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Abstract

An exactly solvable case of an interacting Hamiltonian of two bosonic modes is

considered to study fundamental properties of the entanglement dynamics for

coupled nonlinear oscillators. Such an interaction is of physical importance,

either in a two-species Bose–Einstein condensate or in the case of two modes

of electromagnetic fields interacting in Kerr media. The time-evolved state is

obtained analytically for initial products of two Fock and two coherent states,

and the purification times of the subsystems are determined. The possibility

of dynamical generation of a quantum superposition state is discussed at such

purification times. We also identify the existence of two regimes: the short

time, phase spread regime where subsystem entropy rises monotonically and

the self-interference regime where it oscillates and a purification phenomenon

can be observed. Our results also show that the break time from the first regime

to the second one becomes longer, as well as the purification and reversibility

times, as the Planck constant becomes much smaller than a typical action in

phase space.

PACS numbers: 42.50.Ct, 03.65.Ud, 42.50.Dv, 05.30.Jp

1. Introduction

Nowadays, it is widely accepted that quantum entanglement is an essential ingredient for the

implementation of quantum information processing devices [1]. It is notable that until recently

quantum information science was restricted to discrete, finite-dimensional Hilbert space

elements, however, interest in continuous variables has been developing in various contexts:
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Brazil.

0305-4470/03/379737+18$30.00 © 2003 IOP Publishing Ltd Printed in the UK 9737



9738 L Sanz et al

from teleportation [2], cryptography [3] to cloning [4]. This is closely connected to the recent

advances of enhancing nonlinear coupling via an electromagnetically induced transparency

(EIT) mechanism [5] using a Bose–Einstein condensate, which has opened up possibilities of

strong nonlinear interaction of ultra slow light pulses [6] of tiny energies belonging to different

modes of electromagnetic fields [7, 8]. Considering these developments, it is important to

understand the entanglement properties of the Kerr-type interaction particularly for Gaussian

states, which are one of the kinds of states that can be generated by simple experimental

devices such as beam splitters and phase shifters. Several optical schemes where two modes

of electromagnetic field interact inside nonlinear Kerr media have been discussed in the

literature [9, 10].

Another experimental achievement that has opened up possibilities of studying quantum

coherence properties in a condensed matter system is the Bose–Einstein condensation (BEC)

[11]. An extensive theoretical study has been done on a system of bimodal Josephson

coupled BECs, allowing both interspecies and intra-species two-body collisions between atoms

[12, 13]. Dynamical generation of entangled states has been discussed in a simple two-

mode model system where bosons are restricted to occupy one of the two modes, each

of which is a BEC with a different internal degree of freedom [14, 15]. Also, proposals

to produce macroscopic superposition states based on the two-mode model where the two

species are coupled via Josephson-type coupling has been discussed [16–18]. In these works,

a certain parameter regime of the adjustable Josephson coupling of the two species (realized

experimentally by a Raman transition) has been established for the formation of such states.

In the present work, we have studied the entanglement properties of a model describing

a bipartite system of two bosonic degrees of freedom, an integrable version of two quartic

oscillators [19, 20], coupled via a biquadratic interaction. Some possible realizations of these

type of interactions are present in: a coupled cavity scheme with a Kerr medium [21, 22];

propagation of two electromagnetic field modes in a Mach–Zehnder interferometer [10];

or, more interestingly, an interacting two-mode BEC [23–25]. In the last case, under

certain restricted conditions [11], an integrable version of the two-mode model system

can show some complementary aspects of the dynamics of mode-entanglement discussed

in [15].

The role of the nonlinearity of each of the subsystem oscillators is discussed, and shown

to have some of the properties present in one degree of freedom such as collapses and revivals

of the quadrature mean values of each bosonic mode. Also, this solvable model in which the

nonlinearity is present can be used to understand the role of biquadratic interaction on the

entanglement dynamics of initially coherent Gaussian states. Another case we have considered

is Fock states for the initial disentangled state, showing several differences in the entanglement

dynamics compared with the previous case.

The paper is organized as follows: In section 2, the model is introduced and the exact

solutions for initially disentangled states, in the cases of Fock states and coherent states, are

presented. Analytical expressions for the subsystem density operators and some mean values

are calculated. Section 3 is reserved to present the exact subsystem entropies for both initial

states, analysis of the conditions for purification, times of maximal entanglements. At the

purification times, we also discuss the possibility of formation of superpositions of coherent

states, or Schrödinger cat states. The semiclassical limit of the subsystem entropy is also

discussed, examining its behaviour as the Planck constant is allowed to become much smaller

than the typical action in phase space. A short comment based on numerical results is given

in section 4 about a more realistic case where the nonlinear couplings are slightly different.

Finally, in section 5 we present our conclusions, and in the appendix we present the details of

the calculations of a mixture of Schrödinger cat states.



