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The reduced density matrix of many-body systems possessing an additive conserved quantity can be

decomposed in orthogonal sectors which can be independently analyzed. Recently, these have been proven to

equally contribute to entanglement entropy for one-dimensional conformal and integrable systems. In this paper,

we extend this equipartition theorem to the disordered critical systems by studying the random singlet phase.

We analytically compute the disorder averaged symmetry resolved Rényi entropies and show the leading orders

are independent of the symmetry sector. Our findings are cross-checked with simulations within the numerical

strong disorder renormalization group. We also identify the first subleading term breaking equipartition which is

of the form s2/ ln ℓ where s is the magnetization of a subsystem of length ℓ.

DOI: 10.1103/PhysRevB.102.014455

I. INTRODUCTION

Entanglement plays a fundamental role in characterizing

quantum phases of matter [1–4]. For isolated many-body

systems at zero temperature, key results have been derived

for the entanglement entropy [5–8] and the entanglement

spectrum [9–11]. For example, the entanglement entropy of

gapped one-dimensional systems with local interactions fol-

lows an area law, whereas gapless systems present a loga-

rithmic scaling in subsystem size with a universal prefactor

related to the central charge of the underlying conformal field

theory (CFT). Entanglement properties have been intensively

investigated also in quantum systems with quenched disorder.

When the low-energy physics of these models is captured

by an infinite disorder fixed point, these systems display a

logarithmic entanglement entropy scaling which resembles

that of a CFT [12–20], although this analogy breaks down in

many respects, such as a different scaling of entanglement in

other circumstances [21–25] and the absence of a c-theorem

[26,27].

By partitioning a system into two parts A ∪ B, the bipartite

entanglement of a pure state |�〉 is fully encoded in its

reduced density matrix ρA = trB(|�〉〈�|). The spectrum of

ρA, known as entanglement spectrum, can be accessed by

studying the scaling of the Rényi entropies [10,28]:

Sm(ρA) = 1

1 − m
ln trA

(
ρm

A

)
, (1)

that for m → 1 provide the renowned von Neumann (entan-

glement) entropy

S(ρA) ≡ lim
m→1

Sm(ρA) = −trA(ρA ln ρA). (2)

For one-dimensional quantum systems in the scaling limit, the

above can be computed using the replica trick [2,7]. In 1+1d

CFT (with central charge c), explicit results can be obtained

in many different situations. When A is a finite interval of

length ℓ embedded in an infinite line, one has the well known

formula[5–8]

SCFT
m (ρA) = c

6

m + 1

m
ln ℓ + O(ℓ0), (3)

The subleading terms are in general nonuniversal. Using

conformal transformations, Eq. (3) can be generalized to finite

systems [7], finite temperature [7], and quench dynamics as

well [29].

Remarkably, the recent technological breakthrough in cold

atoms and ion traps lead to high accuracy experiments that

directly measure entanglement in these many-body systems

[30–34]. Importantly, for a system with additive conservation

laws, it is possible to probe different contributions to the

entanglement (namely number and configurational entangle-

ment, see Sec. II for precise definitions) directly related to the

entanglement within different symmetry sectors [34]. Such

symmetry resolution is natural in computational methods

like exact diagonalization and tensor network, and has been

discussed in earlier papers [35,36]. In particular, the authors of

Ref. [36] suggested, using a quantum-thermal correspondence

argument, that the entanglement entropy in Luttinger liquids is

the same for all symmetry sectors. Lately, this conjecture has

been dubbed entanglement equipartition and it has has been

proven for conformal [37] and integrable systems [38].

Although there has already been a large interest in the

entanglement of quantum systems with internal symmetries

for clean systems [35–52], disordered models lack completely

an analytical understanding of the symmetry resolved en-

tanglement spectroscopy (with the notable exception of the

nonequilibrium experiment in Ref. [34]). The main question is

whether the equipartition of entanglement, shown in a variety

of clean models, is robust against the addition of disorder. In

this paper, we address this issue, by presenting the analytical

results for the Rényi entanglement entropy in the random

singlet phase (RSP). This class of states characterizes, for

2469-9950/2020/102(1)/014455(17) 014455-1 ©2020 American Physical Society

https://orcid.org/0000-0003-1093-3771
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.014455&domain=pdf&date_stamp=2020-07-30
https://doi.org/10.1103/PhysRevB.102.014455


TURKESHI, RUGGIERO, ALBA, AND CALABRESE PHYSICAL REVIEW B 102, 014455 (2020)

instance, the infrared physics of the disordered Heisenberg

spin-1/2 chain, and is amenable to exact computations in the

thermodynamic limit within the framework of strong disorder

renormalization group (SDRG) [53–58]. We find that in anal-

ogy to clean critical systems, entanglement equipartition holds

also for the random singlet phase. Our findings are supported

by numerical renormalization group simulations.

In order to maintain this paper self-contained, we first re-

view the symmetry resolved entanglement entropies in Sec. II.

In Sec. III, we introduce the model under study, the SDRG

method, and the main properties of the RSP. In Sec. IV, we

summarize known results for the scaling of the entanglement

in the RSP. The novel results are presented in Sec. V where

we define and study different quantities providing information

about the entanglement content of the different symmetry

sectors for the RSP. In Sec. VI, we carefully test our analytic

predictions against a numerical implementation of SDRG.

The final section is left for discussion and conclusions, while

technical details are contained in one Appendix.

II. SYMMETRY-RESOLVED ENTANGLEMENT

Consider a system possessing a global additive conserved

charge Q. For instance, this symmetry could be abelian such

as the total magnetization in spin systems. The reduced den-

sity matrix of a subsystem can be decomposed into a direct

sum of orthogonal sectors. To be specific, let us consider

a bipartition of the system as A ∪ B and a state ρ in a

given representation of Q. The additivity of Q implies that

Q = QA ⊗ 1B + 1A ⊗ QB and can be used to show that

[ρA, QA] = 0. (4)

Thus the reduced density matrix is block diagonal in the

quantum numbers of QA. Denoting with �q the projector into

the subspace relative to the eigenvalue q, we have

ρA = ⊕q

(
�qρA�q

)
= ⊕q pA(q)ρA(q). (5)

In the last equality, we factorized the term pA(q) = trA(�qρA)

and defined

ρA(q) ≡ �qρA�q

pA(q)
, tr(ρA(q)) = 1. (6)

Here, pA(q) is the probability for the subsystem to be in

a specific symmetry sector. In fact, only the global state

possesses a definite charge, while the subsystem fluctuates

between the QA sectors due to quantum effects.

The total von Neumann entanglement entropy of the sys-

tem naturally splits in two parts [34,59]

S(ρA) = SQ + Sconf , (7)

with

SQ = −
∑

q

pA(q) ln pA(q), (8)

Sconf =
∑

q

pA(q)S(q), (9)

Here, S(q) ≡ −TrρA(q) ln ρA(q) defines the symmetry-

resolved entanglement entropy, meaning the contribution to

the entanglement entropy of the q sector. SQ is known as the

number (or fluctuation) entropy, since it is related to the num-

ber of excitations carrying a quantum of symmetry charge,

which fluctuates in a subsystem. Despite its classical Shannon

form, it originates from tunneling effects [34]. We mention

here that the link between entanglement and subsystem’s

fluctuations [for instance, of spin or particle number in lattice

models with a U(1) current] has been widely studied [60–73].

Sconf is named configurational entropy, as it depends on the

many-body coherence pattern of the subsystem configurations

in a given symmetry sector.

Similarly, one can define the symmetry-resolved Rényi

entropies, Sm(q). First, we introduce the symmetry-resolved

moments:

Zm(q) ≡ pm(q)Tr
(
ρm

A (q)
)
. (10)

Note that Z1(q) = pA(q). Then, we have

Sm(q) = 1

1 − m
ln

(
Zm(q)

Zm
1 (q)

)
. (11)

They are related to S(q) by the usual limit m → 1. The

symmetry resolved entanglement entropies Sm(q) are the main

object of study in this paper.

