar field with the Dirichlet boundary conditions [184].

The on-shell value of the action in Eq. (7.6) has UV divergences, which arise because the
volume element diverges near the asymptotic boundary [185]. To regulate these divergences,
we need to introduce a cut-off surface near the asymptotic boundary. To make a choice
of the cut-off surface, we choose to work with the Fefferman-Graham coordinates in the
bulk [94, 186]. The most general metric of the asymptotically local AdS spacetime in these
coordinates is2

ds2 =
1

z2

(
dz2 +Gµν(z, x) dx

µdxν
)
, (7.9)

where z = 0 is the asymptotic boundary. In these coordinate system, a convenient choice of
a cut-off surface is z = δ.

The back-reaction of the scalar field on the bulk geometry is determined using the
Einstein-Klein-Gordon equations in the bulk. The variation of the action in Eq. (7.6) with
respect to the bulk metric yields

Rab + 4 gab −
1

2
∂aΦ ∂bΦ− 1

3
gab V (Φ) = 0 , (7.10)

whereas the variation of the action with respect to the bulk scalar yields

1√−g ∂a
(√−g gab∂bΦ

)
− δ

δΦ
V (Φ) = 0 . (7.11)

2We follow the index convention that the Greek letters (µ, ν, ...) denote boundary coordinates and Latin
letters (a, b, ...) correspond to bulk coordinates.
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These equations should be solved simultaneously to determine the bulk metric in Eq. (7.9).
However, Eq. (7.9) is the most general metric of the asymptotically local AdS spacetime.
Since the perturbation of the boundary CFT is homogeneous and isotropic, we expect the
bulk metric to have translation and rotational invariance in the transverse directions. There-
fore, we make the following ansatz for the bulk metric3

ds2 =
1

z2

(
dz2 − f(z, t) dt2 + h(z, t)

3∑

i=1

dx2i

)
, (7.12)

with the boundary conditions

f(z = 0, t) =h(z = 0, t) = 1 , (7.13)

f(z, t ≤ 0) =h(z, t ≤ 0) = 1 . (7.14)

Finding the full bulk geometry and the profile of the bulk scalar field is a difficult exercise.
However, as emphasized in Sec. (7.1), we are only required to solve for the bulk metric and
the bulk scalar near the asymptotic boundary. This allows us to expand the metric and the
scalar field as a power series in z and solve for the bulk equations perturbatively. These
perturbative solutions were studied in detail in [119], where the powers of z that appear in
the asymptotic solutions of the bulk metric and the scalar field were identified. Furthermore,
it was shown in [119] that the power series solution for the scalar field breaks down at order
z∆ and that for the bulk metric breaks down at order zd, where d is the dimensions of the
boundary. Using these results, we write for d = 4 and ∆ = 3

f(z, t) = 1 + z2 f2(t) + z3 f3(t) + z4 F (z, t) , (7.15)

h(z, t) = 1 + z2 h2(t) + z3 h3(t) + z4H(z, t) , (7.16)

Φ(z, t) = z φ0(t) + z2 φ1(t) + z3 Ψ(z, t) , (7.17)

with the boundary condition [133, 134, 179]

φ0(t) = λ(t) . (7.18)

As we will see in Sec. (7.3) and in Sec. (7.4), the non-perturbative parts of the solution,
that is F (z, t) in Eq. (7.15), H(z, t) in Eq. (7.16), and Ψ(z, t) in Eq. (7.17), do not contribute
to the divergences of either the action of the WDW patch or the volume of a Cauchy slice.
So for our purpose, we ignore the non-perturbative part of the solutions and insert the
perturbative ansatz in the bulk equations. Expanding the Klein-Gordon equation, Eq. (7.11),
to leading order in z and using Eq. (7.18) yield

φ1(t) = −κ3
2
φ2
0(t) = −κ3

2
λ2(t) . (7.19)

3We denote bulk time coordinate by t and boundary time coordinate by t.
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Similarly, expanding the zt-component and tt-component of the Einstein’s equations, Eq. (7.10),
to the leading order yields

f2(t) = h2(t) = − 1

12
λ2(t) , (7.20)

whereas expanding these equations to next to the leading order yields

f3(t) = h3(t) =
2

27
κ3 λ

3(t) . (7.21)

This finishes our discussion of the time-dependent bulk geometry due to the back-reaction
of the scalar field. As we will see in the next two sections, the asymptotic results in
Eqs. (7.19)-(7.21) are sufficient to calculate the divergences in the rate of complexification.

7.3 Complexity using CA Conjecture

In this section, we calculate the UV divergences in the rate of complexification using the
CA conjecture. That is, we extract the time-dependent UV divergences that appear in the
action of the WDW patch corresponding to the boundary time t. Although the details of
the WDW patch depend on the geometry far into the bulk, we are only concerned with the
structure of the patch near the asymptotic boundary. We find the WDW patch near the
asymptotic boundary in Sec. (7.3) and study its action in Sec. (7.3).

