
Eur. Phys. J. C (2023) 83:583
https://doi.org/10.1140/epjc/s10052-023-11767-6

Regular Article - Theoretical Physics

Entanglement entropy and complexity in the holographic model of
superfluid

Chuyu Lai1,a, Qiyuan Pan2,b

1 School of Physics and Materials Science, Center for Astrophysics, Guangzhou University, Guangzhou 510006, China
2 Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics,

Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, Hunan, China

Received: 15 April 2023 / Accepted: 26 June 2023 / Published online: 8 July 2023
© The Author(s) 2023

Abstract We numerically study the holographic entangle-
ment entropy and complexity conjectured with the volume in
the holographic superfluid with full backreaction which can
realize first and second order phase transitions. Our results
show that both the entanglement entropy and complexity
exhibit the behaviors characterizing the type of the transition.
For the first order phase transition, there is a fast drop of the
entanglement entropy and a fast jump of the complexity at the
critical temperature, while both of them are continuous but
non-differentiable at the second order phase transition point.
These suggest that both of holographic entanglement entropy
and complexity may be used as a good probe to the type of
superfluid phase transition. Moreover, at a fixed tempera-
ture in the superfluid phase, we observe that the increasing
superfluid velocity increases the entanglement entropy but
decreases the complexity. Interestingly, we find that, for the
condensation operatorsO+ andO−, the dependence of holo-
graphic entanglement entropy on the backreaction is incon-
sistent and so is the dependence of holographic complexity on
the superfluid velocity in the normal phase, which indicates
that the entanglement entropy and complexity may reflect
deep physics about the difference between the two operators
in the superfluid dual system.

1 Introduction

The anti-de Sitter/conformal field theories (AdS/CFT) cor-
respondence [1–4] is a very convenient and efficient tool to
model strongly correlated systems in terms of a gravity dual.
Since its discovery, this duality has made great development
and been extensively used in various areas in physics. The

a e-mail: laichuyu@gzhu.edu.cn (corresponding author)
b e-mail: panqiyuan@126.com

quantum information has important application in the study
of quantum gravity and quantum field theory. Two quanti-
ties of the boundary field theory, which play important roles
in quantum information, are entanglement entropy and com-
plexity. Both of them have gravitational descriptions by cer-
tain geometric quantities in the bulk spacetime in holographic
framework.

The entanglement entropy is a most studied idea in the
last decades. It is directly related to the degrees of free-
dom in the quantum entangled state [5–8]. In the light of
the AdS/CFT correspondence, the holographic entanglement
entropy describes the entanglement properties of the bound-
ary field theory and might be eventually used to understand
the quantum structure of spacetime. Ryu and Takayanagi
[9,10] had provided an effective way to calculate the holo-
graphic entanglement entropy. The Ryu–Takayanagi pro-
posal states that the entanglement entropy of the CFT in a
closed region A with its complement is proportional to the
area of a minimal surface γA extended into the bulk from the
boundary of the region A, and a simple and elegant formula
is given as

SA = Area(γA)

4GN
, (1)

where GN is the Newton constant of the general gravity.
The complexity is recently introduced as a new measure of

information of spacetime that can be useful to understand the
black hole interior where the entanglement entropy can not
cover [11]. In quantum field theory, the complexity is defined
as the minimal number of elementary operations (gates) that
are required to obtain a desired target state from a reference
state. There are two quintessential holographic proposals of
the complexity. The first one is called “complexity=volume”
(CV) conjecture [12,13] which relates the complexity of the
boundary state to the volume of a codimension-one maximal
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hypersurface anchored to the given boundary time. The sec-
ond one is the “complexity=action” (CA) conjecture [14,15]
which relates the complexity of the boundary state to the on-
shell bulk gravitational action within the Wheeler–DeWitt
(WDW) patch. Inspired by the Ryu–Takayanagi proposal of
the entanglement entropy, Alishahiha constructed the holo-
graphic dual to the complexity for a subsystem on the bound-
ary within the framework of the CV proposal, which is
referred to as the holographic subregion complexity [16].
Specifically, the complexity for a subregion A equals the
volume enclosed by the Ryu–Takayanagi surface γA

CA = Volume(γA)

8πLGN
, (2)

where L is the AdS radius. In this work we will focus on the
time-independent holographic subregion complexity, i.e., the
minimal surface γA totally outside of the black hole horizon.