Computing Zm(q) is in general a nontrivial task. A fun-

damental observation for its derivation is that Zm(q) is

the Fourier transform of the charged moment Zm(α) =
trA(ρm

A eiQAα ) [39], i.e.,

Zm(α) =
∑

q

eiqαZm(q), Zm(q) =
∫ π

−π

dα

2π
Zm(α). (12)

In some setting, the calculation of Zm(α) can be easily per-

formed and then, by Fourier transform, symmetry-resolved

Rényi entropies are obtained. This is the case, for example, for

1+1d CFTs, where the charged moments are easily expressed

in path integral language [39]. For Luttinger liquids, a particu-

lar class of CFTs with central charge c = 1 and characterized

by a parameter K (Luttinger parameter), one finds

Zm(q) ≃ ℓ− 1
6 (m− 1

m )
√

nπ

2K ln ℓ
e− nπ2q2

2K ln ℓ , (13)

leading to

Sm(q) = SCFT
m − 1

2
ln (K ln ℓ) + O(ℓ0). (14)

Here SCFT
m is given by (3). Importantly, Eq. (14) shows that

the entanglement entropies of the different symmetry sectors

are the same at leading orders in the subsystem size ℓ, i.e.,

Luttinger liquids exhibit entanglement equipartition. Correc-

tions to this scaling are in general nonuniversal and model

dependent [38,43,44].

III. DISORDERED HEISENBERG CHAIN AND RANDOM

SINGLET PHASE

Here we are interested in the entanglement properties of

disordered systems with ground states in the random singlet

phase (RSP). In the following, we introduce the prototypical

disordered Heisenberg chain (see Sec. III A). Its ground-state

properties can be addressed by using the strong-disorder

renormalisation group (SDRG) method, which we briefly

introduce in Sec. III B.
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A. Antiferromagnetic Heisenberg spin chain

The spin-1/2 antiferromagnetic Heisenberg chain is de-

fined by the Hamiltonian

HL =
L∑

i=1

Ji

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i Sz

i+1

)
, (15)

where � is the anisotropy parameter, and S
x,y,z

i are spin-1/2

operators. We restrict ourselves to � = 1 (isotropic Heisen-

berg chain). Here Ji are positive random couplings distributed

according to a given distribution P(J ). In the absence of

disorder, i.e., P(J ) ∼ δ(J − J0) for some fixed value J0, the

ground state of the model is in a Luttinger liquid phase at

any −1 < � � 1. Thus the scaling of the ground-state en-

tanglement entropy is described by the CFT formula (3) with

c = 1. In the presence of random antiferromagnetic couplings

Ji, the ground state of the system is described by an infinite-

randomness fixed point (IRFP), irrespective of the initial

distribution P(J ) and, therefore, of the initial disorder strength

[55]. More generally, all the long-wavelength properties of the

disordered Heisenberg chain are expected to be universal. The

ground state of (15) is in the random singlet phase (RSP),

which is the simplest example of IRFP. The structure of the

RSP can be understood by using the SDRG method.

B. Strong-disorder RG and random singlet phase

The SDRG is a real-space renormalization group, particu-

larly suited for inhomogeneous (and therefore for disordered)

systems. We now illustrate the decimation procedure which

allows us to obtain the low-energy description of our model.

We start by considering a four-site isotropic Heisenberg

Hamiltonian (cf. (15), with � = 1). We split H as

H ≡ H
(0)
2 + H

(1)
2 , (16)

H
(0)
2 = 
�S2 �S3, (17)

H
(1)
2 = JL �S1 �S2 + JR �S3 �S4. (18)

Here we assume that 
 > JL, JR is the strongest coupling.

Then we can treat the Hamiltonian H
(1)
2 as a perturbation to

H
(0)
2 . The spins in sites (2,3) bond forming a singlet (the local

ground state)

|s〉 = |↑↓〉 − |↓↑〉√
2

. (19)

This also provides an effective coupling for spins (1,4). In-

deed, using second-order perturbation theory, we obtain an

effective Hamiltonian H eff
2 for spins (1,4)

H eff
2 = 〈s|H (0)

2 + H
(1)
2 |s〉 +

∑

t

|〈t |H (1)
2 |s〉|2

Es − Et

(20)

= E0 + J̃ �S1 �S4, J̃ = η
JLJR



, (21)

where the sum is over the triplet states of two spins,

|t〉 = |↑↑〉, |↓↓〉, (|↑↓〉 + |↓↑〉)/
√

2, and Et = 1/4
,

Es = −3/4
. E0 is an unimportant energy constant, and

η = 1/2 for the isotropic Heisenberg chain. Note that H eff
2

in (21) is still Heisenberg-like, so that the previous steps

translate in an effective renormalization of the couplings.

FIG. 1. Pictorial illustration of the random single phase (RSP).

The links connect the spins forming a singlet. The bipartition of

the chain as A ∪ B is also shown. The entanglement entropy S is

proportional to the number of singlets shared between A and B.

The procedure can then be easily generalized to a many-

body hamiltonian with L spins such as Eq. (15). At each

renormalization step, the pair interacting through the strongest

coupling 
 = max{Ji} forms a singlet which is decimated,

and the set of couplings changes according to

(. . . , JL,
, JR, . . . )L →
(

. . . , η
JLJR



, . . .

)

L−2

. (22)

This is known as Dasgupta–Ma rule [53,54]. The RG termi-

nates when all sites are decimated. The resulting state, known

as RSP, is a product of singlets ranging arbitrary far in the

system and approximates the ground state of the system. Its

structure is the same irrespective of the chain anisotropy �,

i.e., chains with different � belong to the same universality

class. This is illustrated in Fig. 1.

IV. ENTANGLEMENT SCALING IN RANDOM

SINGLET PHASES

Here we discuss the entanglement structure of the random

singlet phase. Given a bipartition A ∪ B for the chain of even

length L, with A the subsystem of interest (see Fig. 1), the

ground state density matrix ρRSP is obtained as the tensor

product of the density matrices ρ2s associated with each

singlet, resulting in

ρRSP =
L/2⊗

m=1

ρ2s =
nA:A⊗

m=1

ρ2s

nA:B⊗

n=1

ρ2s

nB:B⊗

l=1

ρ2s. (23)

Here, nX :Y is the number of singlets with one end in X and

the other in Y . In (23), the three different terms correspond to

singlets formed by spins in A in B, or shared between them.

The singlet density matrix ρ2s reads

ρ2s = 1
2
(|↑↓〉 − |↓↑〉)(〈↑↓| − 〈↓↑|). (24)

The trace over B does not affect the nA:A singlets within

A. Instead, after tracing over B, each of the spins of the

nA:B shared singlets is described by the mixed-state reduced

density matrix ρs

ρs = 1
2
(|↑〉〈↑| + |↓〉〈↓|), (25)

which is diagonal with two equal eigenvalues 1/2. Thus the

reduced density matrix is

ρA =
nA:A⊗

m=1

ρ2s

nA:B⊗

n=1

ρs. (26)

The singlets created within A do not contribute to the entan-

glement between A and B, which is obtained by the second

014455-3
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term in (26). For later convenience, let us define ρin/out as

ρin/out =
nA:B⊗

n=1

ρs. (27)

The entanglement spectrum, i.e., the eigenvalues of ρA is fully

characterized by the in-out singlets nA:B, which constitute the

Bell pairs between the parties A and B. The contribution of

each shared singlet to any Rényi entanglement entropy is ln 2,

and thus

Sm = S = nA:B ln 2, (28)

valid for each disorder realization.

Clearly, in a disordered model, as nA:B fluctuates in dif-

ferent disorder realizations, what is meaningful is its average

over many realizations. This can be characterized through the

SDRG approach. For the mean value 〈nA:B〉 of a subsystem

consisting of an interval A of length ℓ one obtains (we refer to

Refs. [12,19] for a detailed derivation)

〈nA:B〉 = 1
3

ln ℓ + O(ℓ0). (29)

More generally speaking, one can consider the generating

function g(σ ) of all moments of nA:B, defined as

g(σ ) =
∑

nA:B

P(nA:B)e−nA:Bσ , (30)

where σ is real parameter and P(nA:B) is the full distribution

of the shared singlets. Specifically, from (30),

〈
nk

A:B

〉
= dkg(σ )

dσ k

∣∣∣∣
σ=0

. (31)

Note that after replacing the summation with an integral,

Eq. (30) is the Laplace transform of P(nA:B).

Importantly, in the scaling limit of large ℓ, g(σ ) can be

calculated within the SDRG framework (by using a renewal-

equation approach, see Ref. [22] for details). The result reads

g(σ ) = e−3/2μ

[
cosh

(√
5 + 4e−σ

2
μ

)

+ 3√
5 + 4e−σ

sinh

(√
5 + 4e−σ

2
μ

)]
, (32)

where

μ = 3〈nA:B〉 + 1
3
. (33)

Equation (32) holds in the scaling limit ℓ → ∞. Away from

the scaling limit, corrections due to finite ℓ are expected [22].

