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Measurement underpins all quantitative sci-
ence. A key example is the measurement of op-
tical phase, used in length metrology and many
other applications. Advances in precision mea-
surement have consistently led to important sci-
entific discoveries. At the fundamental level,
measurement precision is limited by the number
N of quantum resources (such as photons) that
are used. Standard measurement schemes, us-
ing each resource independently, lead to a phase
uncertainty that scales as 1/

√
N—known as the

standard quantum limit. However, it has long
been conjectured [1, 2] that it should be possible
to achieve a precision limited only by the Heisen-
berg uncertainty principle, dramatically improv-
ing the scaling to 1/N [3]. It is commonly thought
that achieving this improvement requires the use
of exotic quantum entangled states, such as the
NOON state [4, 5]. These states are extremely
difficult to generate. Measurement schemes with
counted photons or ions have been performed
with N ≤ 6 [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], but
few have surpassed the standard quantum limit
[12, 14] and none have shown Heisenberg-limited
scaling. Here we demonstrate experimentally a
Heisenberg-limited phase estimation procedure.
We replace entangled input states with multi-
ple applications of the phase shift on unentan-
gled single-photon states. We generalize Kitaev’s
phase estimation algorithm [16] using adaptive
measurement theory [17, 18, 19, 20] to achieve
a standard deviation scaling at the Heisenberg
limit. For the largest number of resources used
(N = 378), we estimate an unknown phase with
a variance more than 10 dB below the standard
quantum limit; achieving this variance would re-
quire more than 4,000 resources using standard
interferometry. Our results represent a drastic re-
duction in the complexity of achieving quantum-
enhanced measurement precision.

Phase estimation is a ubiquitous measurement primi-
tive, used for precision measurement of length, displace-
ment, speed, optical properties, and much more. Re-
cent work in quantum interferometry has focused on n-
photon NOON states [5, 6, 7, 8, 9, 10, 11, 12, 21],
(|n〉|0〉+ |0〉|n〉) /

√
2, expressed in terms of number states

of the two arms of the interferometer. With this state,
an improved phase sensitivity results from a decrease in
the phase period from 2π to 2π/n. We achieve improved

phase sensitivity more simply using an insight from quan-
tum computing. We apply Kitaev’s phase estimation
algorithm [16, 22] to quantum interferometry, wherein
the entangled input state is replaced by multiple passes
through the phase shift. The idea of using multi-pass
protocols to gain a quantum advantage was proposed for
the problem of aligning spatial reference frames [23], and
further developed in relation to clock synchronization [24]
and phase estimation [25, 26].

The conceptual circuit for Kitaev’s phase estimation
algorithm is shown in Fig. 1a. The algorithm yields, with
K + 1 bits of precision, an estimate φest of a classical
phase parameter φ, where eiφ is an eigenvalue of a uni-
tary operator U . It requires us to apply K + 1 unitaries,
Up, with p = 2K , 2K−1, . . . , 1, each controlled by a dif-
ferent qubit. Each qubit is prepared in the state H|0〉 =
1√
2

(|0〉+ |1〉), and the control induces a phase shift eipφ

on the |1〉 component. The qubits are measured sequen-
tially in the σ̂x basis (X), and the results control addi-
tional phase shifts, indicated by R(α) ≡ exp(iα|0〉〈0|),
on subsequent qubits. This enables the inverse quantum
Fourier transform to be performed without entangling
gates [27]. With a random phase θ on the qubits, as
shown in Fig. 1a, the measurement results on the qubits
are the binary digits of (φest − θ)/2π; this ensures that
the accuracy of the estimate is independent of the value
of φ.