Among many sectors where the AdS/CFT correspondence
has been applied successfully, the holographic realization
of high-temperature superconductors has gained plenty of
interest for their potential applications to the condensed mat-
ter physics. The simplest initial holographic superconduc-
tor model is constructed by applying a scalar field and a
Maxwell field coupled in an AdS black hole background
[17,18]. The main idea is the spontaneous U (1) symme-
try breaking induced by the condensation of the scalar hair
close to the horizon of the black hole in low temperature.
Since then, kinds of more complete holographic supercon-
ductor models have been explored, and many of their interest-
ing features which resemble that of the real superconductors
have been revealed, for reviews, see Refs. [19,20] and ref-
erences therein. The entanglement entropy was firstly intro-
duced as a tool to describe the phase transitions in the s-
wave holographic superconductor in Ref. [21]. By now a lot
of works have been carried out for investigating the proper-
ties of phase transitions from the entanglement entropy side
in various holographic superconductor models and in dif-
ferent backgrounds [22–35]. And the entanglement entropy
turns out to be a good probe to the critical point and the
order of the phase transition in the holographic supercon-
ductor systems. In recent years, as there is a deep connec-
tion between the holographic entanglement entropy and holo-
graphic complexity, the complexity has also been discussed
by using Alishahiha’s subregion CV conjecture in different
types of holographic superconductors, such as s-wave model
[36,37], p-wave model [38], d-wave model [39] and so on
[40–43]. These studies show that the holographic complexity
may be used as another independent probe to the physics of
the phase transition as the holographic entanglement entropy
does, though it was found that the complexity behaves in dif-
ferent ways from the entanglement entropy. Specially for the
holographic Stückelberg superconductor [41] which allows
both first and second order phase transitions to occur, the

complexity behaves differently crossing the second order
and first order superconducting phase transition point, which
indicates that the complexity may also be used to determine
the type of transition.

In this paper, we will generalize the investigation on the
entanglement entropy and subregion complexity to the holo-
graphic model of superfluid with full backreaction, which
has not been discussed as far as we know. Supercurrent in
superconducting materials is a well studied phenomenon in
condensed matter systems. The supercurrent solution can
be holographically constructed by performing a deformation
of the superconducting black hole, i.e., turning on the spa-
tial component of the U(1) gauge field in the bulk theory
[44,45]. And it was found that the superfluid phase transi-
tion can switch from second order to first order when the
velocity of the superfluid component increases relative to the
normal component. In Ref. [46], considering various scalar
field mass in AdS5, it was observed that the Cave of Winds
phase structure exists for some special mass in the superfluid
model. Along this line, further efforts in the s-wave holo-
graphic superfluid have been made in the related research and
discussion [47–50], and more general and complex models
have also been explored, such as p-wave superfluid [51–55]
and s + p-wave superfluid [56]. Besides, considering the
holographic superfluid models away from the probe limit,
the gravity backreaction also brings some interesting fea-
tures to the system. In the p-wave superfluid system, it was
argued that the order of the phase transition depends on the
backreaction [57]. The authors of Ref. [58] further studied
the phase diagram modified by the backreaction in the super-
current solution in the AdS black hole background. Their
results showed that the backreaction has different impacts
on the condensation behaviors for different operators, i.e.,
with the increase of the strength of the backreaction, the crit-
ical values of the superfluid velocity to accommodate the
first order phase transition decreases for the operator O+ but
increases for the operator O−. Recently, the study has been
enlarged to the backreacted superfluid model with the com-
petition between the p-wave solution and the p+ i p solution
[59]. Starting with the simple s-wave backreated holographic
superfluid model, we would like to carry out a further analysis
of this model from the aspects of the entanglement entropy
and the complexity. It is meaningful to examine how the two
quantities respond to the different types of phase transitions
and characterize the phase structure under the influence of the
backreaction, which may help us to enhance and supplement
the description of the superfluid phase transition. We expect
that the entanglement entropy and the complexity can sug-
gest more deeply physical insights so as to better understand
the underlying mechanism in the superfluid dual system.

The framework of this paper is as follows. In Sect. 2, we
briefly review the construction of a fully backreacted holo-
graphic superfluid in the four-dimensional AdS black hole
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spacetime and show the condensations and phase transitions.
In Sect. 3, behaviors of the holographic entanglement entropy
and the holographic subregion complexity are investigated in
detail to analyze the phase transitions in the superfluid model.
The summary and discussions are included in Sect. 4.