We now discuss the consequences for the entanglement

entropies. In particular, we introduce two different definitions

of disorder-averaged entropies. In the first, the average over

the disorder is taken after the logarithm of the moments of the

reduced density matrix, i.e., we average Eq. (1). This defines

the entropies S and Sm as

S ≡ −〈trAρA ln ρA〉, (34)

Sm ≡ 1

1 − m

〈
ln trAρm

A

〉
. (35)

with 〈•〉 = ∑∞
n=0 P(n) • being the disorder average. From

(26), it is straightforward to see that there is a trivial depen-

dence on the Rényi index m, i.e.,

Sm = S ∀m. (36)

Moreover, Eq. (28) depends only on the average number of

shared singlets nA:B. Therefore, by using Eq. (29), we get

Sm = 〈nA:B〉 ln 2 = ln 2

3
ln ℓ + O(ℓ0). (37)

The disorder averaged version of Eq. (1), is not sufficient

to study the full entanglement spectrum [22]. To further inves-

tigate the entanglement structure of random singlet phase, it is

custom to define

S̃m ≡ 1

1 − m
ln

〈
trAρm

A

〉
, (38)

where the average is taken before the logarithm, i.e., it is

the logarithm of the averaged partition function. Now, S̃m

depend on the full distribution of in-out singlets P(nA:B),

which encodes the full entanglement content of the random

singlet phase. Note that, by making use of the following

identity:

lim
m→1

1

1 − m
ln f (m) = −∂m f (m)|m=1, (39)

valid for any function f (m) such that f (1) = 1, one can show

that, in the limit m → 1, S̃m and Sm coincide, i.e.,

lim
m→1

S̃m = lim
m→1

Sm = S. (40)

More generally, from the definition of g(s) in Eq. (30), it is

straightforward to obtain the Rényi entropies in Eq. (38) as

S̃m = 1

1 − m
ln g((m − 1) ln 2). (41)

By using g(s) in Eq. (32), we obtain

S̃m =
√

5 + 23−m − 3

2(1 − m)
ln ℓ + O(ℓ0). (42)

The subleading term is nonuniversal and disorder dependent.

Importantly, from (42), we recover

lim
m→1

S̃m = ln 2

3
ln ℓ + O(ℓ0), (43)

which is consistent with (40). We mention that SDRG meth-

ods can be used also to derive predictions for the entanglement

scaling in other phases of matter more complicated than RSP

[74–83].

V. SYMMETRY RESOLVED ENTANGLEMENT IN THE

RANDOM SINGLET PHASE

In this section, we study the symmetry-resolved entangle-

ment in the random singlet phase. In particular, we focus again

on the disordered Heisenberg chain [cf. Eq. (15)], even if the

following discussion can be adapted to all other models in the

RSP possessing an additive symmetry.

Also in the presence of disorder, the Heisenberg chain for

arbitrary � is U(1) symmetric because of the conservation

014455-4
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of the total magnetization Sz
tot = ∑

i Sz
i = Sz

A ⊗ 1B + 1A ⊗ Sz
B.

Indeed each hamiltonian term in (15) commutes with Sz
tot, i.e.,

[
Ji

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i Sz

i+1

)
, Sz

i + Sz
i+1

]
= 0. (44)

At the isotropic point, the symmetry is enlarged to SU (2), but

here we focus on the more ubiquitous U(1) symmetry.

In the following, we introduce the shorthand n ≡ nA:B,

with, as usual, nA:B the number of singlets shared between

A and B. In order to find the internal structure of ρA, the

first trivial observation is that the singlets within A do not

contribute to the subsystem magnetization. Hence, the pos-

sible values of such magnetization only depend on shared

singlets. Each shared singlet can provide either +1/2 or −1/2

and consequently the (n + 1) possible values which we de-

note by s are s ∈ {−n/2,−n/2 + 1, . . . , n/2}. Consequently,

throughout this and next section, s stands for the possible

eigenvalue of the conserved charge within A, i.e., the quantity

denoted by q in Sec. II.

As it should be clear at this point, entanglement properties

of the random singlet phase can be extracted by only looking

at the reduced density matrix ρin/out [cf. (27)]. This is true

in particular for the contributions from different symmetry

sectors. Now, ρin/out is of size 2n × 2n and has a block struc-

ture, with (n + 1) blocks with charge s ∈ {−n/2, . . . , n/2}.
The dimension of the block corresponding to s is

ds =
(

n

n/2 + s

)
. (45)

The sum rule
∑

s ds = 2n holds true from Newton binomial

theorem.

The main ingredient to study the symmetry-resolved en-

tanglement is the resolved partition function Zm(s) defined as

Zm(s) ≡ Tr
(
�sρ

m
A

)
= Tr

(
�sρ

m
in/out

)
, (46)

where �s here denotes the projection in the sector with

magnetization s. In the singlet basis, all the blocks of ρin/out

are diagonal with equal diagonal elements 2−n. Consequently,

a simple computation gives the symmetry-resolved moments

(46) as

Zm(s) = ds2
−mn =

(
n

n/2 + s

)
2−mn. (47)

We recall that, in terms of Zm(s), the symmetry-resolved

Rényi entropies are

Sm(s) = 1

1 − m
ln

[
Zm(s)

Zm
1 (s)

]
, (48)

which holds for a given disorder realization.

In principle, the distribution of Eq. (47) provide entirely

the symmetry resolved quantum information properties in the

random singlet phase. However, accessing such distribution is

extremely hard; for this reason we consider different averages

of the single disorder realization entanglement (48): this will

allow to get indirect information about the entire distribution

function.

Specifically, in the following, we introduce three different

quantities. All these observables are accessible to the cold-

atom experiments like the one in Ref. [34]. In fact, in these

experiments, one can access the single-disorder realizations

of the symmetry resolved entropy, and consequently, perform

all possible averages. We recall that, in the singlet language,

the explicit meaning of the average is 〈•〉 = ∑∞
n=0 P(n) • .

The first one is

Sm(s) = 1

1 − m

〈
ln

[
Zm(s)

Zm
1 (s)

]〉
, (49)

which is a genuine average of the symmetry resolved en-

tropies. It is analogous to Eq. (35) for each symmetry sector.

Although this is the most natural quantity, it is the less

interesting one from a theoretical perspective, i.e., from the

point of view of the information that is encoded into it.

The second one is

S̃m(s) = 1

1 − m
ln

〈
Zm(s)

Zm
1 (s)

〉
, (50)

which represents the logarithm of the average of the m-th

moment. It is the symmetry resolved version of Eq. (38) and it

is the most suitable quantity to access the symmetry resolved

entanglement spectrum.

Finally we also have

Ŝm(s) = 1

1 − m
ln

[ 〈Zm(s)〉
〈Z1(s)〉m

]
, (51)

which is the ratio of the averages of the symmetry resolved

partitions. Ŝm(s) has no equivalent in the definitions of total

entropies, but it is the quantity naturally related to the Fourier

transforms of charged entropies, as we shall also see in more

details in the following. Hence it is the average that is closely

related to clean systems.

Our main result, which we are going to show soon, is that

all the entropies defined in Eqs. (49)–(51) satisfy the same

equipartition law for the leading and first subleading orders

for large subsystem size ℓ. The violations of entanglement

equipartition at higher-order are nonuniversal.

Before proceeding, some observations are in order to set

up the calculations. First, plugging Eq. (47) into Eq. (49), we

obtain that Sm(s) reads as

Sm(s) =
〈
ln

(
n

n/2 + s

)〉
. (52)

Note that similarly to Eq. (37), Sm(s) does not depend on m.

For S̃m(s), plugging Eq. (47) into Eq. (50), one has the similar

expression

S̃m(s) = 1

1 − m
ln

〈(
n

n/2 + s

)(1−m)
〉
. (53)

Using Eq. (39), it is straightforward to see that Eq. (53) and

(52) coincide in the limit m → 1, leading to

S(s) = S̃(s) =
〈
ln

(
n

n/2 + s

)〉
. (54)

This result is also in full analogy with the total entropy where

the two limits of Eqs. (35) and (38) coincide at m = 1.
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Conversely, Ŝm(s) provides a different limit for m → 1,

Indeed, plugging Eq. (47) into Eq. (51), we have

Ŝm(s) = 1

1 − m
ln

〈
2−mn

(
n

n/2+s

)〉
〈
2−n

(
n

n/2+s

)〉m , (55)

that in the limit m → 1 becomes

Ŝ(s) =
〈
n 2−n

(
n

n/2+s

)〉
〈
2−n

(
n

n/2+s

)〉 ln 2 + ln

〈
2−n

(
n

n/2 + s

)〉
, (56)

where we used again the identity (39). Finally, it is important

to notice that only the calculation of Ŝm(s) involves explicitly

〈Zm(s)〉.

