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In open quantum systems, the precision of metrology inevitably suffers from the noise. In Markovian open
quantum dynamics, the precision can not be improved by using entangled probes although the measurement
time is effectively shortened. However, it was predicted over one decade ago that in a non-Markovian one,
the error can be significantly reduced by the quantum Zeno effect (QZE) [Chin, Huelga, and Plenio, Phys.
Rev. Lett. 109, 233601 (2012)]. In this work, we apply a recently-developed quantum simulation approach to
experimentally verify that entangled probes can improve the precision of metrology by the QZE. Up to n = 7
qubits, we demonstrate that the precision has been improved by a factor of n1/4, which is consistent with the
theoretical prediction. Our quantum simulation approach may provide an intriguing platform for experimental
verification of various quantum metrology schemes.

Introduction.—Quantum metrology utilizes quantum en-
tanglement and coherence to enhance the measurement pre-
cision over classical metrology [1–3]. In the absence of noise,
the precision of classical metrology scales as n−1/2, which is
limited by the central-limit theorem with n being the number
of resources implemented in the measurements. In contrast,
quantum metrology can reach the Heisenberg limit, scaling
as n−1. However, in practice, any quantum system is in-
evitably subject to decoherence which results from the inter-
action with the environment [4]. Due to decoherence, there
will be no improvement in the measurement precision over
classical metrology, although the measurement time may be
effectively shortened [5]. In order to overcome this shortcom-
ing, various methods have been put forward, e.g., squeezing
[6], purification [7], and one-way quantum-computing-based
teleportation [8]. It was shown that instead of maximally en-
tangled states, partially entangled initial states may reduce the
error to some extent [5]. When the system interacts with a
specific bath with a band structure, ideal precision may be re-
trieved as a result of the existence of the bound state [9, 10].
When there is a correlation between the baths for individ-
ual qubits, an auxiliary qubit can be introduced to reach the
Heisenberg limit [11–13]. Interestingly, the nonlinear interac-
tion between the system and the physical quantity to be mea-
sured is used to surpass the Heisenberg limit [14–18]. How-
ever, the nonlinear interaction may not be easily realized in
practical measurements.

Then, a question naturally comes to our minds: Can we fig-
ure out some practical method to improve the measurement
precision in the presence of noise? It is shown that there are
generally three stages in open quantum dynamics, including
the well-known exponential decay in the intermediate stage
[19]. However, in the first stage, the open quantum system
decays in a Gaussian way, where the quantum Zeno effect

(QZE) [20–26] happens. It has been pointed out that due to the
QZE, metrology using maximally entangled states is superior
to the one using product states by a factor of n1/4 [27, 28].
On the other hand, recently we have theoretically proposed
and experimentally demonstrated in a nuclear magnetic res-
onance (NMR) platform, to simulate the quantum dynamics
for various Hamiltonians and spectral densities [29–31]. In
these works, the bath-engineering technique [32–35] enables a
theoretically exact, fully controllable, and practically efficient
quantum simulation [36, 37] approach. Using the approach,
we show that the non-Markovianity of the open quantum dy-
namics should be essentially characterized from both aspects
of global and local points of view, e.g., quantum mutual infor-
mation v.s. quantum Fisher information flows [31, 38–40]. It
is this theoretically exact and fully controllable characteristic
that enables us to experimentally verify the quantum metrol-
ogy scheme proposed in Refs. [27, 28], which requires homo-
geneity of the qubits.

Protocol.—The bath-engineering technique offers a way to
engineer arbitrary environments by modulating the control
field [32, 33]. By applying a time-dependent magnetic field
to the total system, we can artificially add a spectral charac-
teristic noise, so as to simulate an arbitrary noisy environ-
ment. The Hamiltonian of the total system can be written
as H(t) = HS + HSB(t), where HS =

∑
m εm|m〉〈m| +∑

m 6=n Jmn|m〉〈n| is the system Hamiltonian, and HSB(t) is
the noise Hamiltonian to simulate the system-bath couplings.
When simulating the pure-dephasing noise, cf. Fig. 1(a), the
noise Hamiltonian is HSB(t) =