Wheeler-DeWitt Patch near the Asymptotic Boundary

The WDW patch corresponding to the boundary time t is defined as the domain of depen-
dence of a bulk Cauchy slice anchored to the boundary at time t. This means that near the
asymptotic boundary, the WDW patch is bounded by two null hypersurfaces, J̇±(t). The
null hypersurface J̇+(t) (J̇−(t)) is the boundary of the future (past) of the time slice t on the
asymptotic boundary. Due to the translation invariance in the transverse directions, these
codimension-1 null hypersurfaces can simply be described by

J̇±(t) : t = t±(z; t) , (7.22)

with the boundary condition t±(z = 0; t) = t. Using the form of the bulk metric in Eq. (7.12),
we deduce that the functions t±(z; t) satisfy

d

dz
t±(z; t) = ± 1√

f
(
z, t±(z; t)

) . (7.23)

The perturbative solutions of these differential equations can be determined using the series
expansion of f(z, t) from Eq. (7.15). Solving these equations order-by-order in z and using
Eqs. (7.20)-(7.21) yields

t±(z; t) = t± z ± 1

72
z3λ2(t) +

1

96
z4
(
∓24κ3

27
λ3(t) +

d

dt
λ2(t)

)
+O(z5) . (7.24)
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As we discussed in Sec. (7.2), we introduce a cut-off surface near the asymptotic boundary
at z = δ to regulate the UV divergences. This means that the WDW patch is also bounded
by this cut-off surface. So to summarize, the WDW near the asymptotic boundary is the
region bounded by the following inequalities

WDW patch: z ≥ δ , and t−(z; t) ≤ t ≤ t+(z, t) . (7.25)

After finding the WDW patch near the asymptotic boundary, we study the action of this
patch in the next subsection.

Calculation of the Action

In addition to the action of the bulk theory given in Eq. (7.6), the action of the WDW patch
also has contributions from the null boundaries, J̇±(t), and from the corners where these
null boundaries intersect the cut-off boundary, z = δ [174]. That is, the action of the WDW
patch is given by the sum

A(t) = Abulk(t) +Aboundaries(t) +Acorners(t) , (7.26)

where Aboundaries and Acorners include all the boundaries and all the corners respectively. In
the following, we first consider all the terms in Eq. (7.26) separately and then add them
together to get the total action.

The bulk contribution to the action of the region in Eq. (7.25) is given by

Abulk(t) =
1

16πG

∫
d3x

∫

δ

dz

∫ t+(z;t)

t−(z;t)

dt
√−g

(
R + 12− 1

2
(∂Φ)2 − V (Φ)

)
. (7.27)

Using the trace part of the Einstein’s equations, Eq. (7.10), and using the form of the metric
in Eq. (7.12), we write the above expression as

Abulk(t) =
L3

16πG

∫

δ

dz
1

z5

∫ t+(z;t)

t−(z;t)

dt f 1/2(z, t)h3/2(z, t)

(
− 8 +

2

3
V (Φ)

)
, (7.28)

where we have also defined

L3 ≡
∫
d3x , (7.29)

as the volume of our boundary system. Evaluating the integrals in Eq. (7.28) is not possible
without knowing an explicit form of the time-dependent coupling, λ(t). Nevertheless, we
can still calculate the contribution of the bulk action to the rate of complexification. To do
this, we take the time-derivative of bulk contribution in Eq. (7.28). This yields

d

dt
Abulk(t) =

L3

16πG

∫

δ

dz
1

z5

{
dt+(z; t)

dt

[
f 1/2(z, t)h3/2(z, t)

(
− 8 +

2

3
V (Φ)

)]∣∣∣∣∣
t=t+(z;t)

−dt−(z; t)
dt

[
f 1/2(z, t)h3/2(z, t)

(
− 8 +

2

3
V (Φ)

)]∣∣∣∣∣
t=t−(z;t)

}
. (7.30)
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The integrand in the above expansion can be expanded as a power series in z using Eqs. (7.15)-
(7.17) and Eq. (7.24). This allows us to extract the UV divergences in Eq. (7.30). Performing
this analysis and using Eqs. (7.18)-(7.21) gives us the following time-dependent divergence
in the bulk action

d

dt
Abulk(t) =

L3

36πG

1

δ

d

dt
λ2(t) . (7.31)

We now consider the boundary terms in the action, Eq. (7.26). The region in Eq. (7.25) is
bounded by three boundaries. One of these in the timelike cut-off surface at z = δ, whereas
the other two boundaries are null hypersurfaces, J̇±(t). We first consider the contributions
from the null boundaries. This contribution is [174]

Anull(t) = − 1

8πG

∫

J̇+(t)

d3x dλ+
√
q+
(
κ+ + θ+ log θ+

)

+
1

8πG

∫

J̇−(t)

d3x dλ−
√
q−
(
κ− + θ− log θ−

)
, (7.32)

where λ± is a null parameter on J̇±(t) and

√
q± =

1

z3
h3/2

(
z, t±(z; t)

