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We analyze a tripartite entanglement harvesting protocol with three Unruh-DeWitt detectors
adiabatically interacting with a quantum scalar field. We consider linear, equilateral triangular, and
scalene triangular configurations for the detectors. We find that, under the same parameters, more
entanglement can be extracted in the linear configuration than the equilateral one, consistent with
single instantaneous switching results. No bipartite entanglement is required to harvest tripartite
entanglement. Furthermore, we find that tripartite entanglement can be harvested even if one
detector is at larger spacelike separations from the other two than in the corresponding bipartite
case. We also find that for small detector separations bipartite correlations become larger than
tripartite ones, leading to an apparent violation of the Coffman-Kundu-Wootters (CKW) inequality.
We show that this is not a consequence of our perturbative expansion but that it instead occurs
because the harvesting qubits are in a mixed state.

I. INTRODUCTION

The study of quantum information is inextricably con-
nected to the nature of the quantum vacuum. Over the
past several decades this subject has been studied from
a variety of perspectives, including metrology [1] and
quantum information [2, 3], quantum energy teleporta-
tion [4, 5], the AdS/CFT correspondence [6], black hole
entropy [7, 8] and the black hole information paradox [9–
15]. The vacuum state of any quantum field depends in
turn on the structure of spacetime. By coupling a quan-
tum field to first-quantized particle detectors, we can gain
understanding of the quantum vacuum and its response
to the structure of spacetime.

Thanu Padmanabhan, known throughout the physics
community as ‘Paddy’, long appreciated the importance
of understanding the quantum vacuum. He understood
its significance in cosmology [16–18], in gravity [19, 20],
and in quantum field theory[21, 22]. He also appreciated
the importance of employing particle detector models as
a tool that can further our understanding of the vacuum
[23]. In the same spirit Paddy had for investigating the
quantum vacuum, and using the same tools he employed,
we show that even the Minkowski space vacuum has in-
teresting correlation properties that warrant further ex-
ploration.

It has been known for quite some time that the vac-
uum state of a quantum field has non-local correlations,
and that these can be extracted using particle detectors
[24, 25]. Even if the two detectors are not in causal con-
tact throughout the duration of the interaction, the vac-
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FIG. 1. UDW detector diagram

uum correlations can be transferred to the detectors in
the form of both mutual information, discord, and en-
tanglement. The extracted entanglement can be further
distilled into Bell pairs [26], indicating that in principle
the vacuum is a resource for quantum information tasks.
A considerable amount of research on this phenomenon
has since been carried out [27–44], and the process has
come to be known as entanglement harvesting [43, 45].
In general it depends on the properties and states of mo-
tion of the detectors, and has been investigated for both
spacelike and non-spacelike detector separations [46–48].
While a variety of detector models have been consid-

ered [49–51], the most popular and well-studied have
been two-level particle detectors, known as Unruh-
DeWitt (UDW) detectors[52, 53] that linearly couple to
a scalar field. These detectors behave like a particle in
a “box”, which interacts with the field when the “box”
opens. These detectors will be excited by the quantum
field when they pass through it (see Fig. 1). Such detec-
tors represent an idealization of atoms responding to an
electromagnetic field. Despite its simplicity, this model
captures the essential features of the light-matter interac-
tion [54–56] whilst remaining illustrative of basic physical
principles. This has been of particular value in investi-
gating the structure of spacetime [29, 35, 57–59], black
holes [38, 60–69], gravitational waves [40, 70], the ther-
mality of de Sitter spacetime [27, 71–73], and the effects
of quantum gravity [74–78]. Indeed, viewing the situa-
tion from a detector perspective and its local interactions
with a field is a more operational approach than consid-
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ering only field interactions, and opens up the possibility
of performing experiments by coupling a physical detec-
tor, such as (for example) an atom, qubit, or photon to
the electromagnetic field [79].

Almost all investigations of entanglement harvesting
have been concerned with the bipartite case. However the
process of swapping field entanglement can be extended
to multipartite entanglement as well, of which much less
is known. There has been some consideration of tripar-
tite and tetrapartite entanglement in non-inertial frames,
[80–83] and in inertial frames[84]. A finite-duration in-
teraction of N UDW detectors with the scalar vacuum
yields a reduced density matrix containing N -partite en-
tanglement between the detectors that can in principle
be distilled to that of a W -state[85]. Gaussian quantum
mechanics has been used to show that three harmonic os-
cillators in a (1 + 1)-dimensional cavity can harvest gen-
uine tripartite entanglement even if the detectors remain
spacelike separated[86]. Curiously, it was easier to har-
vest tripartite entanglement than bipartite entanglement.
Most recently extraction of tripartite entanglement using
three UDW detectors each instantaneously locally inter-
acting just once with a scalar field was demonstrated [87],
whereas a no-go theorem forbids extraction of bipartite
entanglement via the same procedure [33]. The harvested
tripartite entanglement is of the GHZ-type, and can be
maximized by an optimal value of the coupling.

Here we extend the previous study to include inter-
actions that are not instantaneous, but rather last for
a (finite) duration of time. Such an interaction allows
detectors to harvest entanglement even when they are
causally disconnected, whereas the instantaneously inter-
acting detectors in Ref. [87] require signalling from one
detector to the other to gain entanglement. Although
the elements in the density matrix of three detectors
can be complicated in general, one can choose a sym-
metric spatial configuration for the detectors’ positions
to simplify the calculation. To this end, we will choose
equilateral triangle and linear configurations as simple
examples, and then generalize these to a scalene trian-
gle. We find that tripartite entanglement can be easily
extracted compared to bipartite. Indeed situations ex-
ist where bipartite entanglement vanishes but tripartite
entanglement can still be harvested.

