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Entanglement-enhanced measurement of a completely unknown phase

G. Y. Xiang,1 B. L. Higgins,1 D. W. Berry,2 H. M. Wiseman,1 and G. J. Pryde1, ∗

1Centre for Quantum Computer Technology, Centre for Quantum Dynamics, Griffith University, Brisbane, 4111, Australia
2Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada

The high-precision interferometric measurement of an unknown phase is the basis for metrology
in many areas of science and technology. Quantum entanglement provides an increase in sensitivity,
but present techniques have only surpassed the limits of classical interferometry for the measurement
of small variations about a known phase. Here we introduce a technique that combines entangled
states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining
more information per photon that is possible classically. We use the technique to make the first ab
initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise
determination of unknown phase shifts using interferometry.

PACS numbers: 03.65.Ta, 42.50.St, 03.67.-a

Precise interferometric measurement is vital to many
scientific and technological applications. The use of
quantum entanglement allows interferometric sensitivity
that surpasses the standard quantum limit (SQL) [1, 2].
Experimental demonstrations of entanglement-enhanced
sub-SQL interferometry [3–6], and most theoretical treat-
ments [7–16], address the goal of obtaining an increased
interference fringe gradient. This is suitable for sensing
small variations about an already known phase, but does
not give a self-contained measurement of an unknown
phase anywhere in [0, 2π). Both tasks are important [2],
but not equivalent, and to move from the phase-sensing
regime to the phase-measurement regime requires one of
several nontrivial measurement algorithms [17, 18]. Here,
we demonstrate the first sub-SQL measurement of an un-
known phase using entanglement-enhanced optical inter-
ferometry. Our technique uses a “bottom-up” approach,
making optimal use of whatever (typically imperfect) en-
tanglement is available to obtain the phase estimate most
efficiently.

Obtaining phase sensitivity by using entanglement
yields an in-principle advantage in bandwidth over re-
cent demonstrations of sub-SQL phase measurement us-
ing sequences of multiple passes of single photons [17, 19].
Although such techniques avoid the complexities of gen-
erating entangled states, and are suitable for measur-
ing static phase shifts, they are unsuitable for fast mea-
surement because the time t to complete a measurement
scales as the total number of photon passes N . Appli-
cations like the measurement of rapidly varying phase
shifts, or rapid measurement of multiple samples, require
a technique where increasing precision does not signifi-
cantly decrease bandwidth. This can only be achieved
by entangled states.

A suitable technique for achieving sub-SQL phase mea-
surement using entangled states is to apply the measure-
ment algorithm of Ref. [19] to a sequence of entangled n-
photon “NOON” states [16, 20, 21], which have optimal
phase sensitivity for a given n. In this case the measure-
ment time t scales as logN , as opposed to N for the mul-

tipass implementation. NOON states, however, are noto-
riously difficult to generate, even for moderate n. Previ-
ous investigations into exploiting entanglement-enhanced
sensitivity have employed a “top-down” approach, start-
ing with a theoretical knowledge of the optimal states and
determining how to approximate these experimentally by
constructing complex circuits to filter them from more
easily produced states, and using only some measurement
results. By contrast, we adopt a “bottom-up” approach
by taking available entangled states and using all mea-
surement results to obtain the most phase information.
Our scheme uses Bayesian analysis and optimized adap-
tive feedback [19, 22]. In contrast to the algorithm of
Ref. [19], we use a general approach that can be applied
to any entangled state, including NOON states (should
efficient production become available in the future).
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FIG. 1: A Mach-Zehnder interferometer for interferomet-
ric phase measurement. Photon states in modes a and b are
incident on a beam splitter. In general, nonclassical inter-
ference generates entanglement in the output modes of the
beam splitter, c and d. After passing though the phase shifts
φ (unknown) and θ (controllable), giving modes e and f re-
spectively, the modes recombine on the final beam splitter,
and the interferometer output modes g and h propagate to
detectors. With knowledge of the input states, θ, and the
detection result, knowledge is gained about the phase shift φ.