Alternatively, this independence could be obtained by
using a second classical “feedback” phase θ, as in Fig. 1b,
which also eliminates the need for many of the gates
in Fig. 1a. This is a classical real-valued parameter
whose value is adjusted by π/p, indicated by the sym-
bol D(π/p), controlled by the results of measurements.
The value of θ determines (as indicated by the diamond-
shaped control symbol in Fig. 1b) phase-shifts R(pθ) on
the qubits. Applying this to interferometry, we can mea-
sure an unknown optical phase φ using dual-rail photonic
qubits [22]. Here the operator U induces a relative phase
shift φ each time the beam path (in one arm of the in-
terferometer) passes through the unknown optical phase
φ. The additional phase shifts (determined by θ) can be
implemented using a single-pass controllable phase in the
other arm.

If a fixed probability of error in φest is allowed (that
is, if the uncertainty is quantified by a confidence in-
terval), then the uncertainty of Kitaev’s phase estima-
tion scales as 2−K [22]. Because the number of control
photons is Nphot = K + 1, this scaling implies an expo-
nential decrease in the phase uncertainty with increas-
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FIG. 1: Quantum circuit diagrams of Kitaev’s phase estimation algorithm and our generalization. a, Kitaev’s algorithm [16]
with the inverse quantum Fourier transform implemented with measurement and classical feedback [27] and a random initial
phase estimate θ. In general, K+1 qubits yield K+1 binary digits of precision; here K = 2. b, As in a, but here we implement
θ (now called θinit) and the feedback operations by coupling the qubits to a common element, the “feedback phase” θ (the
lowest rail). c, Generalization of the circuit to include M ≥ 1 qubits for each binary digit; here K = 1 and M = 2. For details
on circuit elements, see text.

ing resources—apparently violating the Heisenberg un-
certainty principle. The correct analysis, however, is as
follows. Although the cost of implementing Up can be as-
sumed to be essentially independent of p in the context of
quantum computation, in interferometry it requires p ap-
plications of the phase shift, and should thus be counted
as requiring p resources [25]. Using this definition, the
total number of resources used is N = 2K+1−1. Then for
N � 1, the uncertainty scales as 1/N , as in the Heisen-
berg limit. We note that this quantification of resources
in terms of the number of applications of the phase shift
is the relevant one for phase estimation of sensitive (for
example, biological) samples, wherein the goal is to pass
as little light through the sample as is necessary.

On the other hand, if ∆φest is taken to be the stan-
dard deviation—the usual measure of uncertainty—then
Kitaev’s algorithm does not scale as 1/N . Rather, we
have shown analytically that it asymptotes as

√
2/
√
N ,

the same scaling as the standard quantum limit (SQL)—
see also Ref. [21]. The broad wings of the distribution
of phase estimates are not due to any deficiency in the
estimation procedure—the quantum Fourier transform is
optimal—but rather are a consequence of the sequence of
phase shifts on the photons, 2Kφ, 2K−1φ, . . . , φ.

A key idea to address this problem is to employ

M copies of the control photon at each phase shift
[23, 24, 25]. For M > 1 one cannot perform an exact
quantum Fourier transform using only single-photon op-
erations. However, one can perform it approximately us-
ing the adaptive phase estimation scheme of Ref. [18], as
shown in Fig. 1c for M = 2. Here the feedback phase is
adjusted by an amount δθ, controlled by all previous mea-
surement results via a bayesian algorithm. This general
multi-bit conditioning is represented by the circled-dot
symbol in Fig 1c. For the final adjustment, δθ = φest−θ,
so the value of θ that is read out is equal to φest, the best
estimate of the phase given all the data, as in Fig. 1b. Be-
cause the inverse quantum Fourier transform is not per-
formed exactly, and because the sequence of phase shifts
is not exactly equivalent to the optimal state of Ref. [18],
we do not expect φest to have an uncertainty precisely
at the Heisenberg limit ∆φHL = tan [π/ (N + 2)] ≈ π/N
for N � 1 [18, 28]. Nevertheless, our algorithm allows
estimation with an uncertainty only a constant factor
larger than this ultimate limit, for M ≥ 4. For in-
stance, we find by numerical simulation that for M = 6,
∆φest ≈ 1.56π/N for N � 1.