Entanglement dynamics in a two-mode nonlinear bosonic Hamiltonian 9739

2. The model

The theoretical model consists of two bosonic lossless modes, described by the creation and

annihilation operators âk and â
†

k (k = 1, 2). Each mode has a nonlinear interaction term of

the form â
†2
k â2

k (Kerr interaction [20], intra-species collision) and the biquadratic interaction

term (cross-Kerr interaction [22], interspecies collision term). Besides these nonlinear terms,

a linear coupling interaction between the bosonic modes has been considered, which is the

usual RWA coupling in optics [26] or internal Josephson coupling in BECs, leading to the

following Hamiltonian:

Ĥ =
2

∑

k=1

[

h̄ωk

(

â
†

k âk +
1

2

)]

+ h̄λ
(

â
†

1â2 + â1â
†

2

)

+ h̄2g1

(

â
†

1â1

)2

+ h̄2g2

(

â
†

2â2

)2
+ 2h̄2g12â

†

1â1â
†

2â2. (1)

Here, ωk is the frequency of the kth mode, λ is the coupling associated with the bilinear

interaction term, g1, g2 and g12 are the nonlinear coupling parameters. These parameters

depend upon the physical system we choose to discuss: for the optical processes, either the

coupled cavities or the propagation of two electromagnetic field modes in interferometers with

a Kerr medium, they are related to the third-order nonlinear susceptibility χ (3) [9, 10], and for

the two interacting BEC species, they are functions of the s-wave scattering length aij [11].

In this context, the Hamiltonian above is obtained from the multi-mode second quantized

Hamiltonian, in the two-mode approximation, which consists in neglecting all modes except

the condensate ones, as described, for example, in Gordon and Savage [18, 11].

Since our purpose here is to have an exactly solvable model with the nonlinearities in such

a way that we could see the effect of each interaction term on the entanglement dynamics,

we shall just set g12 = g1 = g2 = g and also choose the resonant case2 (ω1 = ω2) with

ω0 = ωk + h̄g such that the Hamiltonian can be rewritten in the following form:

Ĥ = h̄ω0

2
∑

k=1

[(

â
†

k âk +
1

2

)]

+ h̄λ
(

â
†

1â2 + â1â
†

2

)

+ h̄2g
(

â
†

1â1 + â
†

2â2 + 1
)2

= Ĥ 0 + V̂ λ + V̂ g. (2)

Note that the entire nonlinear interaction, V̂ g , is now in the form of the square of the free

Hamiltonian Ĥ0, and hence the following commutation relations hold:

[Ĥ 0, V̂ λ] = [V̂ g, V̂ λ] = 0. (3)

This property allows us to study separately the action of each interaction term present in the

evolution operator on the initial state, and hence, examine its consequences on the entanglement

process. In what follows, our aim is to solve the Schrödinger equation exactly for specific

initially separable conditions

|ψ(t)〉 = e− i
h̄
Ĥ t |ψ(0)〉 = e− i

h̄
Ĥ t |ψ1(0)〉 ⊗ |ψ2(0)〉 (4)

and study the evolution of initially uncorrelated Fock and coherent states. The former state is

generally studied in connection with Bose–Einstein condensates, whereas the latter is for the

nonlinear optical system.

2 We note that this choice, in both applications mentioned above, is qualitatively plausible. In the case of nonlinear

media, since the frequencies of the two propagating modes are the same, the self-modulation terms must also be

present (see [9]), and the adiabatic condition [29] is preserved. As for the BECs, the restricted solution corresponds

to equal s-wave scattering lengths for all collisions (a11 = a22 = a12) (see [11]), and the new choice is close to the

experimental situation (see [25]).
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2.1. Analytical solutions for a product of coherent states

We consider first the case of initially disentangled Fock states, in order to establish notation

|ψ(0)〉 = |n1〉 ⊗ |n2〉 . (5)

We have used the canonical transformation proposed by Zoubi et al [27] that preserves the

total excitation number, N̂ , which is a constant of motion of the general Hamiltonian (1):

â
†

1â1 + â
†

2â2 ≡ N̂ . This number could correspond either to the total particle number of the two

interacting BECs or the total number of photons associated with the field modes interacting in

a Kerr medium. It is straightforward to obtain a diagonalized Hamiltonian as follows:

Ĥ = h̄ (ω0 + λ)
(

N̂1 + 1
2

)

+ h̄ (ω0 − λ)
(

N̂2 + 1
2

)

+ h̄2g(N̂1 + N̂2 + 1)2. (6)

The time-evolved state is then given by

|ψ(t)〉 = e−i��̂
(n1)
12 (t)�̂

(n2)
21 (t)|0, 0〉

�̂
(n)
kk′ (t) ≡

(

â
†

k cos λt − iâ
†

k′ sin λt
)n

√
n!

.
(7)

The sub-indices ‘12’ (‘21’) of the operators �̂ emphasize the entanglement features of the

dynamics, and the global phase is given by � = [ω0t (N + 1) + λtN + h̄gt (N + 1)2]. Note that

this solution coincides with the one which describes a linear beam splitter [28].

Now, we can extract information about the entanglement process of Fock states under the

action solely of the bilinear interaction. From equation (7) one can extract two periods where

the system is in a disentangled state:

(i) purification times Tl = π
λ
(l + 1

2
), where the subsystems are disentangled, but not in the

same states as the initial one.

