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In a recent work �Phys. Rev. Lett. 98, 140402 �2007�� we defined “steering,” a type of quantum nonlocality

that is logically distinct from both nonseparability and Bell nonlocality. In the bipartite setting, it hinges on the

question of whether Alice can affect Bob’s state at a distance through her choice of measurement. More

precisely and operationally, it hinges on the question of whether Alice, with classical communication, can

convince Bob that they share an entangled state under the circumstances that Bob trusts nothing that Alice says.

We argue that if she can, then this demonstrates the nonlocal effect first identified in the famous Einstein-

Podolsky-Rosen paper �Phys. Rev. 47, 777 �1935�� as a universal effect for pure entangled states. This ability

of Alice to remotely prepare Bob’s state was subsequently called steering by Schrödinger, whose terminology

we adopt. The phenomenon of steering has been largely overlooked, and prior to our work had not even been

given a rigorous definition that is applicable to mixed states as well as pure states. Armed with our rigorous

definition, we proved that steerable states are a strict subset of the entangled states, and a strict superset of the

states that can exhibit Bell nonlocality. In this work we expand on these results and provide further examples

of steerable states. We also elaborate on the connection with the original EPR paradox.

DOI: 10.1103/PhysRevA.76.052116 PACS number�s�: 03.65.Ud, 03.67.Mn

I. INTRODUCTION

Entanglement is arguably the central concept in the field

of quantum information. However, there is an unresolved

tension between different notions of what entanglement is,

even in the bipartite setting. On the one hand, entangled

states are defined as those that cannot be created from fac-

torizable states using local operations and classical commu-

nication �LOCC�. On the other hand, entanglement is re-

garded as a resource that enables the two parties to perform

interesting or �in more recent times� useful nonlocal proto-

cols. For pure states, which were the only states considered

in this context for many decades, these notions coincide, and

the word “entangled” �introduced by Schrödinger �1�� is

identical with “factorizable.”

The first authors to identify an interesting nonlocal effect

associated with unfactorizable states were Einstein, Podol-

sky, and Rosen �EPR� in 1935 �2�. They considered a general

unfactorizable pure state of two systems, held by two distant

parties �say Alice and Bob�1
,

��� = �
n=1

�

cn�un���n� = �
n=1

�

dn�vn���n� . �1.1�

Here ��un�	 and ��vn�	 are two different orthonormal bases for

Alice’s system. If such states exist, then if Alice chose to

measure in the ��un�	 �respectively, ��vn�	� basis, then she

would instantaneously collapse Bob’s system into one of the

states ��n� �respectively, ��n��. That is, “as a consequence of

two different measurements performed upon the first system,

the second system may be left in states with two different

wave functions” �2�. Now comes the paradox: “the two sys-

tems no longer interact, �so� no real change can take place in

�Bob’s� system in consequence of anything that may be done

to �Alice’s� system” �2�. That is, if Bob’s quantum state is the

real state of his system, then Alice cannot choose to make it

collapse into either one of the ��n� or one of the ��n� because

that would violate local causality. Note that it is crucial to

consider more than one sort of measurement for Alice; if

Alice were restricted to measuring in one basis �say the �un�
basis�, then it would be impossible to demonstrate any “real

change” in Bob’s system, because she might know before-

hand which of the ��n� is the real state of his system. That is,

the paradox exists only if there is not a local hidden state

�LHS� model for Bob’s system, in which the real state ��n� is

hidden from Bob but may be known to Alice.

As the above quotations show, EPR assumed local causal-

ity to be a true feature of the world; indeed, they say that no

“reasonable” theory could be expected to permit otherwise.

They thus concluded that the wave function cannot describe

reality; that is, the quantum mechanical �QM� description

must be incomplete. Their intuition was thus that local cau-

sality could be maintained by completing QM. This intuition

was supported by the famous example that they then pre-

sented as a special case of Eq. �1.1�, involving a bipartite

entangled state with perfect correlations in position and mo-

mentum. The “EPR paradox” in this case is trivially resolved

by considering local hidden variables �LHVs� for position

and momentum.

Although the argument of EPR against the completeness

of QM was correct, their intuition was not. As proven by Bell

�3,4�, local causality cannot be maintained even if one allows

QM to be completed by hidden variables. That is, assuming

as always �and with good justification �5�� that QM is cor-

rect, Bell’s theorem proves that local causality is not a true
1
All we have changed from EPR’s presentaton is to use Dirac’s

notation rather than wave functions
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feature of the world.
2

Interestingly, any unfactorizable pure
state can be used not only to demonstrate the EPR paradox
�2�, but also to demonstrate Bell nonlocality �that is, the
violation of local causality�. �This fact was perhaps first
stated in 1989 by Werner �6�; the first detailed proof was
given in 1991 by Gisin �7�; see also �8�.�

With the rise of quantum information experiment, the ide-
alization of considering only pure states has become unten-
able. The question of which mixed states were Bell nonlocal
�that is, allowed a demonstration of Bell nonlocality� was
first addressed by Werner �6�, in a foundational paper preg-
nant with implications for, and applications in, quantum in-
formation science. Revealing the first hint of the complexity
of mixed-state entanglement, still being uncovered �9�,
Werner showed that not all mixed entangled states can dem-
onstrate Bell nonlocality. Here, for mixtures, an entangled
state is defined as one which cannot be written as a mixture
of factorizable pure states. Indeed Werner’s paper is often
cited as that which introduced this definition. That is, he is

credited with introducing the dichotomy of entangled states

versus separable �i.e., locally preparable� states. However, it

is interesting to note that he used neither the term entangled

nor the term separable. For a discussion of the history of

terms used in this context, and their relation to the present

work, see Appendix A.

In a recent paper, the present authors also considered the

issue of mixed states and nonlocality �10�. We rigorously

defined the class of states that can be used to demonstrate the

nonlocal effect which EPR identified in 1935. We proposed

the term “steerable” for this class of states �for reasons given

in Appendix A�, and proved that the set of Bell-nonlocal

states is a strict subset of the set of steerable states, which in

turn is a strict subset of the set of nonseparable states. This

was our main result.

Like “entangled,” “steering” is a term introduced by

Schrödinger �1� in the aftermath of the EPR paper. Specifi-

cally, he credits EPR with calling attention to “the obvious

but very disconcerting fact” that for a pure entangled state

like Eq. �1.1�, Bob’s system can be “steered or piloted into

one or the other type of state at �Alice’s� mercy in spite of

�her� having no access to it.” He referred to this as a “para-

dox” �1,11� because if such states can exist, and if the QM

description is complete, then local causality must be vio-

lated.

In Ref. �10� we first supplied an operational definition of

steering in the style of a quantum informational task involv-

ing two parties �in contrast to demonstrating Bell nonlocality,

which can be defined as a task involving three parties�. Next

we turned this operational definition into a mathematical

definition. Applying this to the case of 2�2 dimensional

Werner states enabled us to establish our main result, quoted

above. We then completely characterized steerability for d

�d-dimensional Werner states and isotropic states. Finally,

we completely characterized the Gaussian states that are

steerable by Gaussian measurements, and related this to the

Reid criterion �12� for the EPR paradox.

In the present paper we expand and extend the material in

Ref. �10�. In Sec. II we present the operational definitions of

Bell nonlocality and steering as before, and also that for

demonstrating nonseparability. In addition we use these op-

erational definitions to show that they lead to a hierarchy of

states: Bell nonlocal within steerable within nonseparable. In

Sec. III we turn our operational definitions into mathematical

definitions, and in addition we explain how our definition of

steering conforms to Schrödinger’s use of the term. In Sec.

IV we derive conditions for steerability for four families of

states. As before, we consider Werner states, isotropic states,

and Gaussian states, but here we expand the proofs for the

benefit of the reader. In addition, we consider another class

of states: the “inept states” of Ref. �13�. We also consider a

subclass of Gaussian states in more detail: the symmetric

two-mode states produced in parametric down conversion.

We conclude with a summary and discussion in Sec. V.

II. OPERATIONAL DEFINITIONS

It is useful to begin with some operational definitions for

the different properties of quantum states that we wish to

consider. This is useful for a number of reasons. First, it

presents the ideas that we wish to discuss in an accessible

format for those familiar with concepts in modern quantum

information. Second, it allows us to present an elementary

proof of the hierarchy of the concepts �we will present a

more detailed proof of this hierarchy in subsequent sections�.
First, let us define the familiar concept of Bell nonlocality

�3� as a task, in this case with three parties; Alice, Bob, and

Charlie. Alice and Bob can prepare a shared bipartite state,

and repeat this any number of times. Each time, they mea-

sure their respective parts. Except for the preparation step,

communication between them is forbidden �this prevents

them from colluding in an attempt to fool Charlie�. Their

task is to convince Charlie �with whom they can communi-

cate� that the state they can prepare is entangled. Charlie

accepts QM as correct, but trusts neither Alice nor Bob. If

the correlations between the results they report can be ex-

plained by a LHV model, then Charlie will not be convinced

that the state is entangled; the results could have been fabri-

cated from shared classical randomness. Conversely, if the

correlations cannot be so explained then the state must be

entangled. Therefore they will succeed in their task iff �if and

only if� they can demonstrate Bell nonlocality. This task can

be thus considered as an operational definition of violating a

Bell inequality.

The analogous definition for steering uses a task with only

two parties. Alice can prepare a bipartite quantum state and

send one part to Bob, and repeat this any number of times.