For small detector separations we find that the total
bipartite correlations become larger than the tripartite
ones. This implies an apparent violation of the Coffman-
Kundu-Wootters (CKW) inequality, which describes the
monogamy of tripartite entanglement. We show that this
is not a consequence of our perturbative expansion but
that it instead occurs because the harvesting qubits are
in a mixed state, and provide in an Appendix an explicit
non-perturbative example of of a density matrix for which
this is the case.
The outline of our paper is as follows. First, we de-

scribe the mathematical method for the Unruh-DeWitt
model in the context of our three detector system in
Sec. II. We then explore three different detector configu-
rations: equilateral triangular (Sec. III), linear (Sec. IV),
and scalene triangular (Sec. V). The scalene triangle con-
figuration generalizes of the other two. We summarize
our results in Sec. VI, and include two Appendices that
provide details of our calculations.

II. THE UNRUH-DEWITT MODEL

The UDW model of a detector D is a two-level quan-
tum system, with ground and excited states denoted by
|0〉D and |1〉D, respectively, and separated by an energy
gap of ΩD. Suppose three UDW detectors, A,B, and C,
locally couple to a massless quantum scalar field φ̂(x, t)
whose interaction Hamiltonian is

Ĥ(t) =
∑

D=A,B,C

dτD
dt

λDχD(τD(t))µ̂D(τD(t))⊗ φ̂[xD(t)]

(1)
in the interaction picture, where τD and t are the proper
time of detector D and a common time, respectively, λD
is the coupling of detector D to the field, χD(τD) is a
switching function, µ̂D(τD) is a monopole moment given
by

µ̂D(τD) = eiΩDτD |1〉D 〈0|D + e−iΩDτD |0〉D 〈1|D , (2)

and φ̂[xD(t)] is the pullback of the field operator on de-
tector D’s trajectory. The parameter space of the detec-
tors is rather broad, with three switching functions, three
couplings, and three gaps.

For simplicity, let us assume that the coupling constants are all the same, λ := λD, and weakly coupled: λ � 1.
The time evolution of the detectors and field during the interaction is described by the unitary operator, Û , generated
by the interaction Hamiltonian in (1), which is

Û := T exp
(
−i
∫
R
dt Ĥ(t)

)
= 1+ (−iλ)

∫
R
dt Ĥ(t) + (−iλ)2

2

∫
R
dt

∫
R
dt′ T Ĥ(t)Ĥ(t′) +O(λ3) , (3)

where we have employed the Dyson series expansion, with T Â(t)B̂(t′) := θ(t − t′)Â(t)B̂(t′) + θ(t′ − t)B̂(t′)Â(t) the
time-ordering operator with respect to the common time t, and θ(t) being Heaviside’s step function.
Suppose the detectors are initially prepared (as t → −∞) in the ground state, |0A0B0C〉, and the field is in an

appropriately defined vacuum state |0〉. The initial density matrix is thus ρ0 = |0A0B0C〉 〈0A0B0C | ⊗ |0〉 〈0|. Then
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the final state of the detectors after the interaction will be

ρABC = Trφ[Ûρ0Û
†] . (4)

In the basis {|0A0B0C〉 , |0A0B1C〉, |0A1B0C〉 , |1A0B0C〉, |0A1B1C〉, |1A0B1C〉, |1A1B0C〉 , |1A1B1C〉} it is straightfor-
ward to show [87] that the general structure of the density matrix (4) is

ρABC =



r11 0 0 0 r∗51 r∗61 r∗71 0
0 r22 r∗32 r∗42 0 0 0 r∗82
0 r32 r33 r∗43 0 0 0 r∗83
0 r42 r43 r44 0 0 0 r∗84
r51 0 0 0 r55 r∗65 r∗75 0
r61 0 0 0 r65 r66 r∗76 0
r71 0 0 0 r75 r76 r77 0
0 r82 r83 r84 0 0 0 r88


(5)

to all orders in the coupling, where the matrix elements rij depend on the parameters of the detectors (their gaps
and switching functions) as well as their relative states of motion.

To leading order in λ the density matrix (5) becomes

ρABC =



1− (PA + PB + PC) 0 0 0 X∗BC X∗AC X∗AB 0
0 PC C∗BC C∗AC 0 0 0 0
0 CBC PB C∗AB 0 0 0 0
0 CAC CAB PA 0 0 0 0

XBC 0 0 0 0 0 0 0
XAC 0 0 0 0 0 0 0
XAB 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


+O(λ4) , (6)

where

PD = λ2
∫
R
dτD

∫
R
dτ ′D χD(τD)χD(τ ′D)e−iΩD(τD−τ ′

D)W (xD(τD), xD(τ ′D)) , (7)

CDD′ = λ2
∫
R
dτD

∫
R
dτ ′D′ χD(τD)χD′(τ ′D′)e−i(ΩDτD−ΩD′τ ′

D′ )W (xD(τD), xD′(τ ′D′)) , (8)

XDD′ = −λ2
∫
R
dτD

∫
R
dτ ′D′ χD(τD)χD′(τ ′D′)ei(ΩDτD+ΩD′τ ′

D′ )

×
[
θ(t(τD)− t(τ ′D′))W (xD(τD), xD′(τ ′D′)) + θ(t(τ ′D′)− t(τD))W (xD′(τ ′D′), xD(τD))

]
. (9)

Here W (x, x′) is the vacuum Wightman function

W (x, x′) := 〈0|φ(x)φ(x′) |0〉 , (10)

and CD′D = C∗DD′ and D,D′ ∈ {A,B,C} with D 6= D′.
(Note that if D = D′ then CDD = PD.) PD is called
transition probability since the reduced density matrix
for detector D is given by

ρD =
(

1− PD 0
0 PD

)
+O(λ4)

obtained by tracing the density matrix (6) over the
Hilbert spaces of the other two detectors.

