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topological character of the bulk theory forces one to reconsider standard geometric notions

such as black hole horizons and entropy, as well as the usual holographic dictionary. Moti-

vated by this challenge, in this note we present a proposal to compute entanglement entropy

in the WN CFTs via holographic methods. In particular, we introduce a functional con-

structed fromWilson lines in the bulk Chern-Simons theory that captures the entanglement

entropy in the CFTs dual to standard AdS3 gravity, corresponding to SL(2, R)× SL(2, R)

gauge group, and admits an immediate generalization to the higher spin case. We explicitly

evaluate this functional for several known solutions of the bulk theory, including charged

black holes dual to thermal CFT states carrying higher spin charge, and show that it re-
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1 Introduction

Over the last two decades, the holographic principle [1, 2] has become a cornerstone of

theoretical physics. Put simply, it asserts that certain theories of gravity in (d + 1) di-

mensions can be described as quantum field theories in d dimensions, and vice versa.
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To date, the most successful and concrete realization of holography is the Anti-de Sit-

ter (AdS)/Conformal Field Theory (CFT) correspondence of [3] (see [4, 5] also), which

proposes a duality between conformally-invariant gauge theories, and string theory on a

space in one higher dimension that asymptotes to AdS, the maximally-symmetric solution

of Einstein’s equations with negative cosmological constant. Notably, the ideas behind

the AdS/CFT correspondence have shed light on the structure of quantum gravity and

gauge theories alike, while providing powerful computational techniques to explore the

connections between them.

The holographic correspondence is an example of strong-weak duality; so far, the vast

majority of the work in AdS/CFT has focused on the regime where the gauge theory is

strongly-coupled and the string theory description becomes weakly-coupled, effectively re-

ducing to classical (super)gravity. To a high extent, the power of the correspondence lies

in the fact that many problems can be addressed analytically in the latter theory, provid-

ing insight into the regime where the quantum field theory becomes intractable with the

standard perturbative techniques. Quite remarkably, in light of this feature holographic

techniques have found a niche of applications in condensed matter physics, where strongly-

correlated systems are routinely engineered and studied in the laboratory. It is however of

considerable theoretical importance to understand and test the holographic duality in other

regimes of couplings as well. A particularly interesting example which is outside the scope

of the usual AdS/CFT correspondence is the conjecture [6] of Klebanov and Polyakov re-

lating critical O(N) vector models in the large-N limit to the higher spin Fradkin-Vasiliev

theory in AdS4 [7, 8], for which a considerable amount of evidence has been provided

recently (see [9] and references therein).

Although of a somewhat different flavor, similar dualities have been put forward in

lower dimensions, an interesting example being the proposal of [10] relating the three-

dimensional Vasiliev higher spin theory and the large-N limit of WN minimal coset CFTs.

An aspect that makes the lower-dimensional setup particularly appealing is the fact that

universal results for two-dimensional CFTs, such as the Cardy entropy formula [11, 12] and

the zero- and finite-temperature entanglement entropy in 1d systems [13, 14], are known to

be recovered in the framework of the standard AdS3/CFT2 correspondence. In particular,

the thermal entropy of the three-dimensional (BTZ) black hole as computed with the stan-

dard Bekenstein-Hawking formula precisely matches the form predicted by Cardy’s asymp-

totic growth of states in a unitarity CFT (see e.g. [15–17]). Similarly, the single-interval

entanglement entropy of the CFT state dual to this black hole is reproduced using the Ryu-

Takayanagi (R-T) prescription to compute entanglement entropy holographically [18, 19].

Recently, some universal aspects of the AdS3/CFT2 correspondence were further elucidated

in [20, 21]. An interesting question is then whether (and how) this universality prevails in

the presence of extended symmetries furnished by higher spin operators.

As an added bonus, given that the higher-dimensional theories of interacting massless

higher spin fields are technically involved and difficult to work with, it is desirable to work

with models that retain their key features while being amenable to study, such as the AdS3
higher spin theories. In fact, in three dimensions it is possible to truncate the tower of

massless modes to retain fields of spin s ≤ N only [22]. This is to be contrasted with their
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higher-dimensional counterparts of the Fradkin-Vasiliev type, where an infinite number of

higher spin fields must be kept. Furthermore, the corresponding higher spin theories in

AdS3 can be cast in the form of an SL(N,R)× SL(N,R) Chern-Simons gauge theory, and

many of the familiar techniques to analyze such theories can be brought to bear.

Recently, many entries of the holographic dictionary for higher spin AdS3 theories have

been established. In particular, much in the same way that standard Einstein gravity with

AdS3 boundary conditions has an asymptotic symmetry group generated by two copies of

the Virasoro algebra acting on the spacetime boundary [23], the analysis of asymptotic sym-

metries in the higher spin case [24–26] has shown them to correspond to two-dimensional

CFTs with extended symmetry algebras of (classical) WN type, in agreement with earlier

expectations [27]. In contrast with the universal results quoted above, not much is known

about the CFTs in the presence of deformations by higher spin operators, making the results

obtained from holography all the more interesting. Motivated by these facts, in the present

paper we initiate the study of entanglement entropy in higher spin holography in AdS3 .

Perhaps the main challenge in extending the usual AdS3 holographic dictionary to the

higher spin case is that we must surrender the traditional geometric interpretation of no-

tions such as black hole horizons and entropy, which lie at the core of AdS/CFT dualities

in higher dimensions, and formulate them in a language which is appropriate in light of the

topological character of the bulk theory. Indeed, the standard R-T prescription to compute

entanglement entropy holographically is intrinsically geometric in nature: in order to obtain

the entanglement entropy of a region A in the boundary theory, one is instructed to find the

minimal area bulk surface that is anchored on the boundary of A and “dips” into the bulk

spacetime. In order to solve this problem, in the present work we introduce a functional

that is naturally defined in terms of Wilson lines in the bulk Chern-Simons theory and

captures the entanglement entropy in the situations where an independent field-theoretical

result is available (namely in the absence of higher spin charges), while generalizing natu-

rally to the higher spin setup. In the absence of explicit entanglement entropy results for

CFTs perturbed by higher spin operators, we apply our proposal in several examples and

show that it reproduces the properties that the field theory entanglement is expected to

satisfy, such as strong subadditivity (up to some subtleties). Moreover, building on our

previous general results for the thermal entropy in higher spin theories [28], we will show

that our entanglement functional is constructed so that it approaches the thermal entropy

in the high temperature limit in which the entanglement becomes extensive, even in the

presence of non-trivial higher spin charges and chemical potentials.

The structure of the paper is as follows. In section 2 we briefly review the formulation

of standard Einstein gravity in three dimensions as a Chern-Simons theory and its extension

to include a finite number of higher spin fields, regarded as SL(N,R) × SL(N,R) Chern-

Simons theory (with N > 2). In section 3 we introduce our proposed bulk functional and

explicitly show that it reproduces the known CFT entanglement entropy in the absence of

higher spins (namely in the SL(2,R) × SL(2,R) case corresponding to standard Einstein

gravity). We then discuss various properties of this functional in the general case, and

in particular apply our previous results [28] for the thermodynamic entropy of higher spin

black holes to show how to choose the representation of the algebra in which the Wilson lines
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are evaluated, in such a way that our entanglement functional also reproduces the thermal

entropy of the dual CFTs in the appropriate limit. In section 4 we apply our proposal to

some of the known solutions of the spin-3 theory, including the charged black hole solution

of [29] which is dual to a CFT ensemble at finite temperature and finite higher spin charge.

We conclude in section 5 with a discussion of our results and outlook. The details of our

conventions and some useful facts and calculations are collected in the appendices.

Note. While this work was being completed we became aware of [30], where a similar

proposal to compute entanglement entropy in three-dimensional higher spin theories will

be put forward. Their formulation is based on the observation that, for N = 2, the geodesic

distance on AdS3 interpreted as a group manifold can be computed in terms of Wilson lines

in an infinite-dimensional representation of the gauge group.

2 Higher spin theories in AdS3

As it is well-known, three-dimensional gravity with a negative cosmological constant can

be formulated as a Chern-Simons theory [31, 32] (see [33] for a modern perspective). The

extension to higher spin theories utilizes the Chern-Simons language, and in fact resembles

the pure gravity case in many a way. Therefore, we begin with a brief discussion of standard

gravity with AdS boundary conditions in the Chern-Simons formulation. Our conventions

and some extra details can be found in appendix A.

2.1 AdS3 gravity as a Chern-Simons theory

Let a, b, . . . denote local Lorentz indices in (2 + 1) dimensions, and define the dual ωa of

the spin connection as

ωa ≡ 1

2
ǫabcωbc (2.1)

or equivalently ωab = −ǫabc ω
c. We can then combine this object with the dreibein or

“triad” ea into so(2, 1) ≃ sl(2,R) connections A, Ā defined as

A = ω +
e

ℓ
, Ā = ω − e

ℓ
, (2.2)

where ℓ is the AdS3 radius, namely the length scale set by the cosmological constant

(Λcosmo = −1/ℓ2). Here, ω ≡ ωaJa and e ≡ eaJa , and the generators Ja obey the so(2, 1) ≃
sl(2,R) algebra [Ja, Jb] = ǫabc η

cdJd = ǫ c
ab Jc (the relation between the so(2, 1) generators

and the sl(2,R) generators Λ0, Λ± is given in (B.2)). We emphasize that the bar notation

does not denote complex conjugation in Lorentzian signature.

Defining the Chern-Simons form CS as

CS(A) = A ∧ dA+
2

3
A ∧A ∧A (2.3)
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one finds that the combination Tr
[

CS(A)−CS(Ā)
]

yields the Einstein-Hilbert Lagrangian,

up to a total derivative. The precise relation is (cf. (A.7))

I ≡ k

4π

∫

M
Tr
[

CS(A)− CS(Ā)
]

(2.4)

=
1

16πG3

[∫

M
d3x
√

|g|
(

R+
2

ℓ2

)

−
∫

∂M
ωa ∧ ea

]

,

where G3 is the 3d Newton constant. When evaluated on shell, the boundary term amounts

to (1/2) times the standard Gibbons-Hawking surface term. Normalizing the so(2, 1) gen-

erators according to Tr [JaJb] = ηab/2 , we identify the Chern-Simons level k as

k =
ℓ

4G3
. (2.5)

Whether the gauge group is SO(2, 1) × SO(2, 1) or some locally isomorphic (but globally

inequivalent) cover is a question that has consequences for the quantization of k, and affects

the values of the central charges in the dual field theory (see [33, 34], for example).

One can easily establish a dictionary between the standard (metric) and Chern-Simons

formulations of the theory. For example, the metric tensor is obtained from the triad as

gµν = 2Tr [eµeν ] , and Einstein’s equations translate into the flatness of the gauge connec-

tions,

F = dA+A ∧A = 0 , F̄ = dĀ+ Ā ∧ Ā = 0 . (2.6)

In components, Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] = 0 as usual. Similarly, under an infinitesi-

mal gauge transformation δA = dλ+ [A, λ] , δĀ = dλ̄+
[

Ā, λ̄
]

, the dreibein transforms as

δeµ = eν ξ
ν
;µ +

1

2

[

eµ, λ+ λ̄
]

, (2.7)

where the infinitesimal generator ξµ is defined in terms of the inverse triad as ξµ =

(ℓ/2)e µ
a

(

λa − λ̄a
)

. The first term in (2.7) gives rise to the standard infinitesimal dif-

feomorphisms acting on the metric, while the second term represents a rotation of the local

Lorentz frame.