Each time, they measure their respective parts, and commu-

nicate classically. Alice’s task is to convince Bob that the

state she can prepare is entangled. Bob �like Schrödinger�
accepts that QM describes the results of the measurements he

2
For both Bell and EPR, there is an escape, “by denying indepen-

dent real situations as such to things which are spatially separated

from each other,” as stated by Einstein in 1946 �41�. That is, Alice,

for example, can refuse to admit the reality of Bob’s measurement

results until she observes them, by talking only about the outcomes

of her own future measurements. However, Einstein stated that in

his opinion this antirealism was “equally unacceptable” as violating

local causality; see Ref. �42� for a discussion.
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makes �which, we assume, allow him to do local state to-

mography�. However, Bob does not trust Alice. In this case

Bob must determine whether the correlations between his

local state and Alice’s reported results are proof of entangle-

ment. How he should determine this is explained in detail in

Sec. III, but the basic idea is that he should not accept the

correlations as proof of entanglement if they can be ex-

plained by a LHS model for Bob. If the correlations between

Bob’s measurement results and the results Alice reports can

be so explained then Alice’s results could have been fabri-

cated from her knowledge of Bob’s LHS in each run. Con-

versely, if the correlations cannot be so explained then the

bipartite state must be entangled. Therefore we say that Alice

will succeed in her task iff she can steer Bob’s state.

Finally, the simplest task is for Alice and Bob to deter-

mine iff a bipartite quantum state that they share is nonsepa-

rable. In this case they can communicate results to one an-

other, they trust each other, and they can repeat the

experiment sufficiently many times to perform state tomog-

raphy. By analyzing the reconstructed bipartite state, they

could determine whether it is nonseparable. That is, whether

it can be described by correlated LHSs for Alice and Bob.

Because Alice and Bob trust each other and can freely com-

municate, this is really a one party task.

Using these operational definitions we can show that Bell

nonlocality is a stronger concept than steerability. That is,

that Bell-nonlocal states are a subset of the steerable states.

The operational definition of Bell nonlocality is based on

three parties and requires a completely distrustful Charlie. If

we weaken this condition by allowing Charlie to trust Bob

completely, we arrive at the following situation. Charlie can

now, in principle, do state tomography for Bob’s local state

�as he believes everything told to him by Bob�, and he only

distrusts the measurement results reported by Alice. In this

case, he will only concede that the state prepared by Alice

and Bob is entangled if the state is steerable. Thus it is pos-

sible to arrive at the operational definition for steering by

weakening the operational definition for Bell nonlocality.

Thus, the Bell-nonlocal states are a subset of the steerable

states.

Similarly, if we weaken the condition for steerability we

arrive at the condition for nonseparability as follows. In this

case we weaken the condition by allowing for Bob to trust

Alice completely. Since Bob now has access to the measure-

ment information for both subsystems �as he believes every-

thing told to him by Alice� he can, in principle, perform state

tomography. Clearly, in this situation Bob will only concede

that they share an entangled state if the state that Alice pre-

pares really is entangled. Thus, the steerable states are a sub-

set of the entangled states. We illustrate these relations

graphically in Fig. 1.

While these operational definitions give a good insight

into the relationships between the three classes of states it is

also desirable to have a strict mathematical way to define the

classes. We present such definitions in the following section.

III. MATHEMATICAL DEFINITIONS

First, we define some terms. Let the set of all observables

on the Hilbert space for Alice’s system be denoted D�. We

denote an element of D� by Â, and the set of eigenvalues �a	
of Â by ��Â�. By P�a � Â ;W� we mean the probability that

Alice will obtain the result a when she measures Â on a

system with state matrix W. We denote the measurements

that Alice is able to perform by the set M��D�. Note that,

following Werner �6�, we are restricting to projective mea-

surements. The corresponding notations for Bob, and for Al-

ice and Bob jointly, are obvious. Thus, for example,

P�a,b�Â,B̂;W� = Tr��	̂a
A

� 	̂b
B�W� , �3.1�

where 	̂a
A is the projector satisfying Â	̂a

A=a	̂a
A.

The strongest sort of nonlocality in QM is Bell nonlocal-

ity �3�. This is a property of entangled states which violate a

Bell inequality. This is exhibited in an experiment on state W

if the correlations between a and b cannot be explained by a

LHV model. That is, if it is not the case that for all a

���Â�, b���B̂�, for all Â�M�, B̂�M
, we have

P�a,b�Â,B̂;W� = �
�

��a�Â,����b�B̂,����. �3.2�

Here, and below, ��a � Â ,��, ��b � B̂ ,��, and �� denote some

�positive, normalized� probability distributions, involving the

LHV �. We say that a state is Bell nonlocal if there exists a

measurement set M��M
 that allows Bell nonlocality to be

demonstrated. If Eq. �3.2� is always satisfied we say W is

Bell local.

A strictly weaker �6� concept is that of nonseparability or

entanglement. A nonseparable state is one that cannot be

written as

FIG. 1. �Color online� Operational definitions for classes of en-

tangled states. Bell-nonlocal states �a� can be defined via a three-

party task �involving Alice �A�, Bob �B�, and Charlie �C��. Steer-

able states �b� may be defined using a two-party task. Defining an

entangled state �c� essentially requires only one party. In all cases

shading indicates the skeptical party, dotted arrows indicate two-

way communication, and solid arrows indicate trust and two-way

communication.
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W = �
�

�� � 
���. �3.3�

Here, and below, ���D� and 
��D
 are some �positive,

normalized� quantum states. We can also give an operational

definition, by allowing Alice and Bob the ability to measure

a quorum of local observables, so that they can reconstruct

the state W by tomography �14�. Since the complete set of

observables D is obviously a quorum, we can say that a state

W is nonseparable if it is not the case that for all a���Â�,
b���B̂�, for all Â�D�, B̂�D
, we have

P�a,b�Â,B̂;W� = �
�

P�a�Â;���P�b�B̂;
����. �3.4�

Bell nonlocality and nonseparability are both concepts

that are symmetric between Alice and Bob. However steer-

ing, Schrödinger’s term for the EPR effect �1�, is inherently

asymmetric. It is about whether Alice, by her choice of mea-

surement Â, can collapse Bob’s system into different types of

states in the different ensembles EA
�
̃a
A :a���Â�	. Here


̃a
A
Tr��W�	̂a

A
� I���D
 is Bob’s state conditioned on Al-

ice measuring Â with result a. The tilde denotes that this

state is unnormalized �its norm is the probability of its real-

ization�. Of course Alice cannot affect Bob’s unconditioned

state 
=Tr��W�=�a
̃a
A—that would allow superluminal sig-

naling. Despite this, steering is clearly nonlocal if one be-

lieves that the state of a quantum system is a physical prop-

erty of the system, as did Schrödinger. This is apparent from

his statement that “It is rather discomforting that the theory

should allow a system to be steered or piloted into one or the

other type of state at the experimenter’s mercy in spite of his

having no access to it.”

As this quote also shows, Schrödinger was not wedded to

the terminology steering. He also used the term “control” for

this phenomenon �11�, and the word “driving” in the context

of his 1936 result that “…a sophisticated experimenter

can…produce a non-vanishing probability of driving the sys-

tem into any state he chooses” �11�. �By this he means that if

a bipartite system is in a pure entangled state, then one party

�Alice� can, by making a suitable measurement on her sub-

system, create any pure quantum state ��� for Bob’s sub-

system with probability ���
−1���−1, whenever this is well

defined �11�.� He regarded steering or driving as a “necessary

and indispensable feature” of quantum mechanics �11�, but

found it “repugnant,” and doubted whether it was really true.

That is, he was “not satisfied about there being enough ex-

perimental evidence for �its existence in Nature�” �11�.
What experimental evidence would have convinced

Schrödinger? The pure entangled states he discussed are an

idealization, so we cannot expect ever to observe precisely

the phenomenon he introduced. On the other hand,

Schrödinger was quite explicit that a separable but correlated

state, which allows “determining the state of the first system

by suitable �his emphasis� measurement of the second or vice

versa” could never exhibit steering. Of this situation, he says

that “it would utterly eliminate the experimenter’s influence

on the state of that system which he does not touch.” Thus it

is apparent that by steering Schrödinger meant something

that could not be explained by Alice simply finding out

which state Bob’s system is in, out of some predefined en-

semble of states. In other words, the “experimental evidence”

Schrödinger sought is precisely the evidence that would con-

vince Bob that Alice has prepared an entangled state under

the conditions described in our first �operational� definition

of steering.

To reiterate, we assume that the experiment can be re-

peated at will, and that Bob can do state tomography. Prior to

all experiments, Bob demands that Alice announce the pos-

sible ensembles �EA : Â�M�	 she can steer Bob’s state into.

In any given run �after he has received his state�, Bob should

randomly pick an ensemble EA, and ask Alice to prepare it.
3

Alice should then do so, by measuring Â on her system, and

announce to Bob the particular member 
a
A she has prepared.

Over many runs, Bob can verify that each state announced is

indeed produced, and is announced with the correct fre-

quency Tr�
̃a
A�.

If Bob’s system did have a preexisting LHS 
�
�as Schrödinger thought�, then Alice could attempt to fool

Bob, using her knowledge of �. This state would be drawn at

random from some prior ensemble of LHSs F= ���
�	 with


=����
�. Alice would then have to announce a LHS 
̃a
A

based on her knowledge of �, according to some stochastic

map from � to a. Alice will have failed to convince Bob that

she can steer his system if, for all Â�M�, and for all a

���Â�, there exists an ensemble F and a stochastic map

��a � Â ,�� from � to a such that


̃a
A = �

�

��a�Â,��
���. �3.5�

That is, if there exists a coarse-graining of ensemble F to

ensemble EA then Alice may simply know Bob’s preexisting

state 
�. Conversely, if Bob cannot find any ensemble F and

map ��a � Â ,�� satisfying Eq. �3.5� then Bob must admit that

Alice can steer his system.

We can recast this definition as a “hybrid” of Eqs. �3.2�
and �3.4�: Alice’s measurement strategy M� on state W ex-

hibits steering if it is not the case that for all a���Â� ,b

���B̂�, for all Â�M�, B̂�D
, we can write

P�a,b�Â,B̂;W� = �
�

��a�Â,��P�b�B̂;
����. �3.6�

That is, if the joint probabilities for Alice and Bob’s mea-

surements can be explained using a LHS model for Bob and

a LHV model for Alice correlated with this state, then we

have failed to demonstrate steering. Iff there exists a mea-

surement strategy M� that exhibits steering, we say that the

state W is steerable �by Alice�.

