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Abstract: We argue that the degrees of freedom in a d-dimensional CFT can be re-

organized in an insightful way by studying observables on the moduli space of causal

diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-

dimensional space naturally captures some of the fundamental nonlocality and causal

structure inherent in the entanglement of CFT states. For any primary CFT operator,

we construct an observable on this space, which is defined by smearing the associated

one-point function over causal diamonds. Known examples of such quantities are the en-

tanglement entropy of vacuum excitations and its higher spin generalizations. We show

that in holographic CFTs, these observables are given by suitably defined integrals of dual

bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we

explain connections to the operator product expansion and the first law of entanglement

entropy from this unifying point of view. We demonstrate that for small perturbations of

the vacuum, our observables obey linear two-derivative equations of motion on the space

of causal diamonds. In two dimensions, the latter is given by a product of two copies of a

two-dimensional de Sitter space. For a class of universal states, we show that the entan-

glement entropy and its spin-three generalization obey nonlinear equations of motion with

local interactions on this moduli space, which can be identified with Liouville and Toda

equations, respectively. This suggests the possibility of extending the definition of our new

observables beyond the linear level more generally and in such a way that they give rise

to new dynamically interacting theories on the moduli space of causal diamonds. Various

challenges one has to face in order to implement this idea are discussed.
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1 Introduction

It has now been a decade since Ryu and Takayanagi [1, 2] discovered an elegant geometric

prescription to evaluate entanglement entropy in gauge/gravity duality. In particular, the

entanglement entropy between a (spatial) region V and its complement V̄ in the boundary

theory is computed as

SEE(V ) =ext
v∼V

[
A(v)

4GN

]
. (1.1)

That is, one determines the extremal value of the Bekenstein-Hawking formula evaluated

on bulk surfaces v which are homologous to the boundary region V . In the subsequent

years, holographic entanglement entropy has proven to be a remarkably fruitful topic of

study. In particular, it provides a useful diagnostic with which to examine the boundary

theory. For example, it was shown to be an effective probe to study thermalization in

quantum quenches, e.g., [3–6] or to distinguish different phases of the boundary theory,

e.g., [7–9]. In fact, such holographic studies have even revealed new universal properties

that extend beyond holography and hold for generic CFTs, e.g., [10–13].

However, holographic entanglement entropy has also begun to provide new insights

into the nature of quantum gravity in the bulk. As first elucidated in [14, 15], the Ryu-

Takayanagi prescription indicates the essential role which entanglement plays in creating

the connectivity of the bulk geometry or more generally in the emergence of the holographic

geometry. In fact, this has lead to a new prescription to reconstruct the bulk geometry in

terms of a new boundary observable known as ‘differential entropy’, which provides a novel

prescription for sampling the entanglement throughout the boundary state [16–19].

The distinguished role of extremal surfaces in describing entanglement entropy has led

to several other important insights. There is by now significant evidence that the bulk

region which can be described by a particular boundary causal domain is not determined

by causality alone, as one might have naively thought, but rather it corresponds to the so-

called ‘entanglement wedge,’ which in general extends deeper into the bulk, e.g., [20–23].

That is, the bulk region comprised of points which are spacelike-separated from extremal

surfaces attached to the boundary region and connected to the corresponding boundary

causal domain [22]. This entanglement wedge reconstruction in turn led to the insight

that local bulk operators must have simultaneous but different approximate descriptions in

various spatial subregions of the boundary theory, which resulted in intriguing connections

to quantum error correction [24–26]. We also notice that while it is not at all clear that
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a suitable factorization of the full quantum gravity Hilbert space corresponding to the

inside and outside of an arbitrary spatial domain exists (there certainly is no obvious

choice of tensor subfactors on the CFT Hilbert space), the RT prescription does provide

a natural choice for such a factorization for extremal surfaces, and entanglement wedge

reconstruction supports this point of view. It is therefore conceivable that a reorganization

of the degrees of freedom which crucially relies on extremal surfaces will shed some light

on the (non)locality of the degrees of freedom of quantum gravity, and this was in fact one

of the original motivations for this work.