That one can rephrase three-dimensional gravity as a topological theory is a reflection

of the fact that the dynamical degrees of freedom in the theory are not local: as it is

well-known, all solutions of the three-dimensional Einstein’s equations with negative cos-

mological constant are locally equivalent to AdS3 . The non-triviality of the dynamics is

rooted in the existence of globally inequivalent solutions, such as black holes, and boundary

excitations. Naturally, the latter are intimately tied to the choice of boundary conditions,

which are a crucial ingredient in holographic constructions. As first shown by Brown and

Henneaux [23], in standard three-dimensional gravity with negative cosmological constant

one can choose consistent boundary conditions such that the asymptotic symmetries cor-

respond to two copies of the Virasoro algebra with central charge c = 6k = 3ℓ/(2G3) .

Let us briefly review how the Brown-Henneaux result comes about in the Chern-Simons

formulation, as first derived by [35]. We consider Chern-Simons theory on a Lorentzian
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three-dimensional manifold M with topology R×D , where the R factor corresponds to the

timelike direction and D is a two-dimensional manifold with boundary ∂D ≃ S1. We will

introduce coordinates (ρ, t, ϕ) onM , where ρ is the bulk radial coordinate and the constant-

ρ surfaces (in particular the asymptotic boundary ∂M at ρ → ∞) have the topology of a

cylinder. Given a set of boundary conditions, the asymptotic symmetry algebra is defined

as the set of transformations (diffeomorphisms in this case) that respect the boundary

conditions, modulo trivial gauge transformations which are generated by constraints. The

charges associated with the asymptotic symmetries generate global transformations that

take us between distinguishable physical states in phase space (which becomes a Hilbert

space upon quantization). Imposing boundary conditions A−|∂M → 0, Ā+

∣

∣

∂M
→ 0 , one

finds that the asymptotic symmetries correspond to two copies of an affine sl(2,R) algebra

at level k . Equivalently, at this stage the Chern-Simons theory plus boundary conditions

becomes a non-chiral Wess-Zumino-Witten (WZW) model. Further imposing that the

connection approaches an AdS3 connection at the boundary, A − AAdS3 −−−→
ρ→∞

O(1) , the

asymptotic symmetries reduce to two copies of the Virasoro algebra with central charge

c = 6k = 3ℓ/(2G3) . This is an example of the so-called Drinfeld-Sokolov reduction [36]:

denoting the modes of the Kac-Moody currents by Ja
n , the requirement of AdS asymptotics

translates to J0
n = 0 , J+

n ≃ kδ0n , reducing the current algebra to the Virasoro symmetries.

We will now review some solutions that will play an important role later on. As we

mentioned above, all the solutions of three-dimensional Einstein gravity with negative cos-

mological constant are locally connected to AdS3 by a change of coordinates. In [37] it was

pointed out that the metric

ds2 = ℓ2
[

dρ2 +
T (x+)

k
(dx+)2 +

T̄ (x−)
k

(dx−)2 −
(

e2ρ +
T (x+)T̄ (x−)

k2
e−2ρ

)

dx+dx−
]

,

(2.8)

where x± = t/ℓ ± ϕ , is a solution of Einstein’s equations for any functions T = T (x+),

T̄ = T̄ (x−). Furthermore, it represents the whole space of asymptotically AdS3 (AAdS3)

solutions with a flat boundary metric at ρ → ∞. In particular, the BTZ black hole [38]

with mass M and angular momentum J1 is obtained for constant T , T̄ given as

TBTZ =
1

2
(Mℓ− J) = k

π2ℓ2

β2
−

T̄BTZ =
1

2
(Mℓ+ J) = k

π2ℓ2

β2
+

,

(2.9)

where we introduced the inverse chiral temperatures β± = 1/T±. Via the standard holo-

graphic dictionary, the functions T and T̄ are seen to correspond to the stress tensor in the

dual CFT (see [17] for a review of the AdS3/CFT2 correspondence); in particular, the zero

modes of T and T̄ are the eigenvalues of the operators L0 and L̄0 . In this parameterization

the global AdS3 solution corresponds to J = 0 and Mℓ = −k/2 (8GM = −1), i.e.

TAdS3 = T̄AdS3 = −k

4
, (2.10)

1One restricts |J | ≤ ℓM in order to avoid naked singularities. The value |J | = ℓM that saturates the

bound corresponds to the extremal (zero temperature) BTZ black hole.
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while the so-called Poincaré patch of AdS3 is obtained with J = M = 0 (provided we

un-compactify the boundary spatial coordinate).

We will choose a basis of generators {Λ0,Λ±} for the sl(2,R) algebra, satisfying

[

Λ±,Λ0
]

= ±Λ± ,
[

Λ+,Λ−] = 2Λ0 . (2.11)

In order to write down the above solutions in the Chern-Simons formulation, one first

notices that the gauge freedom allows to fix the radial dependence as

A = b−1db+ b−1a(x+, x−) b

Ā = b db−1 + b ā(x+, x−) b−1 ,
(2.12)

with b = b(ρ) = eρΛ
0
. The ρ-independent connections a, ā corresponding to (2.8) are then

given by

a =

(

Λ+ − T (x+)

k
Λ−
)

dx+ ,

ā =

(

−Λ− +
T̄ (x−)

k
Λ+

)

dx− .

(2.13)

Since Chern-Simons theory is a theory of flat connections, we can locally write its

solutions in terms of group elements g, ḡ as follows:

A = g−1dg , Ā = ḡ−1dḡ . (2.14)

For example, for the above solutions with constant T , T̄ (which include globally-defined

black holes) we find

g = exp

{[

Λ+ −
(

T

k

)

Λ−
]

x+
}

b(ρ) ,

ḡ = exp

{

−
[

Λ− −
(

T̄

k

)

Λ+

]

x−
}

b−1(ρ) .

(2.15)

Additional care must be exercised in the presence of non-contractible cycles, such as the

ϕ circle parameterizing the horizon in three-dimensional black hole geometries: if the

connection has non-trivial holonomy, it undergoes a gauge transformation upon transport

around the horizon. In other words, the group elements g, ḡ in (2.14) are not, in general,

single-valued. This will be important for us below when we discuss how to recover the

thermodynamic entropy in the limit in which the entanglement entropy becomes extensive.

2.2 The SL(N,R) × SL(N,R) higher spin theory

Having rephrased the standard AdS3 Einstein gravity as an SL(2,R) × SL(2,R) Chern-

Simons gauge theory, we now introduce higher spins by promoting the gauge group to

SL(N,R) × SL(N,R) . When N > 2 , this theory describes gravity coupled to a tower of

fields of spin s ≤ N [22]. The precise field content of the gravitational theory (and hence the

spectrum and symmetry algebra of the dual CFT) depends on how the sl(2,R) subalgebra

associated to the gravity sector is embedded into sl(N,R) (see [39, 40]). The different em-

beddings are characterized by the way in which the fundamental representation of sl(N,R)
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decomposes into sl(2,R) representations, and these branching rules are in turn classified

by integer partitions of N . As a concrete example, consider the defining representation 33
of sl(3,R). Denoting the (2j + 1)-dimensional representation of sl(2,R) by (2j+ 1)2 , the

non-trivial inequivalent embeddings are characterized by the branching rules 33 → 32 and

33 → 22 ⊕ 12 . The first embedding is the so-called “principal embedding”, characterized

by the fact that the fundamental representation becomes an irreducible representation of

the embedded algebra. The second embedding is called “diagonal embedding”, because

the embedded sl(2,R) takes a block-diagonal form inside sl(3,R) .

The branching of the
(

N2 − 1
)

-dimensional adjoint representation can be determined

from that of the fundamental representation, and one deduces in this way the decompo-

sition of the algebra itself and hence the spectrum [39, 41]. In the principal embedding,

adjN → 32 ⊕ 52 ⊕ . . . ⊕ (2N− 1)2 showing that the sl(N,R) algebra decomposes into

N − 1 representations with sl(2,R) spins ranging from 1 to N − 1 (the spin 1 multiplet

being the sl(2,R) generators themselves). From the perspective of the bulk theory, these

representations correspond to the metric (gµν ∼ Tr[eµeν ]) and a tower of symmetric tensor

fields with spins 3, . . . , N (φµνρ ∼ Tr[e(µeνeρ)] and so forth). In general, the conformal

weight of the corresponding operators in the boundary theory is obtained by adding one

to the sl(2,R) spin (see [42] for example). Consequently, in addition to the stress tensor,

in the principal embedding one finds primary operators of weight 3, 4 . . . , N . In the diag-

onal embedding one has instead adjN → 32 ⊕ 2(N − 2) · 22 ⊕ (N − 2)2 · 12 . Hence, the

spectrum in the diagonal embedding contains currents of weight 1 and 3/2 . When charged

fields are present, there is always a consistent truncation where they are taken to be zero;

in the diagonal embedding, this corresponds to setting the spin 3/2 fields to zero while

truncating the weight-one currents to the diagonal subset. From the bulk perspective, the

theory in the diagonal embedding then contains a truncation to standard gravity coupled

to U(1)2(N−2) gauge fields. Indeed, as discussed in [43], a class of black hole solutions in

the diagonal embedding correspond to BTZ black holes charged under Abelian holonomies.

The asymptotic symmetry analysis in the N > 2 case was performed in [24, 25] (see [44,

45] for early work), and parallels the N = 2 discussion in [35] closely. In particular one

imposes “Drinfeld-Sokolov boundary conditions” as before,

A− = 0 , Aρ = b−1(ρ)∂ρb(ρ) , A−AAdS3 −−−→
ρ→∞

O(1) , (2.16)

and similarly for the barred connection (notice that the last condition on A does not im-

ply that a obeys that condition as well, and that (2.13) is compatible with (2.16)). The

asymptotic symmetries are then given by two copies of the so-called WN algebras [46],

which correspond to non-linear extensions of the Virasoro algebra. As a concrete example,

for the SL(3,R)×SL(3,R) theory in the principal embedding the corresponding asymptotic

symmetry algebra consists of two copies of the W3 algebra, with classical central charge

c = 6k = 3ℓ/(2G3) . According to the general features discussed above, the algebra in

this case includes the stress tensor and primary operators of weights (3, 0) and (0, 3). For

N = 3 there is only one other non-trivial inequivalent embedding, i.e. the diagonal embed-

ding. The asymptotic symmetry algebra in this case is identified with the so-called W(2)
3

algebra [24, 25, 47]. Besides the stress tensor, this algebra contains two weight-3/2 primary

– 8 –



J
H
E
P
0
4
(
2
0
1
4
)
0
8
9

operators and a weight one current, with classical central charge given by ĉ = c/4 = 3k/2 .

Different boundary conditions giving rise to non-AAdS3 higher spin theories have been also

considered recently in [48, 49].

Let us write the coefficient of the Chern-Simons action in the higher spin case as

kcs/(4π) . Since the trace in the action is taken in the fundamental representation, matching

with the normalization of the Einstein-Hilbert action requires

kcs =
k

2TrN [Λ0Λ0]
(2.17)

where, according to the above discussion, k is the level of the sl(2,R) × sl(2,R) Chern-

Simons theory contained in the full theory through the choice of embedding, and TrN
denotes the trace in the fundamental (N -dimensional) representation. In terms of the level

kcs of the sl(N,R)× sl(N,R) theory, the central charge in the boundary CFT is given by

c = 12kcsTrN
[

Λ0Λ0
]

. (2.18)

Note that, for fixed kcs , the central charge will be different for different embeddings.

3 A holographic entanglement entropy proposal for higher spin theories

Consider a quantum system described by a density matrix ρ , and divide it into two subsys-

tems A and B = Ac . The reduced density matrix ρA of subsystem A is defined by tracing

over the degrees of freedom in B , i.e. ρA = TrB ρ . The entanglement entropy SA of A is

then defined as the von Neumann entropy associated with ρA :

SA = −TrA ρA log ρA . (3.1)

If the full system was originally in a pure state, i.e. ρ = |Ψ〉〈Ψ| , then SA = SB . This

property does not hold if the system was originally in a mixed state, such as a thermal

ensemble with density matrix ρ = e−βH .