After obtaining the density matrix (6), the next step
is to extract its multipartite properties, for which several
methods exist [84, 88–91]. We shall use the π-tangle [92],

which will provide a lower bound on the tripartite entan-
glement in the mixed state of a three detector system:

π := πA + πB + πC
3 , (11)

where the Negativities of the 3-detector system and its
subsystems are respectively

πA = N 2
A(BC) −N

2
A(B) −N

2
A(C) , (12a)

πB = N 2
B(AC) −N

2
B(A) −N

2
B(C) , (12b)

πC = N 2
C(AB) −N

2
C(B) −N

2
C(A) , (12c)

and

NA(BC) := ||ρ
TA

ABC || − 1
2 , (13)
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FIG. 2. Three configurations of the 3-detector system; (a-i)
equilateral triangular, (b) linear, and (a-ii) scalene triangular.
Figure (a-ii) shows the spatial configuration of the detectors
in (a-i) when t = 0.

NA(B) := ||(TrC [ρABC ])TA || − 1
2 , (14)

where || · || is the trace norm, and the above definition is
cyclic in A,B,C. 1 The partial transpose ρTA

ABC over the
detector A can be computed as

ρTA

ABC =
∑

ijk,i′j′k′

ηijkη
∗
i′j′k′(|ijk〉 〈i′j′k′|)TA

=
∑

ijk,i′j′k′

ηijkη
∗
i′j′k′ |i′jk〉 〈ij′k′| (15)

over the basis |ijk〉, with analogous expressions straight-
forwardly holding for the other two detectors. The partial
trace over detector D is computed as

TrD[ρABC ] = D〈0| ρABC |0〉D + D〈1| ρABC |1〉D . (16)

In what follows we shall take all detectors to be identi-
cal, having the same energy gap Ω and switching function
χ(τ), in order to reduce the complexity of the parameter
space. As a consequence, the three detectors will have
identical transition probabilities

PA = PB = PC ≡ P . (17)

In particular, we choose a Gaussian switching function
χ(τ) = e−τ

2/2σ2 , where σ is the typical duration of in-
teraction, which allows for the exact calculation of the
matrix elements[94]:

P = λ2

4π

(
e−σ

2Ω2
−
√
πσΩ erfc (σΩ)

)
(18)

1 The definition of negativity used in [92] does not include the
overall factor of 1

2 . However, we include it to keep consistent
with the definition used in [93].

-1. × 10-8

-5. × 10-9

0

5. × 10-9

1. × 10-8

FIG. 3. The π-tangle as a function of energy gap, Ω, and
detector separation, L, for the equilateral triangle configu-
ration. Negative values of Ω correspond to initially excited
detectors. The coupling constant is set to λ = 0.1. The green
and black dotted regions represent zero and negative π-tangle,
respectively.

CDD′ = λ2σ

4
√
πL

e−L
2/(4σ2)

[
Im
(
eiΩLerf

(
i
L

2σ + σΩ
))

− sin (ΩL)
]
∈ R (19)

XDD′ = i
λ2σ

4
√
πL

e−σ
2Ω2−L2/(4σ2)

[
1 + erf

(
i
L

2σ

)]
(20)

where

erf(x) := 2√
π

∫ x

0
dt e−t

2
,

erfc(x) := 1− erf(x)

are the error and complementary error functions respec-
tively and L := |xD − xD′ | is the distance between de-
tectors D and D′.
We will consider three types of detector configurations,

shown in Fig. 2. In one we place the detectors at the
vertices of an equilateral triangle, and compute how the
entanglement depends on the side length L. In the sec-
ond configuration we place the detectors in a line of total
length 2L, with the central detector equidistant from the
other two, varying the separation of the end detectors
from the central one. Finally, we consider a scalene tri-
angular configuration, in which we vary the location of
one along a line parallel to that connecting the other two,
which remain at fixed separation.

III. EQUILATERAL TRIANGLE

The π-tangle for the equilateral triangular arrange-
ment is the easiest one to compute since all distances be-
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tween the identical detectors are the same and the system
is symmetric under permutations of the detectors. As a
consequence

CBC = CAC = CAB ≡ C , (21)
XCB = XCA = XBA ≡ X ,

and the density matrix (6) becomes

ρABC =



1− 3P 0 0 0 X∗ X∗ X∗ 0
0 P C C 0 0 0 0
0 C P C 0 0 0 0
0 C C P 0 0 0 0
X 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


+O(λ4).