In this experiment, we consider the states produced
by n-photon dual Fock state inputs, i.e. states of the
form |n/2, n/2〉a,b, to the first beam splitter of an inter-
ferometer, as shown in Fig. 1. These states have been
shown to be capable of phase sensing at the Heisen-
berg limit, that is, with Fisher length scaling as 1/N
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[6, 10, 23]. We generate these states by spontaneous
parametric down-conversion (SPDC) and post-selection
on counting a given total number of photons. However
any source of pairs of indistinguishable single-mode n-
photon states could be employed. In our experiment,
we use both the 2-photon state |1, 1〉 and the 4-photon
state |2, 2〉 (as well as the single-photon input |1, 0〉) at
different stages of the measurement protocol.

Nonclassical interference of the dual Fock states at
the first beam splitter produces photon number entan-
glement in the two arms of the interferometer, c and d.
For a |1, 1〉a,b input, the state inside the interferometer is

(|2, 0〉c,d + |0, 2〉c,d)/
√

2. This is an n = 2 NOON state,
and corresponds to the well-known Hong-Ou-Mandel ef-
fect [24]. With the unknown random phase shift φ in
one arm of the interferometer, and a controllable “feed-
back” phase shift θ in the other arm, this state evolves to
(e2iφ |2, 0〉e,f + e2iθ |0, 2〉e,f )/

√
2. The phase factor e2iφ

demonstrates phase super-resolution [25–27]—in contrast
to a single photon input |1, 0〉a,b, for which the state ac-

quires a phase factor of only eiφ. Generally, n-photon
NOON states exhibit n-fold super-resolution, and it is
this super-resolution that gives such states (in principle)
the best possible phase sensitivity.

While nonclassical interference acting on an
|n/2, n/2〉a,b state continues to generate entan-
gled states as n increases, these states are not
NOON states for n > 2. The 4-photon |2, 2〉a,b in-
put results in a state inside the interferometer of√

3/8(|4, 0〉c,d + |0, 4〉c,d) − |2, 2〉c,d /2, which evolves to√
3/8(e4iφ |4, 0〉e,f + e4iθ |0, 4〉e,f ) − e2i(φ+θ) |2, 2〉e,f /2.

While this state is entangled, and exhibits components
with a 4-fold increase in phase resolution, it also contains
an extra term (|2, 2〉e,f ) with only a 2-fold increase.

Interestingly, it was theoretically shown [13] and subse-
quently experimentally demonstrated [5] that NOON-like
4-photon phase super-resolution can be extracted from
the state generated by the n = 4 dual Fock input if post-
selection is employed. Refs. [5] and [6]—the latter using
an improved experiment and more thorough analysis—
show that phase sensing below the SQL is possible by
this method, even taking into account the discarding of
certain results. However, it is obviously not optimal to
deliberately throw away phase information. Here, we do
not select a subset of output components—instead, we
use the full phase information encoded in the state.

Our scheme is as follows. We employ a sequence of en-
tangled states—a phase shift φ is measured using Mk in-
stances of each entangled nk-photon state, where nk = 2k

and k ∈ {0, 1, 2}. We begin with a flat phase probability
distribution P (φ) = 1/2π, but after each measurement
is performed, knowledge about the phase is updated by
applying Bayes’ theorem to P (φ). The feedback phase θ
is initially random, but after a detection it is always set
to minimize the expected phase variance after the sub-

sequent detection, following the algorithm of Ref. [22].
The total resources used are quantified by the total pho-
ton number, N =

∑
k 2kMk. We perform an exhaustive

numerical search to determine the optimal (or near opti-
mal) Mk and nk for a given N .

We examine the expected behaviour of an ideal imple-
mentation for the various n-photon inputs. Single pho-
tons (nk = 1) incident on the first beam splitter of the in-
terferometer are sufficient to generate the (trivial) n = 1
NOON state. The photon number difference ∆ between
the two outputs of the final beamsplitter of the interfer-
ometer can take two possible values, ∆ = ±1, which we
rewrite as ∆ = −1 + 2x, where x ∈ {0, 1}. The probabil-
ities for these two outcomes are

P1 (∆ = −1 + 2x |φ, θ) = Ax,0 +Ax,1 cos (φ− θ) , (1)

where the 2× 2-matrix A is defined as

A =
1

2

[
1 1
1 −1

]
. (2)

For the |1, 1〉a,b input (nk = 2), which produces a 2-
photon NOON state inside the interferometer, the prob-
abilities for photon detection at the outputs are

P2 (|∆| = 2x |φ, θ) = Bx,0 +Bx,1 cos [2 (φ− θ)] (3)

where the matrix B = A in this ideal case, and x ∈ {0, 1}
as above. (In general the sign of ∆ matters only for odd
n.)