From a theoretical standpoint, the entanglement entropy has several interesting prop-

erties associated with its non-local nature, and can moreover serve as a useful tool to charac-

terize gapped phases of matter in the absence of classical order parameters and spontaneous

symmetry breaking [50, 51]. Unfortunately, field-theoretical calculations of entanglement

entropy are in general notoriously difficult to perform, even for free theories. In theories

with a (standard) gravity dual, however, entanglement entropies can be computed in a

rather straightforward manner using an elegant holographic prescription due to Ryu and

Takayanagi [18, 19] (see [52] for a review). Suppose we want to compute the entanglement

entropy associated with a spatial region A in the field theory. The R-T recipe instructs us

to construct the minimal spacelike surface γA that is anchored at the boundary ∂A of A and

extends into the bulk spacetime. Then, the corresponding entanglement entropy is obtained

in terms of the area of γA as SA = Area(γA)/(4G) , where G is the Newton constant asso-

ciated to the bulk spacetime. The prescription correctly reproduces the area law of entan-

glement entropy, and it has been shown to be strongly-subadditive [53] as well. Moreover,

it has been generalized to include cases where the field theory state is time-dependent [54].

Strong evidence for the correctness of the R-T prescription has been given in [55, 56].
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In the present context we will focus on situations where the full system is a (1 + 1)-

dimensional CFT, and consider subsystems determined by spatial (equal time) intervals.

Due to the large amount of symmetry that (1 + 1)-dimensional CFTs enjoy, a variety

of quantities can be computed in closed form. Indeed, using CFT techniques, universal

results have been derived for the single-interval entanglement entropy at zero and finite

temperature [13, 14]. From the point of view of holography, in the particular case of a three-

dimensional bulk and a two-dimensional boundary theory the minimal surface prescription

of R-T amounts to finding the length of a geodesic in an asymptotically AdS3 (AAdS3)

spacetime, and it correctly reproduces the known field theory results. On the other hand,

to the extent of our knowledge there are no analytic results for entanglement entropy

in the presence of deformations by higher spin currents, or in states carrying non-trivial

higher spin charges, and we would therefore like to extend the holographic calculations to

encompass these situations.

Since the bulk theory under consideration is topological, a reasonable starting point is

to rephrase the geometric statement of the R-T proposal in terms of the natural building

blocks at our disposal in the gauge theory, such as Wilson lines. To this end, given two

points P and Q in the bulk spacetime, we start by considering the following “composite”

Wilson loop

WR(P,Q) ≡ TrR

[

P exp

(∫ P

Q
Ā

)

P exp

(∫ Q

P
A

)

]

(3.2)

where P denotes the usual path ordering, and the trace is evaluated in a representation

that will be specified later on. As we have discussed, the gauge connections undergo a

gauge transformation upon transport around a cycle with non-trivial holonomy; locally,

however, we can write the flat connections as in (2.14), and W (P,Q) reduces to

WR(P,Q) = TrR
[

ḡ−1(P )ḡ(Q)g−1(Q)g(P )
]

. (3.3)

Up to global issues (such as winding around a non-contractible cycle), we see that the

result is path-independent, i.e. it depends on the positions of the endpoints P and Q only.

One may worry about the lack of obvious gauge invariance of this expression, but as we ex-

plain below this is no cause for concern. One may also worry that different, homotopically

inequivalent paths may exist that connect P and Q, on which the answer clearly depends.

We will address this issue below as well.

To gain some intuition about the significance of the functional (3.2), we first evaluate it

for the AAdS3 solutions of the SL(2,R)×SL(2,R) theory. Plugging in the solutions (2.15)

with constant T , T̄ and taking the trace in the 2d (defining) representation (B.3) of sl(2,R)

we obtain

W2d(P,Q) = 2 cosh(ρP − ρQ) cosh

[
√

T

k

(

x+P − x+Q

)

]

cosh

[
√

T̄

k

(

x−P − x−Q

)

]

(3.4)

−
(

k√
T T̄

eρP+ρQ +

√
T T̄

k
e−(ρP+ρQ)

)

sinh

[
√

T

k

(

x+P − x+Q

)

]

sinh

[
√

T̄

k

(

x−P − x−Q

)

]

.
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Bulk quantities in AdS/CFT are usually divergent as ρ → ∞, reflecting the short distance

(UV) divergences in the dual field theory. The simplest way to regulate such divergences

is to place the boundary on a ρ = ρ0 slice, with finite ρ0 , and take ρ0 → ∞ at the end.

Let us then push the points P , Q in (3.4) to the regularized conformal boundary of AdS3,

i.e. ρP = ρQ = ρ0 → ∞ . Our basic observation is that the composite loop W (P,Q) in

the fundamental representation of sl(2,R) is related to the length d(P,Q) of the geodesic

anchored at P and Q as

W2d(P,Q) = 2 cosh d(P,Q) −−−−→
ρ0→∞

exp d(P,Q) , (3.5)

where we used the fact that the geodesic length becomes large (divergent, in fact) as we

push the points to the boundary. As we have discussed, for standard gravitational theories

in the bulk the geodesic distance is intimately related to entanglement entropy in the dual

theory via the R-T prescription. The functional (3.2) rephrases this result in a language

appropriate to Chern-Simons theory, and it is moreover well-defined in the higher spin the-

ory as well. Motivated by this fact, for points P and Q on a Cauchy slice on the boundary,

defining a spacelike interval A , we propose to consider the functional

SA ≡ kcs
σ1/2

log

[

lim
ρ0→∞

WR(P,Q)
∣

∣

∣

ρP=ρQ=ρ0

]

(3.6)

as a candidate entanglement entropy in the 2d CFTs dual to the three-dimensional higher

spin theories. Here, kcs is the Chern-Simons level defined in (2.17). The constant σ1/2 takes

the value 2 if there are half-integer spin currents in the spectrum, and 1 otherwise; its origin

will be explained in section 3.2.2. As we will discuss below, the choice of representation

R in (3.6) depends on both N and the choice of embedding of sl(2) into sl(N) . In the

N = 2 case, a change in the chosen representation can be compensated by changing the

prefactor in (3.6). For example, evaluating (3.2) in a three-dimensional representation of

sl(2), instead of the fundamental, one obtains W3d(P,Q) = −1 +
(

W2d(P,Q)
)2

−−−−→
ρ0→∞

(

W2d(P,Q)
)2

, and (3.6) would remain invariant if we simultaneously divide the prefactor

by two. Using the Chern-Simons level as the coefficient (up to σ1/2) appears as a natu-

ral choice from the bulk perspective, which does not rely on details of the representation.

Once the coefficient is fixed in this way, we will select the representation based on physical

requirements. We emphasize that for N > 2 the above functional does not have an obvious

geometric interpretation: it is determined purely in terms of the gauge connections, as

appropriate to the topological character of the bulk theory, and in particular it does not

require the identification of a metric tensor.

A comment is in order about the symmetries that (3.6) is expected to have. Un-

der a general gauge transformation, a Wilson line U(P,Q) = P exp
(

∫ P
Q A

)

transforms as

U → h−1(P )U(P,Q)h(Q) . Since A is valued in the slL (“left”) algebra and Ā is valued in

the slR (“right”) algebra, it is clear that the composite loop WR(P,Q) in (3.2) is invariant

under the diagonal subgroup parameterized by h = h̄ . As reviewed above, in the pure grav-

ity case (N = 2) the diagonal subgroup corresponds to rotations of the local Lorentz frame
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(cf. (2.7)), so such invariance is very natural. Also, in the pure gravity case, off-diagonal

gauge transformations correspond to a shift of the endpoints as is clear from (2.7), and

the geodesic length is obviously not invariant under such shifts. More importantly, even

though (3.2) is not invariant under a general gauge transformation, in (3.6) we are only

assigning a field-theoretical interpretation to its leading UV (large ρ0) divergence. Now

recall that the asymptotic behavior of the gauge fields encodes the state of the system.

Hence, gauge transformations that change the asymptotic behavior will change the state

of the system, whereas gauge transformations that leave the asymptotic behavior invari-

ant are true symmetries. Gauge transformations of the first type belong to the so-called

asymptotic symmetry group of the system. We therefore see that the proposed entangle-

ment entropy is only invariant under those gauge transformations that act trivially on the

state, and not under those that modify the state, exactly as expected.

In the absence of explicit field theory results for entanglement entropy in 2d CFTs

deformed by higher spin currents (or in non-trivial states carrying higher spin charges),

we will content ourselves with testing the plausibility of our proposal. Firstly, we will ex-

plicitly check that it allows us to recover the known CFT results in the absence of higher

spin charges. Secondly, it will reproduce the thermal entropy in the limit in which the von

Neumann entropy becomes extensive. Finally, we will check that the functional SA satisfies

the strong subadditivity property of entanglement entropy (up to subtleties that we will

discuss in due course).

3.1 Recovering standard results

We will now show that our prescription, when applied to solutions of pure gravity (i.e. in the

absence of higher spin charges), allows us to recover the known results for the single-interval

entanglement entropy in 2d CFTs [14]. With the result (3.4) for AAdS3 solutions in hand we

can easily compute (3.6) for the rotating BTZ black hole, characterized by (2.9), as well as

global AdS3 (2.10), and the Poincaré-patch of AdS3 (the latter with T = T̄ = 0). From the

dual field theory point of view, the Poincaré-patch and global AdS3 backgrounds correspond

to the CFT ground state (i.e. at zero temperature) on the infinite line and on a system with

periodic boundary conditions, respectively. The rotating black hole background, in turn,

corresponds to computing the entanglement entropy in a finite temperature state with a

potential for angular momentum. In the N = 2 case (2.18) implies c = 6kcs and (3.6) yields

Poincaré-patch: SPAdS3 =
c

3
log

[

∆x

a

]

(3.7)

global: SAdS3 =
c

3
log

[

ℓ

a
sin

(

∆ϕ

2

)]

(3.8)

black hole: SBTZ =
c

6
log

[

β+β−
π2a2

sinh

(

π
∆x

β+

)

sinh

(

π
∆x

β−

)]

(3.9)

where we defined the “lattice spacing” a in terms of the radial cutoff ρ0 as

a = ℓe−ρ0 , (3.10)
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and dropped contributions that are subleading as ρ0 → ∞ , as instructed by the limit

in (3.6). In the results for Poincaré AdS and the BTZ black hole we have defined ℓϕ → x .

Similarly, ∆x ≡ xP − xQ and ∆ϕ ≡ ϕP − ϕQ . The zero temperature results, as well as

the finite temperature result in the absence of rotation were first reproduced using holog-

raphy in [18]. The rotating case lies beyond the scope of the original R-T prescription,

however, because in a stationary (but not static) spacetime the extremal surface anchored

at the spacelike interval in the boundary does not necessarily lie on a constant-time slice

in the bulk. The corresponding result was later obtained with the refined covariant pre-

scription put forward in [54]. It is reassuring that our prescription in terms of Wilson lines

encompasses all these cases simultaneously, and with a minimal calculational effort.

A comment is in order regarding the black hole result (3.9). As written, this result

is valid for “planar” black holes only. The same result holds for globally-defined black

holes where the boundary is S1, but only for sufficiently small ∆x, see section 3.2. It is

somewhat remarkable that a universal answer exists even in this case, where the result is

not determined by conformal symmetry. Since the black hole also has a temperature, the

corresponding CFT is defined on a torus. Field-theoretical calculations of entanglement in

2d CFTs are usually performed using the so-called replica trick, and (for the single-interval

case) they effectively boil down to the calculation of a two-point function of twist operators

(see e.g. [14]). In the cylinder (or the plane) the form of this two-point function is com-

pletely fixed by symmetry (Ward identities), and hence universal. As pointed out in [57],

however, the corresponding correlators on the torus depend not only on the conformal

weights, but on specific details of the theory such as the operator content. From the holo-

graphic point of view, it is conceivable that these non-universalities are washed out in the

semiclassical (large-c) limit, much in the same way that non-universalities associated with

multiple intervals (rather than finite size effects) have been recently shown to be subleading

in the large central charge regime [20, 21].