∑
m βm(t)|m〉〈m|. βm(t)’s

are stochastic errors generated by performing amplitude and
phase modulations on a carrier [29, 30]

βm(t) = αz

J∑
j=1

ωjF (ωj) cos
(
ωjt+ ψ

(m)
j

)
, (1)
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Figure 1. (a) Single-qubit Ramsey experiment for quantum metrol-
ogy under non-Markovian noise. The free precession is governed
by non-Markovian dynamics, which can be simulated using the
ensemble-averaging technique. This averaging can be visualized in
the Bloch sphere: A large number of identical initial probes un-
dergo phase diffusion owing to their different modulated Hamilto-
nians, leading to an attenuation in amplitude for the overall spin sig-
nal. This attenuation gives rise to the error in quantum-metrology ex-
periments. (b) Quantum circuits for multi-qubit Ramsey experiment
under non-Markovian noise with unentangled and entangled probes,
respectively. The evolution U is the simulation of non-Markovian
dynamics. For the case of entangled probes, the readout is typically
some collective measurement [5, 6].

where αz is the amplitude of the dephasing noise, ωb (Jωb)
is the base (cutoff) frequency with ωj = jωb, F (ωj) is the
modulation function of a specific spectral characteristic noise,
and ψ(m)

j ’s are a set of random numbers. For a noise of Gaus-
sian type, the average over the ensemble is equivalent to the
average over the time [41]. The ensemble-averaged deco-
herence factor reads Γ(t) = α2

z

∑J
j=1 F (ωj)

2 sin2 ωjt
2 , as de-

termined by the power spectral density of the noise, which is
the Fourier transform of the second-order correlation function
〈βm(t+ τ)βm(t)〉 [32, 33].

We consider a system Hamiltonian HS =
∑n
k=1 ω0σ

z
k/2,

which is subject to a pure-dephasing noise [27]. We present
an illustration for the case with a single qubit in Fig. 1(a). Ini-
tially, the qubit is prepared at (|0〉 + |1〉)/

√
2. Afterwards,

it unitarily evolves at the equator of the Bloch sphere with
rate ω0 + β1(t). In order to mimic the pure dephasing, we
generate a large number of realizations with the same initial
state and obtain the final result by averaging over the ran-
dom ensemble with different rate β1(t) after a second π/2
pulse. We assume a Drude-Lorentz spectral density, i.e.,
Jk(ω) = J(ω) = 2λγω/(ω2 + γ2), where λ is the reor-
ganization energy and γ is the relaxation rate. A generic
spectral density can be decomposed into a summation of
Lorentzian forms. The modulation function then becomes
F (ωj) = [λγω0 coth(βωj)/(ω

3
j + γ2ωj)]

1/2. The quantum
dynamics of the system is exactly described by the time-local

master equation [4, 42]

∂

∂t
ρ(t) = −i[HS, ρ] +

∑
k

γk(t)(σzkρσ
z
k − ρ). (2)

Note that γk(t) is explicitly dependent on time. According to
the bath-engineering technique, the ensemble-averaged deco-
herence rate is γk(t) =

α2
z

2

∑J
j=1 ωjF (ωj)

2 sin(ωjt).
In Fig. 1(b), we present the quantum circuit for the quan-

tum metrology scheme for the product and entangled states,
respectively. For the former case, the probes are prepared at
[(|0〉 + |1〉)/

√
2]⊗n and then evolve under the unitary evolu-

tion U = exp(−i
∫ t

0
dτ [HS +

∑
k βk(τ)σzk]), which will not

induce entanglement between different qubits but mimic the
noise. Then, we perform the individual measurements on each
qubit, respectively, since all qubits are disentangled. However,
for the latter case, since the probes are initialized at the maxi-
mally entangled state (|0〉⊗n+ |1〉⊗n)/

√
2, we only perform a

collective measurement after the same U . For open quantum
dynamics governed by the master equation (2), the variances
of the measured frequency for the unentangled and entangled
probes are respectively δω2

0 |u = exp[2Γ(tu)]/(nTtu) and
δω2

0 |e = exp[2nΓ(te)]/(n
2Tte), where Γ(t) =

∫ t
0
γk(t′)dt′

is the decoherence factor for a single qubit, and the subscript
u (e) refers to the unentangled (entangled) state. The op-
timal times to perform the measurement are determined by
2tuγk(tu) = 1 and 2nteγk(te) = 1, respectively. When
the decoherence rate γk(t) = c is time-independent, the vari-
ances δω2