(ii) recurrence times τl = l π
λ

, where the system returns to the exact initial state (modulo an

overall phase).

In the context of BEC, this situation corresponds to a separable initial state with n1

bosons in mode 1 and N − n1 in the other mode, for which after an interval of time

corresponding to λt = π/2, we expect an exchange in the occupation numbers. In the

optical schemes, this property indicates that RWA-coupling leads the initial state to a new

separable one, but with the number of photons exchanged. This allows us to classify |ψ(0)〉 in

equation (5) as a reversible state for this bilinear interaction. As a consequence, we can define

a period of reversibility for such states: τR = π
λ

. For the special case of initial Fock states

with equal numbers (n1 = n2 = N/2), the difference between the purification and recurrence

times disappears and the reversibility occurs earlier.

The above solution can be used to analyse the temporal evolution of any initial state written

as a superposition of Fock states. A special type of state of interest in the case of Josephson

coupled BECs in a two-mode approximation, is the case where (due to the conservation of the

number of particles) a general state can be written as follows [15]:

|ψ〉BEC =
N

∑

n=0

cn|n〉|N − n〉 (8)

where n and N − n are the populations in each mode and cn are complex numbers.

In what follows, we present the solution of the Schrödinger equation, equation (4), when

the initial state is a direct product of coherent states. Our interest in this case, mainly focused

on the optical systems, is twofold: the possibility of studying the formation of a superposition

of coherent states in one of the subsystem phase spaces; and the possibility of analysing how
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the dynamics of entanglement changes when the classical action associated with the mean

number of photons becomes larger than the Planck constant.

Consider an initially disentangled product of two coherent states as follows:

|ψ(0)〉 = |α1〉 ⊗ |α2〉 e
−|α1 |2

2 e
−|α2 |2

2

∑

n,m

αn
1√
n!

αm
2√
m!

|n,m〉. (9)

In the optical context, such a state is the most common one to be generated in the laboratory,

either in the interferometers or in the cavities, whereas, to the authors’ knowledge, such a state

has not been generated corroboratively in the case of BECs.

The time-evolved state can be obtained using the previous result, equation (7),

|ψ(t)〉 = e
−|α1 |2−|α2 |2

2

∑

n,m

αn
1 (t)√
n!

αm
2 (t)√
m!

e−ih̄g(n+m+1)2t�
(n)
12 (t)�

(m)
21 (t)|0, 0〉 (10)

where αk(t) = αk e−i(ω0+2h̄g)t . In this result we have already omitted a global phase.

It is easy to see, for g = 0, that the bilinear coupling does not entangle the modes, since

the two summations of equation (10) can be factorized, and each subsystem remains in a

coherent form

|ψ(t)〉|g=0 = D̂1[β1(t)]D̂2[β2(t)]|0, 0〉
= |β1(t), β2(t)〉 (11)

where D̂k[βk(t)] = e(βk â
†

k−β∗
k âk) is the coherent state displacement operator in the phase space

of the kth oscillator and

β 1
2
(t) =

(

α 1
2
e−iω0t cos λt − iα 2

1
e−iω0t sin λt

)

. (12)

Using this particular result, we can solve the general case of initially disentangled coherent

states in a more intuitive way. The commutation relations (3) allow us to apply separately the

piece of the evolution operator associated with the nonlinear term of Ĥ , equation (2), and use

the previously derived results (equations (10, 11)). The final exact solution for the temporal

evolution of two initially coherent states is given by

|ψ(t)〉 = e
gtĤ2

0
ih̄ e

ωtĤ0+λtV̂

ih̄ |α1, α2〉

= e
gtĤ2

0
ih̄ |β1(t), β2(t)〉

= e− |α1|2+|α2|2
2

∑

n,m

e−ih̄gt(n+m)2 [β1(t)e
−i2gh̄t ]n√
n!

[β2(t)e
−i2gh̄t ]m√
m!

|n,m〉 .

(13)

Here, the expressions of βk(t) are those depicted in equation (12).

In order to calculate other quantities such as the mean values and variances of the

quadrature operators, let us obtain the density operator of the system. Since we are interested

in the case where the global system is isolated, the total density operator is a projector onto

the state |ψ(t)〉
ρ̂(t) = |ψ(t)〉〈ψ(t)|

= e− �
2h̄

∑

n,m

∑

n′,m′
e−ih̄gt[(n+m+1)2−(n′+m′+1)2] β

n
1 β∗n′

1 βm
2 β∗m′

2√
n!n′!m!m′!

|n,m〉〈n′,m′|

(14)

where we have defined � = |α1|2 + |α2|2, a characteristic action of the system. We shall denote

from here on βk(t) simply as βk . We calculated the reduced density operators ρ̂k(t) (k = 1, 2)
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Figure 1. (a) Collapse and revival phenomena in the evolution of the expectation value of the

quadrature Q̂k and (b) the respective variance. Analytical results for ω0
ωg

= 20, λ
ωg

= 2, qk0 =
pk0 = 1.0,� = 4.0 and h̄ = 1. The same qualitative behaviour is observed for 〈P̂ k〉(t) and

〈
P̂ k〉(t).

by tracing over the undesired degree of freedom, corresponding to one of the original bosonic

modes:

ρ̂1(t) = e− �
2h̄

∑

n,m

βn
1√
n!