)
, (7.33)

=
1

z3
− 1

8
λ2(t)

1

z
+

(
κ3
9
λ3(t)∓ 1

8

d

dt
λ2(t)

)
+O(z) , (7.34)

is the volume measure on a cross-section of J̇±(t). The ‘surface gravity’, κ±, of a null
generator ka± ≡ dxa/dλ± is defined as

ka±∇ak
b
± ≡ κ± k

b
± , (7.35)

whereas the null expansion, θ±, is defined as

θ± ≡ d

dλ±
log

√
q± . (7.36)

Note that if we choose λ± to be an affine parameter, then κ± vanishes and we only have to
worry about the terms with the null expansion. Therefore, we choose the null generators of
J̇±(t) to be affine parameterized

ka±(t) = N±(z; t)


±z2

(
∂z
)a

+
z2

f 1/2
(
z, t±(z; t)

) (∂t
)a

 , (7.37)

where N±(z; t) near the asymptotic boundary is given by

N±(z; t) = 1 +
1

24
z2λ2(t)−

(
κ3
27
λ3(t)∓ 1

36

d

dt
λ2(t)

)
z3 +O(z4) . (7.38)
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With this choice of the parameterization, the null expansions are

θ±(z; t) = ∓ 3z ∓ 3

8
z3λ2(t) +

(
±4

9
κ3λ

3(t)− 11

24

d

dt
λ2(t)

)
z4 +O(z5) . (7.39)

Using these asymptotic series expansions, we extract the following divergences in Eq. (7.32)

Anull(t) =
L3

4πG

(
1 + 3 log(3δ)

3δ3
+

2− log(3δ)

8δ
λ2(t) +

4κ3
9

log δ λ3(t)

)
, (7.40)

where we have also used Eq. (7.29). We take the time-derivative of this result to get

d

dt
Anull(t) =

L3

4πG

(
2− log(3δ)

8δ

d

dt
λ2(t) +

4κ3
9

log δ
d

dt
λ3(t)

)
. (7.41)

We now focus on the timelike cut-off boundary. The action of this boundary is given by
the standard GHY term

Az=δ(t) =
1

8πG

∫
d3x

∫ t+(δ;t)

t−(δ;t)

dt
√−γ γab∇asb , (7.42)

where
sa = −δ(∂z)a , (7.43)

is the normal vector to the cut-off surface and γab ≡ gab− sasb is the inverse induced metric
on the boundary. Evaluating the integral in Eq. (7.42) is not possible. Despite that, we can
still calculate its contribution to the rate of complexification. Taking the time-derivative of
Eq. (7.42) yields

d

dt
Az=δ(t) =

L3

8πG

{
dt+(δ; t)

dt

(√−γ γab∇asb

)∣∣∣
t=t+(δ;t)

− dt−(δ; t)

dt

(√−γ γab∇asb

)∣∣∣
t=t−(δ;t)

}
, (7.44)

where we have also used Eq. (7.29). To extract the UV divergences in Eq. (7.44), we simply
expand the right-hand side in the power series of δ. We get

d

dt
Az=δ(t) = − 5L3

72πG

1

δ

d

dt
λ2(t) . (7.45)

Lastly, we consider the corner terms in the action, Eq. (7.26). The corners that contribute
to the divergences in the action of the WDW patch are the codimension-2 surfaces where
the cut-off surface intersect the null boundaries, J̇±(t). The action of these two corners is
[174]

Acorners(t) = − 1

8πG

∫
d3x

√
q+ a+(t)−

1

8πG

∫
d3x

√
q− a−(t) , (7.46)
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where the volume element is given by

√
q± =

1

δ3
h3/2

(
δ, t±(δ; t)

)
, (7.47)

=
1

δ3
− 1

8
λ2(t)

1

δ
+

(
κ3
9
λ3(t)∓ 1

8

d

dt
λ2(t)

)
+O(δ) , (7.48)

and [174]

a±(t) = log |s · k±|
∣∣∣
z=δ , t=t±(δ;t)

. (7.49)

Using the null vectors from Eq. (7.37) and the normal vector from Eq. (7.43), we get

a±(t) = log δ +
1

24
λ2(t) δ2 +O(δ3) . (7.50)

We combine this result with Eq. (7.48) to simplify Eq. (7.46) as

Acorners(t) = − L3

4πG

(
log δ

δ3
− 1

8
λ2(t)

log δ

δ
+

1

24
λ2(t)

1

δ
+
κ3
9
λ3(t) log δ

)
. (7.51)

We take the time-derivative of this result to get

d

dt
Acorners(t) =

L3

32πG

log δ

δ

d

dt
λ2(t)− L3

96πG

1

δ

d

dt
λ2(t)− L3

36πG
κ3 log δ

d

dt
λ3(t) . (7.52)