A conceptual implementation of this generalization of
Kitaev’s algorithm is shown in Fig. 2. It works as follows:
a photon is converted to the state 1√

2
(|1〉|0〉+ |0〉|1〉)
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FIG. 2: Conceptual diagram of the algorithm’s implemen-
tation as a Mach-Zehnder interferometer. This is equivalent
to the scheme in Fig. 1c. Photon-number quantum states are
shown at key points. The first beam splitter implements the
Hadamard operation on incident photons. The large phase-
shift element is configured to implement a pφ phase shift on
logical |1〉 states, with p adjustable (p = 8 shown). The small
phase-shift element implements the adjustable pθ phase shift
on logical |0〉 states. The final beam splitter and single photon
detectors implement a σ̂x measurement, which determines,
via the processor, how to adjust θ before the next photon
input.

by the first beam splitter. After passing p = 2K
times through the phase shift φ, the state evolves to
1√
2

(
eipθ|1〉|0〉+ eipφ|0〉|1〉

)
. The photon is then detected

after the modes are recombined on the second beam split-
ter. The result is used to update the probability distri-
bution P (φ) which represents knowledge about φ.

This process is repeated M times, so that M indepen-
dent photons go through 2K passes in sequence. Quanti-
fying a resource as a single pass of a photon through the
phase shift, each photon in this stage corresponds to 2K
resources. Following these M photons, another M pho-
tons undergo the same process at p = 2K−1 passes, and
so on for p = 2K−2, . . . , 20. Thus a total of M (K + 1)
photons and N = M

(
2K+1 − 1

)
resources are used. The

value of the feedback phase θ is random for the first pho-
ton only. Thereafter it is chosen, based upon P (that
is, upon all preceding results), to minimize the expected
phase variance after the next detection [18].

This bayesian control algorithm reduces to Kitaev’s
algorithm for M = 1. We have shown analytically that
this algorithm gives a standard deviation of estimates
scaling as the SQL for M = 2 as well as M = 1, but
numerical simulations (for N up to 4× 106 and M up to
8) demonstrate a Heisenberg-limited scaling for M ≥ 4.

We note that a single photon with p passes through
the unknown phase shift is operationally equivalent to a

NOON state with n = p photons, and involves exactly
the same number of resources. A single NOON state such
as this yields at most one bit of information [4], and only
about φ modulo 2π/n. It has been shown numerically
[21] that a sequence of NOON states, with n as well as
θ chosen adaptively, achieves Heisenberg-limited scaling,
but only for N > 100. Our generalized algorithm, which
is simpler, can also be applied to NOON states, and di-
rectly achieves Heisenberg-limited scaling. Even if high-n
NOON states could be produced, however, they require
high-n photon-number-resolving detectors, and are pro-
portionately more sensitive to detector inefficiency than
single photons with multiple passes through the phase
shift.

We demonstrate our single-photon algorithm using
a common-spatial-mode polarization interferometer, as
shown in Fig. 3. Common-spatial-mode interferome-
ters are used in many metrology tasks involving bire-
fringent materials such as stress sensors, Faraday spec-
troscopy, and testing optical components, but we stress
that our algorithm applies equally well to any interfer-
ometer. The two arms of the interferometer are the
right-circular (|R〉) and left-circular (|L〉) polarization
modes. The unknown phase φ is implemented as a bire-
fringent half-wave plate. We test two versions of the
algorithm: M = 1 (Kitaev’s algorithm), and M = 6
(chosen for its robustness). For each, we vary the num-
ber of resources N = M

(
2K+1 − 1

)
by choosing differ-

ent values for the maximum number of passes, 2K , with
K ∈ {0, 1, 2, 3, 4, 5}. We also measured the standard de-
viation for a non-adaptive or “standard” estimation al-
gorithm, using N single passes of the phase shift, with N
chosen equal to the number of resources used for each of
the M = 6 data points. In this case θ was incremented
non-adaptively [29] by π/N from one photon to the next,
to ensure a sensitivity independent of φ− θinit.