We stress that even though our formula (3.6) correctly reproduces the entanglement

entropy in the absence of higher spin charges and chemical potentials, there is no a priori

guarantee that it will still compute the entanglement entropy in the higher spin cases. In

what follows we will amass more evidence in favor of this interpretation.

3.2 Thermal entropy and the choice of representation

When computed at finite temperature, the von Neumann entropy associated with the

reduced density matrix ρA receives contributions from classical correlations that mix with

the quantum correlations due to “true” entanglement. For fixed temperature, as subsystem

A grows in size the reduced density matrix approaches the thermal density matrix of the full

system; by definition, the entanglement entropy then becomes the thermal entropy (up to

subtraction of short distance divergences). In our discussion of this limit we will distinguish

between a system that is infinitely-extended in the spatial direction, and one that is compact

(i.e. a circle). In the holographic context the former arises as the boundary of a planar

black hole, while the latter corresponds to a globally-defined black hole geometry.

Let us start with the case of a compact system. The cycle parameterizing the horizon

of a global black hole is non-contractible, and the non-trivial topology of the bulk manifold
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A

A
c

Figure 1. Minimal surface with non-trivial bulk topology in the R-T prescription. The interior of

the black hole horizon is represented by the grey shaded area. Left: for a small boundary region

(yellow), the minimal surface (red) is given by a connected geodesic. Right: for a large boundary

region (yellow), the minimal surface (red) is disconnected and includes a component that wraps

around the horizon, effectively computing its area and hence the black hole thermal entropy.

in this case makes the definition of holographic entanglement entropy subtle. Let us first

review this issue in the context of the R-T proposal, and the global BTZ black hole. As

depicted in figure 1, in the presence of a black hole there are in general two geodesic config-

urations that are homologous to an interval in the boundary. For a fixed temperature (i.e.

fixed horizon size), if the boundary interval is small, the corresponding minimal surface

is a connected geodesic that does not wrap the horizon. For a sufficiently large boundary

interval, the minimal surface will instead be a disconnected sum of two components, one

of which is a loop around the black hole horizon [58]. The length of the latter curve ef-

fectively computes the black hole horizon area (length), and hence its thermal entropy via

the Bekenstein-Hawing formula. Equivalently, for a fixed interval size, the minimal surface

can change from connected to disconnected as a function of the size of the horizon (tem-

perature). Incidentally, this shows that the limits of high temperature and large subsystem

size do not commute.2

We now ask how is the thermal entropy recovered in the context of our proposal,

focusing on the global BTZ solution (cf. (2.9)) as an example. The entropy of the BTZ

black hole (and of the dual theory defined on a torus) is given by

Sthermal = 2π
√
kT + 2π

√

kT̄ = 2π

√

c

6
T + 2π

√

c

6
T̄ , (3.11)

2We thank M. Rangamani for emphasizing the importance of this issue to us.
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which moreover takes the form predicted by Cardy’s asymptotic growth of states in a

unitary CFT. Starting with the result (3.4), we evaluate it for an equal-time loop in the ϕ

direction, at a generic radial position ρ , and extremize the result as a function of ρ . The

value ρ∗ that minimizes this functional is such that

e2ρ∗ =
π2ℓ2

β+β+
, (3.12)

which in fact corresponds to the (outer) black hole horizon ρ+. Evaluating (3.4) at ρ∗ = ρ+
we find

W (∆ϕ = 2π)
∣

∣

∣

ρ=ρ∗
= 2 cosh

[

Sthermal

k

]

, (3.13)

so that

Sthermal = k cosh−1

(

1

2
W (∆ϕ = 2π)

∣

∣

∣

ρ=ρ∗

)

. (3.14)

Notice that the appearance of the cosh−1 function is consistent with the first equality

in (3.5), and the fact that we are evaluating at a finite radial distance instead of pushing

the points to the boundary.

While it is not obvious how to generalize the above minimization procedure to the

higher spin scenario,3 we will now show that our prescription can recover the thermal en-

tropy in situations where the boundary coordinate is non-compact, even in the presence of

higher spin charges. Let us first recall the corresponding result in field theory. Consider a

(1 + 1)-dimensional CFT on the infinite line, in an ensemble at temperature β−1 , and let

region A be an interval of length ∆x: the basic idea is that, up to a proper subtraction

of ultraviolet divergences, the entanglement entropy should coincide with the thermal en-

tropy in the limit ∆x ≫ β . More explicitly, consider the finite temperature result for the

single-interval entanglement entropy,

SA =
c

3
log

(

β

πa
sinh

(

π∆x

β

))

. (3.15)

In the limit ∆x ≫ β the entanglement entropy SA becomes extensive

SA ≃ πc

3

∆x

β
, (3.16)

with a coefficient given by the thermal entropy density of the system.

In standard gravity, the thermal entropy associated with a black hole is computed

from the area of the black hole horizon using the Bekenstein-Hawking formula Sthermal =

Area/(4G). The notion of a smooth horizon is not invariantly defined in the topological

bulk theory, and hence the entropy must be computed by different means when the gauge

3In particular, it is not clear what should replace the inverse cosh, if anything. However, since we expect

closed loops that wrap around the horizon to reproduce the thermal entropy of the black hole, and we have

an explicit expression for the latter, a working hypothesis could be to assign the black hole entropy to all

closed bulk loops and to use our Wilson loop prescription for all curves that start and end on the boundary.
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group is SL(N,R)× SL(N,R) with N > 2 . In [28] we showed that, for any N , the higher

spin black hole thermal entropy can be written in terms of the connection as

Sthermal = −2πikcsTrN

[

(az + az̄) (τaz + τ̄ az̄)− (āz + āz̄) (τ āz + τ̄ āz̄)
]

, (3.17)

where the trace is taken in the fundamental representation. This is obtained by evaluating

the free energy with canonical boundary conditions, and performing a Legendre transform

(see [59] also). There also exists a different expression for the entropy which we called the

holomorphic entropy formula in [28] and which appears to be more closely connected to

CFT partition functions. Our expression for the entanglement entropy favors the canonical

version of the entropy over the holomorphic one, and we will return to this point in the

conclusions.

In [29, 42] it was proposed that a gauge-invariant characterization of a smooth black

hole solution is the requirement that it has trivial holonomy around the contractible cycle

of the boundary torus.4 In particular this means that the holonomy matches that of the

BTZ black hole, and this requirement translates into (τaz + τ̄ az̄) = u−1
(

iΛ0
)

u for some

matrix u. Since ax = (az + az̄) /ℓ and (τaz + τ̄ az̄) commute by the equations of motion (for

constant connections), they can be diagonalized simultaneously, and the entropy density

sthermal reduces to

sthermal ≡
Sthermal

2πℓ
= kcsTrN

[

(

λx − λx

)

Λ0
]

, (3.18)

where λx and λx are diagonal matrices whose entries contain suitably ordered eigenvalues

of ax and āx , respectively. In what follows we will argue that, provided the representation

R in (3.6) is chosen appropriately, our result for the single-interval entanglement entropy

will satisfy

SA −−−−→
∆x≫β

sthermal∆x (3.19)

in the extensive limit ∆x ≫ β . We will divide the discussion into principal and non-

principal embeddings.

3.2.1 Principal embedding

In the principal embedding, Λ0 is a diagonal matrix whose entries correspond to the com-

ponents of the Weyl vector ~ρ of sl(N) (cf. appendix C). Similarly, ax and āx can be put in

the Cartan subalgebra C by conjugation with a group element, and we denote the corre-

sponding dual element in C∗ (the root space) by ~λx,
~λx. Hence, we can rewrite the entropy

density (3.18) more abstractly as

sthermal = kcs〈~λx − ~λx , ~ρ 〉 . (3.20)

On the other hand, in a given representation R, the product of exponentials in (3.2) con-

tains a sum over terms of the form e∆x〈~λx−~λx,λ
(j)
R

〉 , where λ
(j)
R denotes the weights in the

corresponding representation. The question is now which of these terms dominates for large

∆x. The vector ~λx−~λx can, possibly up to a Weyl reflection, always be written as a sum of

4More precisely, by “trivial” we mean that the holonomy is contained in the center of the gauge group [43].
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fundamental weights with non-negative coefficients. This is quite easy to see if we visualize
~λx − ~λx as a diagonal N ×N matrix. The Weyl group permutes the diagonal entries arbi-

trarily, and in particular there always exists a permutation that orders the diagonal entries

from larger to smaller. Such matrices precisely correspond to sums of fundamental weights

with non-negative coefficients. If ~λx−~λx is of this form, then the highest weight of the rep-

resentation R will dominate the entanglement entropy for large ∆x. All other weights are

related to the highest weight by subtracting a combination of positive roots, and this will

always lower the inner product. Therefore, up to a possible Weyl reflection, (3.6) becomes

SA −−−−→
∆x≫β

kcs〈~λx − ~λx ,Λ
hw
R 〉∆x , (3.21)

where Λhw
R denotes the highest weight in the representation R. Comparing with (3.20),

and keeping in mind that close to the BTZ point (where the higher spin charges and chem-

ical potentials vanish) ~λx − ~λx is a small perturbation of a multiple of Λ0 and therefore

automatically of the right form without the need for a Weyl reflection, we conclude that,

in the principal embedding, our entanglement functional will correctly reproduce the ther-

mal entropy in the Cardy limit provided we evaluate W (P,Q) in the representation with

highest weight given by the Weyl vector, i.e.

principal embedding: Λhw
R = ~ρ . (3.22)

Via the Weyl formula, the dimension of this representation is

dim(R) =
∏

α>0

〈Λhw
R + ~ρ, α〉
〈~ρ, α〉 = 2#of positive roots = 2

N(N−1)
2 . (3.23)

Naturally, for N = 2 this is the two-dimensional (defining) representation. For N = 3

we have dim(R) = 8 ; hence, in the sl(3,R) × sl(3,R) theory with principally-embedded

sl(2), one should evaluate (3.6) in the adjoint representation in order to recover the thermal

entropy in the high-temperature limit, and we will explicitly check this below by applying

our formula to the spin-3 black hole.

In addition to giving the right thermodynamic entropy, it is not hard to see that the

representation (3.22) is the one needed for (3.6) to yield the right result when applied to the

principally-embedded BTZ solution in the higher spin theory. Ultimately this can be traced

back to the factor TrN
[

Λ0Λ0
]

in (2.18), which in the principal embedding corresponds to

the square of the norm of the Weyl vector (cf. (C.14)).

3.2.2 Non-principal embeddings

The combined requirements that the entanglement entropy reproduces the thermal entropy

at high temperature and that the BTZ result is recovered with the right normalization allow

one to determine the representation R in non-principal embeddings as well. Let λ0 denote

the dual of the Cartan element Λ0 . If the embedding is such that the spectrum contain

half-integer spin currents, λ0 does not belong to the weight lattice, but 2λ0 does. The factor
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σ1/2 introduced in (3.6) accounts for this fact: for any embedding, σ1/2λ0 is a combination

of fundamental weights with integer coefficients, so it proves convenient to define

λ̃0 = σ1/2λ0 . (3.24)

The basic observation that leads to the choice of representation is that, at the BTZ point,

λx ∼ Λ0 . However, this is not yet of the form of a sum of fundamental weights with

non-negative coefficients and we still need to find a Weyl reflection that puts it in this

form. Let us denote this Weyl reflection by w. Then in order to reproduce the thermal

entropy (3.18), we want the overlap between w(λ̃0) and the highest weight appearing in

the representation R to be the same as the overlap of λ̃0 with itself,

〈Λhw
R , w(λ̃0)〉 = 〈λ̃0, λ̃0〉 = σ2

1/2TrN

[

Λ0
(P )Λ

0
(P )

]

, (3.25)

where TrN denotes the trace evaluated in the defining (N -dimensional) representation,

and Λ0
(P ) is the Λ0 generator appropriate to the embedding labeled by the partition P .