3
This ensures that Bob need not trust Alice that they share the

same state W in each run, because Alice gains nothing by preparing

different states in different runs, because she never knows what

ensemble Bob is going to ask for.
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It is straightforward to see that the condition for no steer-

ing implies the condition for Bell locality, since if there is a

model with P�b � B̂ ,
�� satisfying Eq. �3.6�, then there is a

model with ��b � B̂ ,�� that satisfies Eq. �3.2�; simply make

��b � B̂ ,��= P�b � B̂ ;
�� for all B̂ ,�. Since no steering implies

no Bell nonlocality, we see that if a state is Bell nonlocal,

then it implies that it is also steerable. Hence Bell nonlocality

is a stronger concept than steerability.

Similarly, the condition for separability implies the con-

dition for no steering. If there is a model with P�a � Â ;���
satisfying Eq. �3.4�, then there is a model with ��a � Â ,�� that

satisfies Eq. �3.6�; simply make ��a � Â ,��= P�a � Â ;��� for all

Â ,�. Thus, steerability is also a stronger concept than non-

separability. At least one of these relations must be “strictly

stronger than,” because Bell nonlocality is strictly stronger

than nonseparability �6�. In the following sections we prove

that in fact steerability is strictly stronger than nonseparabil-

ity, and strictly weaker than Bell nonlocality.

IV. CONDITIONS FOR STEERABILITY

Below we derive conditions for steerability for four fami-

lies of states W. In each example we parametrize the family

of states in terms of a mixing parameter ��R, and a second

parameter that may be discrete. In each case, the upper

bound for W to be a state is �=1, and W is a product state if

�=0, and �except in the last case� W is linear in �. For the

first two examples �Werner and isotropic states� the condi-

tions derived are both necessary and sufficient for steerabil-

ity. For the other examples �inept states and Gaussian states�
the conditions derived are merely sufficient for steerability.

In terms of the parameter � we can define boundaries

between different classes of states. For example, we will

make use of �Bell, defined by W� being Bell nonlocal iff �
��Bell. Similarly a state W� is entangled iff ���ent. Our

goal is then to determine �or at least bound� the steerability

boundaries for the above classes of states, defined by W�

being steerable iff ���steer.

Crucial to the derivations of the conditions for steerability

of these states is the concept of an optimal ensemble F�

= �
�
���

�	; that is, an ensemble such that iff it cannot satisfy

Eq. �3.5� then no ensemble can satisfy it. In finding an opti-

mal ensemble F� we use the symmetries of W and M�:

Lemma 1. Consider a group G with a unitary representa-

tion Û�
�g�= Û��g� � Û
�g� on the Hilbert space for Alice

and Bob. Say that ∀Â�M� , ∀a���Â� , ∀g�G, we have

Û�
†�g�ÂÛ��g��M� and


̃a

Û�
† �g�ÂÛ��g�

= Û
�g�
̃a
AÛ


†�g� . �4.1�

Then there exists a G-covariant optimal ensemble: ∀g

�G , �
�
���

�	= �Û
�g�
�
�Û


†�g���
�	.

Proof. For specificity, consider a discrete group with order

�G�. Say there exists an ensemble F= �
���	 satisfying Eq.

�3.5� for some map ��a � Â ,��. Then under the conditions of

Lemma 1, 
̃a
A can be rewritten as

�G�−1 �
g�G

�
�

Û
�g�
�Û

†�g��„a�Û�

†�g�ÂÛ��g�,�…��.

Thus the G-covariant ensemble F�= �
�g,��
� ��g ,��	, with


�g,��
� = Û
�g�
�Û


†�g� and ��g ,��=�� / �G�, satisfies Eq. �3.5�
with the choice

��„a�Â,�g,��… = �„a�Û�
†�g�ÂÛ��g�,�… . �4.2�

The analogous formulas for the case of continuous groups

are elementary. �

Once we have determined the optimal ensemble for a

given class of states �and a given measurement strategy� it

remains to determine if there exists a stochastic map

��a � Â ,�� such that Eq. �3.5� is true. In each steering experi-

ment we assume that Alice really does send Bob an en-

tangled state. To determine if the state is steerable, we take

the perspective of a skeptical Bob and imagine that in each

case Alice is attempting to cheat; that is, that she sends Bob

a random state from the optimal ensemble F� and does not

perform her measurements. She simply announces her al-

leged measurement results based on ��a � Â ,�� which defines

her cheating strategy. We compare the states that Bob would

obtain if Alice really did send half of an entangled state and

perform a measurement with those that could be prepared

using an optimal ensemble and cheating strategy.

There are two possible reasons why Bob could find that

his measurement results are consistent with results reported

by Alice. First, Alice could really be sending Bob half of an

entangled state and steering his system via her measure-

ments. Or, as the skeptical Bob believes, Alice could really

just be sending him different pure states in each run and

announcing her results based on her knowledge of this state.

Now if the optimal ensemble �which we are assuming

Bob is clever enough to determine� can explain the correla-

tions between Alice’s announced results and Bob’s results

then the state sent by Alice is not steerable. However, if the

best cheating strategy that Alice could possibly use is insuf-

ficient to explain the correlations then Bob must admit that

Alice has sent him part of an entangled state. Furthermore, if

he makes this admission, the state must be steerable.

A. Werner states

This family of states in Cd � Cd was introduced by Werner

in Ref. �6�. As mentioned above, we parametrize it by �
�R such that Wd

� is linear in �, it is a product state for �
=0, and is a state at all only for ��1.

Wd
� = �d − 1 + �

d − 1

 I

d2
− � �

d − 1

V

d
. �4.3�

Here I is the identity and V is the “flip” operator defined by

V��� � ���
��� � ���. Defining �= �1− �d+1��� /d allows

one to reproduce Werner’s notation �6� for these states.

Werner states are nonseparable iff ���ent=1 / �d+1� �6�. For

d=2, the Werner states violate the Clauser-Horne-Shimony-

Holt �CHSH� inequality iff ��1 /�2 �15�. This places an
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upper bound on �Bell. For d�2 only the trivial upper bound
4

of 1 is known. However, Werner found a lower bound on

�Bell of 1−1 /d �6�, which is strictly greater than �ent.

Now let us consider the possibility of steering Werner

states. We allow Alice all possible measurement strategies:

M�=D�, and without loss of generality take the projectors

to be rank one: 	̂a
A= �a��a�. For Werner states, the conditions

of Lemma 1 are then satisfied for the d-dimensional unitary

group U�d�. Specifically, g→ Û, and Û�
�g�→ Û � Û �6�.
Again without loss of generality we can take the optimal

ensemble to consist of pure states, in which case there is a

unique covariant optimal ensemble, F�= �������d�Haar���	,
where d�Haar��� is the Haar measure over U�d�.

If Alice were to make any projective measurement of her

half of a Werner state and obtain the result a, Bob’s unnor-

malized conditioned state would be given by


̃a
A = TrA��	̂a

A
� I�Wd

��

= �a�Wd
��a�

= �d − 1 + �

d�d − 1�

 I

d
− � �

d�d − 1�

�a��a� . �4.4�

This is a state proportional to the completely mixed state

minus a term proportional to the state Alice’s system is pro-

jected into by her measurement.

We now determine if it is possible for Alice to simulate

this conditioned state using the optimal ensemble F� and an

optimal cheating strategy defined by ���a � Â ,��. That is, we

imagine that in each run of the experiment Alice simply

sends Bob a state 
�= ������ drawn at random from F�

= �������d�Haar���	. When asked to perform a measurement

Â and announce her result, she uses ���a � Â ,�� �which is

based on her knowledge of 
�= ������� to determine her an-

swer. In testing whether this is actually what Alice could be

doing, we only need to consider the quantity

�a�
̃a
A�a� =

�1 − ��
d2

. �4.5�

This is due to the form of 
̃a
A noted above in Eq. �4.4�.

If �on average� the strategy used by Alice with the en-

semble F� produces the correct overlap with the state �a��a�
then Eq. �3.5� will hold and steering is not possible. Thus

Alice makes use of the overlap with �a��a� of the random

states ��� in determining the optimal ��a � Â ,��.
Since Alice’s goal is to simulate 
̃a

A, as defined in Eq.

�4.4�, she will determine which of the eigenstates of Â has

the least overlap with ������ in each run of the experiment

and announce the eigenvalue associated with that eigenstate

as her result. On average Bob would then find that his con-

ditioned state has the least possible overlap with �a��a�. Writ-

ing this explicitly, the optimal distribution is given by

���a�Â,�� =�1 if ���	̂a
A��� � ���	̂

a�

A ��� ∀ a� � a

0 otherwise.
�

�4.6�

It is straightforward to see that this ensemble is normalized,

that is, ∀ Â ,�,

�
a

���a�Â,�� = 1. �4.7�

Clearly the optimal distribution ���a �A ,�� is the distribu-

tion that will predict the same overlap with �a��a� as that

given by Eq. �4.5�. This occurs at precisely the steering

boundary �steer. When ���steer steering cannot be demon-

strated, as it is possible that Alice is using a cheating strategy

to simulate Bob’s conditioned state. This means that Alice’s

optimal cheating strategy could actually make Bob believe

that his conditioned state has a smaller overlap with �a��a�
than would be expected from Eq. �4.5�. In this case Alice

could correctly simulate 
̃a
A simply by introducing the appro-

priate amount of randomness to her responses �i.e., increase

the overlap to the correct size by choosing a different

��a � Â ,���. To reiterate, when ���steer it is possible that

Alice is performing a classical strategy which is consistent

with Bob’s results, so he will not believe that the state is

genuinely steerable.

To find the form of �steer we compare with Werner’s result

�6� for the lower bound on �ent. We find that he actually used

the construction outlined above. His LHVs for Bob’s system

were in fact the LHSs used in the optimal ensemble F�.