The experimental results are shown in Fig. 4, together
with theoretical calculations. The error bars are 95%
confidence intervals determined using a studentized boot-
strap on a log scale [30]. In general, the distributions
have a large positive kurtosis which emphasizes the effect
of outliers; our error calculation takes this into account
to provide accurate error bars. Theoretical predictions
assume 100% visibility. Experimentally, visibilities for
p = 1 to 16 were high (all above 98.1% and typically
above 99.6%). However the p = 32 case had slightly
lower visibility (95.4%), leading to higher than expected
standard deviations for the N = 378 case. This is pri-
marily due to expansion of the beam, with consequent
overlap of beams, leading to a small probability of mea-
suring the photon after only 30 passes.

The results of the non-adaptive phase estimation al-
gorithm follow the SQL, as expected. We note that the
standard deviations of the M = 1 (Kitaev’s) case also
follow an SQL scaling. Most importantly, there is a
clear Heisenberg scaling, ∆φest ∝ 1/N , of our adaptive
multi-pass algorithm for M = 6. Our data are consis-
tent with the predicted overhead factor of 1.56 relative
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FIG. 3: Schematic of the experiment. Polarization modes
replace the arms of the interferometer in Fig. 2, with phase
shifts implemented by half-wave plates (HWPs). A photon
experiences phase shifts between left- and right-circular po-
larizations by the feedback wave plate (pθ) and the unknown
phase wave plate (φ). The photon is selected by a mirror
mounted on a motorized translation stage, discriminated in
the horizontal/vertical polarization basis by a polarizing beam
displacer (PBD), and passed through a 10-nm-bandwidth in-
terference filter. It is then coupled into a multimode fibre and
detected by a single-photon counting module (SPCM), com-
pleting the σ̂x measurement. PBS, polarizing beam splitter;
QWP, quarter-wave plate.
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FIG. 4: Standard deviations of distributions of phase esti-
mates for varying numbers of resources N . We compare the-
oretical predictions (lines) and measured values (points, each
representing 1,000 estimates) for standard phase estimation
and our implementation of Kitaev’s (M = 1) and generalized
Kitaev’s (M = 6) algorithms. Error bars denote 95% confi-
dence intervals. Our algorithm clearly has a lower standard
deviation in phase estimates than both the SQL and Kitaev’s
algorithm (which has SQL scaling). For large N , the curve
for the adaptive algorithm is parallel to the Heisenberg limit,
with a small overhead factor of about 1.56.

to the asymptotic Heisenberg-limited standard deviation
π/N . Despite this constant overhead, our phase esti-
mates clearly surpass the SQL. For example, where we
have demonstrated the use of 378 resources in our algo-
rithm (corresponding to a maximum of 32 passes), 4,333
resources would be required using standard techniques to
achieve the same uncertainty.

We have introduced a new algorithm for phase estima-
tion, generalizing Kitaev’s algorithm, which requires no
entanglement to achieve Heisenberg-limited scaling inde-
pendent of φ. Our algorithm uses single-photon Fock
states, multiple passes and adaptive measurement. We
have used our algorithm to successfully demonstrate the
first measurement with Heisenberg-limited scaling. This
technique has promise for a wide range of metrology
tasks, especially in light of continued development of
high-flux single photon sources and efficient detectors.

Methods Summary

Interferometer. A spontaneous parametric down-
converter supplies pairs of single photons, one to the
interferometer and one to an independent detector.
The state after the polarizing beam splitter is (|R〉 +
|L〉)/

√
2, equivalent to the logical state H|0〉. A

photon passing through the 50-mm-diameter φ phase
shift half-wave plate undergoes a polarization rotation:
1√
2