Similarly, in order to have an unambiguous thermal limit, we require that all the other

states occurring in the representation have a strictly smaller overlap with λ̃0 , which will be

automatically the case for the correct choice of Weyl reflection w. As we deform the theory

away from the BTZ point by adiabatically turning on the higher spin charges along the

BTZ branch, and as long as we do not encounter eigenvalue crossing, these requirements

will still select the right representation.

Given an embedding P , we therefore find that the unique representation satisfying the

above requirements is the one whose highest weight state is given by the (unique) domi-

nant weight5 that lies in the same Weyl orbit as λ̃0 . For the first few values of N , the

representations selected by this criteria are shown in table 1. In particular, for any N ,

the desired representation in the diagonal embedding is the adjoint, with highest weight

Λhw
R = α1 = ω1 + ωN−1 .

3.3 Strong subadditivity

An important property of entanglement entropy is the so-called strong subadditivity [60]:

SA + SB ≥ SA∪B + SA∩B (3.26)

SA + SB ≥ SA∩Bc + SB∩Ac (3.27)

One of the main successes of the R-T prescription is its ability to fulfill these inequalities in

a natural way [53, 61, 62]. In order to discuss whether the functional (3.6) satisfies strong

subadditivity we must distinguish two cases: A∩B = ∅ (i.e. A and B are disjoint intervals)

and A∩B 6= ∅ . We will only study situations where the topology of the bulk is trivial, i.e.

there are no non-contractible cycles such as those associated with global black holes.

5A dominant weight is a linear combination of fundamental weights with non-negative coefficients.
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Embedding σ1/2 Highest weight dim(R)

3 → 22 ⊕ 12 2 ω1 + ω2 8

4 → 22 ⊕ 12 ⊕ 12 2 ω1 + ω3 15

4 → 22 ⊕ 22 1 ω2 6

4 → 32 ⊕ 12 1 ω1 + ω3 15

5 → 22 ⊕ 12 ⊕ 12 ⊕ 12 2 ω1 + ω4 24

5 → 22 ⊕ 22 ⊕ 12 2 ω2 + ω3 75

5 → 32 ⊕ 12 ⊕ 12 1 ω1 + ω4 24

5 → 32 ⊕ 22 2 ω1 + ω2 + ω3 + ω4 1024

5 → 42 ⊕ 12 2 2ω1 + ω2 + ω3 + 2ω4 6125

Table 1. Choice of representation in the non-principal embeddings for N = 3, 4, 5 .

3.3.1 Disjoint intervals

Firstly, we need to supplement our prescription with an instruction on how to compute

the entanglement for a region of the form A ∪ B when A and B are disjoint intervals.

Inspired by the pure gravity case, we propose to minimize the result over all the possible

pairings between the boundary points defining the intervals A and B, and such that the

bulk configuration is homologous to the boundary. The latter topological condition was

originally introduced in [55], and it has been shown to be a necessary ingredient for the

consistency of the Ryu-Takayanagi prescription [53]. In the present context, it implies that

the topology of the configuration for which (3.2) is evaluated is such that there exists a bulk

region bounded by the Wilson lines and the boundary intervals A and B . For example,

if A and B are two disjoint intervals defined by boundary points (a1, a2) and (b1, b2) , the

two relevant configurations are depicted in figure 2. We then define the quantity SA∪B as

SA∪B = min
{

S(a1, a2) + S(b1, b2) , S(a1, b2) + S(a2, b1)
}

, (3.28)

where the individual terms in each sum are computed using (3.6). Note that the pairing

that would give S(a1, b1) + S(a2, b2) is excluded by the homology condition. With the

definition (3.28), (3.26) is automatically satisfied when A ∩B = ∅ ((3.27) is satisfied triv-

ially in this case). Naturally, these considerations can be generalized to any number of

disjoint intervals.

3.3.2 Overlapping intervals

Let us now consider (3.26)–(3.27) in the case where the regions A and B intersect. As we

will now show, these inequalities are satisfied if the single-interval entanglement entropy

is a concave and non-decreasing function of the interval length. The relevant boundary

configuration in this case is depicted in figure 3. Let ∆I, ∆II and ∆III denote the length of

the corresponding intervals in figure 3. Following [63] we define

λ =
∆III

∆I +∆III
, (3.29)

– 19 –



J
H
E
P
0
4
(
2
0
1
4
)
0
8
9

a1 a2 b1 b2 a1 a2 b1 b2
x x

Figure 2. Relevant configurations for two disjoint intervals on the boundary. The pairing (a1, b1)

and (a2, b2) is excluded by a condition on the homology of the bulk configuration.

︸ ︷︷ ︸

A

B
︷ ︸︸ ︷

I = A ∩Bc

II = A ∩ B

III = B ∩ Ac

x

Figure 3. Configuration for overlapping intervals.

so that

∆I+∆II=λ∆II+(1−λ) (∆I+∆II+∆II) , ∆II+∆III=λ (∆I+∆II+∆II)+(1−λ)∆II . (3.30)

Assuming that the single-interval entanglement entropy is a concave function of the interval

length, (3.30) implies

SA ≥ λSA∩B + (1− λ)SA∪B , (3.31)

SB ≥ λSA∪B + (1− λ)SA∩B , (3.32)

and adding these two inequalities we obtain (3.26). Similarly, under the assumption that

the single-interval entanglement is a non-decreasing function of the interval length one has

SA ≥ SA∩Bc , SB ≥ SB∩Ac , (3.33)

and adding these two inequalities yields (3.27).

Given that a general proof of the concavity and monotonicity of the functional (3.6)

has eluded us so far, in section 4 we will study whether these properties are fulfilled on a

case-by-case basis when applying (3.6) to higher spin examples.

4 Examples in the SL(3,R) × SL(3,R) theory

Having checked that our entanglement functional reproduces all the known results for the

standard gravity case, corresponding to SL(2,R) × SL(2,R) gauge group, we will now

evaluate it on different solutions of the SL(3,R) × SL(3,R) theory. All the solutions we

consider below are of the form (2.12), with a, ā constant connections, which includes black

hole solutions carrying higher spin charges. From now on we work in units in which the

AdS length is set to one, ℓ = 1 .
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4.1 The RG flow solution

As a first non-trivial example we apply our formula to compute the entanglement entropy

for a zero temperature solution discussed in [42], which realizes a flow from a UV CFT with

W(2)
3 symmetry to an IR fixed point with W3 symmetry. The flow is initiated by adding a

relevant operator of dimension 3/2 to the Lagrangian of the UV CFT. From the point of

view of the theory with W3 symmetry, on the other hand, the flow is triggered by adding

weight-3 currents to the Lagrangian of the IR CFT.

As reviewed in section 2, there are two non-trivial embeddings of the gravitational

sector in the SL(3,R)×SL(3,R) theory. The corresponding theories have different spectrum

and asymptotic symmetries; from the bulk perspective, they are constructed as excitations

around different AdS vacua. In particular, the theory constructed around the principal

embedding vacuum contains irrelevant operators, and it is interesting to ask whether it is

possible to realize an RG flow from the theory in the diagonal embedding (UV), with central

charge cUV = c/4, to the principal embedding fixed point (IR) with central charge cIR = c .

This was accomplished in [42], where it was pointed out that even though cIR > cUV , such

flow is triggered by adding operators which are not Lorentz invariant, and therefore there is

no a priori contradiction with the c-theorem whose derivation assumes a Lorentz-invariant

flow. From the point of view of the Chern-Simons theory the flow is realized by constructing

a connection that interpolates between those corresponding to the UV and IR AdS3 vacua.

Using the basis of generators {Li,Wj} introduced in appendix B, the RG flow solution reads

A = eρ Λ̂+ dx+ + Λ̂0 dρ+ λ eρ/2L1 dx
−

Ā = −eρ Λ̂− dx− − Λ̂0 dρ− λ eρ/2L−1 dx
+ ,

(4.1)

where

Λ̂0 =
1

2
L0 , Λ̂± = ±1

4
W±2 (4.2)

is the basis of sl(2,R) generators appropriate to the diagonal embedding (UV theory).

More precisely, we have rewritten the solution in a way that looks natural from the point

of view of the diagonal embedding. Namely, for λ = 0 the above solution is the UV AdS3
vacuum, while for λ → ∞ it gives the IR vacuum only after rescaling ρ and exchanging

x+ ↔ x− . As discussed in [42], from the point of view of the UV CFT with W(2)
3 symmetry

λ is interpreted as a source for spin-3/2 operators. We stress that the deep IR corresponds

to large λ, and the UV to small λ.

As we explained in section 3.2, for the N = 3 theory in the diagonal embedding we

must evaluate (3.2) and (3.6) in the eight-dimensional adjoint representation (and with

σ1/2 = 2). For two arbitrary boundary points (P,Q) we obtain

WAdj(P,Q) = 8− 24λ2eρ0∆x+∆x− − 2e2ρ0∆x+∆x−
(

3− 11λ4∆x+∆x−
)

+ 8λ2e3ρ0
(

∆x+∆x−
)2
(

1− λ4∆x+∆x−
)

+ e4ρ0
[

λ8
(

∆x+∆x−
)4 − λ4

(

(

∆x+
)6

+
(

∆x−
)6
)

+
(

∆x+∆x−
)2
]

(4.3)
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where ∆x± = x±P − x±Q and ρ0 → ∞ is the position of the regularized conformal bound-

ary as before. Note that the above expression depends only on the invariant interval

∆s2 = −∆x+∆x− for λ = 0 and λ = ∞, consistent with Lorentz invariance at the fixed

points. The relativistic invariance is broken for generic values of λ . Evaluating for points

P and Q at equal times we obtain

WAdj(P,Q) = 8 +

(

∆x

e−ρ0

)2
[

e2ρ0 (∆x)2
(

1− λ4 (∆x)2
)2

+ 8λ2eρ0 (∆x)2
(

1 + λ4 (∆x)2
)

+ 2
(

3 + 11λ4 (∆x)2
)

+ 24λ2e−ρ0

]

(4.4)

where ∆x is the spatial separation between the points (i.e. the interval length). Focusing

on the leading ρ0-divergence, (3.6) yields

SA =
cUV

3
log

[

∆x

aUV

√

∣

∣

∣
1− λ4 (∆x)2

∣

∣

∣

]

(4.5)

where the central charge is given by (2.18),

cUV = 12kcsTr3d

[

Λ̂0Λ̂0
]

= 6kcs , (4.6)

and the UV cutoff is defined as aUV ≡ e−ρ0 . We notice that the appropriate result

SA = (cUV /3) log[∆x/aUV ] is recovered at the UV fixed point λ = 0 . As we increase

∆x from its lower bound ∆x = aUV the derivative of (4.5) is discontinuous at the value

∆x = 1√
2λ2 and the putative entanglement entropy ceases to be non-decreasing at that

point, which would conflict with strong subadditivity (cf. section 3.3.2). This discontinuity

as a function of interval length indicates that (4.5) cannot hold at arbitrarily long distances.