Werner shows that for any positive normalized distribution

��a � Â ,��,

�a�� d�Haar�����������a�Â,���a� � 1/d3. �4.8�

The equality is attained for the optimal ���a � Â ,�� specified

by Eq. �4.6� �this produces the smallest possible predicted

overlap with �a��a��.
Now to determine when Eq. �3.5� is satisfied by F� �and

thus to determine �steer� we simply compare Eq. �4.8� with

Eq. �4.5�. We find that Alice cannot simulate the correct

overlap with �a��a� iff

�1 − ��/d2 � 1/d3. �4.9�

Hence we see that for Werner states

�steer = 1 −
1

d
. �4.10�

Recently a new lower bound for �Bell was found for d

=2 by Acìn et al. �16�, greater than �steer, as shown in Fig. 2.

Reference �16� makes use of a connection with Grothend-

ieck’s constant �a mathematical constant from Banach space

theory� to develop a local hidden variable model for projec-

tive measurements when d=2. Acìn et al. show that for two-

qubit Werner states

4
This is because no Bell inequality has been found that the Werner

states violate for d�2. It is only an upper bound because this is not

a test of all possible Bell inequalities.
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0.7071 � 1/�2 � �Bell � 1/Kg�3� � 0.6595, �4.11�

where Kg�3��1.5163 is Grothendieck’s constant of order 3.

Bounds on Kg�3� ensure that for d=2 Werner states �Bell

�0.6595. Using Eq. �4.10�, we see that when d=2, �steer

=1 /2. This proves that steerability is strictly weaker than

Bell nonlocality as �steer�0.6595��Bell. It is also well

known that for d=2, �ent=1 /3, which is strictly less than

�steer. Thus using the d=2 Werner states as an example we

also see that steerability is strictly stronger than nonsepara-

bility. This clear distinction between the three classes can be

seen on the left-hand axis of Fig. 2�a�.

B. Isotropic states

The isotropic states, which were introduced in �17�, can

be parametrized identically to the Werner states; that is, in

terms of their dimension d and a mixing parameter �,

Wd
� = �1 − ��I/d2 + �P+. �4.12�

Here P+= ��+���+�, where ��+�=�i=1
d �i��i� /�d is a maximally

entangled state. In fact, for d=2 it is straightforward to verify

that the isotropic states are identical to Werner states up to

local unitaries. Isotropic states are nonseparable iff ���ent

=1 / �d+1� �17�.
A nontrivial upper bound on �Bell for all d is known; in

Ref. �18� it is shown that a Bell inequality is certainly vio-

lated by a d-dimensional isotropic state if

��
2

Id�QM�
� �Bell, �4.13�

where Id�QM� is defined as

Id�QM� = 4d �
k=0

�d/2�−1 �1 −
2k

d − 1

�qk − q−�k+1�� , �4.14�

and qk=1 / �2d3 sin2���k+1 /4� /d�	. Collins et al. �18� go on

to show that in the limit as d→� the limiting value this

upper bound on �Bell approaches �2
/ �16�Catalan�

�0.6734, where Catalan�0.9159 is Catalan’s constant.

In determining steerability we again allow Alice all pos-

sible measurement strategies: M�=D�, and take the projec-

tors to be rank one: 	̂a
A= �a��a�. The isotropic states have the

symmetry property that they are invariant under transforma-

tions of the form Û*
� Û, hence the conditions of Lemma 1

are again satisfied for the d-dimensional unitary group U�d�.
In this case, g→ Û and Û�
�g�→ Û*

� Û. Thus we can again

take the optimal ensemble to be F�= �������d�Haar���	.
Now consider the conditioned state that Bob would obtain

if Alice were to make a measurement Â on her half of Wd
�,


̃a
A = TrA��	̂a

A
� I�Wd

�� = �1 − �

d

 I

d
+
�

d
�a��a� . �4.15�

This is a state proportional to the completely mixed state

plus a term proportional to the state Alice’s system would be

projected into by her measurement. Note the similarity with

the Werner state example, where the conditioned state was

proportional to the completely mixed state minus a term pro-

portional to �a��a�. This difference arises because the isotro-

pic states are symmetrically correlated rather than antisym-

metrically correlated as in the Werner state example.

Again we wish to determine if it is possible for Alice to

simulate the conditioned state 
̃a
A using the optimal ensemble

F� and a cheating strategy defined by an optimal distribution

���a � Â ,��.
Imagine that in each run of a steering experiment Alice

simply sends Bob a state ������ drawn at random from F�

= �������d�G�� ,m�	. When asked to perform a measurement

Â and announce her result, she uses ���a � Â ,�� to determine

her answer. In testing whether this is actually what Alice
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FIG. 2. �Color online� Boundaries between classes of entangled

states for Werner �a� and isotropic �b� states Wd
�, inept states W�

� �c�,
and two-mode symmetric Gaussian states Wn̄

� �d�. The bottom �blue�
line is �ent, above which states are entangled. The next �red� line is

�steer, above which states are steerable. In cases �c� and �d� the

down arrows indicate that we have only an upper bound on �steer.

The top �green� line with down arrows is an upper bound on �Bell,

above which states are Bell nonlocal. The up arrows in cases �a� and

�b� are lower bounds on �Bell for d=2. This lower bound establishes

that the classes are strictly distinct. In cases �a� and �b�, dots join

values at finite d with those at d=�. The separate point in �c� is

explained at the end of Sec. IV C.
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could be doing, we again only need to consider the quantity

�a�
̃a
A�a� =

�

d
+

�1 − ��
d2

. �4.16�

In this case Alice’s strategy is similar to the Werner state

example, except now she wants to simulate the maximum

possible overlap with �a��a� �due to the form of 
̃a
A�. There-

fore, Bob will only concede that Wd
� is steerable if the maxi-

mum overlap with �a��a� predicted using the ensemble F�

and the optimal cheating strategy ���a �A ,�� is less than that

predicted by Eq. �4.16�. In this case there would be no pos-

sible classical strategy that Alice could possibly be using to

simulate the correlations with Bob’s results. Identical predic-

tions for the overlap with �a��a� will again occur precisely at

the steering boundary �steer, which occurs when ���a � Â ,��
is used.

The optimal ��a � Â ,�� is defined in a similar manner to

the Werner state example. However, in each run of the ex-

periment Alice now determines which of the eigenstates of Â

is closest to ������ and announces the eigenvalue associated

with that eigenstate as her result. That is,

���a�Â,�� =�1 if ���	̂a
A��� � ���	̂

a�

A ��� ∀ a� � a

0 otherwise.
�

�4.17�

To test if Eq. �3.5� holds, Alice and Bob would need to

run the experiment many times and compare �a�
̃a
A�a� with

the quantity

�a�� d�Haar���������a�A,���a� . �4.18�

This can be written as

�a��
a

d�Haar���������a� = �
a

d�Haar�����a����2,

�4.19�

where the subscript a on the integral means that in the inte-

gral only those states with ��a ���� greater than all others will

contribute. As shown in Appendix B 1, a random state ���
from the ensemble F� can be described by the unnormalized

state

��̃� = m��� =
1

�d
�
j=1

d

z j�� j� , �4.20�

where the z j are mutually independent complex Gaussian

random variables with zero mean and zero second moments

except for �z j
*zk�=� jk. That is, we can replace the Haar mea-

sure d�Haar��� by d�G�� ,m�=d�G�m�d�Haar���. In terms of

the variables �z j	, this can be expressed as

d�G��,m� → �−d exp�− �
i=1

d

zi
2
d2z1 ¯ d2zd. �4.21�

Now using the Gaussian measure d�G�� ,m� to describe

the ensemble F�, we can rewrite Eq. �4.19� as

�
a

d�Haar�����a����2 = �
a

d�Haar�����a����2
� d�G�m�m2

� d�G�m�m2

=

�
a

d�G��,m���a��̃��2

� d�G�m�m2

. �4.22�

It is straightforward to show that the denominator equals one

�see Appendix B 2�, and hence we can evaluate the numera-

tor �left to Appendix B 3� to find that

�
a

d�G��,m���a��̃��2 =
Hd

d2
, �4.23�

where Hd=1+1 /2+1 /3+ ¯ +1 /d is the harmonic series.

Thus we find that for any positive normalized distribution

��a � Â ,�� we must have

�a�� d�Haar�����������a�Â,���a� �
Hd

d2
, �4.24�

with the equality obtained for the optimal ���a � Â ,�� as de-

fined in Eq. �4.17�. Comparing this with Eq. �4.16� we see

that steering can be demonstrated iff

�

d
+

�1 − ��
d2

�
Hd

d2
. �4.25�

Thus for isotropic states

�steer =
Hd − 1

d − 1
�

large d

ln�d�
d

. �4.26�

For d=2 the isotropic states are equivalent �up to local

unitaries� to the Werner states, and we again find that �steer

=1 /2, which is strictly less than �Bell and strictly greater than

�ent. For d�2, �steer is greater than �ent and significantly less

than an upper bound on �Bell. This is shown in Fig. 2�b�. For

large d we see that both �steer and �ent tend to zero, however,

�steer approaches zero more slowly; it is larger than �ent by a

factor of ln�d� �19�.

C. Inept states

We now consider a family of states with less symmetry

than the previous examples. This makes the analysis more

difficult, meaning that we cannot find �steer exactly. How-

ever, making use of the symmetry properties of the states

allows us to find an upper bound on �steer. We define a family

of two-qubit states by

W�
� = ������� + �1 − ��
� � 

, �4.27�

where
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��� = �1 − ��0�0
� + ���1�1
� , �4.28�

and the reduced states 
��
� are found by partial tracing with

respect to Bob �Alice�. That is,


��
� = Tr
����������� . �4.29�

As in the previous examples, this is a two-parameter family

of states; the parameter � is again a mixing parameter, and

the parameter � determines how much entanglement is

present in the state ���. Note that when �=1 /2 these states

are equivalent to the two-dimensional Werner and isotropic

states.