0 = 2ce/(nT ) for both initial states are the same,
although the optimal times are different, i.e., tu = 1/(2c) v.s.
te = 1/(2nc). However, when the QZE occurs, i.e., γk(t) =
2ct, the variance for the unentangled probes is inferior to that
for the entangled ones, as δω2

0 |u = 2
√
ce/(nT ) > δω2

0 |e =
2
√
nce/(n2T ) with tu = (4c)−1/2 > te = (4nc)−1/2. Here-

after, we shall give an introduction to the experimental details.
Experiment.—The experiments are performed on a Bruker

600 MHz spectrometer at room temperature. The sample
is 13C-labeled trans-crotonic acid dissolved in d6-acetone,
which consists of three 1H and four 13C nuclear spins, form-
ing a 7-qubit quantum processor. The molecular structure of
the sample is shown in Fig. 2(a). The internal Hamiltonian of
this system can be described as

HNMR = −
7∑
i=1

ωi
2
σzi +

7∑
i<j,=1

π

2
Jijσ

z
i σ

z
j , (3)

where ωi/2π is the Larmor frequency of the i-th spin, and
Jij is the scalar coupling strength between spins i and j. The
corresponding parameters are listed in Fig. 2(a), as well as the
relaxation times T1 and T2.

Overall, the experiment aims to observe the enhancement
of quantum metrology with entangled probes under the non-
Markovian circumstance. This is demonstrated using the
Ramsey magnetometry, which typically contains three major
stages: (i) preparation of initial probe states, (ii) accumulation
of an energy-splitting dependent phase, and (iii) measurement
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Figure 2. (a) Molecular structure and relevant parameters of the 7-qubit NMR processor. Chemical shifts (diagonal, Hz), scalar coupling
strengths (off-diagonal, Hz), and relaxation times (T1 and T2) are all listed in the table. (b) Pulse sequence for the 7-qubit Ramsey experiment
using the entangled probe under non-Markovian noise. To simulate the non-Markovian dynamics, the rotating angles θjm are carefully designed
by ensemble-averaging modulation. A step-by-step description of the sequence can be found in SM [43].

of that phase. In the following, we will describe each stage in
detail.

(i) Prepare the two types of probe states: the unentangled
probe |ψ0〉u = [(|0〉 + |1〉)/

√
2]⊗n, and the maximally en-

tangled probe |ψ0〉e = (|0〉⊗n + |1〉⊗n)/
√

2. For the unen-
tangled probe, the processor is initialized to the pseudo-pure
state |0〉⊗n (up to an identity matrix) from the thermal equi-
librium state ρ0 using the cat-state method [44]. Followed by
a 2-ms-shaped pulse to perform a collective single-qubit rota-
tion Ry(π/2) on all qubits, the system is prepared into |ψ0〉u
with over 99% fidelity. The pulse sequence can be found in
Supplemental Material (SM) [43].

For the entangled probe, we directly start from the ther-
mal equilibrium ρ0, and eventually prepare the state ρe =
|0〉⊗n〈1| + |1〉⊗n〈0| with the aid of nearest-neighbour scalar
couplings and gradient-echo techniques [43], as shown in
Fig. 2(b). Despite not the exact form of |ψ0〉e, the dynam-
ics of ρe for quantum metrology purpose is the same since the
frequency information is just encoded in the phase accumu-
lation of coherent terms [43]. In addition, the creation of ρe
avoids regular initialization of the pseudo-pure state, which
reduces the sequence complexity remarkably.