For small interval sizes, and from the point of the UV theory, the deformation is relevant,

produced by a current of weight 3/2, and indeed expanding around the UV fixed point one

finds power-law corrections starting with ∼ λ4(∆x)2, which become increasingly important

for large ∆x . On the other hand, for sufficiently large interval size (or large enough λ for

fixed interval size) one should instead find the IR theory result SA → (cIR/3) log[∆x/aIR] ,

where cIR = 4cUV . In the context of our prescription, the IR result is indeed recovered by

taking the λ → ∞ limit first6 in (4.4), and applying (3.6) with σ1/2 = 1 as appropriate to

the principal embedding theory. In particular, in this way one identifies

aIR =
eρ0/2

λ
aUV =

1

eρ0/2λ
. (4.7)

The puzzling features of (4.5) may be due to the fact that we have not properly iden-

tified the cutoff. Since the UV and IR cutoffs are different, one expects the actual physical

cutoff to interpolate between the two values and be a non-trivial function of λ. Moreover,

since one also ends up in the IR regime for large ∆x, the physical cutoff is presumably

6We thank E. Perlmutter for pointing out that this order of limits yields the correct result in computations

of scalar two-point functions on the RG flow background.
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a non-trivial function of ∆x as well. In general, in AdS/CFT, we do not know how to

relate bulk regularization (like choosing fixed ρ0) to a particular regularization scheme in

the boundary theory. Strong subadditivity is supposed to hold for a natural regularization

in the boundary theory, but this may map to a complicated scheme from the bulk point of

view. Perhaps the full result (4.4) will give rise to a strongly subadditive entanglement en-

tropy for a suitable choice of cutoff, but we leave a more detailed analysis of this interesting

issue to future work.

4.2 The charged black hole in the diagonal embedding

We will now apply our formula to a finite temperature CFT state with a non-zero chemical

potential for U(1) charge turned on. The symmetry algebra in this case corresponds to two

copies of a Virasoro algebra augmented by two copies of a U(1) Kac-Moody algebra, and

the U(1) charge is furnished by the zero modes of the affine algebra. This can be realized

from the bulk perspective by considering a black hole solution of the N = 3 diagonal

embedding theory in the truncation where the charged (spin-3/2) fields are turned off:

a =
(

Λ̂+ − T Λ̂− + jW0

)

dx+ + µW0 dx
− (4.8)

ā = −
(

Λ̂− − T Λ̂+ + jW0

)

dx− − µ̄W0 dx
+ . (4.9)

This solution corresponds to a BTZ black hole carrying U(1) charge, and generalizes the

non-rotating solution studied in [43]. The sl(2,R) generators in the diagonal embedding

are given by (4.2), and T is the expectation value of the spectral flow-invariant combination

of the stress tensor T and the U(1) current U (we follow the conventions in [42])

T =

〈

T

kcs
− 3U2

4k2cs

〉

=

〈

6

ĉ

(

T − 27

6ĉ
U2

)〉

(4.10)

where ĉ = 6kcs is the central charge in the diagonal embedding (cf. (2.18)), and the eigen-

value of U is given by (4kcs/3)j, with similar expressions in the barred sector.

Defining the matrices

h = 2π (τa+ − τ̄ a−) , h̄ = 2π (τ ā+ − τ̄ ā−) , (4.11)

the smoothness conditions in the diagonal embedding, spec
(

h
)

= spec
(

h̄
)

= spec
(

2πiΛ̂0
)

(see section 4.3 for more details), can be recast as

det (h) = det
(

h̄
)

= 0 , Tr
[

h2
]

= Tr
[

h̄2
]

= −2π2 . (4.12)

The solution to these equations in the BTZ branch is

τ =
i

2
√
T

, τ̄ = − i

2
√
T

, µ =
τ

τ̄
j , µ̄ =

τ̄

τ
j . (4.13)

Our general formula (3.17) for the thermal entropy then yields the correct answer

Sthermal = 2πkcs

(√
T +

√

T
)

. (4.14)
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Next, evaluating (3.2) and (3.6) in the eight-dimensional adjoint representation (and

with σ1/2 = 2), as appropriate to the diagonal embedding of the N = 3 theory (cf. table 1),

we obtain

WAdj(∆x) = e4ρ0





sinh
(√

T ∆x
)

sinh
(√

T ∆x
)

√
T T





2

+O
(

e2ρ0
)

(4.15)

and

SA = kcs log



e2ρ0
sinh

(√
T ∆x

)

sinh
(√

T ∆x
)

√
T T



 (4.16)

=
ĉ

6
log

[

β+β−
π2a2

sinh

(

π∆x

β+

)

sinh

(

π∆x

β+

)]

(4.17)

where a = e−ρ0 is the cutoff and the inverse chiral temperatures β± = 1/T± are defined

through T = π2/β2
− and T = π2/β2

+ .

Since the truncation of the diagonal embedding we are considering can be formulated

as pure gravity coupled to Abelian gauge fields, we can in fact apply the R-T prescrip-

tion to obtain the entanglement entropy for the dual of the charged BTZ solution. The

corresponding calculation involves the length of geodesics on a standard BTZ black hole,

with the only difference that the metric is written in terms of the expectation value of the

spectral flow-invariant combination (4.10) instead of that of the operators L0, L̄0 . Accord-

ing to (4.10), the result for the entanglement entropy should then agree with (3.9) upon

replacing T/kcs → T and T̄ /kcs → T . It is reassuring to see that this is precisely the

result we have obtained with our prescription.

4.3 Higher spin black hole in the principal embedding

We now discuss our main example, namely an application of our holographic entanglement

entropy proposal to a CFT ensemble at finite temperature and finite higher spin charge.

From the bulk perspective this is realized by considering the higher spin black hole solution

constructed in [29, 42], which describes the CFT partition function at finite temperature

and finite higher spin charge furnished by currents of weight (3, 0) (and (0, 3)) [64]. We

emphasize that the entanglement calculation on this background cannot be performed

with any of the known holographic methods, so our result yields a non-trivial prediction.

In the basis of generators {Li,Wj} introduced in appendix B, the connections are of the

form (2.12) with b = b(ρ) = eρΛ
0
= eρL0 (principal embedding) and

a =

(

L1 −
2πL
k

L−1 −
πW
2k

W−2

)

dx+

+ µ

(

W2 +
4πW
k

L−1 +

(

2πL
k

)2

W−2 −
4πL
k

W0

)

dx− , (4.18)

ā = −
(

L−1 −
2πL̄
k

L1 −
πW̄
2k

W2

)

dx−

− µ̄

(

W−2 +
4πW̄
k

L1 +

(

2πL̄
k

)2

W2 −
4πL̄
k

W0

)

dx+ . (4.19)
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Here, W and W̄ are the spin-3 charges, and µ, µ̄ their conjugate chemical potentials. L and

L̄ are related to the CFT stress tensor zero modes by T = 2πL , T̄ = 2πL̄ (at least when

the higher spin deformations are switched off; see [28, 65, 66] for different definitions of the

energy when µ and µ̄ are non-zero) . As before, k is the level of the embedded sl(2) theory,

given by (2.5), and related to the level kcs of the full theory via (2.17): kcs = k/4 . Notice

that the BTZ black hole connections (2.13) are recovered by setting W = W̄ = µ = µ̄ = 0.

Let us say a few words about the smoothness properties of this solution. Analytically

continuing to Euclidean time tE one can introduce complex coordinates x+ = t+ ϕ → z ,

x− → −z̄ , and the topology of the solution is that of a solid torus. The boundary torus

is defined by the identifications z ≃ z + 2π ≃ z + 2πτ ; for the BTZ solution in the N = 2

theory τBTZ = iβ (1 + Ω) /(2π), where β and Ω are, respectively, the inverse temperature

and angular velocity of the horizon (Ω is continued to purely imaginary values in order

for the Euclidean section to be real). The holonomies associated with the identification

around the contractible cycle are

Holτ,τ̄ (A) = b−1eh b , Holτ,τ̄ (Ā) = b eh̄b−1 , (4.20)

where the matrices h and h̄ are defined as

h = 2π (τaz + τ̄ az̄) , h̄ = 2π (τ āz + τ̄ āz̄) . (4.21)

In [29, 42] it was proposed that a gauge-invariant characterization of a regular black hole

horizon in the higher spin theory is the requirement that the holonomies (4.20) are trivial,

just as in the BTZ solution. In the principal embedding this condition can be rephrased

as spec(τaz + τ̄ az̄) = spec(iΛ0) , and similarly for h̄ . For the SL(3,R) black hole solution

at hand, this implies that the eigenvalues of h and h̄ in the fundamental representation

are (0,±2πi). Roughly speaking, the trivial holonomy requirement imposes relations be-

tween the charges and their conjugate potentials in a way consistent with thermodynamic

equilibrium.

In what follows we will focus on the non-rotating spin-3 black hole, obtained by setting

L̄ = L , W̄ = −W , µ̄ = −µ . (4.22)

In the absence of rotation the modular parameter of the boundary torus is τ = −τ̄ =

iβ/(2π) , where β is the inverse temperature, and the holonomy matrices become simply

h = 2πτ at , h̄ = 2πτ āt . The smoothness conditions then boil down to the requirement

that the holonomy around the Euclidean time circle is trivial. In principle there exist

multiple solutions to the holonomy equations, corresponding to different thermodynamic

phases (in the N = 3 case, these phases were explored in [67]). Here we will concentrate

in the BTZ branch, defined by the requirement that we recover the BTZ results when all

the higher spin charges and chemical potentials are switched off. The holonomy conditions

for the spin-3 black hole [29, 42] can be solved explicitly in the non-rotating limit: in the

BTZ branch one finds

W=
4(C−1)

C3/2
L
√

2πL
k

, µ=
3
√
C

4(2C−3)

√

k

2πL , τ=
i (2C − 3)

4 (C−3)
√

1− 3
4C

√

k

2πL , (4.23)

– 25 –



J
H
E
P
0
4
(
2
0
1
4
)
0
8
9

where C > 3 and C = ∞ at the BTZ point. Since τ = iβ/(2π) in the non-rotating case,

we notice that C can be thought of as parameterizing the dimensionless ratio µ
β :

µ

β
=

3

4π

(C − 3)
√
4C − 3

(3− 2C)2
. (4.24)

Having solved the smoothness conditions, we can now go back to Lorentzian signature

and consider the solution with a non-compact boundary spatial coordinate. This is, from

the dual CFT perspective we consider a finite temperature system on the infinite line, with

a non-zero chemical potential for spin-3 charge. From the general discussion in section 3.2,

we know that the appropriate representation R for the N = 3 theory in the principal

embedding is the 8-dimensional adjoint representation (and with σ1/2 = 1). First, we notice

that the eigenvalues of ax in the adjoint representation are (±0,±λ
(1)
Adj,±λ

(2)
Adj,±λ

(3)
Adj) with

λ
(1)
Adj = 4

√

2πL
k

√

1− 3
4C

1− 3
2C

=
4π

β

1
(

1− 3
C

) (4.25)

λ
(2)
Adj = 2

√

2πL
k





3√
C

+

√

1− 3
4C

1− 3
2C



 =
2π

β

1
(

1− 3
C

)





3√
C

(

1− 3
2C

)

√

1− 3
4C

+ 1



 (4.26)

λ
(3)
Adj = 2

√

2πL
k





3√
C

−

√

1− 3
4C

1− 3
2C



 =
2π

β

1
(

1− 3
C

)





3√
C

(

1− 3
2C

)

√

1− 3
4C

− 1



 . (4.27)

As usual, these eigenvalues correspond to the pairwise difference of the eigenvalues in the

fundamental representation. Evaluating the leading term in (3.2) as ρ0 → ∞ we obtain

WAdj(P,Q) ≃
(

β

πa
F

(

∆x

β
,C

))8

(4.28)

where a = e−ρ0 as before and the auxiliary function F
(

∆x
β , C

)

is defined through7

F 8

(

∆x

β
,C

)

=

(

1− 3
C

)4 (
1− 3

4C

)2

(

1− 3
2C

)8

[

3

8
+
1

8

√

1− 3

4C

(

3√
C
−2

√

1− 3

4C

)

cosh
(

λ
(2)
Adj∆x

)

+
1

8

(

1− 3

C

)

cosh
(

λ
(1)
Adj∆x

)

− 1

8

√

1− 3

4C

(

3√
C
+2

√

1− 3

4C

)

cosh
(

λ
(3)
Adj∆x

)

]2

. (4.29)

Using (2.18) in the principal embedding we get c = 24kcs , and (3.6) then yields

SA =
c

3
log

[

β

π a

∣

∣

∣

∣

F

(

∆x

β
,C

)∣

∣

∣

∣

]

. (4.30)

In what follows we will study several limits of our general result (4.29)–(4.30).