β∗m
1√
m!

e|β2|2 e−2ih̄gt(n−m)

e−ih̄gt[n2−m2+2(n−m)] |n〉〈m| (15)

with a similar expression for ρ̂2(t). The field quadrature operators Q̂k and P̂k are given in

terms of the creation and annihilation operators as follows:
(

Q̂k

P̂ k

)

=
√

h̄

2

[

1 1

−i i

] (

âk

â
†

k

)

(16)

and analytical expressions for the mean values are given by

〈Q̂k〉(t) = Trk[Q̂kρ̂k(t)]

=
√

2h̄ Re[βk(t) e−3iωg t e− �
2h̄

(1−e−2iωg t )] (17)

〈P̂ k〉(t) = Trk[P̂ kρ̂k(t)]

=
√

2h̄ Im[βk(t) e−3iωg t e− �
2h̄

(1−e−2iωg t )] (18)

where we defined the frequency associated with the nonlinear term as ωg = h̄g.

The above expressions contain exponentials of oscillatory terms, which produce the

collapse and revival phenomena [29] at times that are odd multiples of π
2ωg

and integer

multiples of π
ωg

respectively, as shown in figure 1(a) where we plotted the mean value of Q̂k

quadrature as a function of ωgt .

One can also calculate analytically the variances 〈
Qk〉(t) and 〈
Pk〉(t). The results are

complicated expressions which we shall omit. However, the general behaviour is presented

in figure 1(b), where we can see the same periodic structure present in the quadrature mean

value temporal behaviour. These results for the subsystem variances are very similar to those

obtained for the one degree of freedom quartic oscillator [19]. The most instructive information

is the relation between the collapse and the phase space’s delocalization in phase of the state,

as can be seen in the projected Q-function that will be illustrated in the next section for a

particular set of parameters.
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3. Entanglement properties and their semiclassical behaviour

In this section, we are going to discuss the entanglement dynamics of time-evolved states

found in section 2; namely, the product of Fock states and coherent states. We analyse the

subsystem entropy, one important tool that gives a measure of entanglement for globally pure

bipartite systems. In the second case, we also use the Husimi distribution or Q-function, in

order to follow the evolution of the partial distribution in phase space. The Q-function for the

global system is usually defined by

Q (�q, �p) = 1

π
〈γ1γ2|ρ̂(t)|γ1γ2〉 (19)

where we choose γk = qk+ipk√
2h̄

(k = 1, 2). In particular, we investigate the role played by the

nonlinear interaction term in the Hamiltonian (2) which appears associated with the frequency

ωg in the various analytical expressions derived. Moreover, we would like to find the behaviour

of the subsystem linear entropies in the semiclassical limit.

3.1. Entanglement properties of Fock states

For this initial state, we are interested in the calculation of both the subsystem von Neumann

entropy (SVNE) and the subsystem linear entropy (SLE), usually defined by

Sk = −Trk(ρ̂k ln ρ̂k) δk = 1 − Trk
(

ρ̂2
k

)

(20)

where the label k is associated with one of the degrees of freedom. In terms of the reduced

density operator eigenvalues, both entropies assume the familiar form:

Sk(t) = −
N

∑

l=0

λl(t) ln (λl(t)) δk(t) = 1 −
N

∑

l=0

λl(t)
2. (21)

For the initially disentangled Fock states, equation (5), the reduced density operator is

diagonal; therefore, it can be directly expressed in terms of its eigenvalues as follows:

ρk(t) =
N

∑

l=0

λl(t)|l〉〈l| (22)

and the trace condition
∑

λl(t) = 1 must be satisfied. The eigenvalues λl(t) are given by

λl(t) =
n1

∑

i,i ′=0

N−n1
∑

m,m′=0

ci,m(t)c∗
i ′,m′(t)δi−m,i ′−m′δn1−l,i−m (23)

ci,m(t) =
(

n1

i

)(

N − n1

m

)

√

(n1 − i + m)!(n1 − m + i)!

n1!(N − n1!)
(cos λt)N−(i+m)(−i sin λt)i+m. (24)

The dependence of the eigenvalues on the periodic functions confirms the conditions for the

purification times as we already noted from the time-evolved state equation (7). To illustrate

what has been discussed above, we present some simple examples:

• For |ψ(0)〉 = |1, 0〉 we have
{

δk(t) = 1
2

sin2 2λt

Sk(t) = −cos2λt ln(cos2 λt) − sin2 λt ln(sin2 λt).
(25)
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Figure 2. (a) Von Neumann entropy for three different sets of initial two Fock states: |1, 0〉 (solid

line), |1, 1〉 (dashed line) and |2, 0〉 (solid thick line). Inset: linear entropy for the same cases.