A. Preliminaries

Before embarking into the specific calculations of the

various entropies, we discuss the asymptotic limit in which

we are interested and the simplifications taking place in such

a limit. First of all, we observe that the main ingredient for the

computation of symmetry resolved entropies are the averaged

integer (negative) powers of the size ds of block at fixed

symmetry resolution s. We introduce the quantity Im(s) as

Im(s) ≡
〈
d1−m

s

〉
=

∞∑

n=0

P(n)

(
n

n/2 + s

)(1−m)

, (57)

which is directly related to the entropy S̃m(s) as

S̃m(s) = ln(Im(s))

1 − m
. (58)

The calculation of the average Im(s) at finite size is a hard

task (likely impossible), since it requires a precise knowledge

of the probability distribution P(n). However, we are only

interested in the scaling limit with large ℓ. In this case, the

mean number of singlets 〈n〉 is large [cf. Eq (29)]. Thus, for

the average in Eq. (57), we can focus on the large n limit, using

the Stirling approximation to expand the Newton binomial in

Eq. (57) to obtain

(
n

n/2 + s

)1−m

= 2n(1−m)
(πn

2

) m−1
2

∞∑

k=0

Qk (n)
( s

n

)2k

, (59)

where Qk (n) are algebraic functions in n. For instance, one

has

Q0(n) = 1 + O

(
1

n

)
, (60)

Q1(n) = 2(m − 1)n + O(1). (61)

We are interested in small values of s since they are those with

a significant contribution to the total entropy (the probability

p(s) is expected to decay very quickly with s, as we self-

consistently show). Then, in the limit of n ≫ s, the only

relevant term is the one with k = 0 in Eq. (59), i.e.,

(
n

n/2 + s

)1−m

≃
(πn

2

) m−1
2

2n(1−m). (62)

Recalling that g(σ ) ≡ 〈e−nσ 〉 [cf. Eq. (30)], the average

over the disorder of Eq. (62) for m odd is straightforwardly

related to the derivative of g(σ ). Consequently, we have

Im(s) ≃
〈
2n(1−m)(πn/2)

m−1
2

〉

=
(

π

2

) m−1
2 ∂ag(σ )

∂ (−σ )a

∣∣∣∣
σ=(m−1) ln 2,a= m−1

2

. (63)

One can easily perform explicitly the ath derivative (at leading

order), obtaining after simple algebra

Im(s) ≃ I (0)
m ≡ 1

2
e− 1

2
(3−

√
5+23−m )μ

(
1 + 3√

5 + 23−m

)

×
(

π2−mμ√
5 + 23−m

) m−1
2

, (64)

where μ = ln ℓ + . . . is the same as in Eq. (33). At this point,

we have an analytic expression for odd m. It is very reasonable

to assume that the same expression indeed provides the correct

result for even m. An explicit calculation valid for arbitrary

real m can be performed by exploiting the Laplace transform

of Eq. (57) for large n. The calculation is very cumbersome,

although it employs only standard techniques of complex

integration. To maintain a clear exposition of our results, we

report the details in Appendix and just state here that such a

complex calculation reproduces Eq. (64) at the leading order

(but suggests that some deviations are present at subleading

ones).

Let us quickly discuss what Eq. (59) suggests for the

correction to the leading behavior in Eq. (64). The first

corrections comes from the term with k = 1 that for large n

multiplies the leading factor by a term ∝s2/n. This implies

that such a correction term is proportional to 〈2n(1−m)n
m−1

2
−1〉.

Once again, using the derivative trick in Eq. (63), we quickly

obtain that this correction is ∝I0
m/μ. Recalling that μ = ln ℓ +

O(ℓ0), we conclude that

Im(s) = I (0)
m

(
1 + (m − 1)2m

√
5 + 23−m

s2

ln ℓ
+ . . .

)
, (65)

where we explicitly work out the constant multiplying s2/ ln ℓ.

This analysis suggests that the first term that breaks equipar-

tition in Im(s) is proportional to s2/ ln ℓ. This is reminiscent

of what observed for clean systems in few different situations

[43,45]. However, we must stress that Eq. (65) should be taken

with a grain of salt. Indeed, it assumes the validity of the

form (32) for g(σ ) also for the subleading term. It is however

known that subleading nonuniversal terms, not encoded in

g(σ ), are present; they are model-dependent and more difficult

to calculate (see Ref. [22] for an in-depth discussion).

B. Entanglement equipartition for Sm

The first case we consider is the symmetry resolved en-

tropy Sm(s) defined in Eq. (49) and given by the mean value

of ln ds, cf. Eq. (52). This logarithm is simply deduced by

exploiting

〈
ln

(
n

n/2 + s

)〉
= − ∂

∂m
Im(s)

∣∣∣∣
m=1

, (66)
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and using the zeroth order approximation for Im(s) in Eq. (64).

Keeping the subleading terms up to O(ℓ0), we obtain

Sm(s) = ln 2

3
μ − 1

2
ln

(
π

6
μ

)
− ln 2

9
+ O(μ−1)

= S − 1

2
ln

(
π

6
μ

)
+ O(μ−1) = S − 1

2
ln ln ℓ + . . . .

(67)

Equation (67) is the first main result of this paper: it shows

the entanglement equipartition of the random singlet phase for

the entropy Sm(s). The leading contributions to these Rényi

entropies are the same for all the symmetry sectors. The first

term is just the total entanglement. We will discuss the origin

of −1/2 ln ln ℓ at the end of the section, because the same term

will appear in all other entropies we consider. The O(1) term

is not universal, but we reported it here for some comparisons

we will do later on.

Let us briefly discuss the corrections to this leading behav-

ior. Exploiting Eq. (65), i.e., considering only those coming

from Eq. (59), we simply have that the first term breaking

equipartition should behave as s2/ ln ℓ. More quantitatively,

from Eq. (65), we have

Sm(s) − Sm(0) = −6
s2

μ
. (68)

Accordingly, at least at this order and within these approxima-

tions, Sm(s) is a monotonous decreasing function of |s|.

C. Entanglement equipartition of S̃m

Here we show the entanglement equipartition for the Rényi

entropies S̃m for arbitrary m. The integral Im(s) is directly

related to S̃m(s) as S̃m(s) = (ln Im(s))/(1 − m). Hence, we

have

S̃m(s) =
√

23−m + 5 − 3

2(1 − m)
μ − 1

2
ln

2−mπμ√
23−m + 5

+ 1

1 − m
ln

(
3

2
√

23−m + 5
+ 1

2

)
+ O(μ−1)

= S̃m − 1

2
ln

2−mπμ√
23−m + 5

+ O(μ−1)

= S̃m − 1

2
ln ln ℓ + . . . . (69)

The leading logarithmic term is the same as in the total Rényi

entropy S̃m. Again, there is an additional universal double-

logarithmic term in ℓ which is not present in the total entropy.

Both these terms are independent of the symmetry sector

s, i.e., the symmetry-resolved Rényi entropies S̃m(s) exhibit

equipartition. In both Eqs. (69) and (67), we have been very

careful to write the entire subleading term at order O(ℓ0).

This has been done to show their relationship with the O(ℓ0)

terms in the total entropies from Ref. [22]. We stress however

that they have all been obtained with the assumptions used to

derive g(σ ) in Ref. [22].

Even for this entanglement measure, from Eq. (65), we ex-

pect subleading logarithmic corrections to Eq. (69) to violate

equipartition as s2/ ln ℓ. Specifically, from Eq. (65), we have

S̃m(s) − S̃m(0) = −2m
√

23−m + 5
s2

μ
. (70)

Once again, at least at this order and within these approxima-

tions, S̃m(s) is a monotonous decreasing function of |s| for all

values of m.

D. Entanglement equipartition for Ŝm

In this section, we explicitly compute Ŝm(s) and show that

entanglement equipartition holds also for it. Moreover, we

will show that also the double logarithnmic term is the same

as for S̃m(s) and Sm(s).