2 Holographic model of superfluid with backreactions

We work with the simplest background geometry of a black
hole and a U (1) gauge field coupling with a charged scalar
field. The lagrangian density reads

L = R + 6

L2 − γ

(
1

4
FμνFμν + |∇μψ

−iq Aμψ |2 + m2|ψ |2
)

, (3)

where R is the Ricci scalar, Fμν = ∂μAν − ∂ν Aμ is the
strength of the electromagnetic field. ψ denotes a scalar field
with charge q and mass m, A represents the gauge field. The
AdS radius L and the charge q are set to unity hereafter.
And γ here is a parameter measuring the strength of the
backreaction.

We are interested in studying the fully backreacted holo-
graphic superfluid model, thus we consider the ansatz for the
line element of the four-dimensional AdS black hole with the
form

ds2 = −r2B(r)eD(r)dt2 + dr2

r2B(r)

+r2
[
eC(r)dx2 + dy2

]
, (4)

and the gauge field and the charged scalar field to be, respec-
tively,

A = φ(r)dt + h(r)dx, ψ = ψ(r). (5)

The function C(r) in the metric ansatz is introduced by con-
sidering a nonzero x component of the Maxwell field in order
to take the possibility of DC supercurrent into account. The
function B(r) gives the position of the event horizon of the
black hole, i.e. B(rh) = 0. The Hawking temperature of the
background is expressed as

TH = r2
h B

′(rh)eD(rh)/2

4π
. (6)

Then, the equations of motion derived from the action
yield

ψ ′′ +
(

4

r
+ D′

2
+ C ′

2
+ B ′

B

)
ψ ′ +

(
φ2

r4B2eD

− h2

r4BeC
− m2

r2B

)
ψ = 0,

φ′′ +
(

2

r
+ C ′

2
− D′

2

)
φ′ − 2ψ2

r2B
φ = 0,

h′′ +
(

2

r
+ D′

2
+ B ′

B
− C ′

2

)
h′ − 2ψ2

r2B
h = 0,

C ′′+C ′2

2
+

(
4

r
+ D′

2
+ B ′

B

)
C ′+γ

h′2

r2eC
+γ

2h2ψ2

r4BeC
= 0,

B ′
(

2

r
− C ′

2

)
− 1

2
BD′C ′ + 6

r2 B − 6

r2

+γ

(
φ′2

2r2eD
+ m2ψ2

r2 + Bψ ′2 + ψ2φ2

r4BeD

− Bh′2

2r2eC
− h2ψ2

r4eC

)
= 0,

D′ = 4rC ′+r2C ′2+2r2C ′′+γ ( 2h′2
eC

+4r2ψ ′2+ 4ψ2φ2

r2B2eD
)

r(4+rC ′)
.

(7)

There is a useful scaling symmetry of the above equations

r → λr, (t, x, y) → 1

λ
(t, x, y), φ → λφ,

h → λh, ψ → ψ, (8)

where λ is a real positive number.
For this superfluid phase transition system, there are two

classes of the solutions for Eq. (7), i.e., ψ = 0 for the normal
phase and ψ �= 0 for the superfluid phase. In order to employ
the shooting method to solve the field equations numeri-
cally, the adequate boundary conditions on the black hole
horizon r = rh and the asymptotic AdS boundary r → ∞
are imposed. Around the horizon we can make the Taylor’s
expansion

ψ(r) = ψ0 + ψ1(r − rh) + ψ2(r − rh)
2 + · · · ,

φ(r) = φ1(r − rh) + φ2(r − rh)
2 + · · · ,

h(r) = h0 + h1(r − rh) + h2(r − rh)
2 + · · · ,

B(r) = B1(r − rh) + · · · ,

D(r) = D0 + D1(r − rh) + · · · ,

C(r) = C0 + C1(r − rh) + · · · . (9)

Note that a regular event horizon at r = rh needs B(rh) = 0.
And the requirement of regularity of the matter fields on
the horizon leads to φ(rh) = 0. Near the asymptotic AdS
boundary (r → ∞), the various fields asymptotically behave
like