(b) Von Neumann entropy for the initial state (|n1, N − n1〉), with n1 = 0.8N and several values

of N and the dashed line is the maximum possible entanglement value for N = 10. Inset: linear

entropy for the same values of N.

• For |ψ(0)〉 = |1, 1〉 we have
{

δk(t) = sin2 2λt
4

(5 + 3 cos 4λt)

Sk(t) = −cos2 2λt ln(cos2 2λt) − sin2 2λt ln
(

sin2 2λt
2

)

.
(26)

• For |ψ(0)〉 = |2, 0〉 we have










δk(t) = sin2 2λt
16

(13 + 3 cos 4λt)

Sk(t) = −cos4 λt ln(cos4 λt) − sin4 λt ln(sin4 λt)

− sin2 2λt
2

ln
(

sin2 2λt
2

)

.

(27)

A comparison of analytical results for both SVNE and SLE are shown in figure 2. We see

both quantities predict the same purification times, when both entropies are zero. Also, the

general behaviour is the same and the analysis of the entanglement process can be performed

without loss of information. Only in the cases where the number of participating basis states

(in one or both subsystems) becomes very large, do the details near the values close to the

maximum value of the SLE (close to one) become squeezed. So, we have chosen to work

with SVNE whenever this is the case, otherwise we will plot the SLE due to the simplicity

of its calculation. Comparing our results in figure 2(a), it is interesting to observe that the

general behaviour is similar for cases |1, 0〉 and |2, 0〉, and different for |1, 1〉. The maximum

value of entanglement depends on the value of N, but the general behaviour is not the same

for initial states with the same N. In fact, local maxima and minima structure are sensitive

to the difference between occupation numbers. This is better illustrated in figure 2(b) where

von Neumann entropy is plotted for several values of N, and choosing n1 = 0.8N and

N − n1 = 0.2N . We can see how both the maximum value of entanglement reached for each

curve and the number of oscillations increase as N increases. This feature can be understood

from equation (22), where the number of accessible states is given by N + 1 which increases

with increasing total number of excitations, N. This accounts for the increase in the maximum

value of entropy, and also the subsystem is allowed to pass through many more possible states,

although this maximum does not correspond to the maximally entangled state allowed for this

system (much higher than the value actually attained as indicated by the dashed line in the
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case N = 10). However, one can see clearly that as long as we choose the same proportion

for the initial populations of Fock states of different modes, the general behaviour is the same

as we increase the total number of excitations N. The times at which the maximum value is

reached is the same for all cases, and the oscillatory structure is also similar.

Note that no dependence on h̄ or g is essentially left in the expression of the time-evolved

state (7), and the same happens for the calculated reduced density eigenvalues (equations (23)

and (24)). This is the case where the nonlinear interaction plays no role, and the semiclassical

limit is related to the presence of many particles (atoms or photons), namely large N. We can

predict the behaviour of entanglement in this limit: as N increases, the subsystems entangle

faster, and the maximum value of von Neumann entropy increases, although its value for

maximally entangled states also increases proportionally with N.

3.2. Entanglement properties for coherent states

In order to study the entanglement dynamics and reversibility properties for the initial product

of coherent states, we calculate the SLE defined in equation (20). Using our result for

the subsystem density operator, equation (14), an exact expression for this quantity can be

calculated:

δ1(t) = 1 − Tr1

(

ρ̂2
1(t)

)

= 1 − e−2|β1(t)|2
∑

n,m

|β1(t)|2n

n!

|β1(t)|2m

m!
e−4|β2(t)|2 sin2 [h̄gt(n−m)]. (28)

In a similar fashion as in the case of the Fock states, we can find the purification times by

studying the conditions under which δ1(t) is equal to zero, indicating that the subsystems are

disentangled. A simple analysis of equation (28) shows that this happens in the following

situations:

(i) For any initial conditions excluding the vacuum state (|0, 0〉), the purification times

associated with the nonlinear interaction are h̄gTl = lπ , when the argument of the

sine-function is an integer multiple of π :

Tl = l
π

h̄g
(l > 0 integer). (29)

At these times, the system state evolves from the initial state to a new product of coherent

states given by

|ψ(Tl)〉 = |(−1)lβ1(Tl)〉 ⊗ |(−1)lβ2(Tl)〉. (30)

(ii) For those initial conditions such that one of the arguments βk(t) = 0, one can find other

instances when SLE is zero. These conditions are associated exclusively with bilinear

coupling and special initial conditions. In terms of the quadratures of the initial values

αk , and using expression (12) one can write these conditions as follows:

q1q2 + p1p2 = 0

and we have disentangled states for times:

t1 = 1

λ
arctan

(

− q1

p2

)

or t2 = 1

λ
arctan

(

p1

q2

)

.