The main ingredient to compute Ŝm(s) is the average

〈Zm(s)〉. Here the strategy is to first evaluate the disorder

average of the charged moments 〈Zm(α)〉 and then to perform

a Fourier transform [cf. Eq. (12)]. En passant this will give

access to the probability p(s) characterizing each sector’s

population.

In a given disorder realization with n shared singlets, the

charged moment Zm(α) reads

Zm(α) =
n/2∑

s=−n/2

2−mn

(
n

n/2 + s

)
eiα(s−n)/2

=
[
2(1−m) cos

(α

2

)]n

, (71)

and consequently its disorder average is

〈Zm(α)〉 = g
(

2(1−m) cos
(α

2

))
, (72)

where g(σ ) is the generating function in (30). Incidentally

for m = 1, 〈Z1(α)〉 is the full counting statistic generating

function of this disordered model.

Exploiting the explicit knowledge of g(σ ) in Eq. (32),

the Fourier transform of Eq. (72) can be computed by using

the saddle point approximation in the scaling limit ℓ ≫ 1

[equivalently μ ≫ 1, cf. Eq. (33)], obtaining

〈Zm(s)〉 =
(

1

2
+ 3

2
√

5 + 23−m

)
e− 3

2
μ+

√
5+23−m

2
μ

×
√

2m
√

5 + 23−m

πμ
exp

[
−2m

√
5 + 23−m

μ
s2

]
.

(73)

Interestingly, in this approximation 〈Zm(s)〉 has the very same

structure of conformal result, cf. Eq. (13), i.e., it is gaussian

with variance ∝μ. From Eq. (73), we can directly read out the

probability for the subsystem magnetization to be equal to s

as

p(s) = 〈Z1(s)〉 =
√

6

πμ
exp

[
−6s2

μ

]
. (74)
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Finally, we plug the partition function (73) into the defini-

tion (51), to get the entropy Ŝm(s) as

Ŝm(s) = S̃m(s) + m

2(m − 1)
ln

(
2m

6

√
23−m + 5

)
+ O(μ−1)

=
√

23−m + 5 − 3

2 − 2m
ln ℓ − 1

2
ln ln ℓ + . . .

= S̃m − 1

2
ln ln ℓ + . . . . (75)

We see that at leading universal orders Ŝm(s) = S̃m(s) (and the

same holds in the limit m → 1), with a nonuniversal O(ℓ0)

difference in the thermodynamic limit.

We close this section with the highlight of a peculiar

phenomenon which characterizes the s-dependence of the

entropies Ŝm(s). From Eq. (73), the equipartition is again

broken at order s2/μ. Anyhow, this subleading term breaking

equipartition has not a definite sign with m, as an important

difference with all considered cases, not only in the paper, but

in the entire literature. This phenomenon can be easily seen

by analyzing the difference Ŝm(s) − Ŝm(0), i.e.,

Ŝm(s) − Ŝm(0) = (6m − 2m
√

23−m + 5)

1 − m

s2

μ
, (76)

where to get the rhs we explicitly used Eq. (73). The coef-

ficient of the term multiplying s2 is negative for m < m∗ =
2.695 . . . and positive for m > m∗. This change of sign causes

the Rényi entropy to be a monotonous decreasing function

of |s| for m < m∗, as all the cases considered so far in the

literature, while it is a monotonous increasing function of |s|
for m > m∗. It is natural to wonder whether and how this

intriguing phenomenon survives to the effect of the further

subleading corrections that are not taken into account by g(σ )

in Eq. (32). We will answer this question with the analysis of

the numerical data in the next section.

E. The number entropy and the log-log term

In this section, we heuristically discuss about the number

entropy and its relation with the first subleading term in the

symmetry resolved entanglement. Eq. (7) guarantees that for

each realization of the disorder (let us say r) it holds

Sr = −
∑

s

pr (s) ln pr (s) +
∑

s

pr (s)Sr (s) . (77)

Taking the average over the disorder means to mediate only

after the sum over s has been performed.

If we assume self-averaging, we can invert the two

sums/averages, obtaining

S = −
∑

s

p(s) ln p(s) +
∑

s

p(s)S(s), (78)

where p(s) is the average probability of configurations with

subsystem magnetization s given in Eq. (74). Within this

assumption, the number entropy is

SQ = −
∫

dsp(s) ln p(s) = 1

2

(
1 + ln

πμ

6

)
, (79)

i.e., it diverges like ln μ for large μ, i.e., like ln ln ℓ. This

ln μ divergence is identical to the one that appears in the

symmetry resolved entropy S(s). Indeed, since at this order

in μ the symmetry resolved entropy S(s) does not show any

s dependence, we have
∑

s p(s)S(s) = S(s) and the term ln μ

(absent in the total entropy S) should be compensated by an

identical term in S(s).

The above equivalence between number entropy and sub-

leading term in the symmetry resolved one takes place in a

very similar form also for clean system described by a Lut-

tinger liquid. There the subleading term 1
2

ln(K ln ℓ) reflects

that the charge fluctuations of the subsystem are proportional

to K ln ℓ [cf. (13)] [61,84,85]. The prefactor is again 1/2 and

also cancels in the total entropy when summing number and

symmetry resolved ones.

This is not the end of the story. For clean systems, also the

O(1) term in the symmetry resolved entropies is independent

of s. Hence it is also equal to the one for the total entropy

[modulo the shift in the number entropy as in (79)]. By com-

paring carefully Eqs. (67), (78), and (79) this does not seems

to be the case for random systems. Most likely this mismatch

is due to the lack of self averaging for the subleading term.

Another possible explanation could be also the presence of

s-dependent O(1) terms in the symmetry resolved entropy

which are not captured by g(σ ) in Eq. (32) (that, as we

stressed, ignores several subleading effects).

Finally, we have found the same term − 1
2

ln μ to be present

in all symmetry resolved entropies independently also of the

Rényi index. This fact can be understood reasoning similarly

to what done above. First, for m = 1, it is sufficient to assume

self-averaging for the entropy of interest. Instead for m �=
1, Eq. (7) for the splitting in number and configurational

entropy does not hold. It is also not possible to rewrite a

similar form using only the probability p(s). However, we

can exploit the recent result [45] for a different splitting

involving the generalized probabilities pm ≡ Zm(s)/Zm (Zm is

the exponential of the total Rényi entropies). The complete

check is straightforward and not very illuminating, one just

needs to assume self averaging for all the quantities of interest.

In conclusion, this argument explains why the term − 1
2

ln μ

is present in all the quantities we considered with the same

prefactor, in spite the coefficient of the leading term (in μ =
ln ℓ + . . . ) is not the same.

VI. NUMERICAL SDRG RESULTS

In this section, we present numerical simulations support-

ing our analytic results. We implement numerically the SDRG

method for a finite-size Heisenberg chain. Specifically, the

method works according to the following steps. We initialize

a list of length L with the chain couplings Ji. We take the

{Ji} to be independent random variables with Ji ∈ [0, 1] and

extracted from the probability distribution

p(J ) = 1

δ
J−1+1/δ. (80)

Here, δ > 0 is a parameter characterizing the strength of the

randomness: δ = 1 is the uniform distribution, while δ → ∞
correspond to strong disorder (i.e., to the RG fixed point).

We implement the Ma-Dasgupta decimation rule, Eq. (22),

which is iterated on the list of couplings until all the spins

are decimated. During the iteration the algorithm keeps track
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FIG. 2. Total Rényi entropies S̃m in the disordered Heisenberg

chain, plotted against the subsystem size ℓ. Symbols represent nu-

merical SDRG simulation with system size L = 16 384, disorder

strength δ = 5, and average over N ≈ 106 disorder configurations.

Different symbols and colors correspond to different Rényi in-

dex m = 1, 2, and 3. Dashed lines are the analytical predictions,

Eq. (81). In the inset, we report �S̃m in Eq. (82) clearly showing

that the leading corrections are O(ℓ0 ).

of all the singlets that are formed. The method is repeated for

many random realizations of the couplings. From the spatial

information about the singlets, it is straightforward to calcu-

late the von Neumann and Rényi entropies. Given a bipartition

of the system as A ∪ B, these are obtained by counting the

number of shared singlets between the subsystems and by ap-

plying (28). The symmetry-resolved entanglement entropies

can be calculated in a similar way. In fact, in a given disorder

realization the SDRG method produces n shared singlets. This

means that there are (n + 1) blocks. Each block, labeled by

the quantum number s, is diagonal, and has dimension ds (cf.