ψ → ψ−
r	− + ψ+

r	+ , φ → μ − ρ

r
, h → σ − ξ

r
,

B → 1 + B3

r3 , D → 0, C → 0, (10)

where 	± = (3±√
9 + 4m2)/2 is the conformal dimension

of the operator O±. According to AdS/CFT correspondence,
μ and ρ represent the chemical potential and charge density
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in the dual field theory respectively. ξ and σ respectively
describe the current density and the dual current source. The
coefficients ψ− and ψ+ can be regarded as the vacuum expec-
tation value of the operatorO in the dual field theory while the
other is the source. In our analysis, we set the mass-squared of
the scalar field m2 = −2, then both ψ− and ψ+ are normal-
izable. Thus we have two choices of boundary conditions,
i.e., ψ− = 0, ψ+ = 〈O+〉 and ψ+ = 0, ψ− = 〈O−〉, in
which ψ+ = 0 (ψ− = 0) corresponds to a vanishing source
so as to describe a spontaneous symmetry breaking. For the
rest of our discussion we would like to consider the both
cases in order to explore the properties of the holographic
entanglement entropy and complexity for the two different
condensation operators O+ and O−.

Using the scaling symmetry (8), we can rescale the rele-
vant quantities as

μ → λμ, ρ → λ2ρ, σ → λσ,

ξ → λ2ξ, ψ− → λψ−, ψ+ → λ2ψ+, (11)

which allow us to employ the dimensionless quantities√〈O+〉√
μ2−σ 2

, 〈O−〉√
μ2−σ 2

and T√
μ2−σ 2

in the computation of the

condensates. Moreover, for the mathematical simplicity, we
make a coordinate transformation from r -coordinate to z-
coordinate by defining z = rh/r . The region rh < r < ∞
now corresponds to 1 > z > 0.

The numerical results of the condensates of the opera-
tors O+ and O− with the changes of the temperature and
the superfluid velocity given by the ratio σ/μ are plotted in
Fig. 1. The scalar field begins to condensate as the tempera-
ture reduces to a critical value Tc, and this implies the system
undergoes phase transition to a superfluid phase. In particu-
lar, from the pictures, it can be seen that there is a threshold
value (presented in orange) of the superfluid velocity σ/μ,
below which the condensate 〈O±〉 grows continuously and
monotonically from zero near the critical point, signaling a
typically second order phase transition. While we enhance
σ/μ across the threshold, the condensate becomes multi-
valued, signaling a first order transition. That is to say, the
type of superfluid phase transition is affected by the super-
fluid velocity, and when the superfluid velocity σ/μ increases
beyond a translating value, the second order phase transition
will switch to the first order one.

For the second order phase transition, the critical tem-
perature Tc can be directly read off from Fig. 1, at which
the condensation appears. However, for the first order phase
transition, the condensate is multi-valued near the transition
point. In order to determine the critical temperature, we cal-
culate the free energy of the system which is related to the
product of the on-shell Euclidean bulk action and the tem-

perature T as  = −T SE [60,61]. And in our model,

− SE =
∫

dx4√−g

(
R + 6

L2 + Lm

)

+
∫
z→0

dx3
√−h

(
2K − 4

L2

)
, (12)

Lm = −γ

(
1

4
FμνFμν + |∇μψ − iq Aμψ |2 + m2|ψ |2

)
,

(13)

where h is the determinant of the induced metric on the AdS
boundary, and K is the trace of the extrinsic curvature Kμν .
Using the equations of motion (7) and the boundary behav-
iors (10), we obtain the expression for the free energy of the
boundary theory as



V2
= B3, (14)

with V2 = ∫
dxdy which will be set to be unit and B3 is a

coefficient in (10).
As an example, fixing the backreaction parameter γ =

0.2, we plot the results of the free energy  for opera-
tor O+ with σ/μ = 0.15, 0.25 and for operator O− with
σ/μ = 0.35, 0.45 in Fig. 2. Here  is scaled by the chem-
ical potential μ to be dimensionless. The red lines are for
the superfluid phases while the blue lines represent the nor-
mal phases. The left two panels demonstrate the free energy
for the two branches when the system undergoes the sec-
ond order phase transition. We observe that below the crit-
ical temperature Tc which is marked by the dashed verti-
cal lines, the superfluid phase has lower free energy than
the normal phase and becomes physically favorable. For the
right two panels, the free energy develops a swallow tail,
which is a typical characteristic for first order phase transi-
tions. It is obvious that the temperature T = 0.0382021 and
T = 0.165526 respectively representing the appearance of
the condensates 〈O+〉 and 〈O−〉, are not the physical criti-
cal point. The first order transitions happen at the interaction
points Tc = 0.0385111 for O+ and Tc = 0.166974 for O−,
and below which the superfluid phase is thermodynamically
favorable. Thus, from the free energy, we can obtain Tc for the
first order phase transitions. The results of Tc for the various
superfluid velocity we chosen in Fig. 1 in the case of γ = 0.2
are listed in Table 1. Obviously, the critical temperature Tc
decreases as the superfluid velocity σ/μ increases, which
indicates that larger superfluid velocity makes the scalar hair
more difficult to be developed, and is correct for other values
of the backreaction parameter.