To get the time-dependent divergences in the total action, we add the contributions from
the bulk in Eq. (7.31), null boundaries in Eq. (7.41), cut-off boundary in Eq. (7.45), and
corners in Eq. (7.52). We get

d

dt
A(t) =

L3

96πG

1− 3 log(3)

δ

d

dt
λ2(t) +

L3

12πG
κ3 log δ

d

dt
λ3(t) . (7.53)

The CA conjecture, Eq. (7.1), then implies that the UV divergence in the rate of com-
plexification at time t is

d

dt
CA(t) =

L3

96π2G

1− 3 log(3)

δ

d

dt
λ2(t) +

L3

12π2G
κ3 log δ

d

dt
λ3(t) . (7.54)

This is one of the main results of this chapter. This verifies our claim from Sec. (7.1) that
the rate of complexification of the state following the time-dependent perturbation of a CFT
has UV divergences. As argued in Sec. (7.1), this result violates the Lloyd bound, Eq. (7.3).
To see this, note that the instantaneous energy of the state is UV finite [180, 181]. Hence,
it is meaningless to expect a bound between the UV divergent rate of complexification and
the UV finite energy of the state.
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7.4 Complexity using CV Conjecture

In this section, we use the CV conjecture to calculate the time-dependent UV divergences in
the complexity of the boundary state. Our approach here is to first find an extremal Cauchy
surface anchored on the boundary at time t and then to extract the UV divergences in the
volume of that surface.

Due to translation symmetry in the transverse directions, we consider a bulk Cauchy
surface anchored on the boundary at time t that can be described by

Σt : t = T (z; t) , (7.55)

with the boundary conditions T (z = 0; t) = t. The future-directed normal vector to Σt is

na = N
(
(∂t)

a + f
(
z, T (z; t)

)
T ′(z; t) (∂z)

a

)
, (7.56)

where prime denotes derivative with respect to z, and the normalization factor is

N−1 =
1

z
f 1/2

(
z, T (z; t)

)√
1− f

(
z, T (z; t)

)(
T ′(z; t)

)2
. (7.57)

The extrinsic curvature of Σt is defined as

KΣt
≡ hab∇anb , (7.58)

where hab ≡ gab+nanb is the inverse induced metric on Σt. Finding an extremal bulk Cauchy
surface is equivalent to demanding that the extrinsic curvature in Eq. (7.58) vanishes. This
yields the following equation

0 =

{
T ′′ +

1

2

f ′

f
T ′ +

1

2

ḟ

f
T ′2 +

(
1− fT ′2

)
(
1

2

f ′

f
T ′ +

3

2

h′

h
T ′ +

3

2

1

f

ḣ

h
− 4

z
T ′

)}∣∣∣∣∣
t=T (z;t)

,

(7.59)

where dot denotes the derivative with respect to the bulk time coordinate, t. Solving this
equation for T (z; t) is not feasible. However, we are only interested in the profile of the
extremal Cauchy surface near the asymptotic boundary. This means we only need to solve
Eq. (7.59) perturbatively. Demanding a series solution for T (z; t) and solving Eq. (7.59)
order-by-order yield

Text(z; t) = t− 1

32
z4

d

dt
λ2(t) +O(z5) . (7.60)

After finding the extremal surface near the asymptotic boundary, we now find the diver-
gences that appear in its volume. The volume of this extremal surface is given by

Vext(t) =

∫
d3x

∫

δ

dz
1

z4
h3/2

(
z, Text(z; t)

)√
1− f

(
z, Text(z; t)

)(
T ′
ext(z; t)

)2
. (7.61)
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Since the z dependence in Eq. (7.60) appears at z4 order, it does not contribute to the
divergences in Eq. (7.61). Therefore, we simply replace Text(z; t) with t in Eq. (7.61) and get

Vext(t) = L3

∫

δ

dz
1

z4
h3/2(z, t) , (7.62)

where we have also used Eq. (7.29). Using the series expansion in Eq. (7.16) and using
Eqs. (7.20)-(7.21), we find that the divergences in the volume of the extremal Cauchy surface
are

Vext(t) =
L3

3

1

δ3
− L3

8

1

δ
λ2(t)− L3κ3

9
log δ λ3(t) . (7.63)

The CV conjecture, Eq. (7.2), then implies that the divergences in the complexity at
time t are

CV (t) =
L3

3G

1

δ3
− L3

8G

1

δ
λ2(t)− L3κ3

9G
log δ λ3(t) , (7.64)

whereas, the divergences in the rate of complexification are

d

dt
CV (t) = − L3

8G

1

δ

d

dt
λ2(t)− L3κ3

9G
log δ

d

dt
λ3(t) . (7.65)

This is another main result of this chapter. This result shows that the CV conjecture,
Eq. (7.2), and the Lloyd bound, Eq. (7.3), are not consistent with each other. This follows
from the fact that the energy of the state after the time-dependent perturbation is UV finite
[180, 181]. This means that one of the sides of the Lloyd bound has UV divergences whereas
the other side does not. Hence, the bound is not satisfied.