(45)). Thus, from the spatial configuration of singlets it is

straightforward to calculate the symmetry-resolved entropies

for each disorder realization and their averages Sm(s), S̃m(s),

and Ŝm(s) according to the specific rules in Eqs. (52), (53),

and (55), respectively.

A. Preliminary benchmarks

Before presenting the numerical results for the symmetry-

resolved entanglement, it is important to reanalyze the be-

havior of the total, i.e., non symmetry-resolved, von Neu-

mann and Rényi entropies. In fact, a striking feature of the

symmetry-resolved entropies is that they possess subleading

double-logarithmic corrections that are not present in the total

ones. Thus it is worth reanalyzing the total entanglement

to exclude log-log terms also here and to emphasize the

differences with the symmetry resolved ones.

Our results for the von Neumann entropy and for the

Rényi entropies S̃m (m = 1, 2, and 3) are shown in Fig. 2.

The symbols are numerical data for a chain with L = 16 384

sites (finite size scaling is discussed later) and for a disorder

FIG. 3. Finite size behavior of the disorder averaged symmetry

resolved entropies S(s). We report the numerical data for L from

1024 to 16 384. The four panels are for s = 0, 1/2, 1, and 3/2.

All data correspond to disorder strength δ = 1 (uniform distribution)

and are averaged over 106 disorder realizations. For the considered

values of ℓ, there are no visible finite size corrections.

strength δ = 5 (other values of δ provide equivalent result,

as discussed for the symmetry resolved ones). The data are

obtained by averaging over N ≈ 106 disorder realizations.

The continuous lines are the theory predictions obtained as

a fit of the form

S̃m =
√

5 + 23−m − 3

2(1 − m)
ln ℓ + a, (81)

in which a is the only fitting parameter. The agreement be-

tween the SDRG results and (81) is good for all the entropies.

However, in order to have a better feeling of the subleading

term, in the inset, we plot the subtracted entropy

�S̃m ≡ S̃m −
√

5 + 23−m − 3

2(1 − m)
ln ℓ . (82)

This inset provides a strong evidence that the leading cor-

rection to the entropy is O(ℓ0), ruling out the presence of a

log-log term. We do not report the numerics for Sm because

they coincide with S̃ = S̃1 by definition (see the discussion in

Sec. IV).

B. Symmetry-resolved von Neumann entropy

We now discuss the symmetry-resolved von Neumann

entropy in the random singlet phase. We will consider both

S(s) in Eq. (54) and Ŝ(s) in Eq. (56). We recall that S(s) is the

limit m → 1 of both Sm(s) and S̃m(s).

We start with the analysis of the finite size behavior. In

Fig. 3, we report the numerical data for S(s) at fixed disorder

δ = 1 for L = 1024, 2048, 4096, 8192, and 16 384. The

averages are over ≈106 disorder realizations. The subsystem

magnetization s can assume both integer of semi-integer val-
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FIG. 4. Symmetry resolved entanglement entropy S(s) (top)

and Ŝ(s) (bottom) in the disordered Heisenberg chain, against

the subsystem size ℓ. Symbols are numerical results using the

SDRG method with system size L = 16 384 and average over

N ≈ 106 disorder realizations with disorder strength δ = 5. Differ-

ent symbols and colors correspond to different symmetry sectors

s = 0, 1/2, 1, 3/2, and 2. The dashed lines represent the theory

prediction (83) in which a has been adjusted to fit the data.

ues, depending on the parity of ℓ. Hence, hereafter the data

for s = 0, 1, and 2 correspond to even ℓ, while the data for

s = 1/2 and 3/2 are for odd ℓ (everywhere for each even ℓ

considered, we also plot ℓ + 1). In Fig. 3, the data for all

reported values of ℓ are on top of each other and there is no

visible finite size correction for any s. Then in the following,

we will work mainly at L = 16 384 and consider values of ℓ

up to ∼3000 for which there are no appreciable corrections.

We checked that this feature is universal, i.e., does not depend

either on disorder strength δ or on the considered entropy. In

all this paper, we only report positive values of s, but we tested

that for s → −s we get exactly the same results.

We are now ready to start our analysis of the symmetry

resolved entropies. In Fig. 4, we compare our analytical

formulas with numerical SDRG results. The data are for a

chain with L = 16 384 sites and are obtained by averaging

over N ≈ 106 disorder realizations. Data are plotted as func-

tion of ℓ. The different symbols correspond to the different

symmetry sectors s. We report the data for both S(s) (top

panel) and Ŝ(s) (bottom panel). For large ℓ, all curves become

parallel, showing asymptotic equipartition, as we theoretically

derived in the previous section. The curves however are not

superimposed, manifesting that the subleading corrections do

depend on s. Furthermore we find that the various curves

are monotonously decreasing function of |s|, as theoretically

predicted in the previous section. In this respect, it is important

that nonuniversal terms not included in the approximations

that led to Eqs. (68) and (76) do not spoil such a result.

The dashed lines in Fig. 4 are fit to the form

ln(2)

3
ln ℓ − 1

2
ln ln ℓ + a, (83)

with a single free parameter a. We use the same form for both

S(s) and Ŝ(s) since in SDRG they show the same asymptotic

scaling [cf. Eq. (75)] with a different O(ℓ0) term, i.e., with

a different a in the above equation. The fit is performed

only with the data for large ℓ. The agreement is really good

taking into account that we only have one parameter in the

fit. It is clear that the corrections to the scaling become more

important for larger values of |s|, as it was expected on

the bases of the result of the previous section. Needless to

say that the presence of the term −1/2 ln ln ℓ in Eq. (83) is

fundamental to have such agreement.

However, proceeding in this way, we would have the

additive constant a which does depend on s. Conversely, the

SDRG results in Eqs. (68) and (76) suggest that this is not

the case. It is also true that our SDRG treatment ignores

some nonuniversal processes that do not alter the two leading

terms, but at least in principle can affect the constant. On the

other hand, within SDRG we have also shown the presence of

s-dependent terms behaving like s2/ ln ℓ (indeed these loga-

rithmic corrections are typical features of symmetry resolved

entanglement entropies also in clean systems [43,45]). Can

these corrections be responsible for a seemingly s-dependent

additive constant? To answer this question we study the

difference

�S(s) ≡ S(s) − S + 1

2
ln

(
π

6
ln ℓ

)
. (84)

This subtraction is motivated by the fact that the additive

constant not only is s independent, but also equal the one

for the total entropy (modulo the additive factor within the

number entropy). Hence, according to our SDRG results,

�S(s) should decay to zero for large ℓ as

�S(s) ≃ b

ln ℓ + c
, (85)

where b and c are free nonuniversal parameter that may (and

actually do) depend on s. We analyze the SDRG data for

�S(s) in Fig. 5 where we consider three different disorder

distributions with strength δ = 1, 5, 8 to rule out the possi-

bility of some weak disorder effect. It is evident that δ only

mildly influences the data and for δ = 5 and 8 there are no

differences at all. The three panels in the figure correspond

to s = 0, 1/2, 1. The numerical data are fit to the form (85).

The agreement is truly impressive when one thinks that we

are fitting curves that asymptotically tend to zero, but we are

working in a regime where they are still far from it. Increasing

the values of s, subleading terms, e.g., going like s2/(ln ℓ)2 or

s4/(ln ℓ)α , becomes important and it is more difficult to fit the

data with (85) at the available values of ℓ. Finally we mention

that we repeated the same analysis also for the entropy Ŝ(s)

finding equivalent results for the equipartition.

Concluding, Fig. 5 is a very strong and convincing evi-

dence that the prediction from SDRG in Eq. (68) survives the

inclusion of nonuniversal effects and that there is equipartition

of entanglement at the order O(ℓ0) also in the random singlet

phase. The first term breaking equipartition s2/ ln ℓ is also

correctly captured by SDRG in Eq. (68).

014455-10



ENTANGLEMENT EQUIPARTITION IN CRITICAL RANDOM … PHYSICAL REVIEW B 102, 014455 (2020)

FIG. 5. Subtracted symmetry resolved entanglement entropy

�S(s) in Eq. (84) for s = 0, 1/2, and 1 (from top to bottom) in the

disordered Heisenberg chain, against the subsystem size ℓ. Symbols

are numerical results using the SDRG method with system size

L = 16 384 and average over N ≈ 106 disorder realizations. Dif-

ferent symbols and colors correspond to different disorder strength

δ = 1, 5, and 8. The data are slowly approaching 0 according to the

law (85). The fits are reported as lines and perfectly match the data.