Furthermore, we also concern about the dependence of the
condensates on the backreaction of the matter fields measured
by the parameter γ . In Fig. 1, three values of the backreaction
parameter have been considered, i.e., γ = 0.1 (left two pan-
els), γ = 0.2 (middle two panels), and γ = 0.3 (right two
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Fig. 1 The condensates 〈O+〉 and 〈O−〉 in terms of temperature in the backreacted holographic superfluid model. The left two panels are for the
backreaction γ = 0.1, the middle ones are for γ = 0.2, and the right ones are for γ = 0.3

Fig. 2 the free energy  as a function of the temperature T for opera-
tors O+ (top two panels) and O− (bottom two panels) with the strength
of the backreaction γ = 0.2. In each panel, the red lines and blue

lines denote the superfluid phases and normal phases, respectively. The
dashed vertical lines represent the critical temperature Tc

Table 1 The critical
temperature Tc for operators O+
and O− with a number of
superfluid velocity σ/μ and the
fixed backreaction parameter
γ = 0.2

σ/μ 0.15 0.18 0.20 0.22 0.25

O+ 0.0443384 0.04284545 0.0417367 0.0404644 0.0385111

σ/μ 0.35 0.38 0.40 0.42 0.45

O− 0.186426 0.181200 0.177315 0.173161 0.166974
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panels). It is interesting to find that, for the condensates 〈O+〉
and 〈O−〉, the backreaction has distinct effects on the trans-
lating value of σ/μ to accommodate the first order phase
transition. Concretely, when the strength of backreaction
increases, the translating superfluid velocity σ/μ decreases
for 〈O+〉, which shows that the sufficiently strong backreac-
tion can trigger the first order transition of the system even
for a small superfluid velocity. However, for 〈O−〉, the trans-
lating superfluid velocity σ/μ increases with the increasing
strength of backreaction, which is just opposite to the case
of 〈O+〉. Our findings is consistent with the results reported
in Ref. [58]. It is of interest to study the holographic entan-
glement entropy and holographic complexity in this back-
reacted model of superfluid phase transition. We expect the
two quantities would reflect different properties in the two
types of phase transition, and provide more detailed physics
about the two condensation operators O+ and O−.

3 Holographic entanglement entropy and subregion
complexity

In this section, we will investigate the holographic entangle-
ment entropy and holographic complexity in a strip geometry
of the superfluid dual model. We consider a strip subregion
A which is defined by − l

2 ≤ x ≤ l
2 and − R

2 < y < R
2 ,

where l is the size of region A and R is a regulator which can
be set to be infinity. The induced metric of the hypersurface
γA whose boundary is the same as the strip reads

ds2
induced = 1

z2B
dz2 + eC

z2 dx
2 + 1

z2 dy
2. (15)

Then, using the proposal given by Eq. (1), we have the holo-
graphic entanglement entropy connecting with the area of γA
as

4G4SA = Area(γA) =
∫

dy
∫ l/2

−l/2

dx

z2

√
1

B

(
dz

dx

)2

+ eC .