(22)
The Negativities (13) are then

NA(BC) = max
[

0,

√
C2 + 8 |X|2

2 − C

2 − P
]

+O(λ4)

(23)

with identical results for NB(CA) and NC(AB), due to the
symmetry of the triangular configuration. For the same
reason, all bipartite Negativities are the same, and so

NA(B) = NA(C) = NB(C) = NB(A) = NC(A) = NC(B)

= max
[
0, |X| − P

]
(24)

yielding

π = max
[

0,

√
C2 + 8 |X|2

2 − C

2 − P
]2

− 2 max
[
0, |X| − P

]2 (25)

for the π-tangle (11).
We plot the π-tangle from (25) as a function of the en-

ergy gap, Ωσ, and the detector separation, L/σ (the side
of the triangle), in Fig. 3. We observe that the π-tangle
— and hence the harvested tripartite entanglement —
is the largest for larger detector separations, contrary to
intuitive expectation. This result also differs from the
bipartite case [28] where more entanglement is harvested
for nearby detectors. We also find that as the energy gap
increases, tripartite entanglement can be harvested over
broader ranges of larger detector separation, albeit in
decreasing amounts. We illustrate this in Fig. 4, where
we plot the π-tangle as a function of detector separa-
tion for three different values of Ωσ — these are different
constant-Ω cross-sections of Fig. 3. We see that the har-
vested tripartite entanglement extends to larger values of
L/σ as Ωσ increases.

One notable feature in Figs. 3 and 4 is that there are
regions in parameter space where the π-tangle becomes
negative. This would appear to violate the generalized

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-4. × 10-8

-2. × 10-8

0

2. × 10-8

4. × 10-8

FIG. 4. The π-tangle of the detectors in the triangle con-
figuration with length L/σ for various values of the energy
gap, Ω. As the energy gap increases, the π-tangle reaches a
lower maximum value but remains positive for larger values
of detector separation. The coupling constant λ = 0.1.

Coffman- Kundu-Wootters (CKW) inequality for tripar-
tite states [92]. However the actual inequality is

N 2
AB +N 2

AC ≤ min
[
N 2
A(BC)

]
, (26)

where the minimization is over the possible pure-state
decompositions [95] of the 3-qubit mixed state given by
the density matrix ρABC in (22). Since the negativ-
ity is a convex function [93], the minimum negativity
min[N 2

A(BC)] over a pure state decomposition is greater
than or equal to the negativity NA(BC) (and its counter-
parts) of the mixed state itself, whenever we obtain π > 0
from (11). In this case, (26) is satisfied and the detec-
tors have harvested tripartite entanglement. However, if
the π-tangle is negative, then the harvesting of tripartite
entanglement is not guaranteed, since the inequality (26)
may or may not be saturated. We discuss these issues
further in Appendix B.

IV. LINEAR ARRANGEMENT

Another simple arrangement is the linear configuration
— the detectors are equally spaced along a line as shown
in Fig. 2(b). Although P will be unchanged in this case,
the matrix elements XDD′ and CDD′ will differ from the
equilateral arrangement. They become

XCB = XBA ≡ XL and CBC = CAB ≡ CL

for the two pairs of detectors at the same distance, L ≡
LAB = LBC , and

XCA ≡ X2L and CAC ≡ C2L
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-4. × 10-8

-2. × 10-8

0

2. × 10-8

4. × 10-8

FIG. 5. The π-tangle as a function of Ω and detector sepa-
ration L for the linear configuration. The total length of the
line is 2L/σ. Negative values of Ω correspond to initially ex-
cited detectors. The coupling constant is set to λ = 0.1. The
green and black dotted regions represent zero and negative
π-tangle, respectively.

for the outermost pair of detectors. The density matrix
in (6) now has the form

ρABC =



1− 3P 0 0 0 X∗L X∗2L X∗L 0
0 P CL C2L 0 0 0 0
0 CL P CL 0 0 0 0
0 C2L CL P 0 0 0 0
XL 0 0 0 0 0 0 0
X2L 0 0 0 0 0 0 0
XL 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

(27)

We follow the same procedure as before to calculate
the π-tangle. By symmetry, πA and πC will be the same,
and we obtain

NA(BC) =NC(AB) = max
[

0, 2√
3

√
C2
L + |XL|2 + |X2L|2 sin

(
π

6 −
1
3 arccos 3

√
3(CLXLX

∗
2L + CLX

∗
LX2L)

2(C2
L + |XL|2 + |X2L|2)3/2

)
− P

]
(28)

as well as

NA(B) = NC(B) = max
[
0, |XL| − P

]
, (29)

NA(C) = NC(A) = max
[
0, |X2L| − P

]
. (30)

Hence

πA = πC = max
[
0, 2√

3

√
C2
L + |XL|2 + |X2L|2 sin

(
π

6 −
1
3 arccos 3

√
3(CLXLX

∗
2L + CLX

∗
LX2L)

2(C2
L + |XL|2 + |X2L|2)3/2

)
− P

]2

−max
[
0, |XL| − P

]2 −max
[
0, |X2L| − P

]2
. (31)

The computation of πB differs due to the relative difference in the detector separations. We obtain

NB(AC) = max

0,

√
C2

2L + 8 |XL|2

2 − C2L

2 − P

+O(λ4), (32)

yielding

πB = max

0,

√
C2

2L + 8 |XL|2

2 − C2L

2 − P

2

− 2 max
[
0, |XL| − P

]2
. (33)

Finally, using (31) and (33), we obtain

π = 2
3 max

[
0, 2√

3

√
C2
L + |XL|2 + |X2L|2 sin

(
π

6 −
1
3 arccos 3

√
3(CLXLX

∗
2L + CLX

∗
LX2L)

2(C2
L + |XL|2 + |X2L|2)3/2

)
− P

]2
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+ 1
3 max

0,

√
C2

2L + 8 |XL|2

2 − C2L

2 − P

2

− 4
3 max

[
0, |XL| − P

]2 − 2
3 max

[
0, |X2L| − P

]2
. (34)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.5 × 10-7

-1. × 10-7

-5. × 10-8

0

5. × 10-8

1. × 10-7

1.5 × 10-7

FIG. 6. The π-tangle of the detectors in the linear configu-
ration with total length 2L/σ. As the energy gap increases,
the π-tangle attains diminishing maximal values, but remains
positive for larger values of detector separation. The coupling
constant is set to λ = 0.1.