(|R〉+ |L〉)→ 1√
2

(
|R〉+ eiφ|L〉

)
for a half-wave plate

setting of φ/4. Two 50-mm-diameter mirrors are placed
on either side, allowing a single photon to pass through
the half-wave plate multiple times. To correct the un-
wanted π-phase shift (in the |H〉/|V 〉 basis) on reflection,
a quarter-wave plate, set to its optic axis, is inserted be-
fore each of the large mirrors. The feedback phase is
implemented as another half-wave plate mounted in a
computer-controlled rotation stage before the unknown
phase and mirrors. We use a fixed phase φ, but the use of
a uniformly distributed random initial feedback phase is
equivalent to performing the protocol over the full range
of system phases, φ ∈ [0, 2π). Mirrors on computer-
controlled translation stages are used to select the 2kth
pass for each value of k. Measurement is performed in the
horizontal/vertical basis, corresponding to a σ̂x measure-
ment, with a high-contrast-ratio calcite polarizing beam
displacer. The two outputs of the beam displacer, filtered
with 10-nm-bandwidth filters to reject background light,
are sent to single photon counting modules. A successful
measurement is heralded by a coincidence between the
directly detected photon and either output detector.

Statistics for phase. For a phase φ with distribu-
tion P , an appropriate measure of error in the estimate
φest is 〈cos (φ− φest)〉−2

P −1. This achieves its minimum,
the Holevo variance VH [28], for φest = arg (〈exp (iφ)〉P ),
which is the estimate we use. When applied to a phase
the terms variance and standard deviation are to be un-
derstood as VH and

√
VH respectively.
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Methods

Source. Our type-I BiBO (bismuth borate) sponta-
neous parametric down-conversion source is pumped by
a frequency-doubled mode-locked Ti:sapphire laser, pro-
ducing pairs of 820-nm, 2-nm-bandwidth single photons
in the state |HH〉. One photon is guided to the exper-
iment through a single-mode optical fibre, the other is
guided straight to a single-photon counting module. A
successful measurement is heralded by a coincidence be-
tween the directly detected photon and either of the out-
put detectors—coincidence detection reduces background
and dark counts, ensuring high-fidelity conditional single
photons in the experiment.

Quarter-wave plate setting. For logistical reasons,
we use 25-mm-diameter quarter-wave plates for most
experiments, but 50-mm-diameter wave plates for the
K = 5 cases. The wave plates are nominally identi-
cal except for their diameter. The quarter-wave plates
did introduce a technical challenge: because of the large-
diameter optics, and the need to use all of the clear aper-
ture to obtain multiple reflections, we used mountings
that did not allow easy calibration and adjustment of
the quarter-wave plates. This in turn led to small addi-
tional phase shifts from the quarter-wave plates that were
dependent upon the number of passes. This problem is
easily modelled and is not fundamental.

Analytic solutions. For the cases M = 1 (Kitaev)
and M = 2 of our algorithm we have shown analytically
that the variance scales as the SQL, by solving the adap-
tive scheme exactly, using the formulae in Ref. [18]. The

exact results for the variances are 2/N + 1/N2 and 2/N
respectively.

Error calculation. The 95% confidence intervals
shown were determined using a studentized bootstrap on
a log scale. The bootstrap is a method of determining
confidence intervals without making assumptions about
the form of the underlying distribution [30]. The data
are used as a model of the underlying distribution, and
confidence intervals for the quantity of interest are es-
timated by sampling from this distribution. That is, a
number of subsamples equal to the size of the data set,
m, is obtained, and an estimate of the quantity of interest
is determined from this set of subsamples. A large num-
ber of bootstrap samples are used (in our case 106 − 1),
where each sample is an estimate of the quantity of inter-
est based on the set of m subsamples. The distribution
obtained for the quantity of interest is then used to de-
termine a confidence interval, as described on page 199
of Ref. [30].

For accuracy, the quantity of interest should have an
uncertainty which is independent of the value of the
quantity. As the uncertainty in an estimate of variance
is approximately proportional to the variance, taking the
logarithm of the variance yields a quantity with constant
uncertainty (as is done, for example, in Ref. [31]). The
studentized bootstrap yields additional accuracy, and in-
volves normalizing by the estimated uncertainty in the
quantity of interest [30]. We have used both used the log
scale and the studentized bootstrap in order to obtain
accurate error bars.
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