C. Symmetry-resolved Rényi entropies

We now discuss the symmetry-resolved Rényi entropies.

For many aspects the analysis is identical to the one of the

previous section for the von Neumann one and we will not

repeat all details.

We first consider S̃m(s) (since Sm(s) do not depend on

m, there is no reason to discuss them). In Fig. 6, we plot

SDRG data for m = 2 and 3. In the scaling limit, all the Rényi

entropies exhibit equipartition and are described by

S̃m(s) =
√

23−m + 5 − 3

2(1 − m)
ln ℓ − 1

2
ln ln ℓ + a + . . . . (86)

Again, the first term in (86) is the result for the total Rényi

entropies, S̃m. Note that the subleading term 1/2 ln ln ℓ is the

same as for the von Neumann entropy. For large ℓ all curves

at fixed m become parallel, showing asymptotic equipartition.

Anyhow, they are not on top of each other, manifesting that

the subleading corrections do depend on s.

The first check to test the asymptotic behavior is to perform

a simple fit of the data to the form (86) allowing a to depend

on s. These fits are shown in Fig. 6 as continuous lines. The

agreement is excellent and, as expected, it slowly deteriorates

increasing |s|. We have performed an analysis like the one in

Fig. 5 for the von Neumann entropy to convince ourselves

that the differences between the various curves at fixed s

are, as SDRG predicts in Eq. (70), only due to subleading

term as s2/ ln ℓ. The analysis shows that this is likely, but

the corrections are much larger than for m = 1 and so more

FIG. 6. Symmetry-resolved Rényi entropies S̃m(s) for m = 2

(top) and m = 3 (bottom). The symbols are SDRG results for

the Heisenberg chain with L = 16 384 sites. The average is over

106 disorder realizations with strength δ = 5. Different sym-

bols and colors correspond to different subsystem magnetiza-

tion s = 0, 1/2, 1, 3/2, and 1. The dashed lines are fits to the

form (86).

difficult to treat. This is not unexpected: Eq. (70) predicts that

the coefficient of s2/ ln ℓ grows exponentially with m (being

∼6 at m = 1, ∼10.6 at m = 2, and ∼20 at m = 3) and so the

data soon become difficult to handle as m increases.

Finally, we discuss the Rényi entropies Ŝm(s), focusing on

m = 2 and 3. Before discussing the scaling behavior of the

entanglement entropies, it is useful to consider the partition

functions 〈Zm(s)〉, being the main ingredient to construct

Ŝm(s) and being per se interesting (for m = 1, 〈Z1(s)〉 is the

average probability p(s) of having subsystem magnetization

s, cf. Eq. (74), while for other m are related to generalized

probability distributions [45]).

In Fig. 7, we present a quantitative comparison for 〈Zm(α)〉
and 〈Zm(s)〉 between the numerics and the analytic predic-

tions, respectively in Eqs. (72) and (73). The additive constant

in μ (cf. Eq. (33)) appearing in both formulas is preliminary

FIG. 7. Charged (left) and symmetry-resolved (right) moments,

〈Zm(α)〉 and 〈Zm(s)〉. Symbols represent numerical SDRG simu-

lation with system and subsystem sizes L = 8192 and ℓ = 3722,

respectively. The average is over N ≈ 106 disorder configurations

and the strength of the disorder is δ = 1. Different symbols and

colors correspond to different index m = 1, 2, and 3. Dashed and

full lines are the analytic predictions, Eqs. (72) and (73), respectively.
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FIG. 8. Symmetry-resolved Rényi entropies Ŝm(s) for m = 2,

m = m∗ = 2.69 . . . , and m = 3 (from top to bottom). The sym-

bols are SDRG results for the Heisenberg chain with L = 16 384

sites and disorder strength δ = 5. The average is over 106 disorder

realizations. Different symbols and colors correspond to different

subsystem magnetization s = 0, 1/2, and 1. The lines are fits to

the theoretical result (87). Notice that the entropies are ordered as

monotonically decreasing function of s for m = 2, are mixed up at

m = m∗, and start inverting their order for m = 3.

fitted only once for all data. The numerical data are obtained

by averaging Eq. (71) for 〈Zm(α)〉 and Eq. (47) for 〈Zm(s)〉.
For 〈Zm(α)〉, we observe a fair agreement between our data

and the analytic expressions, although finite size corrections

are present as α → ±π (the plot is in log scale). The dis-

crepancies at the boundaries of the Brillouin zone are well

known for clean systems [43,44,46] and are physically due to

the fact that such charged entropies must be periodic of period

2π . Then they should be present in lattice disorder systems as

well. Also the data for 〈Zm(s)〉 are remarkably reproduced by

SDRG predictions, with corrections to the scaling that become

larger as |s| increases, as it is the case for all the quantities

considered so far. Incidentally, we did not yet mention that,

very generically, deviations at higher s are expected, because

populating higher sectors requires exponentially larger system

sizes.

We are then ready to analyze the symmetry-resolved en-

tropies Ŝm(s) which are plotted in Fig. 8. Again, for asymp-

totic large ℓ the various curves for different s at fixed m

become parallel, manifesting equipartition. As done for all

other entropies, we first check the correctness of the leading

scaling term that in SDRG is given by Eq. (75). In Fig. 8, the

continuous lines are fit of the data with

Ŝm =
√

23−m + 5 − 3

2(1 − m)
ln ℓ − 1

2
ln ln ℓ + a + . . . (87)

where we allow a to depend on s. We observe a good asymp-

totic agreement in Fig. 8 confirming the correctness of the

leading term.

We now move to the corrections. In this case, the analysis

is very difficult because of the peculiar nonmonotonic features

we highlighted at the end of Sec. V D in Eq. (76). Indeed while

they are always of the form s2/ ln ℓ, the prefactor is negative

for m < m∗ (as in all other cases observed so far here and in

the literature) and it is positive for m > m∗. Consequently the

entropies are expected to be monotonous decreasing functions

of |s| for m � m∗ and monotonous increasing function of |s|
for m � m∗. Close to m∗, the subsubleading terms become

important and larger than the ones under scrutiny that instead

vanish at m = m∗. Exactly for this reason in the Fig. 8,

we report m = 2, m = m∗, and m = 3. We observe that the

entropies are ordered as monotonically decreasing function of

s for m = 2, they are mixed up at m = m∗ (which is the point

where the leading corrections to the scaling vanish in SDRG)

and they tend to reverse their order for m = 3, although they

are not in increasing order in s, likely because of subleading

corrections (m∗ is very close to 3). We found extremely

remarkable that this unusual effect predicted by SDRG is not

spoiled by nonuniversal effects as well as by other universal

RG processes that have not been included in the derivation of

g(σ ) in Eq. (32) presented in Ref. [22].

VII. DISCUSSION

In this paper, we investigated the symmetry resolved entan-

glement in the random singlet phase. Because of the average

over random disorder, we have three possible alternative defi-

nitions of symmetry resolved Rényi entropies that we give in

Eqs. (49)–(51). Two of them [(49) and (50)] become equal in

the von Neumann limit. We compute the asymptotic behavior

of these entropies in the large ℓ limit using well established

techniques within SDRG. Our main result is that the three

definitions all provide entanglement entropies that satisfy

equipartition at the leading universal orders. We confirmed

these results numerically and showed the presence of sub-

leading nonuniversal terms breaking equipartition. The order

of such corrections, s2/ ln ℓ, is also correctly characterized

by analytic SDRG techniques. We finally point out that the

double logarithmic term in the symmetry resolved entangle-

ment is related to the number entropy, in full analogy with

clean systems [43]. There are also few quantitative remark-

able SDRG predictions about the subleading terms that are

confirmed by numerics. The first is that the O(ℓ0) term in the

symmetry resolved entanglement, not only is s-independent (a

remarkable fact by itself), but it is also the same as in the total

entropy (modulo a contribution from the number entropy).

Another one is that for almost all entropies the corrections

are monotonically decreasing function of |s|, but for the one

defined in Eq. (51) there is a switch as the Rényi index grows.