7Note that the combinations λ
(i)
Adj∆x (i = 1, 2, 3) depend on the dimensionless quantities C and ∆x

β
only.
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4.3.1 BTZ limit and perturbative corrections

As a first check of our result, we can easily see that it reduces to the universal finite

temperature entanglement when the spin-3 charge and chemical potential are switched off.

To this end it suffices to notice that in the BTZ limit given by C → ∞ with L finite (so

that β is fixed and µ → 0, W → 0) we have

BTZ limit : λ
(1)
Adj = 2λ

(2)
Adj = −2λ

(3)
Adj =

4π

β
⇒ F

(

∆x

β
,C → ∞

)

= sinh

(

π∆x

β

)

,

(4.31)

and (4.30) immediately reduces to the non-rotating limit of (3.9) (namely (3.15)). More

generally, expanding the result perturbatively in µ → 0 with the inverse temperature β

held fixed our general expression (4.30) yields

SA −−−→
µ→0

c

3
log

[

β

aπ
sinh

(

π∆x

β

)]

+
c

18

(

πµ

β

)2

csch4
(

π∆x

β

)[

−3− 5 cosh

(

4
π∆x

β

)

+ 8

(

1− 12

(

π∆x

β

)2
)

cosh

(

2
π∆x

β

)

+ 16
π∆x

β

(

sinh

(

2
π∆x

β

)

+ sinh

(

4
π∆x

β

))]

+O(µ4) (4.32)

While reproducing our full non-perturbative result (4.29)–(4.30) with an independent CFT

calculation is presumably very hard, it is plausible that an expansion such as (4.32) could

be checked on a term-by-term basis by perturbatively evaluating the two-point function of

twist fields in the presence of a deformation by the higher spin current.

4.3.2 Extensive (high temperature) limit

By construction, we know that in the high temperature limit the result (4.30) will reproduce

the appropriate thermal entropy in an ensemble with higher spin charge. It is however

instructive to see explicitly how this result is recovered. We first notice that

λ
(1)
Adj > λ

(2)
Adj > λ

(3)
Adj ∀ C > C0 ≡

3

8

(

9 +
√
33
)

≃ 5.53 (4.33)

so, starting in a neighborhood of the BTZ point, it is always possible to order the eigen-

values. There is eigenvalue crossing at the value C0 introduced above, and it is conceivable

that this indicates a phase transition along the lines studied in [67], but here we focus on

the C > C0 portion of the BTZ branch and neglect this possibility. Then, taking ∆x very

large and looking at the extensive contribution to the entanglement entropy, we find that

λ
(1)
Adj is the dominant eigenvalue, and (4.28) reduces to

WAdj(P,Q) −−−−→
∆x≫β

(

β

πa

(

1− 3
4C

)1/4 (
1− 3

C

)3/4

2
(

1− 3
2C

)

)8

exp
(

2λ
(1)
Adj∆x

)

. (4.34)

Subtracting the UV divergence we find

SA −−−−→
∆x≫β

kcs log exp
(

2λ
(1)
Adj∆x

)

= 2
√
2πkL

√

1− 3
4C

1− 3
2C

∆x = sthermal∆x , (4.35)
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where the thermal entropy density sthermal is defined as before:

sthermal =
Sthermal

2π
= 2

√
2πkL

√

1− 3
4C

1− 3
2C

. (4.36)

This is consistent with the thermal entropy Sthermal of the spin-3 black hole as computed

in [68, 69]. We point out that a different result for the thermal entropy was given in [29, 42].

In [28] we explained how these different results correspond to different choices of boundary

conditions, and we will further elaborate on this delicate point in the discussion section.

4.3.3 Zero-temperature limit

Let us now focus on the zero-temperature of our result. From (4.24) we see that, for fixed µ,

in the allowed range of C the low temperature limit β → ∞ can be achieved with C → ∞
or C → 3. Let us first focus in the C → ∞ regime. Unlike the BTZ limit, in this case we

scale L ∼ 1/C → 0, so that µ is finite and W → 0, obtaining

SA ≃ c

3
log

[

∆x

a

(

1− 16
µ2

∆x2

)1/4
]

. (4.37)

If we think of the black hole solution as a finite temperature generalization of the RG flow

studied in section 4.1, one could have anticipated that the result cannot hold at arbitrary

short distances. Indeed, the above result possesses features reminiscent of those of (4.5)

(although the latter must be interpreted from the perspective of the UV theory, while (4.37)

is a deformation of the IR theory). As a further check we expand the above result in the

deformation parameter µ to obtain

SA ≃ c

3
log

[

∆x

a

]

− 4c

3

(

µ

∆x

)2

+O
(

µ4

∆x4

)

(4.38)

The first term is just the familiar zero-temperature single-interval entanglement entropy in

the IR theory, while the first correction scales as (∆x)−2 with the interval size, consistent

with the fact that the operator responsible for the perturbation has conformal dimension

∆Ŵ = 3 at the IR fixed point [70].

If we instead take the zero temperature limit by letting C → 3, so that β → ∞ with

µ and W finite (i.e. the extremal black hole limit), we obtain

SA
µ,W finite−−−−−−→

β→∞
c

3
log





2

3

µ

a

(

(

3∆x

µ

)2

+ 8 cosh

(

3∆x

µ

)

− 8 + 4

(

3∆x

µ

)

sinh

(

3∆x

µ

)

)1/4


 .

(4.39)

The fact that this expression does not have a smooth µ → 0 limit can be understood as

follows: at zero temperature, the connection corresponding to the (extremal) BTZ black

hole cannot be diagonalized. Therefore, while the finite-temperature higher spin black hole

connects smoothly to a finite-temperature BTZ black hole as we turn off the higher spin

charge, it is not clear what the appropriate notion of smoothness is for the extremal black

hole. It would be of interest to discuss extremal higher spin black holes in general and to

study their properties.
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Figure 4. Left: F
(

∆x
β
, C
)

as a function of π∆x
β

for fixed µ/β (fixed C). The red curve corresponds

to the result in the absence of higher spin charges, F
(

∆x
β
,∞
)

= sinh
(

π∆x
β

)

. The blue curves

correspond to the higher spin result for different values of C ∈ [10, 1000] (µ/β ∈ [0.0038, 0.035]).

Right: zoom into the short-distance regime suggesting a redefinition of the cutoff.
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Figure 5. Dots: numerically-determined values of ∆x/β at which the entanglement expression

breaks down, as a function of 1/C. Solid line: µ/β as a function of 1/C.

4.3.4 Short distance behavior and the UV cutoff

A numerical analysis of our result (4.30) reveals that the function F
(

∆x
β , C

)

(and hence

WAdj) approaches zero for a non-zero value of ∆x/β which depends on C (equivalently,

on µ/β). This behavior is illustrated in figure 4. We will denote the critical value of

∆x/β by (∆x/β)∗, i.e. F ((∆x/β)∗, C) = 0. In figure 5 we have plotted the numerically-

determined value (∆x/β)∗ versus the corresponding value of µ/β, both as a function of the

dimensionless parameter 1/C.

For small µ (i.e. close to the BTZ point 1/C → 0) we observe that the critical value

∆x∗ is very well approximated by ∆x∗ ≃ 4µ. It is then plausible that the breakdown of the

result for small values of ∆x ≃ µ is indicating the necessity to redefine the UV cutoff due
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Figure 6. log
[

F
(

∆x
β
, C
)]

as a function of π∆x
β

for different fixed values of C (equivalently µ/β)

and (∆x/β) > (∆x/β)∗. The red curve shows the result in the absence of higher spin charge. The

blue curves show the higher spin result for different values of µ/β.

to the effect of the irrelevant perturbation. This interpretation would be consistent with

the fact that no such singularities were observed in the calculation involving the diagonal

embedding black hole (cf. section 4.2), where the current sourced by the U(1) chemical

potential is relevant. Moreover, as shown in figure 6, for (∆x/β) > (∆x/β)∗ our result for

the entanglement behaves in a way consistent with regularity and strong subadditivity.

Besides the possibility that we may need to redefine the cutoff as in the RG flow exam-

ple in section 4.1, it is also feasible that the theory is ill-defined at short distances, which is

the naive expectation in the presence of irrelevant interactions. In such case one should first

find a suitable UV completion in order to define entanglement entropy at short distances.

5 Discussion and outlook

Inspired by the recent developments in three-dimensional higher spin holography, we have

studied the problem of computing entanglement entropy in 2d CFTs with WN symmetries

using holographic techniques. In particular, we introduced a bulk functional, cf. (3.6),

that captures the entanglement entropy in in the absence of higher spin charges, where

universal field-theoretical results are available, and admits an immediate generalization to

the higher spin setup, even in the presence of non-trivial higher spin chemical potentials

corresponding to CFTs perturbed by higher spin currents. Let us summarize some of the

features of this functional:

• It is written solely in terms of Wilson lines, as appropriate to the topological character

of the bulk Chern-Simons theory. Moreover, it is manifestly path-independent when
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the connections satisfy the equations of motion, i.e. it depends only on the positions

of the boundary points and the homotopy class of the path.

• For a single interval in one spatial dimension, it correctly reproduces the CFT en-

tanglement entropy in all the cases where there is an independent field-theoretical

understanding of the result, including situations with finite temperature and finite

angular momentum.

• By construction, the correct thermal entropy is recovered in the limit in which the

von Neumann entropy becomes extensive, even in the presence of higher spin charges

and chemical potentials.

In the absence of explicit field-theoretical results for entanglement entropy incorporat-

ing non-trivial higher spin charges and chemical potentials, the above list provides evidence

in favor of the holographic entanglement entropy interpretation. Let us however point out

that other definitions are possible; to illustrate this point, consider a “holomorphically-

factorized” version of (3.2):

W holo
R (P,Q) ≡ TrR

[

P exp

(∫ P

Q
Ā− dx−

)

P exp

(∫ Q

P
A+ dx+

)

]

. (5.1)

Since the truncated connections Ā− dx− and A+ dx+ are in general not flat by themselves,

an immediate shortcoming of this expression is that it is not in general path-independent,

as opposed to (3.2). Despite this fact, let us momentarily focus on connections whose

components are independent of the boundary coordinates x± , so that (5.1) is well-defined.

Computing (5.1) for the charged, non-rotating, spin-3 black hole studied in section 4.3 we

obtain (using the adjoint representation as appropriate to the principal embedding in the

N = 3 theory)

W holo
Adj (P,Q)=

(

8e4ρ0

λ̃1λ̃2λ̃3

)2
(

λ̃2
1−λ̃2λ̃3

λ̃1λ̃2λ̃3

+
cosh(λ̃1∆x)

λ̃1

− cosh(λ̃2∆x)

λ̃2

− cosh(λ̃3∆x)

λ̃3

)2

,

(5.2)

where (±0,±λ̃1,±λ̃2,±λ̃3) are the eigenvalues of a+ (as opposed to those of ax) in the

adjoint representation, with

λ̃1 = 4

√

2πL
k

√

1− 3

4C
, (5.3)

λ̃2 = 2

√

2πL
k

(

√

1− 3

4C
− 3

2
√
C

)

, (5.4)

λ̃3 = 2

√

2πL
k

(

√

1− 3

4C
+

3

2
√
C

)

. (5.5)

If one now defines Sholo
A = kcs logW

holo(P,Q) , the corresponding Sholo
A is strongly subad-

ditive as well, and reduces to the universal result (3.15) when the higher spin charge is

switched off (namely at the BTZ point C → ∞). In the large ∆x limit, λ̃1 is the dominant
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eigenvalue for all allowed values of C, and upon subtraction of the usual UV divergence

one finds

Sholo
A −−−−→

∆x≫β
kcs log exp

(

2λ̃1∆x
)

= 2
√
2πkL

√

1− 3

4C
∆x = sholothermal∆x . (5.6)

where the holomorphic thermal entropy density sholothermal is defined as

sholothermal =
Sholo
thermal

2π
= 2

√
2πkL

√

1− 3

4C
. (5.7)

This result is consistent with the thermal entropy of the spin-3 black hole as computed

in [29, 42] (see [71] also). As we showed in [28], this result is obtained from the bulk on-

shell action with “holomorphic” boundary conditions, and it is consistent with a thermal

entropy given by (in the principal embedding)

Sholo
thermal = 2πkcs

〈

~λ+ − ~λ− , ~ρ
〉

, (5.8)

where ~λ+ is the weight vector dual to the Cartan algebra element that is conjugate to

a+ (and similarly for ~λ−). Equation (5.8) should be contrasted with the “canonical” en-

tropy (3.20), that involves the eigenvalues of ax rather than those of a+ . It is worth pointing

out that the result (5.7) for the thermal entropy of the spin-3 black hole has been found

to be in agreement with independent CFT calculations of the partition function [64, 72].