7.5 Discussion

Our goal in this chapter was to present a simple example where the holographic complex-
ity computed either using the CA conjecture, Eq. (7.1), or the CV conjecture, Eq. (7.2),
has time-dependent UV divergences. The example that we studied was a time-dependent
deformation of a CFT Hamiltonian by a relevant operator with the assumption that the
system was initially in the ground state of the unperturbed CFT. The bulk description of
this perturbation involves a scalar field which back-reacts on the bulk geometry [133, 134,
179]. Due to this back-reaction, the bulk geometry becomes time-dependent. Since we were
only interested in the divergences in the holographic complexity, we only had to calculate the
back-reaction of the scalar field near the asymptotic boundary in Sec. (7.2). With the time-
dependent geometry near the asymptotic boundary, we were able to use the CA conjecture
in Sec. (7.3) to determine the time-dependent divergences in the rate of complexification.
This result is given in Eq. (7.54). Similarly, we used the CV conjecture in Sec. (7.4) to find
the divergences that appear in the complexity. This result is given in Eq. (7.65). We find
that the structure of the divergences in Eq. (7.54) and in Eq. (7.65) is the same as the one
identified in [158, 175].
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The significance of our result is that it shows that neither the CA conjecture nor the CV
conjecture is consistent with the Lloyd bound, Eq. (7.3). The Lloyd bound demands that the
average energy of the system bounds the rate of complexification from above. However, the
energy of the system following the time-dependent perturbation is a UV finite quantity. The
time-dependence of the energy of the perturbed system has been studied using the AdS-CFT
correspondence in [180, 181]. Since the rate of complexification according to both the CA
conjecture and the CV conjecture is UV divergent, whereas the energy of the system is not,
the Lloyd bound cannot be satisfied. This is the main message of this chapter. Though,
note that the inconsistency of the CA conjecture and the Lloyd bound were also recently
discovered in [155, 156, 157].
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Appendix A

Parallel Transport of Null Vectors

Here we present a derivation of Eq. (2.63); Eq. (2.64) can be derived similarly. We start
with the ansatz

hb∇aka = Aka +Bla + Ca , (A.1)

where Ca is the projection of hb∇bka onto the leaf. The constant A is

A = −lahb∇bka = κ̃ , (A.2)

where we have used Eq. (2.16). The constant B is

B = −kahb∇bka = 0 . (A.3)

To determine Ca, we consider an arbitrary vector field, φa, tangent to the leaf, and contract
it to our ansatz

φaCa = φahb∇bka , (A.4)

= −kaLhφa + φa (Daα− αΩa) , (A.5)

where we have used Eq. (2.15). A consequence of the normalization Eq. (2.5) is that for
every vector field φa tangent to the leaf, Lhφa is also tangent to the leaf [57]

qabφ
b = φa ⇒ qabLhφb = Lhφa . (A.6)

This with the fact that φa is arbitrary implies

Ca = Daα− αΩa . (A.7)

Eq. (A.1) thus reduces to the desired result

hb∇bka = κ̃ka +Daα− αΩa . (A.8)
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Appendix B

Cross-focusing Equations

Here we derive the cross-focusing equations [54, 61]

la∇aθ
(k) =− θ(l)θ(k) − 1

2
R+ ΩaΩ

a −DaΩ
a − 2

α
ΩaDaα +

1

α
DaDaα + 8πTabk

alb ,

(B.1)

ka∇aθ
(l) + κθ(l) =− θ(l)θ(k) − 1

2
R+ ΩaΩ

a +DaΩ
a +

2

β
ΩaDaβ +

1

β
DaDaβ + 8πTabk

alb ,

(B.2)

which will be useful in the derivation of the screen equations in Appendix (C). Note that
these equations (unlike the screen equations) are highly sensitive to how we extend the null
vectors, ka and la, into a neighborhood of the holographic screen. We do this by demanding

lb∇bl
a = 0 , (B.3)

kb∇bk
a = κka , (B.4)

laka = −1 . (B.5)

With these extension, Eq. (2.63) reduces to

lb∇bka =
1

α
Daα− Ωa . (B.6)

We decompose ∇alb and ∇akb as

∇alb = B
(l)
ab + κlalb − laΩb − lbΩa −

1

β
laDbβ , (B.7)

∇akb = B
(k)
ab − κlakb + kaΩb + kbΩa −

1

α
kaDbα . (B.8)
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Now using θ(k) = qab∇akb, we get

la∇aθ
(k) = la∇a

(
qbc∇bkc

)
, (B.9)

= qbc∇b (l
a∇akc)− qbc (∇bl

a) (∇akc) +
(
la∇aq

bc
)
(∇bkc) +Rabcdl

aqbckd , (B.10)

=ΩaΩ
a −DaΩ

a − B
(l)
abB

ab
(k) −

2

α
ΩaDaα +

1

α
DaDaα +Rabcdl

aqbckd . (B.11)

With the help of the Gauss-Codazzi equation for codimension-2 spatial surfaces [187],