In Fig. 5 we depict the π-tangle from (34) as a function
of the energy gap, Ωσ, and the minimal detector separa-
tion, L/σ. We again see that tripartite entanglement is
harvested a relatively larger separations than the bipar-
tite case[28]. We also find that in the linear configuration
we are able to obtain positive π-tangle for larger values of
detector separation, at a fixed value of energy gap, than
in the equilateral triangle configuration. This is made
more explicit in Fig. 6, where we take cross-sections of
Fig. 5 at fixed values of Ω to plot the π-tangle as a func-
tion of detector separation. By comparing Fig. 6 with
Fig. 4, we find for a given value of the energy gap, the
π-tangle reaches a larger maximum value in the linear
case and remains positive over a larger range of detector
separations. These results indicate that it is more fruit-
ful to harvest entanglement from a linear arrangement as
opposed to a triangle one for the same value of L [87].

V. SCALENE TRIANGLE

As a generalization of the equilateral triangle and lin-
ear configuration, let us consider a scalene triangle ar-
rangement where the distance between any two detectors
is arbitrary. As a result, the density matrix Eq.(6) does
not significantly simplify; we leave the explicit calcula-
tions of the π-tangle to appendix A.
In the previous two configurations, we considered the

case where the distance between all three detectors in-

-3.×10-18

-2.×10-18

-1.×10-18

0

1.×10-18

2.×10-18

3.×10-18

FIG. 7. The π-tangle of the detectors in the scalene tri-
angle configuration starting as an equilateral triangle with
LAC = 7σ, for which all detectors are spacelike separated.
A displacement of B, D/σ = 0 corresponds to an equilateral
triangle. The green dotted region represents zero π-tangle.
The coupling constant is set to λ = 0.1.

creases. Here, however, we fix the distance between de-
tectors A and C and take detector B to be at different
distances away from the other two. This is explicitly
shown in Fig. 2(a-ii).
In Fig. 7, we plot the π-tangle of the scalene trian-

gular configuration as a function of the energy gap of
the detectors and the displacement L of B along a line
parallel to the line connecting detectors A and C. A
displacement of zero corresponds to an equilateral trian-
gle. The distance between detectors A and C is fixed to
be LAC = 7σ, which was chosen using the criterion in
[28] to ensure that the detectors are spacelike separated
throughout the interaction. Most striking, we find that
unlike in the case of bipartite harvesting [28], there will
be tripartite entanglement (albeit a very small amount)
following the interaction even when detector B is far from
the other two detectors.
This is quite clear in Fig. 8, where we plot the π-tangle

as a function of the displacement of detector B at fixed
values of the energy gap. We find that the π-tangle de-
creases as detector B is moved away from the other two
and approaches, but does not reach, zero.
In Fig. 9 we plot the bipartite and tripartite negativi-

ties as a function of the displacement of B. We find that
for a fixed energy gap, once the displacement of B is too
large, i.e. the distance between detectors A and B and C
and B respectively is too large, the bipartite negativities
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0 5 10 15 20
0

1. × 10-19

2. × 10-19

3. × 10-19

4. × 10-19

5. × 10-19

6. × 10-19

0 10 20
0

1. × 10-21

2. × 10-21

FIG. 8. The π-tangle of the detectors in the scalene config-
uration with LAC = 7σ. As the displacement of B increases,
the π-tangle approaches zero when Ωσ = 3.25 and Ωσ = 3.5.
As the energy gap decreases, the π-tangle reaches a larger
maximum value. However if the energy gap is too small,
the π-tangle is zero for all displacements. A displacement
D/σ = 0 of B corresponds to an equilateral triangle. The in-
set depicts the Ωσ = 3.25 and Ωσ = 3.5 cases. The coupling
constant is set to λ = 0.1.

NA(B) and NB(C) become zero. In other words, when the
B is too far away, there is no bipartite negativity between
detectors A and B and C and B respectively. Addition-
ally, we find that the tripartite negativity between detec-
tor B and the (AC) subsystem, NB(AC), also goes to zero
at a similar displacement. However, we find that for the
same energy gap, the tripartite negativities NA(BC) and
NC(AB) remain positive for much larger displacements of
B, yielding a non-zero π-tangle (11). Consequently it is
possible to harvest tripartite entanglement for configura-
tions where there is zero bipartite entanglement between
some of the detectors. Furthermore, the tripartite nega-
tivities NA(BC) and NC(AB) appear to asymptote to the
bipartite negativity, NA(C) as the displacement of B be-
comes very large, at which point the π-tangle will become
zero.

VI. CONCLUSION

As with the case for sharp switching [87], and in (1+1)
dimensions in the context of Gaussian Quantum Mechan-
ics [86], we find that it is actually easier to harvest tripar-
tite entanglement than bipartite entanglement under cer-
tain circumstances. In particular we find that tripartite
entanglement can be harvested at comparatively larger
detector separations and over broader ranges than the
corresponding bipartite cases.