(16)

We now apply the Hamiltonian approach to impose the fol-
lowing minimality condition on the surface area

dz

dx
= ±

√
eC B

(
eC

eC∗
z4∗
z4 − 1

)
, (17)

where z∗ is defined as the turning point of the smooth
extremal surface such that dz

dx |z∗ = 0, thenC∗ denotesC(z∗).
Integrating the condition (17), we obtain

x(z) =
∫ z∗

z

z2dz√
eC B

(
eC

eC∗ z
4∗ − z4

) , (18)

which satisfies x(z∗) = 0 and x(ε → 0) = l/2 with a UV
cutoff ε. Subsequently, we can deduce the resulting holo-
graphic entanglement entropy as

SA = R

2G4

∫ z∗

ε

dz
1

z2

1√
BeC∗

(
1

eC∗ − 1
eC

z4

z4∗

)

= R

2G4

(
1

ε
+ s

)
, (19)

with R = ∫
dy. The 1

ε
term is the UV divergent term and

known as the area law, which will not change since the new
solution after the operator condensation still asymptotically
approaches to AdS space near the AdS boundary. Subtract-
ing this divergence from SA, we have the finite term s which
is physically important. On the other hand, according to Ref.
[16], the complexity for the subregion A is holographically
related to the volume surrounded by the aforementioned min-
imal surface (Ryu–Takayanagi surface) γA. So it can be eval-
uated as

CA = R

4πG4

∫ z∗

ε

dz
e
C
2 x(z)

z3
√
B

. (20)

Note that the complexity CA also includes a universal term
c and a divergent term which is associated with a function of
z∗ as F(z∗)/ε2. Though it is hard to find a general form of
the divergence analytically, the value of F(z∗) in various sit-
uations can be found numerically [37] so that we can confirm
the singular part in CA and pick up the finite term c.

Due to the presence of the scaling symmetry (8), the strip
width l, the entanglement entropy s, and the subregion com-
plexity c can be transformed into

l → 1

λ
l, s → λs, c → λc. (21)

Therefore, it is useful to work with the following dimension-
less quantities to study the physics

l
√

μ2 − σ 2,
s√

μ2 − σ 2
,

c√
μ2 − σ 2

. (22)

Fixing the width l
√

μ2 − σ 2 = 2 since the other choices
will not qualitatively modify our results, we present the holo-
graphic entanglement entropy s and subregion complexity c
as a function of temperature T for different superfluid veloc-
ity σ/μ with the backreaction γ = 0.1, 0.2 and 0.3 in Fig. 3
(for operator O+) and Fig. 4 (for operator O−), where the
dashed curves represent the normal state and the solid curves
represent the superfluid state. We can clearly observe that
the entanglement entropy and complexity exhibit behaviors
characterizing two types of phase transition. For the sec-
ond order phase transition with σ/μ below the translating
value to accommodate the first order phase transition, both
the entropy s and complexity c are continuous but have a
discontinuous first derivative at the critical point where the
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superfluid phase (solid curves) intersect with the the nor-
mal phase (dashed curves). And under the same conditions,
the discontinued slopes of the both quantities occurs at the
same critical temperature, at which the condensation appears
as shown in Fig. 1. The entropy s monotonously decreases
as the temperature decreases, and its value in the superfluid
phase is always smaller than in the normal phase. This is
comprehensible because the formation of the Cooper pairs
in the superfluid phase suppresses the number of the effec-
tive degrees of freedom, and the entanglement entropy is
just a measure of the degrees of freedom in the field theory.
Contrary to s, the complexity c monotonously increases with
reducing T , so the superfluid phase has a larger c than the
normal phase, which can be interpreted as the quantum state
of the system becoming more complicated in the superfluid
phase since the complexity describes the difficulty of turning
a certain reference state into a target state.

For the first order phase transition with σ/μ above the
translating point, it is interesting to note that both two quan-
tities have a multi-valued region around the critical tempera-
ture Tc, and the similar multi-valued behaviors appear in the
same temperature region in the free energy diagrams and the
condensation diagrams. According to the free energy of the
system, below the critical temperature, the lower entangle-
ment entropy and larger complexity are physically important
in the multi-valued region. Thus, the real process of entropy s
has a discontinuous drop from the dashed curve to the lowest
part of the solid curve at the critical point and where the com-
plexity c has a discontinuous jump from the dashed curve to
the highest part of the solid curve. Similar phenomena was
also found in the first order transition for the holographic
Stückelberg superconductor [41]. This is an important distin-
guishing feature of the first order transition from the second
order one in our model. Except the suddenly drop or jump,
the entropy s is a monotonic decreasing function but the com-
plexity c is a monotonic increasing function with respect to
T , which agree with the case of the second order transition.

In addition, we find that the critical temperature Tc
decreases with the increasing value of the superfluid velocity
σ/μ, that is to say, the larger superfluid velocity makes the
scalar hair harder to be developed. This observation is con-
sistent with the previous findings in the condensates in Fig. 1
as well.