If we evaluate equation (14) at this time, considering β2 = 0 and β1 	= 0, we obtain

a direct product formed by subsystem one in a state written as (remembering that β1

depends on time)

|ψ1(t1)〉 = e− |β1|2
2

∑

n

e−iωg t1n
2 [β1e−i2ωg t1 ]n√

n!
|n〉 (31)
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Figure 3. SLE as a function of dimensionless parameter t/T1 for an initial state as a direct product of

coherent states. Here T1 = π
h̄g

is a first purification time, h̄ = 1.0, g = 0.1, λ = 0.2 and ω0 = 1.0.

Solid line: q01 = p01 = q02 = p02 = 1.0. Dotted line: q01 = 1.0, p01 = 1.0, q02 = −p01 and

p02 = q01, satisfying the second condition.

and subsystem two in the vacuum state. If h̄gt1 = r
s
, with r and s integers, we can rewrite

the expression as a superposition of coherent states, as we see in the appendix.

Among these purification times, we can identify those at which we also have recurrences by

examining equation (14). Only the first class of conditions produces recurrences, and this

happens for a given value of Tl , when the ratios l ω0

ωg
and l λ

ωg
are integer numbers.

To illustrate the dynamics of entanglement in these two cases, we present in figure 3 the

results for the subsystem linear entropy as a function of dimensionless parameter t/T1, with

Tl = lπ/ωg . We choose two initial αk values: in the first case (solid line), SLE only possesses

null values for times corresponding to case (i). At times different from the Tl , the value of

SLE is different from zero indicating that the subsystems are entangled. The situation changes

when initial α1,2 are chosen such that condition (ii) is verified (dotted line). For this case, we

obtain times different from Tl where SLE is null. For a particular choice of parameters shown

in figure 3, λt
j

k = ±1 and we can define a new purification period as follows:

T ′
l = l

π

4λ
(32)

where l is an odd integer. As we already noted before, at these times Schrödinger cat states

are dynamically generated (times
T ′

l

T1
= 0.2, 0.4, 0.6, 0.8 in figure 3).

We also note that another class of initially disentangled states that can be solved exactly is

that of the form |α1〉 ⊗ |n2〉. For such a class, the type of analysis presented above also works,

and one can find purification times such that one of the subsystems becomes a superposition

of coherent states [30].
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Figure 4. Subsystem linear entropy δk as a function of ω0t for λ
ω0

= 0.2,
ωg

ω0
= 0.1, qk0 = pk0 =

1.0,� = 4 and several values of R = h̄
�

: R = 1
4

(dotted line), R = 1
8

(dotted thick line), R = 1
40

(dashed line), R = 1
80

(solid line) and R = 3
400

(solid thick line).

3.3. Semiclassical behaviour and break time

Now we will choose particular parameter sets to illustrate the semiclassical limit of the SLE,

since in contrast to the case of the product of Fock states, we have an explicit dependence on

h̄, actually on the frequency ωg = h̄g. This allows us to study the semiclassical behaviour of

the SLE. The natural parameter to measure the ‘quantumness’ of the system here is the ratio

R = h̄
�

, where � (defined in section 2.1) is a characteristic action in phase space. In figure 4

we plotted the time evolution of the SLE for several values of R. Here, we adopted the

convention to fix the value of � and vary h̄ instead in the opposite way. The first thing to

be noted is the fact that all curves coincide at the short time scale, where the SLE increases

monotonically until it reaches the maximum value. The maximum value of SLE depends on

R, which increases as we let R 
 1. This has to do with the increasing number of accessible

states as we let the spectrum become denser, and also implies loss of information. We will call

this first regime the ‘phase spread regime’ in connection with the behaviour of the Q-function

of each subsystem that we shall see in what follows. After reaching the maximum value,

oscillations start in the SLE, which can be seen as a partial recovery of coherence, until the

first purification time T1 = π
gh̄

(see equation (29)) at which δk = 0 and the subsystem recovers

purity. This second regime will be called ‘self-interference regime’ since the time-evolved

subsystem Q-function shows the phenomenon of self-interference typical of the Kerr-type

nonlinearity. This is consistent with the fact that in the limit R → 0 the purification time goes

to infinity and the initial purity will never be recovered. We will call break time tb, the time at

which the transition from the phase spread regime (rising) to the self-interference (oscillating)

regime occurs. It is clear from figure 4 that this time increases with the inverse power of R,

and we also expect it to go to infinity in the classical limit.
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Figure 5. Contour plot of subsystem Q-function in the plane (q1, p1) during the phase spread

regime, for initial conditions q10 = p10 = q20 = p20 = 1.0, ω0 = 1, λ = 0.2, g = 0.1 and

R = 0.025. The first plot corresponds to the initial time (upper-left corner) and the subsequent

times are chosen in the interval 0 < t � tb .

Let us illustrate the differences between the two regimes by means of the subsystem

Q-function which will show the proper signatures in each regime. In figure 5 we plotted

Q-function in various instances of the phase spread regime for the same Hamiltonian

parameters used in figure 4, and the quantumness parameter R = 0.025. The sequence

of plots is in the quadrature plane of the mode-1, beginning at t = 0 until t ≈ tb. In this

case the centre of the initially coherent Gaussian wave-packet follows essentially the classical

trajectory, as predicted by the Ehrenfest theorem [31], circulating around the origin and, due

to the nature of the self-interaction term, the packet itself spreads in phase angle in the phase

space. During the interval of time before the front of the packet reaches its tail [19] no

purifications can happen.