The fact that the π-tangle becomes negative at suffi-
ciently small detector separation L for a given value of
energy gap Ω indicates that bipartite correlations over-
whelm tripartite ones at short distance. Proper mini-

0 5 10 15 20
0

2. × 10-11

4. × 10-11

6. × 10-11

8. × 10-11

1. × 10-10

FIG. 9. The tripartite and bipartite negativities of the de-
tectors in the scalene configuration with LAC = 7σ. As the
displacement of B increases, the bipartite negativities NA(B)
and NB(C) and the tripartite negativity NB(AC) go to zero,
however the tripartite negativities NA(BC) and NC(AB) re-
main positive, leading to a positive π-tangle. A displacement
of B = 0 corresponds to an equilateral triangle. The energy
gap of the detectors is Ωσ = 3.5 and the coupling constant is
set to λ = 0.1.

mization over pure-state decompositions will likely in-
dicate positive values of the π-tangle persist to shorter
distances. However, for any given Ω, we conjecture the
inequality (26) to become saturated at some sufficiently
small L, at which point tripartite harvesting is not pos-
sible. It would be interesting to see where this boundary
is.
We also find, not surprisingly, dependence on the de-

tector configuration. Although the general form of the
density plots for the triangle and linear arrangements are
similar, there are some notable distinctions. For a fixed
value of detector energy gap, we find that there is a value
of detector separation beyond which we cannot harvest
entanglement in the linear arrangement; however, this
value is larger than the equilateral triangular configura-
tion case. In both the equilateral triangular and linear
configurations, a sufficiently large energy gap admits har-
vesting of tripartite entanglement over arbitrary large de-
tector separations, including spacelike separations, albeit
in ever diminishing amounts.
Finally, we find that if the distance between two de-

tectors is fixed, there are values of the energy gap of the
detector where the π-tangle remains positive even if the
third detector is far from the other two. Unlike the equi-
lateral triangle or linear configurations, the energy gap
(if sufficiently large) does not need to increase to get pos-
itive π-tangle as the separation of the third detector is
increased. This is true even when the three detectors
are spacelike separated, and demonstrates that tripartite
entanglement harvesting is possible for detector configu-
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rations that do not allow for bipartite entanglement har-
vesting.

Our results open up a number of interesting avenues
of research. Clearly all previous problems considering
bipartite harvesting can be generalized to the tripartite
case using the methods we have developed. Interesting
examples include tripartite harvesting near moving
mirrors, in curved spacetime, near a black hole, and
across an event horizon as one detector falls in. The
range of different geometries for three detectors afford
more possibilities for detector communication, and it
would be interesting to see how such effects are manifest.
And finally, a generalization to n-partite entanglement

harvesting would be of considerable interest, though
finding the right measure of entanglement would pose a
challenge.
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Appendix A: The π-tangle for the scalene triangle configuration

Here we present the calculations for the π-tangle when the three detectors are in a scalene triangular configuration.
When the distance between each pair of detectors is arbitrary, the density matrix Eq. (6) becomes

ρABC =



1− 3P 0 0 0 X∗BC X∗AC X∗AB 0
0 P C∗BC C∗AC 0 0 0 0
0 CBC P C∗AB 0 0 0 0
0 CAC CAB P 0 0 0 0

XBC 0 0 0 0 0 0 0
XAC 0 0 0 0 0 0 0
XAB 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


. (A1)

Following the same procedure for the equilateral triangular and linear configurations, we obtain

NA(BC) = max
{

0, 2√
3
√
CBC + |XAB |2 + |XAC |2 cos

[
π

3 + 1
3 arccos

(
3
√

3CBC (XABX
∗
AC +X∗ABXAC)

2
(
C2
BC + |XAB |2 + |XAC |2

)3/2
)]
− P

}

+ max
{

0, 2√
3
√
CBC + |XAB |2 + |XAC |2 sin

[
π

6 + 1
3 arccos

(
3
√

3CBC (XABX
∗
AC +X∗ABXAC)

2
(
C2
BC + |XAB |2 + |XAC |2

)3/2
)]
− P

}
(A2)

NB(AC) = max
{

0, 2√
3
√
CAC + |XAB |2 + |XBC |2 cos

[
π

3 + 1
3 arccos

(
3
√

3CAC (XABX
∗
BC +X∗ABXBC)

2
(
C2
AC + |XAB |2 + |XBC |2

)3/2
)]
− P

}

+ max
{

0, 2√
3
√
CAC + |XAB |2 + |XBC |2 sin

[
π

6 + 1
3 arccos

(
3
√

3CAC (XABX
∗
BC +X∗ABXBC)

2
(
C2
AC + |XAB |2 + |XBC |2

)3/2
)]
− P

}
(A3)

NC(AB) = max
{

0, 2√
3
√
CAB + |XAC |2 + |XBC |2 cos

[
π

3 + 1
3 arccos

(
3
√

3CAB (XACX
∗
BC +X∗ACXBC)

2
(
C2
AB + |XAC |2 + |XBC |2

)3/2
)]
− P

}

+ max
{

0, 2√
3
√
CAB + |XAC |2 + |XBC |2 sin

[
π

6 + 1
3 arccos

(
3
√

3CAB (XACX
∗
BC +X∗ACXBC)

2
(
C2
AB + |XAC |2 + |XBC |2

)3/2
)]
− P

}
(A4)

and

NA(B) = NB(A) = max
[
0, |XAB | − P

]
, (A5)
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NA(C) = NC(A) = max
[
0, |XAC | − P

]
, (A6)

NB(C) = NC(B) = max
[
0, |XBC | − P

]
. (A7)

The π-tangle is then easily computed using Eqs. (12) and (11).