1

2
R+ θ(l)θ(k) − B

(l)
abB

ab
(k) =

1

2
Rabcdq

acqbd , (B.12)

we get

la∇aθ
(k) = −θ(l)θ(k) − 1

2
R+ ΩaΩ

a −DaΩ
a − 2

α
ΩaDaα +

1

α
DaDaα +

1

2
Rabq

ab . (B.13)

To get Eq. (B.1), we use the Einstein equations

1

2
Rabq

ab =

(
Rab −

1

2
Rgab

)
kalb = 8πTabk

alb . (B.14)

Eq. (B.2) can be derived in a similar fashion.
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Appendix C

Derivation of Screen Equations

Here we present a derivation of the nontrivial screen equations, Eqs. (2.34)-(2.36). Eq. (2.36)
was derived for the dynamical horizons in [53, 55]. The derivation made use of the Gauss
Codazzi constraint equations which relate the extrinsic curvature of a hypersurface with the
Ricci tensor of the background spacetime. This can only be done for a hypersurface with
definite signature. Hence, this method does not obviously apply to a holographic screen. In
Sec. (C.1), we will present a derivation of Eq. (2.36) in a way that makes it clear that the
signature of H (and indeed, anything but the 2D leaf) is irrelevant. Eq. (2.34) was derived
in [58]; in Sec. (C.2) , we present a simplified derivation. In Sec. (C.3), we derive Eq. (2.35),
following [57].

C.1 Tabn
akb Equation

We begin by deriving Eq. (2.36). On the holographic screen, ha∇aθ
(k) = 0. By expanding

this equation, we get
0 = αla∇aθ

(k) + βka∇aθ
(k) . (C.1)

Replacing the first term on the right hand side with the cross-focusing Eq. (B.1), and the
second term with Raychaudhuri’s equation,

ka∇aθ
(k) = κθ(k) − 1

2
θ(k)2 − σ

(k)
ab σ

ab
(k) − 8πTabk

akb , (C.2)

we find

−α
2
R+ αΩaΩ

a − αDaΩ
a − 2ΩaDaα +DaD

aα = 8πTabn
akb + βσ

(k)
ab σ

ab
(k) . (C.3)

C.2 Tabn
ahb Equation

Next, we derive Eq. (2.34). By Eq. (2.3),

αL̂hθ(l) = α2la∇aθ
(l) + αβka∇aθ

(l) . (C.4)
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We replace the second term on the right hand side with the cross-focusing Eq. (B.2) and the
first term with Raychaudhuri’s equation

la∇aθ
(l) = −1

2
θ(l)2 − σ

(l)
ab σ

ab
(l) − 8πTabl

alb . (C.5)

As a result, we get

α(L̂h + κ̃)θ(l) = − α2B
(l)
abB

ab
(l) −

1

2
αβR+ αβΩaΩa + αβDaΩ

a

+ 2αΩaDaβ + αDaDaβ + 8παTabn
alb . (C.6)

We eliminate R from this equation by using Eq. (C.3)

α(L̂h + κ̃)θ(l) = Da(2αβΩ
a − βDaα + αDaβ) + B

(h)
ab B

ab
(n) + 8πTabn

ahb . (C.7)

Rearranging the terms and using Eq. (2.32) lead to Eq. (2.34).

C.3 Tabn
aqbc Equations

Here we closely follow the derivation by Gourgoulhon [57]. We start with the identity

Rabn
aqbc = q b

c (∇a∇b −∇b∇a)n
a . (C.8)

Using na = −αla + βka, and Eqs. (B.7)-(B.8), we get

∇anb = B
(n)
ab − κlahb + haΩb + hbΩa +

α

β
laDbβ − β

α
kaDbα− lb∇aα + kb∇aβ . (C.9)

The first term on the right hand side of Eq. (C.8) becomes

q b
c ∇a∇bn

a = q b
c h

a∇aΩb + ΩaB(h)
ac + θ(h)Ωc − θ(l)Dcα + qcb∇aB

ab
(n)

− B(n)
ca

(
1

β
Daβ +

1

α
Daα

)
−Dc (l

a∇aα− ka∇aβ) , (C.10)

where we have repeatedly use Eqs. (B.3)-(B.8). Similarly, the second term becomes

q b
c ∇b∇an

a = Dc(κ̃)− θ(l)Dcα− αDcθ
(l) −Dc (l

a∇aα− ka∇aβ) . (C.11)

Combining these two results, we get

Rabn
aqbc = q b

c h
a∇aΩb + ΩaB(h)

ac + θ(h)Ωc −Dcκ̃+ αDcθ
(l) + qcb∇aB

ab
(n)

− B(n)
ca

(
1

β
Daβ +

1

α
Daα

)
. (C.12)



122

By making use of

DaB
(n)a
c = q b

c ∇aB
(n)a
b − B(n)b

c

(
1

β
Dbβ +

1

α
Dbα

)
, (C.13)

and
L̂hΩc = q b

c h
a∇aΩb + ΩaB(h)

ac , (C.14)