Therefore, both of the holographic entanglement entropy
and complexity can capture the superfluid phase transition in
the backreated dual model and also be a good probe to the
type of the phase transition. We argue that the performances
of the entropy and complexity crossing the two types of phase
transition can be perceived as qualitative characteristic in
general holographic model.

To see clearer of the effect of the superfluid velocity σ/μ

on the entanglement entropy and complexity, the two quanti-
ties as a function of σ/μ in the superfluid phase with chosen

values of the backreaction parameter γ are respectively dis-
played in Fig. 5 for the operator O+ at T√

μ2−σ 2
= 0.028 and

in Fig. 6 for O− at T√
μ2−σ 2

= 0.145. We observe that, for

a fixed backreaction γ , the larger superfluid velocity results
in a larger entanglement entropy s, but makes for a smaller
complexity c.

All the above features are shared by the case of operators
O+ and O−. Considering the disagreement between the two
condensation operators about the effect of the backreaction
on the translating superfluid velocity σ/μ shown in Fig. 1, we
expect that the holographic entanglement entropy and com-
plexity for different operators would perform different prop-
erties. Comparing the results in Figs. 3 and 4, we are surprised
to find that in the normal phase, the larger superfluid velocity
results in a smaller complexity c in low temperature region
before the condensate 〈O+〉 but a larger c in relatively high
temperature region before the condensate 〈O−〉, which can
not be seen in the entropy s since it monotonously increases
as σ/μ increase for both the cases. However, from Figs. 5 and
6, we obtain that with the fixed temperature and superfluid
velocity, the increasing value of the backreaction parameter
γ increases the entropy s for operator O+ but decreases s
for O−, while the complexity c for both the operators always
rises with the strengthening backreaction. These observa-
tions indicate that the holographic entanglement entropy and
complexity contain different information about the superfluid
system, meanwhile both the two quantities may capture the
variance between the condensation operatorsO+ andO− and
have the potential to help us better understand the physical
mechanism behind the two condensates in the dual model.

4 Conclusions

In this paper, we have numerically investigated the holo-
graphic entanglement entropy and complexity associated to
a strip-shaped subregion for the superfluid phase transition in
the four-dimensional AdS black hole with full backreaction.
This holographic superfluid model can realize first and sec-
ond order phase transitions which depends on the superfluid
velocity. Moreover, for the different condensates 〈O+〉 and
〈O−〉, the strength of the backreaction has different effects on
the translating value of superfluid velocity to accommodate
the first order transition of the system.

Our results show that regardless of either the operators
O+ or O−, both the holographic entanglement entropy and
complexity present particular features distinguishing the two
types of phase transitions, though the two quantities behave
differently. For the second order phase transition with σ/μ

below the translating value, both the entropy s and complex-
ity c are continuous but not differentiable at the critical tem-
perature Tc. With the decreasing temperature, the entropy s
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Fig. 3 The holographic entanglement entropy and subregion complexity of the operatorO+ versus temperature for different values of the superfluid
velocity σ

μ
with the strength of the backreactions γ = 0.1 (left two panels), 0.2 (middle two panels) and 0.3 (right two panels)

Fig. 4 The holographic entanglement entropy and subregion complexity of the operatorO− versus temperature for different values of the superfluid
velocity σ

μ
with the strength of the backreactions γ = 0.1 (left two panels), 0.2 (middle two panels) and 0.3 (right two panels)

monotonously decreases while the complexity c increases so
that the superfluid phase always has a smaller s but larger c
than the normal phase. Some physical interpretations can be
given to the behaviors of the both quantities. As temperature
goes down, the Cooper pairs forming in the condensed phase
makes the reduction of the number of degrees of freedom
which causes the drop of the entanglement entropy. And a
larger complexity at lower temperatures is related to the quan-
tum state of the system becoming more complicated across
the phase transition. For the first order phase transition with
σ/μ above the translating value, both s and c have a multi-

valued area around the phase transition point, and the real
processes of them are discontinuous at the critical tempera-
ture Tc, i.e., from the normal state to the superfluid state, the
entropy s experiences a suddenly drop and the complexity
experiences a suddenly jump. The discontinuous change of
the entropy may be related to some kind of non-trivial reorga-
nization of the degrees of freedom of the system, which prob-
ably includes extra degrees of freedom coming from other
entanglement apart from the entangled pairs. And the intro-
duction of this extra degrees of freedom may be due to some
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Fig. 5 The holographic entanglement entropy and subregion complexity of the operator O+ as a function of the superfluid velocity σ
μ

with the

strength of the backreactions γ = 0.1 (left two panels), 0.2 (middle two panels) and 0.3 (right two panels), as T√
μ2−σ 2