In figure 6, another sequence of contour plots of Q-functions of the subsystem-1 shows a

time evolution during the self-interference regime in the interval of time after the break time

tb, until the first purification time T1. We also add a plot at the recurrence time (τ1 = 2T1

for this particular set of parameters). The appearance of several peaks along the annular

region is remarkable, a signature of self-interference phenomenon where a kind of standing

wave with M-peaks forms at times t = T1/M (for t > tb), when the SLE assumes the value

δk ≈ 1 − 1
M

at a local minimum. This kind of behaviour is a hallmark of the self-interference
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Figure 6. Time evolution of contour plots of a subsystem Q-function during the self-interference

regime for R = 0.025 in the plane (q1, p1), with the same parameter values of figure 5.

(a) t = T1/8, (b) t = T1/7, (c) t = T1/6, (d) t = T1/5, (e) t = T1/4, (f ) t = T1/3, (g) t = T1/2,

(h) t = T1 (first purification time), (i) t = 2T1 = τ1 (recurrence).

regime, an essentially quantum phenomenon which is at the core of purification possibilities

and reversibility in this system.

At first sight, one could think that the break time would have the same dependence on the

Planck constant as T1, but this is not true. In fact, the actual relation between break time and

R parameter is given by

tb ≈ 1

�g

√

�

h̄
.

This relation shows that our tb is the same as the Ehrenfest scale calculated for a nonlinear

quartic oscillator by Berman et al [32]. Also, the Planck constant and characteristic action

dependence coincide with the results obtained in [33, 34] for the present model in the case

λ = 0.

4. Comments on a realistic parameter regime

Since our analytical solution is restricted to the case g1 = g2 = g12, we show here some

numerical evidence indicating that, even in a more realistic case where such a condition is



9750 L Sanz et al

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

∆δ(%)

t/T
1

δk

t/T1

Figure 7. Comparison of the numerical results for the subsystem linear entropy obtained with

(g1:g2:g12) = (1.03:0.97:1) and the exact case of figure 3 (with the same initial conditions and

corresponding line conventions): percentage of the difference between the exact case and this

specific choice with respect to the maximal value of SLE as a function of dimensionless time t/T1.

Inset: time evolution for the SLE.

not fulfilled, most of our results are at least qualitatively preserved. In order to see that

this is indeed the case, let us consider the following values for the coupling parameters:

g1:g2:g12 = 1.03:0.97:1. As for the BECs, the restricted solution corresponds to equal s-wave

scattering lengths for all collisions (a11 = a22 = a12) (see [11]), and the new choice is close

to the experimental situation (see [25]). In order to obtain numerically the reduced linear

entropy, we have diagonalized the Hamiltonian (2) using a harmonic oscillator basis of size

n1max = n2max = 50, and calculated the time evolution of the initial state (9) with the same

values of qi, pi used in figure 3. The time-evolved density operator |ψ(t)〉〈ψ(t)| is then

obtained in the harmonic oscillator basis, and the partial trace is taken on one of the basis

indices n1,2 to get the reduced density operator ρ̂2,1(t). The numerical reduced linear entropy

obtained in this way is plotted in figure 7, where 
δ is the percentage of the difference between

our exact solution (g1 = g2 = g12) and numerical results for the choice above mentioned with

respect to the maximal value of entropy, for both initial states of figure 3. Both percentages are

smaller than 5%, hence the general behaviour of the reduced linear entropy is quite similar to

the analytical case, as can be seen in the inset. It is remarkable that, at those purification times

related only to the nonlinear interaction 
δ is null, whereas at those associated with initial

conditions (times of cat state formation) this quantity is not exactly zero, but small (lower

than 0.1%). These results suggest that even in the realistic case, where the condition of equal

couplings is not satisfied, the physics should not change very much as compared with the one

presented in the previous section.
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5. Conclusions

We have solved analytically a problem of two resonant bilinearly interacting bosonic modes in

the presence of nonlinear (quartic or two-body) interactions. The time-evolved state has been

exactly determined in the case of initially separable states, for both Fock states and coherent

states. This allowed us to study the entanglement dynamics of the two bosonic modes, either in

the scenario of two interacting BECs or two electromagnetic field modes. The reduced density

operator has been obtained analytically, and this allowed us to discuss several properties of

entanglement between the two modes for both initial conditions.