This family of states was studied in Ref. �13� in the con-

text of distributing entanglement. The authors considered an

inept company attempting to distribute pure entangled states

���� to many pairs of parties. However, they mixed up the

addresses some fraction 1−� of the time, meaning that on

average the company would actually distribute mixed en-

tangled states of the form of Eq. �4.27�. Hence we will refer

to this family of states as “inept” states.

As noted above, the inept states are a family of two-qubit

states, which means that it is possible to evaluate �ent ana-

lytically. This was done in Ref. �13� leading to the following

condition for nonseparability of inept states:

�� �ent =
��1 − ��

��1 − �� + ���1 − ��
. �4.30�

Reference �13� also considers Bell nonlocality of the state

matrix W�
� by testing if a violation of the CHSH inequality

�20� occurs. This was done using the method of �15� for

determining the optimal violation of the CHSH inequality for

two-qubit states. One finds that the state W�
� violates the

CHSH inequality if and only if

��
4�2 − 4� + 1 − �4�2 − 4� + 3

4�2 − 4� − 1
� �Bell. �4.31�

Now, in order to demonstrate steering we must specify a

measurement strategy. In the two previous examples we have

used the complete set of projective measurements, M�=D.

This would be a suitable measurement strategy to allow us to

define an optimal ensemble, however, in order to make our

task simpler we will consider a more restricted set of mea-

surements. We note that states defined by Eq. �4.27� have the

symmetry property that they are invariant under simulta-

neous contrary rotations about the z axes. This immediately

suggests a restricted measurement scheme; we allow all mea-

surements in the xy plane but only allow a single measure-

ment along the z axis. That is, Alice’s measurement scheme

is given by M�= ��̂z	� ��̂� :�� �0,2��	, where

�̂� = �̂x cos��� + �̂y sin��� . �4.32�

In this case the conditions for Lemma 1 are satisfied for the

Lie group G generated by �1 /2��̂z � I− �1 /2�I � �̂z �see Ap-

pendix C 1�.
This is a more restricted scheme than we have considered

so far, but will be sufficient to demonstrate steerability if Eq.

�3.5� does not hold �since it must hold for all measurements

to preclude steering�. Thus we are only considering an upper

bound on �steer �the boundary between steerable and non-

steerable states using all projective measurements�.
We now consider the optimal ensemble for this restricted

set of measurements. We use an ensemble of pure states F

= �������d����	, where

������ =
1

2
�I + �1 − z2 cos����̂x + �1 − z2 sin����̂y − z�̂z� ,

�4.33�

and d����= �d� /2����z�dz. It is straightforward to show

that this ensemble is of the form of the optimal ensemble

since the conditions for Lemma 1 hold �see Appendix C 1�.
While this ensemble has the form of the optimal, it is not

completely specified as ��z� is still general. Thus to find the

optimal ensemble we need to determine the optimal prob-

ability distribution ��z�.
First consider the reduced states that Bob would obtain if

Alice really were to measure �̂z on her half of W�
�. If she did

so, and obtained the +1 result then Bob’s state would be

given by


̃+1
�z = ���

1

2
�I − z+�̂z� . �4.34�

Similarly, for the −1 result, Bob would obtain


̃−1
�z = �1 − ��

1

2
�I − z−�̂z� , �4.35�

where the constants z+ and z− are defined as

z+ = 1 − 2� − 2��1 − �� ,

z− = 1 − 2��1 − �� . �4.36�

Now we wish to determine if Alice could simulate these

conditioned states using the ensemble F and a suitable strat-

egy �(±1 � �̂z , �z ,��). Due to the form of 
̃±1
�z the best strategy

for Alice is to split the ensemble F into two subensembles,

one to simulate 
̃+1
�z and the other to simulate 
̃−1

�z . Thus we

can separate ��z� into two positive distributions

��z� = �+�z� + �−�z� . �4.37�

We imagine that Alice will attempt to simulate measuring �̂z

by randomly generating states ������ using the distribution

��z� and sending them to Bob. If in a particular run of the

experiment the state she sent Bob was from the subensemble

determined by �+�z� then she will announce the result +1.

Similarly, if she sent Bob a state from �−�z� then she will

announce −1.

Now if Alice uses this strategy, Bob will find on average

that


̃±1
�z =

1

2
�I�

−1

+1

dz�±�z� − �̂z�
−1

+1

dz�±�z�z� . �4.38�

Comparing with Eqs. �4.34� and �4.35� we find that in order

for the ensemble F to be able to simulate Alice measuring �̂z

we have the following constraints on ��z�:
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�
−1

1

dz�+�z� = � , �4.39�

�
−1

1

dz�−�z� = 1 − � , �4.40�

�
−1

1

dz�+�z�z = �z+, �4.41�

�
−1

1

dz�−�z�z = �1 − ��z−. �4.42�

Now consider the following conditioned states that Bob

would obtain if Alice were to measure �̂�:


̃±1
�� =

1

2
�I ± ����1 − �� cos����̂x

± ����1 − �� sin����̂y − �1 − 2���̂z� . �4.43�

How well could Alice simulate the above state using the

ensemble F� and a cheating strategy defined by

�(±1 � �̂� , �z ,��)? We know that the ensemble F� is symmet-

ric under rotations about the z axis. So in this case Alice

would use her knowledge of � to determine the outcome to

announce when asked to measure �̂�. That is, if the state

������ that she sent Bob is closer to the positive axis defined

by �̂� then she will announce the +1 result. Similarly, if

������ is closer to the negative measurement axis then she

announces −1. This corresponds to

�„±1��̂�,�z,��… = �1 if � � ��� �

2
,� ±

�

2



0 if � � �� ±
�

2
,��

�

2

 .�

�4.44�

From the symmetry under rotations about the z axis we can

see that Alice will be able to do equally well using this

strategy to simulate states prepared by any measurement �̂�

in the xy plane. Thus without loss of generality we set �=0

and consider the specific case where Alice allegedly mea-

sures �̂x. Under these conditions Eq. �4.43� reduces to


̃±1
�x =

1

2
�I ± ����1 − ���̂x − �1 − 2���̂z� . �4.45�

If Alice randomly sends Bob states from F� and uses Eq.

�4.44� to determine her responses, Bob will find on average

the state

1

2
�I ±

1

�
�

−1

+1

dz�1 − z2��z��̂x − �
−1

+1

dz��z�z�̂z� .

�4.46�

We know that when F is optimal, Eq. �4.46� will exactly

simulate Eq. �4.45�. In determining the optimal F we must

find the optimal ��z�, however, we are constrained in deter-

mining ��z� by the fact that the ensemble must also simulate

the states that Bob would obtain if Alice were to measure �̂z.

These constraints are enforced by Eqs. �4.39�–�4.42�.
Note that Eqs. �4.39� and �4.40� ensure that the �̂z term in

Eq. �4.46� and Eq. �4.45� will be the same. Therefore, to

determine how well Alice’s strategy can simulate Eq. �4.45�
we only need to consider the coefficient of the �̂x term. If the

coefficient of this term predicted by Eq. �4.46� is as large as

in Eq. �4.45� then Alice’s strategy simulates Bob’s condi-

tioned state perfectly. Thus Bob would not believe that the

state W�
� is genuinely steerable. Hence we need to find the

distribution ���z�, which maximizes the �̂x coefficient in Eq.

�4.46� to determine if steering is possible. That is, we wish to

find the ��z� that gives the maximum value of

�1 /���−1
+1dz�1−z2��z�. This is equivalent to maximizing

1

�
�

−1

+1

dz�1 − z2��+�z� + �−�z�� , �4.47�

subject to the constraints given by Eqs. �4.39�–�4.42�.
Writing �±�z�= f±

2�z� for real functions f±�z� we can use

Lagrange multiplier techniques to perform the optimization.

We find that the optimal ��z� has the unsurprising form

���z� = ���z − z+� + �1 − ����z − z−� , �4.48�

where the constants z± are defined in Eq. �4.36� and ��z
−z�� is the Dirac delta function. We see now why the choice

of splitting the ensemble into two distributions was the best

choice for Alice. The optimal ensemble F� is composed of

pure states in two rings around the z axis of the Bloch

sphere; one in the +z hemisphere defined by z+, which on

average may be used to simulate 
̃+1
�z , and the other in the −z

hemisphere defined by z−, which may simulate 
̃+1
�z . �These

comments apply to the case 0���1 /2.�
Using ���z� to evaluate Eq. �4.46� we find that


̃±1
�x =

1

2
�I ±

1

�
���1 − z+

2 + �1 − ���1 − z−
2	�̂x − �1 − 2���̂z� .

�4.49�

Finally, comparing this with 
̃±1
�x given by Eq. �4.45� we find

that Alice’s optimal cheating strategy fails to simulate mea-

surements of �̂x when

�����1 − �� − �1 − ���1 − �1 − 2��1 − ���2

− ��1 − �1 − 2� − 2��1 − ���2 � 0. �4.50�

Thus under these conditions we know that steering is pos-

sible using the measurement scheme M�. Note that we have

not determined �steer as we have not considered all possible

projective measurements. However, we can make Eq. �4.50�
an equality to provide an equation for �, which is an upper

bound on �steer. This boundary is plotted in Fig. 2�c�.
For �=1 /2 we know explicitly that

�Bell � �steer � �ent �4.51�

�since these states are equivalent to the d=2 Werner states

�see Appendix C 2��. This special case yields the isolated

points at �=1 /2 in Fig. 2�c�. For the remaining range of � we
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find that our upper bound on �steer is significantly lower than

the upper bound on �Bell and significantly higher than �ent.

This fact, taken with the known boundary values for �
=1 /2 gives us good reason to conjecture that the three

boundaries are strictly distinct for all �� �0,1�.