An important test of our results that is still to be performed

consists in checking some of our predictions in microscopic

models with ab initio methods. However, it is a numerically

demanding problem to reach the large system sizes required to

minimize the effect of the subleading corrections, even for dis-

ordered free-fermion models and exploiting well established

techniques [13,22].
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A fundamental generalization of our work concerns sym-

metry resolved entanglement and equipartition for disordered

systems out of equilibrium. Indeed, there is already a large

literature about the time evolution of the total entanglement

entropy [14,34,86–95], that provided insights also about the

celebrated many body localization. Only in recent experi-

ments [34], the importance of symmetry resolution has been

highlighted also to shed light on the slow growth of the total

entanglement entropy. However, many aspects of the problem

still require to be studied deeply.
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APPENDIX: MOMENTS OF THE SIZE OF THE

SYMMETRY BLOCK Im

In this Appendix, we show how to use the Laplace trans-

form techniques to rigorously calculate the leading behavior

of Im(s). First of all we notice that for large n, the sum in

Eq. (57) can be replaced by an integral, and we can exploit the

closed-form expression for the generating function g(σ ) of the

moments of n [cf. Eq. (30)], which is the Laplace transform

of the probability distribution, i.e., g(σ ) = Ln[P(n)](σ ).

Thus, to evaluate Eq. (57), we first introduce the following

Laplace transform

f (σ ; s) ≡ Ln

[(
n

n/2 + s

)(1−m)
]
. (A1)

Then, by using the rule for the Laplace transform of a product,

Eq. (57) can be written, in the scaling regime of large n, as

Im(s) = lim
T →∞

1

2π i

∫ a+iT

a−iT

g(σ ) f (−σ ; s)dσ, (A2)

where a is a real number that guarantees convergence of the

integral and g(σ ) is the generating function of the moments

of the distribution of the number of shared singlets defined in

Eq. (30).

The Laplace transform of (62) with respect to n can be

calculated order by order by using that

Lσ

(
2n(1−m)n

m
2 n−2k− 1

2 nβ
)

= Ŵ

(
1 + m

2
− 2k + β

)
(σ + (m − 1) ln 2)2k−β− m+1

2 .

(A3)

We now observe that the generating function g(s) is analytic

in the complex plane. On the other hand, Eq. (A3) shows that

if m is even f (−σ ; s) has an algebraic branch point at σ ∗ =
(m − 1) ln 2. Instead, for m odd there is a pole at σ ∗ when

2k − β − (m + 1)/2 < 0, which is the reason why it becomes

just a derivative, as in the main text.

FIG. 9. Contour C to evaluate the integral in Eq. (A2). The

integral on Cm is (A2). For even values of the Rényi index m

there is a branch cut starting at σ ∗ = (m − 1) ln(2). For odd m,

the contributions of C± cancel out and one has a pole at σ ∗. The

contributions of the semicircle C±,T vanishes.

The integral (A2) can be performed by considering the

contour integration along the path in Fig. 9 (we report m even,

for m odd it is slightly simpler). The red dashed line is the

branch cut starting at the algebraic branch point singularity

at σ ∗ = (m − 1) ln 2. Since there are no singularities in the

region enclosed by the contour, the integral is zero, i.e.,

1

2π i

∫

C

g(σ ) f (−σ ; s)dσ

= Im + I+ + I− + I+,T + I−,T + Iǫ = 0. (A4)

Here, Im is the integral (A2), where we set a = 0, I± are the

integrals on the paths C±, C±,T are contributions of the large

semicircle, and Iǫ is the contribution of Cǫ .

We are interested in the limit T → ∞ (T is the radius

of the semicircle). It is straightforward to show that in this

limit the contribution of I+,T + I−,T vanishes. We should also

observe that for odd m the two terms I± cancel out because

the singularity at σ ∗ is a pole. Here, not to loose generality,

we consider the case of m even, while odd can be deduced as

a special case.

From Eqs. (A2) and (A3), the integrals in (A4) are of the

form

IC′ = 1

2π i

∫

C′

g(u − σ ∗)

(−u)ω
du, (A5)

where C ′ denotes the different paths forming the contour in

Fig. 9, and we defined

u ≡ σ − σ ∗, (A6)

ω ≡ (m + 1)/2 − 2k + β. (A7)

Here we are interested in the limit ℓ → ∞, which implies

μ → ∞ [cf. (33)]. In this limit, we can simplify the expres-

sion for the generating function g(σ ) as

g(σ ) ≃ 1

2
e− 1

2
(3−

√
5+4e−σ )μ

[
1 + 3√

5 + 4e−σ

]
. (A8)
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The integral (A5) is difficult to compute in general. However,

in the limit μ → ∞, on can use the saddle point method. Let

us start discussing the contribution of the path C+:

IC+ = − 1

2π i

∫ T ′

ǫ

e− 1
2

(3−
√

5+23−me−u )μ

2(−u)ω

×
[

1 + 3√
5 + 23−me−u

]
du, (A9)

where T ′ = T − σ ∗. A standard saddle point analysis of this

integrals in the large μ limit gives the leading contribution as

I
(0)

C+ = e− 1
2

(3−γm )μ

4π i(−1)ω

(
1 + 3

γm

)

×
(

21−mμ

γm

)ω−1

Ŵ

(
1 − ω,

21−mu

γm

)∣∣∣∣
μT ′

μǫ

, (A10)

where Ŵ is the incomplete Gamma function and we introduced

γm =
√

5 + 23−m. (A11)

Saddle point corrections to Eq. (A10) are O(1/
√

μ).

First, we should observe that the contribution at T ′ → ∞ in

Eq. (A10) vanishes. However, the contribution of μǫ diverges

in the limit ǫ → 0. We anticipate that this divergence is

regularized by the contribution of Cǫ (see Fig. 9). Precisely,

one has

Ŵ(ω, x) ≈ Ŵ(ω) − xω

ω
+ xω+1

1 + ω
, for x → 0. (A12)

Note that the number of singular terms depends on ω. The

first correction to the saddle point result can be easily derived,

yielding

I
(1)

C+ = e− 1
2

(3−γm )μ2m

2π i(−1)ωμ2

{
2m−13γm

(8 + 2m5)
Ŵ

(
2 − ω,

21−mu

γm

)

+ (2m5 + 4)(3 2mγm + 2m5+8)

24(8 + 2m5)

× Ŵ

(
3 − ω,

21−mu

γm

)}∣∣∣∣
μT ′

μǫ

(
21−mμ

γm

)ω

+ O(μω−3).

(A13)

We now observe that in both (A10) and (A13) in the limit

T ′ → ∞, we have Ŵ(ω, T ′) → 0. For ǫ → 0 similar diver-

gences as for (A10) arise, which are removed by the integral

on Cǫ .

Before discussing the integral on Cǫ , we focus on IC− (see

(A5)). The calculation is similar, the only difference is the

phase factor due to the presence of the branch cut. Precisely,

one has

IC− = −IC+e−2πωi. (A14)

From that (A6), for even m one obtains that IC+ = IC−

(whereas for odd m the two integrals cancel out).

Finally, we briefly discuss the integral on the inner circle

Cǫ around the branch cut. One has u = ǫeiθ . Therefore the

integral to evaluate is

ICǫ = ǫ1−ω

4π (−1)ω

∫ 2π

0

dθ
e− 1

2
(3−

√
5+23−me−ǫeiθ

)μ

ei(ω−1)θ

×
[

1 + 3√
5 + 23−me−ǫeiθ

]
. (A15)

Since we are interested in the limit ǫ → 0, we can expand the

integrand. After performing the integral over θ , we obtain that

at the leading order in ǫ one has

ICǫ = ǫ1−ωe−2iπω

2π (ω − 1)

(
1 + 3

γm

)
e− 1

2
(3−γm )μ sin(πω). (A16)

At the leading order, the contribution of (A16) cancels the

most divergent term in I
(0)

C+ + I
(0)

C− (see (A10)). We checked

that higher order terms cancel higher order divergences in

(A10) and (A13).

It is now straightforward to derive the result for the integral

Im in (A2). We focus on the leading order in μ. At the leading

order ω = (m + 1)/2, from (A10), (A14), and the expression

for Q0 [cf. (60)], one obtains that

Im = 1

2
e− 1

2
(3−γm )μ

(
1 + 3

γm

)(
2

π

) 1−m
2
(

21−mμ

γm

) m−1
2

.

(A17)

Here we also used that the factor Ŵ((m + 1)/2) in (A3)

cancels out with the Ŵ((1 − m)/2) obtained from (A10) in the

limit ǫ → 0 (see (A12)) using Euler’s reflection formula

Ŵ(x)Ŵ(1 − x) = π

sin(πx)
, x /∈ Z. (A18)

Finally, we stress that the result (A17) coincides, at least to

leading order, with the result in the main text (64) obtained by

taking the derivative of g(σ ) for odd m.
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