For the initial state corresponding to a separable product of Fock states, the bosonic

modes could be associated with an idealized system of two species of BECs with well-defined

occupation numbers in the two-mode approximation. We have shown that the Josephson-type

coupling (bilinear) naturally leads the total system to an entangled state with other possible

occupation numbers and the same total number of atoms N. Periodically, the global system is

in a separable state: with exchanged occupation numbers at times Tl = π
λ

(

l + 1
2

)

; and with the

same occupation numbers for the period τ1 = π
λ

. This would predict a population oscillation

in the two-species BECs, where the period of such oscillation would be determined by the

external laser intensity used to produce the Raman transition responsible for the Josephson

coupling. We have also shown that for a large excitation number N 
 1 (this would be

the case of two BECs), the entanglement of the subsystems becomes faster, and the value of

the von Neumann entropy increases at the maximum entropy times as we increase N. In this

case, the results do not depend either on the nonlinear coupling parameter g or on the Planck

constant, and the semiclassical limit corresponds to the large N limit.

In the case of a separable product of coherent states, the scenario would be more

appropriate for two electromagnetic field modes interacting in Kerr-type media, for instance

in a Mach–Zehnder interferometer. For this situation, our results show that the interaction

responsible for the entanglement of subsystems is the biquadratic one (cross-Kerr). We

have determined the general purification times associated with the nonlinear coupling term

Tl = l π
h̄g

, where for odd l the system goes to a product of coherent states π -rotated with

respect to the original ones, whereas for even l the system returns to the initial product

state. We have also shown that the entanglement between the two subsystems prevents the

appearance of superpositions of n-coherent states in each bosonic mode for integer fractions

of the purification period T1

n
[19]. Instead, we have shown that at these fractions of the

purification times, mixtures of n Schrödinger cat states are formed. The dynamical generation

of Schrödinger cat states in one of the bosonic modes is still possible in this case, if the initial

values of α1 and α2 are chosen appropriately, and these new purification times are dictated by

the relation between the bilinear coupling λ and the nonlinear coupling g. At these times, one

of the subsystems evolves to a superposition of coherent states, whereas the other goes to the

subsystem vacuum state.

Finally, we show, in the semiclassical limit
(

h̄
�

→ 0
)

of initially separable coherent states,

how two things happen: first, both the purification and the recurrence times go away and the

entanglement process becomes irreversible for all practical purposes; second, the break time

tb of two different regimes of entanglement corresponds to the known Ehrenfest scale of

the model. This indicates that the short time dynamics of this model is mainly governed by

the classical flow. In conclusion, we have treated a simple, integrable case of the two-mode

model, but despite this, we have been able to show the mechanisms of occurrence of many

interesting effects such as population oscillations, generation of Schrödinger cats and how the

Ehrenfest scale and irreversibility appear in the semiclassical limit. These effects could be

present in different physical contexts for more realistic cases.
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Appendix. A demonstration of a mixture of Schrödinger cat states

We first rewrite equation (14) in a more compact notation

|ψ(t)〉 =
∑

n,m

cn(γ1)cm(γ2) e−igh̄t (n+m)2 |n,m〉 (A.1)

cn(γ ) = e− |γ |2
2

γ n

√
n!

(A.2)

where γk = βk e−i2gh̄t and βk are functions of time. We are interested in the instance

tr,s = π
gh̄

r
s

= T1
r
s
, where r and s are mutually prime with r < s. Then, using the discrete

Fourier transform [35]

e−iπn2 r
s =

l−1
∑

q=0

a(r,s)
q e−i2πn

p

l (A.3)

where

l =
{

s if r is odd and s is even, or vice versa

2s if both r and s are odd;
(A.4)

and

a(r,s)
q = 1

l

l−1
∑

k=0

e−iπk(k r
s
−2 q

l
). (A.5)

Using the above equations, we rewrite equation (A.1) for the mentioned instances as follows:

|ψ(tr,s)〉 =
∑

n,m

cn(γ1)cm(γ2) e−iπ r
s
(n+m)2 |n,m〉

=
l−1
∑

q,p=0

aqap

∑

n,m

cn(η1q e−i2πm r
s )cm(η2p)|n,m〉

=
l−1
∑

q,p=0

aqap

∑

m

|η1q e−i2πm r
s 〉 ⊗ cm(η2p)|m〉

=
∑

m

|Cm〉 ⊗
l−1
∑

p=0

apcm(η2p)|m〉 (A.6)

where ηkq = γk e−i2π
q

l = βk e−i2π

(

q

l
+ r

s

)

, and we have defined the following cat-like states for

the oscillator-1

|Cm〉 =
l−1
∑

q=0

aq |η1q e−i2πm r
s 〉. (A.7)
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Then, by constructing the global density operator and tracing over the oscillator-2, i.e.,

summing over the remaining Fock states, we finally get the following mixture of cat states:

ρ1(tr,s) =
∑

m

ξm|Cm〉〈Cm| (A.8)

ξm =
l−1
∑

p,p′=0

apa∗
p′cm(η2p)c∗

m(η2p′). (A.9)

Using a similar procedure, we can rewrite equation (31) as a superposition of coherent

states. If the condition h̄gt1 = r
s

verifies, we can again use the discrete Fourier transform,

equation (A.3), and rewrite equation (31) as

|ψ1(t1)〉 =
l−1
∑

q=0

a(r,s)
q |β1(t1) e−2π i q

l 〉 (A.10)

where a(r,s)
q is given by equation (A.5).
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