D. Gaussian states

Finally, we investigate a general �multimode� bipartite

Gaussian state W �21�. The mode operators are defined as

q̂i= âi+ âi
† and p̂i=−i�âi− âi

†� for the position and momentum,

respectively. Here âi and âi
† are the annihilation and creation

operators for the ith mode. For an n-mode state one may

define a vector R̂= �q̂1 , p̂1 , . . . , q̂n , p̂n�, which allows the com-

mutation relations for the mode operators to be compactly

expressed as

�Ri,R j� = 2i��

ij . �4.52�

Here ��

ij are matrix elements of the symplectic matrix ��


= � i=1
n Ji, where

Ji = � 0 1

− 1 0

 . �4.53�

A Gaussian state is defined by the mean of the vector of

phase-space variables R̂, as well as the covariance matrix

�CM� V�
 for these variables. The mean vector can be arbi-

trarily altered by local unitary operations and hence cannot

determine the entanglement properties of W. Thus for our

purposes a Gaussian state is characterized by the CM. In

�Alice, Bob� block form it appears as

CM�W� = V�
 = �V� C

CT V


 . �4.54�

This represents a valid state if the linear matrix inequality

�LMI�

V�
 + i��
� 0 �4.55�

is satisfied �21�.
Rather than addressing steerability in general, we consider

the case where Alice can only make Gaussian measurements

�21,22�, the set of which will be denoted by G�. Thus, as for

the previous section, since we are considering a restricted

class of measurements, if we demonstrate steerability with

this measurement scheme it will provide an upper bound on

�steer.

A measurement A�G� is described by a Gaussian posi-

tive operator with a CM TA satisfying TA+ i���0 �21,22�.
When Alice makes such a measurement, Bob’s conditioned

state 
a
A is Gaussian with a CM �23�,

CM�
a
A� = V


A = V
 − CT�V� + TA�−1C , �4.56�

which is actually independent of Alice’s outcome a.

Our goal is to determine a sufficient condition for steer-

ability of Gaussian states. We do this by determining the

necessary and sufficient condition for steerability with

Gaussian measurements. In the previous examples after

specifying a measurement scheme we considered Bob’s con-

ditioned state if Alice were to perform a measurement and

determined when it was possible for this state to be simu-

lated by a cheating strategy. In the following we are working

toward the same goal. If Alice were to perform a Gaussian

measurement on half of the state W and send the other part to

Bob, then Bob’s conditioned state would have a covariance

matrix defined by Eq. �4.56�; however, this is independent of

Alice’s result a. Thus we do not need to consider a strategy

for Alice to announce correctly correlated results to Bob. We

simply need to determine when Alice could simulate Bob’s

conditioned state by sending Bob states from a pure state

ensemble �rather than actually sending part of W�. We will

show that there exists an optimal ensemble of Gaussian

states distinguished by their mean vectors �but sharing the

same covariance matrix, which we will label U� which Alice

could use for this task. If there exists a valid ensemble of

Gaussian states defined by U which can simulate V

A then

Bob will not believe that W is entangled, and hence the state

is not steerable.

Before moving to the presentation of our main result con-

sider the following result from linear algebra theory relating

to Schur complements of block matrices. The Schur comple-

ments of P and Q in a general block matrix

B = � P R

RT Q

 �4.57�

are defined as �P=Q−RTP−1R and �Q= P−RQ−1RT, respec-

tively. The matrix B is positive semidefinite �PSD�, iff both P

and its Schur complement are PSD �and likewise for Q and

its Schur complement�.
The proof of our main theorem is based on the following

inequality:

V�
 + 0� � i�
� 0, �4.58�

and relies on the following facts:

Lemma 2. If Eq. �4.58� is true then there exists an en-

semble defined by covariance matrix U such that

U + i�
� 0, �4.59�

V

A − U � 0, �4.60�

which implies that the state W is not steerable.

Proof. See Appendix D 1 for proof of this lemma.

Lemma 3. If the Gaussian state W defined in Eq. �4.54� is

not steerable by Alice’s Gaussian measurements then there

exists a Gaussian ensemble defined by covariance matrix U

such that Eqs. �4.59� and �4.60� hold.

Proof. See Appendix D 2 for proof of this lemma.

Lemma 4. If ∀A�G there exists U such that Eqs. �4.59�
and �4.60� hold, then

V� + TA − C�V
 + i�
�−1CT � 0, �4.61�

must also hold.

Proof. See Appendix D 3 for proof of this lemma.

We are now in a position to present our main theorem.

Theorem 5. The Gaussian state W defined in Eq. �4.54� is

not steerable by Alice’s Gaussian measurements iff Eq.

�4.58� is true.
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Proof. By Lemma 2 we know that if Eq. �4.58� is true

then W is not steerable.

Now suppose that Eq. �4.58� does not hold, so that

V�
 + 0� � i�
� 0. �4.62�

Since we know that V
+ i�
�0 �that is, V
 is a valid cova-

riance matrix�, the Schur complement in this term cannot be

PSD �if it were it would imply that Eq. �4.58� were true

when we have assumed the opposite�. Thus we have

G = �V
+i�

= V� − C�V
 + i�
�−1CT � 0. �4.63�

Consider an eigenvector of G, �� , associated with a negative

eigenvalue, that is, G�� =−g�� where g�0. We can choose a

measurement A along an axis such that TA shares the eigen-

vector �� so that TA�� = t�� . Now it is possible to arrange the

measurement such that t�g. This is because it is always

possible to make one eigenvalue suitably small �the eigen-

value for the conjugate variable will become large�. Now we

have chosen the measurement such that G+TA must have a

negative eigenvalue in the �� direction. Hence, for this choice

of measurement we have

V� + TA − C�V
 + i�
�−1CT � 0. �4.64�

This shows that if Eq. �4.58� does not hold then there exists

a measurement A such that Eq. �4.61� does not hold, which

by Lemma 4 implies that for this measurement there does not

exist an ensemble defined by U such that Eqs. �4.59� and

�4.60� hold.

However, from Lemma 3 we know that if W is not steer-

able then there must exist an ensemble defined by U such

that these equations hold. Since they do not hold for all A

when Eq. �4.58� is not true, we see that if Eq. �4.58� is not

true then we cannot define a suitable ensemble U to prevent

steering. Therefore, a Gaussian state W is not steerable iff

Eq. �4.58� is true. �

Theorem 5 provides a sufficient condition for demonstrat-

ing that the state W is steerable �by any measurements�, and

hence specifies an upper bound on �steer. To illustrate this, it

is useful to consider a simple example.

1. Two-mode states and the EPR paradox

We now consider the simplest case where Alice and Bob

share a Gaussian state W in which they each have a single

mode. It is well known that such a Gaussian state can be

brought into standard form using local linear unitary Bogo-

liubov operations �LLUBOs�, so that the CM takes the form

�24�

V�
 =�
n 0 c 0

0 n 0 c�

c 0 m 0

0 c� 0 m
� , �4.65�

where n ,m�1.

The Peres-Horodecki criterion for separability can be

written as a linear matrix inequality for Gaussian states �25�
as

Ṽ�
 + i��
� 0, �4.66�

where Ṽ�
=�V�
�; �=diag�1,1 ,1 ,−1�. This can be deter-

mined by finding when the Schur complement �of the lower

block� of Ṽ�
+ i��
 is PSD, which occurs only when

�m −
c2n

n2 − 1

�m −

c�
2n

n2 − 1

� �1 −

cc�

n2 − 1

2

. �4.67�

Hence two-mode Gaussian states defined by V�
 are sepa-

rable iff Eq. �4.67� is satisfied.

For Gaussian states, which have a positive Wigner func-

tion, it is not possible to demonstrate violation of a Bell

inequality using Gaussian measurements. This is because the

Wigner function gives an explicit hidden variable descrip-

tion, which ensures satisfaction of Bell’s inequality.

To determine if the state W is steerable it is a simple

matter of testing if V�
+0� � i�
 is PSD. Again using Schur

complements, we find that this is the case iff

�m −
c2

n

�m −

c�
2

n

� 1. �4.68�

Recall that the interest in, and even the name, steering,

arose in response to the EPR paradox. Therefore, one would

expect that any reasonable characterization of steering

should include the EPR paradox. This is indeed the case for

our formulation of steering. For the class of two-mode

Gaussian states that we have been considering, Reid �12� has

argued that the EPR “paradox” is demonstrated if the product

of the conditional variances V�q
 �q�� and V�p
 � p�� violates

the uncertainty principle. This is the case if the conditional

variances do not satisfy

V�q
�q��V�p
�p�� � 1. �4.69�

For a general two-mode Gaussian state W the conditional

variances take the form

V�q
�q�� = �
min��q
 − �q��2� = m −

c2

n
, �4.70�

and similarly for V�p� � p
�. Thus Eq. �4.69� is exactly Eq.

�4.68�. That is, the EPR “paradox” occurs precisely when W

is steerable with Gaussian measurements. This example con-

firms that the EPR “paradox” is merely a particular case of

steering. As is well known �26�, Reid’s EPR condition is

strictly stronger than the condition for nonseparability Eq.

�4.67�. The fact that the EPR “paradox” is an example of

steering explains why the EPR condition is stronger than

nonseparability; as we have shown in previous examples

steering is a strictly stronger concept than nonseparability.

2. Symmetric two-mode states

Finally, we consider the specific case of two-mode Gauss-

ian states prepared by optical parametric amplifiers �26�.
When the entanglement is symmetric between the two modes
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the covariance matrix describing such states has a particu-

larly simple form. The continuous variable entanglement

properties of such a state has recently been characterized

experimentally �26�. In this case the covariance matrix of the

state W has just two parameters, � and n̄.

CM�Wn̄
�� = V2

�
 =�
 0 � 0

0  0 − �

� 0  0

0 − � 0  
� , �4.71�

where  =1+2n̄ and �=2��n̄�1+ n̄�. Here n̄ is the mean pho-

ton number for each party, and � is a mixing parameter de-

fined analogously with the other examples except that here it

is the covariance matrix that is linear in �, not the state

matrix.

For such symmetric states the separability condition, Eq.