Appendix B: A toy model

The introduction of the π-tangle [92] has generally been thought to satisfy the CKW inequality. Specficially “For
any pure 2⊗ 2⊗ 2 states |φ〉ABC , the entanglement quantified by the negativity between A and B, between A and C,
and between A and the single object BC satisfies the following CKW-inequality-like monogamy inequality:

N 2
AB +N 2

AC ≤ N 2
A(BC),

where NAB and NAC are the negativities of the mixed states”. Although the preceding inequality holds only for
pure tripartite systems, the form of the preceding statement suggests that violations of the CKW inequality are
perhaps unexpected and somewhat counter-intuitive. To illustrate that such violations are not a consequence of the
perturbative expression given in (6), we present a simple density matrix for a tripartite system of qubits that can
have negative π-tangle over a wide range of parameters.

Assume that we have a density matrix of the form

ρABC =



1− 3P − 3E − Σ 0 0 0 X∗ X∗ X∗ 0
0 P C C 0 0 0 0
0 C P C 0 0 0 0
0 C C P 0 0 0 0
X 0 0 0 E 0 0 0
X 0 0 0 0 E 0 0
X 0 0 0 0 0 E 0
0 0 0 0 0 0 0 Σ


, (B1)

where P,C,E,Σ ∈ R, which is clearly trace 1 and Hermitian. In order for this matrix to be a valid density matrix, it
must have positive eigenvalues, which puts the following constraints on the elements of ρABC :

E ≥ 0 , (B2a)
Σ ≥ 0 , (B2b)
P ≥ C , (B2c)
P ≥ −2C , (B2d)

(1− 3P − 2E − Σ)±
√

1− 8E − 16E2 − 6P + 24EP + 9P 2 + 12|X|2 − 2Σ + 8EΣ + 6PΣ + Σ2 ≥ 0 . (B2e)
From constraints Eqs. (B2c) and (B2d), we get the additional constraint:

P ≥ 0. (B3)
If we assume that

ξ := 1− 3P − 2E − Σ ≥ 0 , (B4)
which will be true if P,E,Σ� 1, then constraint (B2e) will be satisfied provided:

(1− 3P − 2E − Σ)2 ≥
(
1− 8E − 16E2 − 6P + 24EP + 9P 2 + 12|X|2 − 2Σ + 8EΣ + 6PΣ + Σ2)

=⇒ Eξ ≥ E2 + 3|X|2 , (B5)
which is consistent with the assumption (B4) since E ≥ 0 and |X| ≥ 0.

The partial transpose of ρABC with respect to A is

ρTA

ABC =



1− 3P − 3E − Σ 0 0 0 X∗ C C 0
0 P C X∗ 0 0 0 0
0 C P X∗ 0 0 0 0
0 X X P 0 0 0 0
X 0 0 0 E 0 0 0
C 0 0 0 0 E 0 0
C 0 0 0 0 0 E 0
0 0 0 0 0 0 0 Σ


, (B6)
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which only has two eigenvalues that can be negative while maintaining non-negative eigenvalues for ρABC :

1
2

(
2P + C −

√
C2 + 8|X|2

)
, (B7)

1
2

(
(1− 3P − 2E − Σ)−

√
(1− 3P − 2E − Σ)2 + 4 (2C2 − E + 3E2 + EP + |X|2 + EΣ)

)
. (B8)

In particular eigenvalue (B7) will only be non-negative if

(2P + C)2 ≥
(
C2 + 8|X|2

)
=⇒ P (P + C) ≥ 2|X|2 (B9)

and eigenvalue (B8) only be non-negative if

(1− 3P − 2E − Σ)2 ≥
[
(1− 3P − 2E − Σ)2 + 4

(
2C2 − E + 3E2 + EP + |X|2 + EΣ

) ]
=⇒ Eξ ≥ E2 + |X|2 + 2C2. (B10)

Note that provided C2 > |X|2, eigenvalue (B8) can be negative without contradicting condition (B5).
Finally, we calculate the negativity of ρAB = TrC [ρABC ]. The partial transpose of ρAB is

ρTA

AB =

1− 2P − 3E − Σ 0 0 C
0 P + E X∗ 0
0 X P + E 0
C 0 0 E + Σ

 , (B11)

which again only has two eigenvalues that can be negative while maintaining non-negative eigenvalues for ρAB :

E + P − |X| , (B12)
1
2

(
(1− 2P − 2E)−

√
4C2 + (1− 4E − 2P − 2Σ)2

)
. (B13)

Eigenvalue (B12) will be non-negative if

P + E > |X| (B14)

and eigenvalue (B13) will be non-negative if

(1− 2P − 2E)2 ≥
(
4C2 + (−1 + 4E + 2P + 2Σ)2)

=⇒ Eξ + Σξ − C2 − E2 − EΣ + PE + PΣ ≥ 0. (B15)

Under the assumption that

P ≥ Σ , (B16)

then condition (B15) can be related to condition (B10) by noticing that

Eξ + Σξ − C2 − E2 − EΣ + PE + PΣ =
(
Eξ − E2 − |X|2 − 2C2)+ |X|2 + C2 + Σξ + PΣ + E(P − Σ)

≥
(
Eξ − E2 − |X|2 − 2C2) , (B17)

meaning that if Eq. (B15) is not satisfied then neither will Eq. (B10); if Eq. (B10) is satisfied then Eq. (B15) will be
too.