(ii) For the target system HS = ω0

2

∑n
i=1 σ

z
i with ω0 be-

ing the energy splitting to be measured, let the probes pre-
cess unperturbedly for a duration t under the non-Markovian
noise. This non-Markovian circumstance is simulated by the
aforementioned bath-engineering technique. Explicitly, we

introduce an additional time-dependent Hamiltonian term in
the form of Hm

SB(t) =
∑n
i=1 β

m
i (t)σzi , where βmi (t)’s are

stochastic errors subject to Drude-Lorentz spectral density
as shown in Eq. (1), and m is the sampling number so as
to approximate the non-Markovian noise via the ensemble-
averaging approach [43]. So the total Hamiltonian in the
m-th experiment can be written as HS + Hm

SB(t). Note
that the evolution of this Hamiltonian corresponds to a col-
lective single-qubit rotation about the z-axis, which can be
easily implemented in most physical systems. In addition,
this time-dependent Hamiltonian can be discretized into time-
independent slices for experimental realization (here we use
103 slices [43]). Regarding the experimental parameters, we
set ω0 = 10 kHz and choose m = 20 samples for ensemble
average, which can already approximate the non-Markovian
environment with a high precision [43].

(iii) Read out the accumulated phase. For the unentangled
probes, the final phase is encoded in each individual qubit, so
the readout only involves single-qubit measurements, which
is similar to the standard Ramsey interferometry experiment.
For the entangled probes, the final phase is retained in the rel-
ative phase between |00...0〉 and |11...1〉, and we apply the
multi-coherence measurement (MCM) technique [45] to ex-
tract that phase. As shown in Fig. 2(b), this technique involves
a series of elementary quantum gates, which can be extended
to other systems as well. Subsequently, the transition prob-
abilities are computed by averaging over the ensemble with
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Figure 3. (a) Dynamics of population P (t) for the unentangled (top panel) and entangled (bottom panel) probes. Blue curves are obtained by
numerically fitting the experimental data (yellow triangles) using Eq. (4), and red lines are envelopes with the form (1 − e−Γ(t))/2, which
depicts the time-dependent decoherence factor Γ(t). The star symbol represents the optimal measurement point determined by the experiment.
(b) Standard deviation δω0 of the measured frequency with respect to the variation of t. Dashed (solid) curves are fitting results corresponding
to the unentangled (entangled) probes for different number of qubits. Triangles and dots are the optimal measurement points. The scaling
behavior of these optimal times when changing n is shown in the inset.

m = 20 samples to simulate the non-Markovian decay.
Results.—We have conducted Ramsey experiments for n =

2 ∼ 7 qubits. Taking the 7-qubit case as an example, the
transition probability P (t) is shown in Fig. 3(a) for both the
unentangled (top panel) and entangled (bottom panel) probes.
Compared to the unentangled case, P (t) in the entangled case
manifests a much faster oscillation owing to the rapid accu-
mulation (∼ 7 times) of phase. We use the theoretical form

P (t) =
1

2
[1− cos(nω0t)e

−nΓ(t)] (4)

to fit the experimental data which gives the energy-splitting
frequency ω0 and decoherence factor Γ(t). For the unentan-
gled probes, the measured frequency is ω0|u = 9.871 kHz and
the decoherence factor is Γu = (0.370±0.029)t2. For the en-
tangled probes, the measured frequency is ω0|e = 10.142 kHz
and the decoherence factor is Γe = (2.701 ± 0.138)t2. The
minimum standard deviations of the frequencies are δω0|u =
0.169 ± 0.003 kHz and δω0|e = 0.105 ± 0.001 kHz at the
optimal measurement times tu = 0.797± 0.032 ms and te =
0.288± 0.003 ms, respectively. Hence, the ratio of the sensi-
tivity enhancement is r = δω0|u/δω0|e = 1.608 ± 0.035 ≈
7

1
4 , indicating that the entangled probes are indeed superior to

the unentangled ones under the non-Markovian environment.
Note that the readout of the NMR experiment is from the en-
semble average result, which means the statistical error by re-
peating experiments is almost negligible. So, in this work, the
error bars represent experimental uncertainties by error prop-
agation from the fitting uncertainties in Fig. 3(a); see SM for
details [43].

For the other numbers of qubits, the experimentally mea-
sured frequencies ωu and ωe, in association with their respec-
tive decoherence factors Γu and Γe, can be found in SM [43].
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Figure 4. Experimental results of the ratio r = δω0|u/δω0|e (dots)
and the minimum standard deviation δω0|e (triangles) for different
number of qubits n. Under the non-Markovian noise, the sensitivity
is enhanced by r = n1/4 (solid red) with the entangled probes, reach-
ing the QZE limit; δω0|e scales as n−3/4 (solid blue). In the absence
of noise, the sensitivity enhancement is governed by the Heisenberg
limit r = n1/2 (dashed red), and δω0|e scales as n−1 (dashed blue).