For the |2, 2〉a,b input (nk = 4), the probability for
each combination of number states at the outputs of the
interferometer can be written as

P4 (|∆| = 2x |φ, θ) =

2∑
y=0

Γx,y cos [2y (φ− θ)] (4)

where x ∈ {0, 1, 2} and

Γ =
1

32

 11 12 9
12 0 −12
9 −12 3

 . (5)

Equations (1)–(5) define the probability functions that
allow us to construct the Bayesian updating protocol.

Our experimental demonstration uses a common-
spatial-mode polarization interferometer, as in Fig. 2.
A type-I BBO crystal is pumped by a frequency-
doubled mode-locked Ti:Sapphire laser and coupled to
polarization-maintaining optical fibres. The resulting
spontaneous parametric down-conversion supplies the in-
terferometer with pairs of 820 nm single photons and
pairs of biphotons. One horizontally polarized mode and
one vertically polarized mode are combined into a sin-
gle spatial mode using a polarizing beam splitter. The
right- and left-circular polarization modes of this single
spatial mode constitute the arms of the interferometer,
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FIG. 2: Layout of the experiment. A spontaneous parametric
down-conversion (SPDC) source produces pairs of photons
and biphotons which implement our dual Fock states, and
are guided to the interferometer with single-mode polarization
maintaining optic fibres. These photon states are incident on
a polarizing beam splitter and undergo phase shifts in the
left- and right-circular polarization modes due to the φ and θ
half-wave plates. The final beam splitter recombines the two
interferometric modes, and the output states are measured in
the photon number basis by single-photon counting module
(SPCM) arrays. The results of all previous measurements
determine θ for the next measurement. For single photon
inputs, one optic fibre from the SPDC source is redirected to
a single-photon counting module, with single-photon counting
performed in coincidence.

and contain the 2- and 4-photon entangled states. Phase
shifts between these circular polarizations are performed
using half-wave plates, implementing the unknown φ and
controllable θ phases. We implement photon number de-
tection at the outputs of the interferometer by evenly
splitting each beam into an array of single-photon detec-
tors. For measurements with single photons, one output
arm of the SPDC source is guided directly to a detector,
and the single photon is heralded by detection coincident
with that detector.

While theoretical analyses typically assume idealized
states, imperfections in the experimental apparatus lead
to non-idealities in the real photon states that are gener-
ated. To demonstrate the full power of our approach, we
include knowledge of these non-idealities in our Bayesian
updating mechanism. Obtaining this knowledge requires
careful characterization of our apparatus, which we do
by least-squares fits to phase fringe data collected with
the system phase φ absent. From this (see Appendix A
for details) we arrive at the experimental detection prob-
ability coefficient matrices:

A′ =
1

2

[
0.999 0.976
1.001 −0.976

]
B′ =

1

2

[
0.989 0.940
1.011 −0.940

]

Γ′ =
1

32

 11.206 9.829 7.596
12.901 0.595 −10.192
7.893 10.423 2.596

 . (6)

It is these experimentally determined coefficients which
we use to determine the optimal sequences of input con-
figurations (nk,Mk). For example, we find that for
N = 37 resources the optimal sequence adaptively mea-
sures eight biphotons, followed by nine single photons,
and finally three 4-photon states. We experimentally
demonstrate our algorithm for a representative sample
set of N ∈ {4, 9, 15, 25, 37, 48} resources—the full set of
(nk,Mk) configurations used for these N can be found in
Appendix B.
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FIG. 3: Standard deviations of phase measurement for vary-
ing total photon number N . A multiplying factor of

√
N

results in the SQL asymptoting to a horizontal line. The red
solid line and red boxes show the theoretical and experimen-
tally measured performance, respectively, of our phase mea-
surement scheme. This clearly surpasses the SQL (black dot-
ted line) and the results of an SQL scheme demonstrated using
the same apparatus (blue dash-dotted line, theory; blue tri-
angles, experiment). Theoretical performance of the scheme
given unit visibility states and optimal sequences is shown as
the purple dash-dot-dot line. The green dashed line repre-
sents the fundamental limit due to Heisenberg’s uncertainty
principle.