= 0.028 in the superfluid

phase

Fig. 6 The holographic entanglement entropy and subregion complexity of the operator O− as a function of the superfluid velocity σ
μ

with the

strength of the backreactions γ = 0.1 (left two panels), 0.2 (middle two panels) and 0.3 (right two panels), as T√
μ2−σ 2

= 0.145 in the superfluid

phase

quantum effect which also possibly causes the discontinuity
in the behavior of the complexity.

In addition, we find that under the same conditions, the
holographic entanglement entropy and complexity give the
same critical temperature of the second order phase transi-
tion, at which the condensation appears as shown in Fig. 1.
For the first order phase transitions, near the critical tem-
perature the superfluid phase of both the holographic entan-
glement entropy and complexity have a multi-valued region,
and the similar multi-valued behaviors appear in the same
temperature region in the free energy diagrams and the con-

densation diagrams. And we can see that the larger superfluid
velocity makes the critical temperature lower, which agrees
well with the observation in the condensations. It indicates
that the spatial component of the gauge field will hinder the
phase transition. Therefore, the transition temperature of the
system is quantitatively in agreement with the insights from
holographic entanglement entropy and holographic complex-
ity.

We also present the entanglement entropy and complexity
in the superfluid phase as a function of the superfluid velocity
σ/μ with different values of the backreaction parameter, i.e.,
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γ = 0.1, 0.2 and 0.3 at T√
μ2−σ 2

= 0.028 for operator O+
and at T√

μ2−σ 2
= 0.145 for O−. It is shown that when the

value of the superfluid velocity σ/μ increases, the entangle-
ment entropy always rises and the complexity drops, which
is independent of the backreaction.

On the other hand, by comparing our results of the holo-
graphic entanglement entropy and complexity for the oper-
ators O+ and O−, it is interesting to find that there exist
some inconsistent performances of both the quantities for the
two operators. One is that in the normal phase, the increas-
ing superfluid velocity decreases the complexity in low tem-
perature region before the condensate of operator O+, but
increases c in relatively high temperature region before the
condensate of operator O−. The other is that the increasing
value of the backreaction parameter increases the entropy s
for the operator O+ but decreases s for O−. It implies that
both the holographic entanglement entropy and complexity
have the potential to offer richer physics about the difference
between the operators O+ and O− in the dual system, and
the information reflected by the complexity is different from
the information captured by the entanglement entropy. The
physical origins behind them and non-trivial insights from
the field theory side deserve further study.

The Cave of Winds is an interesting phenomenon appear-
ing in some holographic superfluid system, such as the five-
dimensional gravity dual model and the model in Lifshitz
spacetime. Thus, we hope to examine how the holographic
entanglement entropy and complexity describe the Cave of
Winds phase structure in the near future. And, it would also
be interesting to extend our numerical analysis to the holo-
graphic superfluid model with the competition and coexis-
tence of different orders, so as to further understand the deep
physics involved in the rich phase diagram in holographic
superfluid.

It is noticed that here we computed the holographic com-
plexity via Alishahiha’s subregion CV conjecture. As is
known that there are also other interesting holographic pro-
posals of the complexity, which have been discussed in var-
ious holographic models. In Ref. [62], the authors investi-
gated the complexity of formation, which defined in Ref.
[63] within the framework of the CV proposal, in the first
holographic superconductor model proposed by Hartnoll et
al. [17,18], and analyzed the full time evolution of the com-
plexity from the normal phase to superconducting phase. It
was found that the complexity of formation can also be a
good probe to the superconducting phase transition. In Ref.
[64], by considering the CA proposal, the holographic com-
plexity was studied in a holographic QCD model proposed
by Gubser et al. [65], which can realize three types of phase
transition, crossover or first and second order. Their results
indicated that the growth rate of the holographic complex-
ity exhibits the behavior characterizing the type of phase

transition. Investigating the complexity by other holographic
proposals in the holographic superfluid will be another inter-
esting direction. We leave this issue as future works.
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