�4.67�, becomes

� −
�2 

 2 − 1

2

� �1 +
�2

 2 − 1

2

. �4.72�

Substituting for the values of  and � we find that the con-

dition for states defined by Eq. �4.71� to be nonseparable is

simply

�� �ent =� n̄

1 + n̄
. �4.73�

In determining when symmetric two-mode Gaussian

states are steerable, we find that Eq. �4.68� becomes

� −
�2

 

2

� 1. �4.74�

Hence, as an upper bound on the condition for steerability

we have

��� 1 + 2n̄

2�1 + n̄�
� �steer. �4.75�

This is an upper bound as we have only considered a re-

stricted class of measurements. These results are plotted for

some small values of n̄ in Fig. 2�d�. Since it is not possible to

demonstrate Bell nonlocality for a Gaussian state with

Gaussian measurements we have also plotted an upper bound

on �Bell in Fig. 2�d�.

V. DISCUSSION

We have introduced a rigorous formulation of the concept

of steering and given a number of examples to demonstrate

where this concept fits in the hierarchy of entangled states.

Both our operational and mathematical formulations of steer-

ing leads to the notion that steerable states lie between non-

separable states and those entangled states which violate a

Bell inequality. In particular, our example for 2�2 Werner

states establish that this is a strict hierarchy. Our other ex-

amples are consistent with this fact.

Recently there has been renewed interest in classifying

the resources present in quantum states. For instance, it has

been proposed that nonlocality itself is a separate resource
from entanglement �see �27�, and references therein�. This
has been motivated by the fact that for suggested measures of
nonlocality, the maximally nonlocal states are not necessarily
maximally entangled states. Our work provides an interest-
ing addition to the increasingly complex task of characteriz-
ing quantum resources. Clearly steerability is another form
of nonlocality that a quantum state may possess.

The nonlocality of entangled states has also recently been
studied in the context of robustness to noise. Reference �19�
determines the maximum amount of noise that an arbitrary
bipartite state can accept before its nonlocal correlations �i.e.,
its ability to violate a Bell inequality� are completely
“washed out.” They do this by determining when the result-
ing state’s correlations can be explained by a “local model.”
In fact, the local models defined in Ref. �19� correspond to
LHS models for Bob in our terminology. That is, as they
recognize �19�, the concept of steering is useful for proving

new bounds for Bell nonlocality, since the latter is strictly

stronger.

The inherent asymmetry in the definition of steerability

may suggest applications for asymmetric entangled states. It

may appear that a link exists between the recently proposed

asymmetric measures of entanglement �28� and steerability.

While conceptually appealing, this seems unlikely as states

with asymmetric entanglement as defined in Ref. �28� neces-

sarily contain bound entanglement. A connection between

steerable states and bound entangled states is unlikely, as we

have shown that steerable states exist for d=2 �and no bound

entangled states exist for d=2�.
There remain a number of open questions relating to

steerability. We have demonstrated the link between the EPR

paradox and steerability for two-mode Gaussian states. The

EPR paradox has been demonstrated experimentally for

Gaussian states, however, it is difficult to prepare an EPR-

type experiment for other quantum states. This raises the

question: might tests of steerability provide experimental

evidence for EPR-type correlations in nonoptical experimen-

tal implementations?

From an experimental perspective, the question as to

whether it is possible to define steerability witnesses or op-

erators �in analogy with entanglement witnesses and Bell

operators� is particularly appealing. This would provide a

straightforward experimental test for determining if a given

state is steerable. Such a test would simultaneously demon-

strate that the given state is entangled. This will be addressed

in future work.

Finally, our operational definition of steering in terms of a

task involving exchanges of quantum systems with an un-

trusted partner is reminiscent of the scenarios common in

quantum complexity theory such as interactive proof systems

and other kinds of quantum games �see, for example, �29��.
We do not know of a direct way of mapping steering as we

have defined it here onto these problems but it is interesting

to ask if steering may play a role in some way comparable to

Bell-inequality violation in �30�, for example. Secondly, is it

possible to define some useful quantum protocol for which

the class of steerable states is useful; that is, is there a task

for which nonseparable states are an insufficient resource,

but steerable states allow the protocol to be implemented?
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We conclude by commenting that we expect the answers to

these questions �and others� to prove steering a useful con-

cept in the context of quantum information science.
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APPENDIX A: EPR CORRELATIONS, ENTANGLEMENT,

AND STEERING: A HISTORY OF TERMS

As stated in the Introduction, although Werner’s 1989 pa-

per �6� is often cited as introducing the dichotomy of en-

tangled versus separable states, it is important �for the dis-

cussion in this Appendix� to note that he used neither the

term entangled nor the term separable. These seem to have

not been used in their presently accepted sense until 1996 by

Bennett et al. �31�, and Peres �32�, respectively. Rather, he

used the terms “EPR-correlated states” versus “classically

correlated states.” His main result, restated in these terms,

was that some “EPR-correlated states” conform with Bell’s

concept of “locality.”

Our recent work �10� also considered the issue of mixed

states and EPR correlations. Specifically, we rigorously de-

fined the class of states that can be used to demonstrate the

nonlocal effect which EPR identified in 1935. Contrary to

Werner’s terminology, we established that the set of such

EPR-correlated states is not by definition complementary to

the set of locally preparable states. Using this concept of

EPR-correlated states, the main results of our paper can,

ironically, be expressed entirely in statements contradicting

Werner’s natural-language descriptions of his results. First,

it is true �as Werner states� that some EPR-correlated states

respect Bell locality, but, contrary to his �natural-language�
claims, Werner did not prove this. Our proof �10� of this fact

makes use of Werner’s result, but also requires the much

more recent result of Acìn et al. �16�. Second, what Werner’s

result actually proves, contrary to his stated dichotomy, is

that some states that are not separable �classically correlated�
are nevertheless not EPR correlated �from which one can

conclude also that they are Bell local�. To summarize, we

used Werner’s result to help prove that the set of Bell-

nonlocal states is a strict subset of the set of EPR-correlated

states, which in turn is a strict subset of the set of nonsepa-

rable states.

We emphasize that we are not disputing at all the math-

ematical validity of Werner’s result, nor its importance, nor

his understanding of it. We dispute only his use of the term

“EPR-correlated states” to refer to nonseparable states,

which he says “is to emphasize the crucial role of such states

in the Einstein-Podolsky-Rosen paradox and for the viola-

tions of Bell’s inequalities.” This explanation for the name

could equally be used to justify calling nonseparable states

“Bell-correlated states,” but that would be nonsensical since

the point of Werner’s paper is that, in the mixed-state case,

not all nonseparable states can exhibit correlations that vio-

late a Bell’s inequality. Similarly, we maintain that if the

term “EPR-correlated states” were to be applied to mixed

states, then it should be reserved for those states for which

the correlations can actually be used to demonstrate the EPR

paradox. Prior to our paper, no rigorous and general defini-

tion of this paradox had been given, and so no good defini-

tion of “EPR-correlated states” existed. Giving such a defi-

nition is no mere semantic exercise; as stated in the

preceding paragraph, our work identifies this as a new class

of quantum states, distinct both from the Bell-nonlocal ones

and the nonseparable ones.

During the past decade Schrödinger’s term “entangled

states” has replaced Werner’s term “EPR-correlated states”

�which he credited to Primas �33�� as a synonym for non-

separable states. Nevertheless, there is still potential for con-

fusion if we were to promote the term “EPR-correlated” for

the new class of states we defined and categorized in Ref.

�10�. For that reason we proposed instead the term “steer-

able” for this class of states, a term that has been used in-

creasingly in recent years �34–38�.

APPENDIX B: ISOTROPIC STATE STEERING

1. Optimal ensemble

First choose an orthonormal basis �1�, �2� , . . . , �d� to de-

scribe the uniform ensemble F�. Then consider randomly

generated unnormalized states

��̃� =
1

�d
�
j=1

d

z j�� j� , �B1�

where z j are zero-mean Gaussian random variables with the

properties �z j
*zk�=� j,k and �z jzk�=0. Writing ��̃�=m���, we

denote the measure for this ensemble as d�G�� ,m�. From

Eq. �B1� it is straightforward to see

Û��̃� =
1

�d
�

j,j�=1

d

z jU j j�
�� j�

� =
1

�d
�
j�=1

d

w j�
�� j�

� , �B2�

where w j�
=�U j j�

z j. Due to unitarity, �w
j�

*
wk�

�=� j�k�
and

�w j�
wk�

�=0 �that is, the ws satisfy the same statistical rela-

tions as the zs�. Hence

d�G��,m� = d�G�Û�,m�, ∀ Û , �B3�

which means that the measure factorizes into a constant mea-

sure over � �the Haar measure� and a measure over the

weightings m, and can be written as

d�G��,m� = d�Haar���d�G�m� . �B4�

Hence instead of simply using the Haar measure d�Haar to

describe the distribution of the ensemble F� we may use the

Gaussian measure d�G�� ,m�.
For simplicity we go on to define z=�uei� so that

d�G�� ,m� becomes
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��u1, . . . ,ud,�1, . . . ,�d�du1 ¯ dudd�1 ¯ d�d

=
1

�2��d
exp�− �

i=1

d

ui
du1 ¯ dudd�1 ¯ d�d, �B5�

which is normalized as follows:

1

�2��d�
0

�

du1 ¯ dud exp�− �
i=1

d

ui
�
0

2�

d�1 ¯ d�d = 1.

�B6�

2. Normalization term

The denominator of Eq. �4.22� evaluates to

� d��m�m2 =� � d��m�m2d�Haar��� =� d�G��,m���̃��̃�

=� d�G��,m� �
i,j=1

d
zi
*
z j

d
��i�� j�

=� d�G��,m��
i=1

d
�zi�

2

d
= EG��

i=1

d
�zi�

2

d
� = 1.

�B7�

We have used the facts that �d�Haar���=1 and m2= ��̃ � �̃�,
while EG�x� denotes the expected value of x with respect to

the Gaussian measure d�G�� ,m�.