Eq. (C.12) reduces to

Rabn
aqbc = L̂hΩc + θ(h)Ωc −Dcκ̃+ αDcθ

(l) +DaB
(n)a
c . (C.15)

Finally we use Einstein’s equation to obtain Eq. (2.35),

(L̂h + θ(h))Ωc −Dcκ̃+ αDcθ
(l) = 8πTabn

aqbc −DaB
(n)a
c . (C.16)
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Appendix D

Details of the Holographic
Calculations in Ch. (5)

D.1 HRT Surface Calculation

In this appendix, we solve for the position of the HRT surface and verify the claim that we
made in Eq. (5.19) that at the lowest order, the solution of the stationary surface is

t(z) = t+ z2+2α t2+2α + . . . , (D.1)

As mentioned in the Sec. (5.2), the HRT surface is given by t = t(z) and x1 = 0. The
equation of motion for t = t(z) is obtained by varying

A ∝
∫
dz
h

d−2

2 (z, t(z))

zd−1

√
1− f(z, t(z))(t′(z))2 . (D.2)

We find

0 = − z
(
(d− 2)ḣ+ ht′(t′ḟ + 2f ′)

)
+ fh

(
2(d− 1)t′ − 2zt′′ + zt′3f ′

)
+ (d− 2)zfht′(t′ḣ− h′)

+ f 2t′3
(
− 2(d− 1)h+ (d− 2)zh′

)
, (D.3)

where dot represents derivative with respect to t and prime represents derivative with respect
to z.

The ansatz Eqs. (5.12)-(5.13) for the metric functions, h(z, t) and f(z, t), at leading order
gives

h(z, t) =1 + z2αh2,0(t) , (D.4)

f(z, t) =1 + z2αf2,0(t) . (D.5)

Let’s make the ansatz t(z) = t+ zβtβ. The first term of the equation of motion Eq. (D.3)
is proportional to z2α+1. Out of all the other terms, the term with the smallest power of z
is proportional to zβ−1. Thus we learn β = 2 + 2α.
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However, the coefficient of the zβ−1 term is equal to 2β(d − β)tβ. Therefore, the above
result is only true if d 6= β. For d = β, we would have to modify the ansatz to be t(z) =
t + zβ log(z)tβ. We do not consider this case in the main argument of Ch. (5), so it can be
ignored.

D.2 Perturbative Solution of Einstein-Scalar

Equations

In this section, we find the time-dependent coefficients hm,n(t), fm,n(t) and φm,n(t) in terms of
φ0,0(t) = λ(t) by substituting the ansatz Eqs. (5.12)-(5.14) in the Einstein-scalar equations
Eqs. (5.9)-(5.11). We use this result in the holographic calculation of the entanglement
entropy in Secs. (5.2)-(5.2).

• α = 2 and d = 6

This case corresponds to the holographic scalar in d = 6. From Eq. (5.30), we know
that the universal part of the time-dependent entropy only depends on the coefficient
h2,0(t). This can easily be found using Eq. (5.9). Expanding this equation gives us:

0 = (10ḣ2,0 + φ0,0φ̇0,0)z
3 +O(z5) . (D.6)

Integrating this equation, we find

h2,0(t) = − 1

20
φ2
0,0(t) . (D.7)

• α = 2 and d = 8

To find the entanglement entropy for the holographic scalar in d = 8 using Eq. (5.35),
we need to find the sum: h2,2(t) + h3,0(t). To find this, we will substitute the ansatz
Eqs. (5.12)-(5.14) into Eq. (5.9) and Eq. (5.11). Expanding Eq. (5.9) gives us

0 = (14ḣ2,0+φ0,0φ̇0,0)z
3+
(
21(ḣ2,2+ḣ3,0)+2φ̇0,0(φ0,2+φ2,0)+φ0,0(φ̇0,2+φ̇2,0)

)
z5+O(z7) ,

(D.8)
and expanding Eq. (5.11) yields

0 =
(
4(φ0,2 + φ2,0) +

κ

2
φ2
0,0 + φ̈0,0

)
z4 +O(z6) . (D.9)

By solving the above equations, we find

h2,2(t) + h3,0(t) =
κ

126
φ3
0,0(t) +

1

168
φ̇2
0,0(t) +

1

84
φ0,0(t)φ̈0,0(t) . (D.10)
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• α = 1 and d = 4

This case corresponds to the fermionic mass operator in d = 4. The entanglement
entropy in this case is given by Eq. (5.42). To find the entropy, we need to know
h2,0(t). Expanding Eq. (5.9) yields

0 = (ḣ2,0 +
1

6
φ0,0φ̇0,0)z +O(z2) . (D.11)

Integrating this equation gives

h2,0(t) = − 1

12
φ2
0,0(t) . (D.12)