The standard deviation of the estimated frequency is obtained
by processing the experimental data, as shown in Fig. 3(b),
where the dashed and solid lines are for the unentangled and
entangled probes, respectively. For the unentangled probes,
the optimal measurement time tu is almost the same for dif-
ferent n’s and the minimum standard deviation δω0|u is pro-
portional to n−1/2. For the entangled probes, te and δω0|e
decrease with the growth of n. By varying the number of
qubits, we compute the ratio r = δω0|u/δω0|e to estimate the
improvement of sensitivity with the entangled probes; see the
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solid red curve in Fig. 4. As predicted, the experimentally-
observed r scales as r ∼ n1/4, which is the QZE limit. For
comparison, we have performed another group of experiments
in the absence of noise [43]. In this noiseless scenario, the ra-
tio of sensitivity r reaches the Heisenberg limit, scaling as
r ∼ n1/2 by the dashed red curve in Fig. 4.

In addition, we depict distinct tendencies of the mini-
mum standard deviation δω0|e of the entangled probes for
non-Markovian and noiseless environments, respectively. As
shown in Fig. 4, with the growth in number of qubits, ex-
perimental results show that δω0|e ∝ n−3/4 for the non-
Markovian noise by solid blue curve, while δω0|e ∝ n−1

for the noiseless case by dashed blue curve. Definitely, our
high-precision experiment is sufficient to verify that the mea-
surement accuracy of the entangled probes can reach the QZE
limit under the non-Markovian noise.

Conclusion.—We experimentally demonstrate that the en-
tangled probes can enhance the sensitivity of quantum metrol-
ogy by the QZE. When the coherence decays quadratically
with time, the entangled probes optimize the time for per-
forming the measurement. On the contrary, when the deco-
herence rate is time-independent, the entangled probes can-
not effectively improve the precision but shortens the mea-
surement time. We remark that since our quantum simulation
approach can subtly engineer the parameters of both the sys-
tem and bath, it may provide an effective platform for experi-
mentally verifying various quantum metrology schemes, e.g.,
achieving ideal precision by coupling to a bath with a band
structure [9]. And it can also be implemented in other physi-
cal systems [32, 46].
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timal control of coupled spin dynamics: Design of NMR pulse
sequences by gradient ascent algorithms, J. Magn. Reson. 172,
296 (2005).

[35] J. Li, X. Yang, X. Peng, and C.-P. Sun, Hybrid quantum-
classical approach to quantum optimal control, Phys. Rev. Lett.
118, 150503 (2017).

[36] I. Buluta and F. Nori, Quantum simulators, Science 326, 108
(2009).

[37] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[38] S. Luo, S. Fu, and H. Song, Quantifying non-Markovianity via
correlations, Phys. Rev. A 86, 044101 (2012).

[39] X.-M. Lu, X. Wang, and C. P. Sun, Quantum Fisher informa-
tion flow and non-Markovian processes of open systems, Phys.
Rev. A 82, 042103 (2010).

[40] A. Altherr and Y. Yang, Quantum metrology for non-Markovian
processes, Phys. Rev. Lett. 127, 060501 (2021).

[41] J. W. Goodman, Statistical Optics (John Wiley & Sons, 2015).
[42] M.-J. Tao, N.-N. Zhang, P.-Y. Wen, F.-G. Deng, Q. Ai, and G.-

L. Long, Coherent and incoherent theories for photosynthetic
energy transfer, Sci. Bull. 65, 318 (2020).

[43] See the supplemental information for the complete description
of the theory, experimental details and numerical simulations.

[44] E. Knill, R. Laflamme, R. Martinez, and C. H. Tseng, An algo-
rithmic benchmark for quantum information processing, Nature
404, 368 (2000).

[45] R. Laflamme, D. Cory, C. Negrevergne, and L. Viola, NMR
quantum information processing and entanglement, Quantum
Inf. Comput. 2, 166 (2002).
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