3. Evaluating Eq. (4.23)

To calculate the integral in Eq. �4.23� we need the limits

of integration. These are determined by considering the

states in Hilbert space which are closer to �a��a� than any

other basis state as outlined in Eq. �4.17�. We can choose the

orthornormal basis in Eq. �B1� such that �a� is one of the

basis states. Since the states ��̃� are unnormalized we must

perform the integral relating to �a� over the complete range

from 0 to �. That is, the coefficient ua associated with �a�
ranges from 0 to �. However, since this must be the largest

parameter, the other ui must only range from 0 to ua. Using

these limits the integral �ad�G�� ,m���a � �̃��2 becomes

�
a

d�G��,m���a�
1

�d
�
j=1

d

z j�� j��2

=
1

d
�

a

d�G��,m��za�2

=
1

d
�

a

d�G��,m�ua

=
1

d�2��d�
0

�

duaua�
0

ua

du2 ¯ �
0

ua

dud

� �
0

2�

d�1 ¯ �
0

2�

d�d exp�− �
i=1

d

ui

=

�2��d

d�2��d�
0

�

duauae−ua��
0

ua

due−u
d−1

=
1

d
�

0

�

duauae−ua�1 − e−ua�d−1

=
1

d
�

0

�

duauae−ua�
k=0

d−1 �d − 1

k

�− e−ua�k

=
1

d
�
k=0

d−1

�− 1�k�d − 1

k

� 1

�k + 1�2�
=

1

d
�
k=1

d

�− 1�k−1�d − 1

k − 1

 1

k2

=
1

d2�
k=1

d
�− 1�k−1

k
�d

k

 
 �d. �B8�

It is possible to further simplify �d. This can be done by

considering the following expression:

1

d2�
0

1

dx
1 − �1 − x�d

x
=

1

d2�
0

1

dx

1 − �
k=0

d �d

k

�− x�k

x

=
1

d2�
k=1

d
�− 1�k+1

k
�d

k

 . �B9�

It is not immediately obvious that the above integral is a

simpler expression for �d. However, this expression can be

evaluated alternatively using the subsitution y=1−x, which

gives

�d =
1

d2�
0

1

dy
1 − yd

1 − y
=

1

d2�
0

1

dy�1 − yd��
k=0

�

yk

=
1

d2��
k=0

d−1
1

k + 1
+ �

k=d

�
1

k + 1
− �

k=0

�
1

k + d + 1



=
1

d2�
k=1

d
1

k
, �B10�

which is the result in Eq. �4.23�.

APPENDIX C: INEPT STATE STEERING

1. Optimal ensemble

We need to show that the conditions for Lemma 1 hold for

the ensemble defined by Eq. �4.33�. That is, we need to show

that Eq. �4.33� defines an optimal ensemble. In this instance

G is the group generated by �1 /2��̂z � I− �1 /2�I � �̂z, so g

→�� �0,2�� and

Û�
��� = exp�− i��̂z/2� � exp�i��̂z/2� . �C1�

For the particular measurement strategy chosen we need to

consider only two types of measurement �̂z and �̂�. The con-

dition Û�
†���ÂÛ�����M� clearly holds for Â= �̂z since
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exp�i��̂z��̂z exp�− i��̂z� = �̂z. �C2�

Therefore Eq. �4.1� holds trivially.

Now it simply remains to test these conditions for mea-

surements of the form of Â= �̂�. In this case we have

Û�
†����̂�Û���� = exp�i��̂z��̂� exp�− i��̂z�

= cos�� − ���̂x + sin�� − ���̂y

= �̂�−�, �C3�

which is in M�. Thus to test Eq. �4.1� we need to evaluate


̃a
��−�. Using Eq. �4.43� we can see that this simply evaluates

to


̃a
��−� =

1

2
�I + a����1 − �� cos�� − ���̂x

+ a����1 − �� sin�� − ���̂y − �1 − 2���̂z� . �C4�

Finally, we evaluate

Û
���
̃a
��Û


†��� = exp�i��̂z�
̃a
�� exp�− i��̂z�

=
1

2
�e−i��−��2� !e−i��−��

!ei��−�� 2�1 − ��

 = 
̃a

��−�,

�C5�

where !=a����1−��. Thus Eq. �4.1� also holds for measure-

ments of �̂�. Hence, the conditions of Lemma 1 hold and the

ensemble defined by Eq. �4.33� is of the form of the optimal

ensemble.

2. Steering bound for �=1 Õ2

We know that for d=2 the Werner and isotropic states are

equivalent. Now consider the inept states when �=1 /2. In

this case Eq. �4.27� becomes

W1/2
� = ������� + �1 − ��

I

4
, �C8�

where ���=
1
�2

��0�0
�+ �1�1
��. Comparing this with Eq.

�4.12� for isotropic states �when d=2�, one immediately sees

that the expressions are identical. Hence, for �=1 /2 the inept

states are equivalent to the d=2 isotropic �and Werner�
states.

Setting �=1 /2 in Eq. �4.50� we find an upper bound of

0.5468 on �steer. However, we know that the steering bound-

ary for d=2 isotropic states occurs at �=1 /2. Thus for �
=1 /2 we can do better than an upper bound on �steer for inept

states; due to the equivalence with isotropic states we know

that the true �steer occurs at �=1 /2. We plot this as a separate

point at �=1 /2 in Fig. 2�c�.

APPENDIX D: GAUSSIAN STATE STEERING

1. Proof of Lemma 2

First, suppose Eq. �4.58� is true. Thus the matrix V�


+0� � i�
 is PSD. Now since Eq. �4.58� is assumed true, and

we know that V��0, taking the Schur complement of V� in

Eq. �4.58� we see

V
 + i�
 − CTV�
−1

C � 0, �D1�

which implies Eq. �4.59�, where U=V
−CTV�
−1C. This LMI

allows us to define an ensemble FU= �
�
U��

U	 of Gaussian

states with CM�
�
U�=U, distinguished by their mean vectors

���.
Now we wish to see if the ensemble U defined above

could be used to simulate Bob’s conditioned state V

A. This

will be the case if V

A−U is PSD as explained below. Evalu-

ating this matrix we see that

V

A − U = V
 − CT�V� + TA�−1C − V
 + CTV�

−1
C

= CT�V�
−1 − �V� + TA�−1�C . �D2�

Both C and CT are positive matrices, so the above expression

is PSD if and only if the bracketed term is PSD. To prove

this is so, we make use of the Woodbury formula, which can

be expressed as

X−1 − �X + YZT�−1 = X−1Y�I + ZTX−1Y�−1ZTX−1. �D3�

Thus to check the positivity of V�
−1− �V�+TA�−1 we set X

=V�, Y =�TA, and ZT=�TA, and thus

V�
−1 − �TA + V��−1 = V�

−1�TA�I + �TAV�
−1�TA�−1�TAV�

−1.

�D4�

Now the covariance matrices V� and TA are positive by defi-

nition, so their inverse and square root, respectively, must

also be positive matrices. Since the product and the sum of

two positive matrices is PSD, the above expression is PSD if

and only if �TAV�
−1�TA is PSD, which holds since any matrix

ABAT is PSD whenever B is PSD. Thus the ensemble defined

by U=V
−CTV�
−1C satisfies Eq. �4.60�, which implies that ∀

A�G ,
a
A is a Gaussian mixture �over �� of Gaussian states


�
U, all with the same covariance matrix U, but with different

mean vectors �. Specifically, ��a �� ,A� is a Gaussian distri-

bution in � with a mean vector equal to a �which is deter-

mined by Alice’s measurement A and the bipartite Gaussian

state W�, and a covariance matrix equal to V

A−U. As long as

V

A−U�0, this distribution is well defined, so that Bob’s

state 
a
A is consistent with Alice merely sending Bob Gauss-

ian states drawn from an ensemble FU= �
�
U��

U	 in which all

states have a CM equal to U, and with mean vectors � having

a Gaussian distribution ��
U, which has a covariance matrix

V
−U=CTV�
−1C�0. Therefore W is not steerable by Alice

for all measurements A�G if Eq. �4.58� is true. �

2. Proof of Lemma 3

Suppose that W is not steerable. This means that there is

some ensemble F= ���
�	, which satisfies Eq. �3.5�. There-

fore we know that Bob’s conditioned state can be written as
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a
A =

�
�

����a�A,��
�

�
�

����a�A,��
. �D5�

This means that the covariance matrix satisfies

CM�
a
A� = V


A �

�
�

����a�A,��CM�
��

�
�

����a�A,��
, �D6�

since the CM of a state equal to a weighted sum of states

must be at least as great as the weighted sum of the indi-

vidual CMs. The equality occurs if all the means are the

same. Rearranging and taking a sum over a on both sides

gives

�
�,a

����a�A,��V

A � �

�,a

����a�A,��CM�
�� . �D7�

From the fact that V

A is independent of a, and using the facts

that �a��a �A ,��=1 and ����=1, one sees that Eq. �D7� sim-

plifies to

V

A � �

�

��CM�
�� . �D8�

Defining U=����CM�
�� satisfies Eq. �4.59� by definition

and Eq. �D8� implies Eq. �4.60�. Therefore if W is not steer-

able then there exists an ensemble U such that Eqs. �4.59�
and �4.60� are true. �

3. Proof of Lemma 4

Equation �4.60� defines the Schur complement of V�+TA

in the following matrix:

M = �V� + TA C

CT V
 − U

 . �D9�

Therefore, since V�+TA�0 �recall that we are considering

Gaussian measurements�, Eq. �4.60� is equivalent to the con-

dition that the matrix M be PSD. Now we know that the sum

of two PSD matrices is PSD, so if M�0 and using Eq.

�4.59� we arrive at

M + 0� � �U + i�
� = �V� + TA C

CT V
 + i�

� 0,

�D10�

as an equivalent condition to Eqs. �4.59� and �4.60�. Finally,

we know that V
+ i�
�0, so the Schur complement of this

term in the above matrix must be PSD. �
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