The results of our phase measurements are plotted in
Fig. 3, together with theoretical predictions. Each data
point represents 1000 estimates, with error bars show-
ing 95% confidence intervals calculated using a bootstrap
sampling method with ≈ 106 samples [28]. For compar-
ison, we have also demonstrated a standard-quantum-
limited phase measurement scheme with the same ex-
perimental layout. This scheme uses only single-photon
states, with the (initially random) controllable phase θ
incremented nonadaptively by π/N after each measure-
ment. With perfect single-photon visibility this scheme
defines the SQL; the imperfect single-photon visibility of
the experiment (≈ 97.6%) means that our experimen-
tal implementation yields phase uncertainties above the
SQL, in agreement with theoretical predictions.
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The adaptive scheme clearly operates with phase un-
certainty below the SQL, with an improvement that in-
creases monotonically with total photon number N . For
the highest N demonstrated (48) we experimentally mea-
sure uncertainty more than 1.86 dB better than the the-
oretical SQL, and more than 2.85 dB better than the
corresponding measured uncertainty of the single-photon
scheme for this interferometer visbility. The unknown
phase φ is fixed, but our choice of an initially random
θ ensures equivalence to measuring an unknown phase
φ ∈ [0, 2π). Thus these results show, for the first time,
the demonstration of a scheme which beats the SQL
for the measurement of a random phase using entangled
states.

It is important to note that, in principle, our bottom-
up approach can consider not just enangled states pro-
duced from |n/2, n/2〉 inputs, but any photon num-
ber state inside the interferometer, including ideal n-
photon NOON states. Given such NOON states with
nk ∈ {1, ..., 2K}, the optimization procedure used here
will find a sequence that performs at least as well as the
sequence of Ref. [19], which achieved scaling of phase
uncertainty at the fundamental limit of precision due to
Heisenberg’s uncertainty principle. Other phase sensitive
states [29], including loss resistant states [30–32], might
also be considered using our approach.

We have proposed and demonstrated a powerful and
general bottom-up approach to the measurement of ran-
dom optical phase φ ∈ [0, 2π), employing Bayesian anal-
ysis and optimal adaptive feedback to make the best use
of available photon states. This is the first demonstration
of sub-SQL measurement of a random phase using entan-
gled states, which can potentially achieve high bandwidth
in quantum-enhanced phase measurements, with a wide
range of metrological applications.

We thank Jeremy O’Brien for helpful discussions. This
work was supported by the Australian Research Council.

Appendix A: Photon number detection

We use two five-detector arrays of single-photon count-
ing modules to implement number-resolved detection.
Each output mode e and f is split into 5 separate spatial
modes, one for each single-photon detector, using half-
wave plates and polarising beam splitters. The half-wave
plates are set such that an equal proportion of an output
mode is incident on each photon detector for that mode.
The layout of the single-photon detectors is asymmetric
for logistical reasons.
n-photon states (n > 1) are signaled by coincident de-

tection of n = ne+nf photons across the detectors, where
ne and nf represent the number of photons detected in
the respective output modes. With 5 detectors in each
of the two output arms of the interferometer, there are a
total of 10Cn possible coincidence detection patterns that

describe an n-photon output state—for 4-photon states
this gives 210 patterns.

The projection probability, that is, the probability that
a particular photon output state |ne, nf 〉e,f will be suc-
cessfully resolved, depends on ne and nf even if the in-
dividual detectors are unit-efficiency (but not photon-
number resolving) photodetectors. For example, in this
unit-efficiency case the 4-photon |2, 2〉e,f state has a pro-
jection probability of 0.64 with this detection scheme,
whereas the |4, 0〉e,f state has a projection probability of
only 0.096. Like many other experiments, we do not con-
sider loss in our calculation of resources N . However, we
require that the probability of projection is independent
of the particular output state of the interferometer.