• α = 1 and d = 5

In this case, the entanglement entropy is given by Eq. (5.45), and the entanglement
entropy only depends on the coefficient h3,0(t). We start by expanding Eq. (5.9). This
gives us

0 = (8ḣ2,0 + φ0,0φ̇0,0)z + (12ḣ3,0 + 2φ2,0φ̇0,0 + φ0,0φ̇2,0)z
2 +O(z3) . (D.13)

To solve for h3,0(t), we first need to know φ2,0(t). This can be easily found by expanding
Eq. (5.11):

0 = (φ2,0 +
κ

4
φ2
0,0)z

2 +O(z3) . (D.14)

Solving the above two equations yields

h3,0(t0) =
κ

36
φ3
0,0(t0) . (D.15)

• α = 1 and d = 6

The entanglement entropy for this case is given by Eq. (5.49). Here we need to solve
for the combination h22,0(t) + 2h2,2(t) + 2h4,0(t). As always, we start by expanding
Eq. (5.9). We get

0 = (10ḣ2,0 + φ0,0φ̇0,0)z + (15ḣ3,0 + 2φ2,0φ̇0,0 + φ0,0φ̇2,0)z
2 +

(
20(ḣ2,2 + ḣ4,0)

−5(f2,0 + 3h3,0)ḣ2,0 + 3φ̇0,0(φ0,2 + φ3,0) + φ0,0(φ̇0,2 + φ̇3,0) + 2φ2,0φ̇2,0

)
z3 +O(z4) .

(D.16)

Integrating the leading order term of this equation yields h2,0(t) = − 1
20
φ2
0,0(t). Fur-

thermore, we can use the coefficient of the z3 term to solve for the sum h2,2(t)+h3,0(t).
However, this would require us to solve for f2,0, φ2,0, φ2,2 and φ3,0. All these can be
found from the expansion of Eq. (5.10) and Eq. (5.11). Expanding Eq. (5.10) yields

0 = (10f2,0 + 10h2,0 + φ2
0,0) +O(z) , (D.17)
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which we solve to get f2,0(t) = − 1
20
φ2
0,0(t). Similarly, expanding the equation Eq. (5.11)

yields

0 = (18φ2,0+3κφ2
0,0)z

2+
(
24(φ0,2+φ3,0)+6φ̈0,0+φ0,0(−30h2,0−6f2,0+ωφ

2
0,0+6κφ2,0)

)
z3+O(z4) .

(D.18)
After using this equation to solve for φ2,0 and for φ0,2+φ3,0, we can solve for h2,0+h3,0
using Eq. (D.16). Combining all the results, we get

h22,0(t) + 2h2,2(t) + 2h4,0(t) =
(117− 65κ2 + 45ω)

7200
φ4
0,0(t) +

1

80
∂2t

(
φ2
0,0(t)

)
. (D.19)
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Appendix E

Useful Integral for Ch. (5)

In this appendix, we aim at simplifying the following integral

Ns(t) ≡
∫ 0

−t

dt′
∫
dx′

∫
dx‖

∫ ∞

0

dx⊥ x⊥λ(t
′ + t) 〈0|T00(0, x⊥,x‖)φ

2(t′,x′) |0〉 . (E.1)

From Eq. (5.72) and Eq. (5.73) we have

〈0|T00(x)φ2(x′) |0〉 =
∫

dp1dp2

(2π)2d−2

−E1E2 − p1 · p2 +m2
0 + 2ξ(p1 + p2)

2

4E1E2

e−i(p1+p2)·(x−x
′) .

(E.2)
Introducing q = p1+p2, ∆t = t− t

′, ∆x⊥ = x⊥−x′⊥ and integrating Eq. (E.1) with respect
to x‖ and x′

‖, yields

Ns(t) = A
∫

t

0

dt′
∫
dx′⊥

∫ ∞

0

dx⊥ x⊥λ(t
′)

×
∫
dp1dq⊥
(2π)d

(−1 + p21⊥/E
2
1 + 4ξ

8E2
1

q2⊥ +O(q3⊥)

)
e−i(E1+E2)∆t+iq⊥∆x⊥ . (E.3)

It is important that we perform the integrals over x⊥ and x′⊥ in the proper order so as
to avoid an ambiguous “0×∞” result. First we integrate over x⊥, using the identity1

∫ ∞

0

dx⊥ x⊥e
−iq⊥x⊥ = P.V.

−1

q2⊥
+ iπδ′(q⊥) , (E.4)

and then over x′⊥ which results in a 2πδ(q⊥). The result is

Ns(t) = A
∫

t

0

dt′λ(t′)

∫
dp

(2π)d−1

(
1− p2⊥/E

2 − 4ξ

8E2

)
e2iE(t′−t) . (E.5)

1We ignore δ′(q⊥) in what follows, since it is multiplied by qn
⊥

with n ≥ 2. If, however, one keeps these
terms, then eventually they result in the ill defined distributions of the form qnδ′(q⊥)δ(q⊥) which vanish
within, e.g., dimensional regularization.
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