It is interesting that the canonical result (3.20) is recovered form the somewhat more nat-

ural form (3.2) rather than the holomorphically factorized version (5.1), which is harder

to justify a priori. Ultimately, we expect the entanglement calculations presented here

to shed some light on the nature of the canonical result for the thermal entropy, whose

detailed CFT interpretation is still lacking (see [66] for a recent discussion of charges and

asymptotic symmetries in the presence of higher spin chemical potentials).

A comparison against independent field-theoretical calculations of entanglement en-

tropy in the presence of higher spin sources would of course be the litmus test for our

prescription. Such calculations are however difficult, inasmuch as they presume detailed

knowledge of correlation functions of twist operators in the presence of deformations by (ir-

relevant) higher spin operators. To our knowledge, no explicit results are known presently.

It is however conceivable that a matching could be achieved for specific instances of the

bulk theory based on the so-called hs[λ] algebra, which would require adapting our pre-

scription to an infinite-dimensional gauge algebra. We expect the latter obstacle to be of

a purely technical nature.

There are several other interesting directions to explore. We would obviously like to

have a better understanding of the possible breakdown of strong subadditivity for short dis-

tances in these higher spin theories, and to come up with a general analytic proof of strong

subadditivity at long distances. One could also try to construct extensions of our proposal

to include the so-called Rényi entropies that feature prominently in the CFT calculations

of entanglement via the replica trick. Indeed, one can in principle obtain Tr[ρnA] holograph-

ically by computing the Chern-Simons partition function for bulk solutions that asymptote
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to boundary geometries that are branched covers of the original solution with branch points

at the endpoints of the interval, as it was recently done in [21] for the standard gravity

case. Alternatively, one could try to directly compute the correlation functions of twist

fields via holography. However, since twist fields are not included in the Chern-Simons the-

ory, one would probably have to couple matter fields to it, which would require us to use

the full 3d Vasiliev theory. In [73] such two-point functions were computed and the results

have a striking similarity to our expression for the entanglement entropy. Furthermore,

the peculiar difference between the canonical and holomorphic formulations of both the

ordinary as well as the entanglement entropy is clearly crying out for a better understand-

ing, as does the question of whether theories with sources for the higher spin currents are

non-perturbatively well defined. We leave these very interesting problems for future work.
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A First order formalism and the Chern-Simons formulation of 3d Ein-

stein gravity

We denote local Lorentz indices by latin characters a, b, . . . and spacetime indices by

Greek letters µ, ν, . . . . The basic variables in the first order formalism are the vielbein8

ea = eaµdx
µ, such that ds2 = gµν dx

µ ⊗ dxν = ηab e
a ⊗ eb with η = diag(−1, 1, 1), and the

spin connection ωa
b = ωa

cbe
c . In this language, the condition of metric-compatibility on

the connection reads ωab = −ωba ; hence, ωab can be thought of as a one-form valued in

antisymmetric 3×3 matrices.

Int 3d it is convenient to dualize the spin connection and define

ωa ≡ 1

2
ǫabcωbc ⇔ ωab = −ǫabc ω

c , (A.1)

where ǫabc are the components of the Levi-Civita tensor in the local Lorentz frame. We

adopt the convention ǫ012 = −1 ⇒ ǫ012 = +1. In terms of ωa, Cartan’s structure equations

read

Ra = dωa +
1

2
ǫabc ω

b ∧ ωc (A.2)

T a = dea − ǫabc ω
c ∧ eb , (A.3)

8More properly, in the three-dimensional case we should refer to it as dreibein or triad.
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where Ra ≡ 1
2ǫ

abcRbc is the dual of the standard curvature two-form Rab , and T a is the

torsion. Next, we introduce A = ω+ e
ℓ and Ā = ω− e

ℓ , where ω = ωaJa , e = eaJa. Defining

the Chern-Simons form

CS(A) = A ∧ dA+
2

3
A ∧A ∧A (A.4)

we find

Tr

[

CS(A) + CS(Ā)

2

]

= Tr

[

ω ∧ dω +
2

3
ω ∧ ω ∧ ω +

e

ℓ2
∧ T

]

(A.5)

Tr

[

CS(A)− CS(Ā)

2

]

= Tr

[

2

ℓ
e ∧R+

2

3ℓ3
e ∧ e ∧ e− 1

ℓ
d(ω ∧ e)

]

, (A.6)

where R = RaJa and T = T aJa . A short calculation using det(e) =
√

|g| (where we

assumed the positive orientation), ǫabc e
a ∧ Rbc =

√

|g|R d3x (where R denotes the Ricci

scalar), and ǫabc e
a ∧ eb ∧ ec = 3!

√

|g| d3x reveals

Tr

[

2

ℓ
e ∧R+

2

3ℓ3
e ∧ e ∧ e

]

=
yR
2ℓ

√

|g|
(

R+
2

ℓ2

)

d3x ,

where yR is a representation-dependent normalization constant defined through Tr [JaJb] =

(yR/2)ηab . Taking k = ℓ/(4G3), it follows that

I =
k

4π yR

∫

M
Tr
[

CS(A)− CS(Ā)
]

(A.7)

=
1

16πG3

[∫

M
d3x
√

|g|
(

R+
2

ℓ2

)

−
∫

∂M
ωa ∧ ea

]

,

as claimed in the main text.

B Conventions for the sl(2) and sl(3) algebras

Our convention fo the so(2, 1) algebra is

[Ja, Jb] = ǫabcJ
c , (B.1)

where Ja ≡ ηabJb and ǫ012 = −1 . The generators Λ0,Λ± defined through

J0 =
Λ+ + Λ−

2
, J1 =

Λ+ − Λ−

2
, J2 = Λ0 , (B.2)

then satisfy the sl(2,R) ≃ so(2, 1) algebra

[

Λ±,Λ0
]

= ±Λ± ,
[

Λ+,Λ−] = 2Λ0 .

The usual two-dimensional representation of sl(2,R) is in terms of matrices

Λ0 =
1

2

(

1 0

0 −1

)

, Λ+ =

(

0 0

1 0

)

, Λ− =

(

0 −1

0 0

)

. (B.3)
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The so(2, 1) generators in this representation are then J0 = −iσy/2, J1 = σx/2, J2 = σz/2,

where the σ’s are the Pauli matrices.

Similarly, we can parameterize the sl(3,R) algebra in terms of generators L0, L±1

which span an sl(2,R) subalgebra, augmented by five Wj generators (j = −2,−1, 0, 1, 2)

forming a spin-2 multiplet under the triplet L0, L±1 , with commutation relations

[Lj , Lk] = (j − k)Lj+k

[Lj ,Wm] = (2j −m)Wj+m

[Wm,Wn] = −1

3
(m− n)

(

2m2 + 2n2 −mn− 8
)

Lm+n .

With this parameterization the principal and diagonal embeddings correspond to identify-

ing the sl(2,R) generators as

principal embedding: {Λ0,Λ±} = {L0, L±1} (B.4)

diagonal embedding: {Λ̂0, Λ̂±} =

{

1

2
L0,±

1

4
W±2

}

(B.5)

C Some sl(N) representation theory

Here we collect some useful facts from the representation theory of sl(N) . The sl(N)

algebra is a semi-simple algebra of rank N − 1 . In order to write down its weights and

roots, we will first construct a convenient basis for the (N − 1)-dimensional weight space

(i.e. the vector space dual to the Cartan subalgebra). To this end, let êi with i = 1, . . . , N

denote the orthonormal basis of RN , and define γ̂ =
∑N

i=1 êi . We then define vectors ei
by projecting the êi onto a plane orthogonal to γ̂:

ei = êi −
γ̂

N
. (C.1)

Notice the ei satisfy
∑N

i=1 ei = 0 and can be thought of as (linearly-dependent) vectors in

weight space. Their inner products are given by

〈ei, ej〉 = δij −
1

N
. (C.2)

The positive roots can then be written as

αij = ei − ej , i < j ⇒ Number of positive roots =
N(N − 1)

2
. (C.3)

The N − 1 simple roots correspond to αi ≡ αi i+1 = ei − ei+1 (i = 1, . . . , N − 1). The

Cartan matrix is

Cij = 2
〈αi, αj〉
〈αj , αj〉

= 〈αi, αj〉 =















2 if i = j

−1 if i = j ± 1

0 otherwise

(C.4)

and the Killing form (·, ·) is such that

〈α, β〉 = (Hα, Hβ) =
1

2N
TrAdj [HαHβ ] . (C.5)
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With these conventions, the fundamental weights ωi (i = 1, . . . , N − 1) are

ωi =
i
∑

j=1

ej . (C.6)

An important object is the so-called Weyl vector ~ρ , defined as the sum of the fundamental

weights (with unit coefficient):

~ρ =
N−1
∑

i=1

ωi (C.7)

Using
∑N

i=1 ei = 0 we can easily write it as

~ρ =
(N − 1)

2
e1+

(N − 3)

2
e2+. . .+

(N − 2i+ 1)

2
ei+. . .− (N − 3)

2
eN−1−

(N − 1)

2
eN . (C.8)

We see that regarded as a vector in R
N , i.e. in terms of the orthonormal basis êi , the Weyl

vector has components ~ρ =
(

N−1
2 , N−3

2 , . . . ,−N−3
2 ,−N−1

2

)

. An important observation used

in the main text is that, in the principal embedding, these are precisely the entries of the

(diagonal) matrix Λ0 in the N -dimensional (defining) representation. This can be also un-

derstood as follows. First, since Λ0 belongs to the Cartan subalgebra, we can define its dual

vector λ0 in weight space via the usual isomorphism provided by the Killing form. Since the

fundamental weights span the dual space, we can write λ0 =
∑

aiωi for some coefficients ai .

On the other hand, if αj denote the simple roots, in the principal embedding one has [41]

principal embedding: Λ+ =
N−1
∑

j=1

cjE−αj , all cj 6= 0 (C.9)

Then, using the commutation relations we find

Λ+ = −
[

Λ0,Λ+
]

= −
∑

j

cj
[

Λ0, E−αj

]

=
∑

j

cj〈λ0, αj〉E−αj

=
∑

j

∑

i

cjai〈ωi, αj〉E−αj . (C.10)

Now, by definition the fundamental weights satisfy

〈ωi, αj〉 =
〈αi, αi〉

2
δij = δij , (C.11)

and we conclude

N−1
∑

j=1

cjE−αj = Λ+ =

N−1
∑

j=1

ajcjE−αj ⇔ aj = 1 ∀j (C.12)

this is,

principal embedding: λ0 =

N−1
∑

i=1

ωi = ~ρ (C.13)

In particular, in the principal embedding we have

TrN
[

Λ0Λ0
]

=
〈

~ρ , ~ρ
〉

=
N(N2 − 1)

12
. (C.14)
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