In addition, a technical limitation means that we can
only consider a maximum of 128 patterns at once. For
these reasons, we consider only a limited set of patterns,
randomly chosen for each measurement result, such that
the ultimate probability of detection for each result is ap-
proximately independent of the state. We use as many
patterns as we can up to the limit of our electronics. To
address the remaining discrepancy, we randomly discard
a certain small proportion of measurement results in soft-
ware, before the result can be used in the algorithm. This
is equivalent to introducing a controlled state-dependent
loss. We emphasize that this solution is a consequence
of the imperfect number detection mechanism we use,
necessary to simulate perfect detectors, and is not fun-
damental to our approach.

We determine the appropriate proportion of intro-
duced state-dependent loss from our phase fringe char-
acterization of the experiment, which is done with the
system phase φ absent, and given the limited set of de-
tection patterns. From least squares fits to the count
rates obtained with θ varied over the range [−π, π], we
derive three matrices J similar to those of Eq. 6. By
taking the first column of the inverse of each matrix we
obtain the state-dependent loss probabilities:

Detected State Loss Probability

|1, 0〉e,f 0

|0, 1〉e,f 0.1276

|1, 1〉e,f 0.1975

|2, 0〉e,f or |0, 2〉e,f 0

|2, 2〉e,f 0.2304

|3, 1〉e,f or |1, 3〉e,f 0.3395

|4, 0〉e,f or |0, 4〉e,f 0

Doing so also ensures the detection probability is inde-
pendent of the phase, which is a necessary condition of
the Bayesian algorithm. We can then apply these prob-
abilities to the fit parameter matrices J to obtain the
values of Eq. 6.
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Appendix B: Sequence configurations

Our approach determines the optimal sequence of Mk-
many nk-photon states using an exhaustive numerical
search. The sequences we demonstrate are:

N 4 9 15 25 37 48

Mk 4 7 1 9 3 13 4 1 8 9 3 10 8 5

nk 1 1 2 1 2 1 2 4 2 1 4 2 1 4

Note that, as our scheme is adaptive, the left-to-right
ordering of sequences is significant.

Appendix C: Fisher information

The Fisher information generated by a phase-sensitive
measurement is defined by

F (φ) =
∑
x

1

P (x|φ)

(
∂P (x|φ)

∂φ

)2

, (7)

where P (x|φ) is the probability of measurement result x
given that the true system phase is φ. The Fisher infor-
mation places a lower bound on the smallest possible shift
δφ in the phase away from φ that can be reliably detected
from a large number M of repeated measurements, via
the Cramér-Rao inequality,

δφ ≤ 1/
√
M × F (φ). (8)

This motivates defining the Fisher length as 1/
√
F . For

ideal measurements on an N -photon NOON state the
Fisher information is N2 and Fisher length is 1/N , inde-
pendent of the system phase. Thus the Fisher informa-
tion for a 4-photon NOON state, for example, is 16. It is
additive for independent measurements on two separate
states, so the Fisher information for two 2-photon NOON
states is 8, half that for a single 4-photon NOON state.

For the 4-photon states that we generate, the Fisher
information is less than that of a 4-photon NOON state,
and is equal to 12 for ideal measurements. With the
experimental detection probability matrix Γ′ given in
Eq. 6 for our 4-photon input state |2, 2〉a,b, the maxi-
mum Fisher information is 8.6. This is above the value
of 8 for two independent 2-photon ideal NOON states,
and well above the value for two 2-photon NOON states
with our experimentally measured visibilities, which is at
most 7.1.

With the experimental Γ′ matrix, the Fisher informa-
tion is no longer independent of φ, and has the depen-
dence shown in Fig. 4. With the addition of the con-
trollable phase θ, the Fisher information is a function of
φ − θ. The sensitive dependence on the system phase is
likely to be the reason why it is often optimal to perform
the 4-photon measurements last—the system phase must
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FIG. 4: The Fisher information for measurements on the
|2, 2〉a,b input state with the experimental detection probabil-

ity matrix Γ′ given by Eq. 6.

already be known quite accurately in order to adjust the
feedback phase to maximise the Fisher information.
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