The only way that the CKW inequality is violated will be if NA(B) is nonzero. In other words, at least one of the
eigenvalues of the partial transpose of ρAB must be negative. We will first consider the case where eigenvalue (B12)
is negative, followed by the case where (B13) is negative. We will also show that under the assumptions that (B4)
and (B16) are both valid, it is not possible for both eigenvalues to be simultaneously negative.
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Case #1: Assume that eigenvalue (B12) is negative

If eigenvalue (B12) is negative, then |X| > P + E and we also have |X|2 > C2 (since P + E ≥ P ≥ C). This
means that in order that ρABC remain a valid density matrix, eigenvalue (B8) must be non-negative, implying that
eigenvalue (B13) must be also non-negative. Additionally eigenvalue (B7) must also be negative since

|X| > P + E ≥ P =⇒ 2|X|2 > 2P 2 = P 2 + P 2 ≥ P 2 + PC = P (P + C) . (B18)

In this case, the π-tangle is

π = N 2
A(BC) − 2N 2

A(B)

=
(

1
2

(√
C2 + 8|X|2 − 2P − C

))2

− 2
(
|X| − P − E

)2
, (B19)

which can be simplified by considering a Taylor expansion of the matrix elements of ρABC in powers of the coupling
strength, λ� 1:

P = λ2P2 + λ4P4 + λ6P6 +O
(
λ8) ,

C = λ2C2 + λ4C4 + λ6C6 +O
(
λ8) ,

X = λ2X2 + λ4X4 + λ6X6 +O
(
λ8) , (B20)

E = λ4E4 + λ6E6 +O
(
λ8) ,

Σ = λ6Σ6 +O
(
λ8) .

Under this expansion, the π-tangle becomes:

π ≈ λ4

(
1
4

(√
C2

2 + 8|X2|2 − 2P2 − C2

)2
− 2
(
|X2| − P2

)2)
, (B21)

which will be non-negative if(
8P2|X2|+ C2

2 + 2P2C2 − 2P 2
2

)2
≥
(

(2P2 + C2)
√
C2

2 + 8|X2|2
)2

⇐⇒ 4
[
P 2

2 (P2 − C2)2 − 2
(
|X2| − P2

)(
C2

2
(
2|X2| − P2

)
− |X2|(2P2 − C2)2

)]
≥ 0. (B22)

As the condition in (B22) is not particularly instructive, we plot the perturbative π-tangle (B21) in Fig. 10, where
it is clear that there are regions of the parameter space where the π-tangle is negative, meaning the CKW inequality
is not satisfied. For example, if

λ = 0.1, P2 = 1, C2 = 0.9, |X2| = 4 =⇒ π ≈ 3261− 29
√

12 881
2 000 000 ≈ −1.52× 10−5.

Additionally, if the non-perturbative expression for the π-tangle (B19) is considered, it is still possible to find regions
of the parameter space where the CKW inequality is not satisfied. For example,

P = 0.01, C2 = 0.009, |X2| = 0.04, E = 0.00011 =⇒ π = 8 218 379− 72 500
√

12 881
5 000 000 000 ≈ −1.99× 10−6.

Case #2: Assume that eigenvalue (B13) is negative

If eigenvalue (B13) is negative, then
√

4C2 + (1− 4E − 2P − 2Σ)2 > (1− 2P − 2E) and eigenvalue (B8) will also
be negative. Recall that in order to ensure that ρABC is a valid density matrix, we also require C2 > |X|2. This also
means that eigenvalue (B12) is non-negative since |X|2 < C2 ≤ P 2 ≤ (P + E)2. Also notice that if C ≥ 0, then

P (P + C) ≥ C(C + C) = 2C2 > 2|X|2 ,
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FIG. 10. A plot of the perturbative π-tangle (B21) where the value of C2 is fixed to be C2 = 0.9P2 and λ = 0.1. There are
regions of the parameter space where the π-tangle is negative. The region where P2 > |X2| is excluded from the plot, since this
corresponds to eigenvalue (B12) being non-negative.

and if C < 0, then Eq. (B2d) becomes P ≥ −2C = 2|C|, and

P (P + C) = P
(
P − |C|

)
≥ 2|C|

(
2|C| − |C|

)
= 2|C|2 = 2C2 > 2|X|2 , (B23)

so, eigenvalue (B7) is also non-negative regardless of the sign of C. Therefore, the π-tangle is

π = N 2
A(BC) − 2N 2

A(B)

=
[

1
2

(√
(1− 3P − 2E − Σ)2 + 4 (2C2 − E + 3E2 + EP + |X|2 + EΣ)− (1− 3P − 2E − Σ)

)]2

− 2
[

1
2

(√
4C2 + (1− 4E − 2P − 2Σ)2 − (1− 2P − 2E)

)]2

(B24)

≈ λ8
(

2
(
C2

2 + |X2|2
)2 − (E4 + |X2|2

)2)
, (B25)

where the last line is from the perturbative expansion of ρABC [Eq. (B20)]. In this case, the π-tangle will be non-
negative if

E4 ≤
(√

2− 1
)
|X2|2 +

√
2C2

2 . (B26)

Once again, we can find regions of the parameter space where the π-tangle is negative, meaning the CKW inequality
is not satisfied. For example if

λ = 0.1, P2 = 1, C2 = 0.9, |X2| = 0.8, E4 = 1.5 =⇒ π = − 1873
500 000 000 000 ≈ −3.75× 10−9.

Additionally, if the non-perturbative expression for the π-tangle (B24) is considered, it is still possible to find regions
of the parameter space where the CKW inequality is not satisfied. For example if

P = 0.01, C = 0.009, |X| = 0.008, E = 0.00015, Σ = 10−6
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=⇒ π = −978 879 246 503 + 35 269 200
√

2 961 556 921− 969 699
√

940 638 421 201
2 000 000 000 000 ≈ −2.43× 10−9.
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