One interesting result that was brought to light by holographic studies of the relative

entropy [27] was the ‘first law of entanglement’. The relative entropy is again a general

diagnostic that allows one to compare different states reduced to the same entangling

geometry [28, 29]. For ‘nearby’ states, the leading variation of the relative entropy yields

a result reminiscent of the first law of thermodynamics, i.e.,

δSEE = δ〈Hm〉 , (1.2)

where Hm is the modular or entanglement Hamiltonian for the given reference state ρ0,

i.e., Hm = − log ρ0. While the latter is a useful device at a formal level [30], in generic

situations, the modular Hamiltonian is a nonlocal operator, i.e., Hm cannot be expressed as

a local expression constructed from fields within the region of interest. However, a notable

exception to this general rule arises in considering a spherical region in the vacuum state

of a CFT and in this case, the first law (1.2) becomes

δSEE = δ〈Hm〉 = 2π

∫

B
dd−1x′

R2 − |~x− ~x′|2
2R

〈Ttt(~x
′)〉 . (1.3)

Here B denotes a ball of radius R centred at ~x on a fixed time slice, while 〈Ttt〉 is the

energy density in the excited state being compared to the vacuum. Examining this ex-

pression holographically, the energy density is determined by the asymptotic behaviour of

the metric near the AdS boundary, e.g., [31]. In contrast, through eq. (1.1), the variation

of the entanglement entropy is determined by variations of the geometry deep in the bulk

spacetime. Hence eq. (1.3) imposes a nonlocal constraint on perturbations of the AdS

geometry which are dual to excitations of the boundary CFT. However, if one examines

this constraint for all balls of all sizes and all positions, as well as on all time slices, this

can be re-expressed in terms of a local constraint on the bulk geometry [32–34], namely,

perturbations of the AdS vacuum geometry must satisfy the linearized Einstein equations!

In terms of the boundary theory, the holographic results above point towards the utility

of considering the entanglement entropy as a functional on the space of all entangling

surfaces (or at least a broad class of such geometries) to characterize various excited states

of a given quantum field theory. In this regard, one intriguing observation [35] is that the

perturbations of the entanglement entropy of any CFT naturally live on an auxiliary de

Sitter geometry. In particular, the functional δSEE(R, ~x), defined by eq. (1.3), satisfies the

Klein-Gordon equation (
∇2

dS −m2
)
δSEE = 0 , (1.4)

– 2 –
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in the following de-Sitter (dS) geometry:

ds2dSd =
L2

R2

(
−dR2 + d~x2

)
. (1.5)

Note that the radius of the spheres R plays the role of time in dS space. The mass above

is given by

m2L2 = −d , (1.6)

where d is the spacetime dimension of the CFT.1 In CFTs with higher spin symmetries,

one can extend this construction using the corresponding conserved currents to produce

additional scalars, which also propagate on the dS geometry according to a Klein-Gordon

equation with an appropriate mass [35] — see section 3.2 below.

The proposal of [35] was that this new dS geometry may provide the foundation on

which to construct an alternative ‘holographic’ description of any CFT. That is, it may be

possible to reorganize any CFT in terms a local theory of interacting fields propagating

in the auxiliary spacetime. We stress that here the CFT under consideration need not be

holographic in the conventional sense of the AdS/CFT correspondence, and hence there is

no requirement of a large central charge or strong coupling. Of course, the discussion in [35]

only provided some preliminary steps towards establishing this new holographic dictionary

and such a program faces a number of serious challenges. For example, the dS scale only

appears as an overall factor of L2 in eq. (1.4) and so remains an undetermined constant.

Of course, our experience from the AdS/CFT correspondence suggests that L would be

determined in terms of CFT data through the gravitational dynamics of the holographic

geometry and so here one faces the question of understanding whether the new auxiliary

geometry is actually dynamical.

Another challenge would be to produce a holographic description of the time de-

pendence of quantities in the CFT, since the above construction was firmly rooted on

a fixed time slice. A natural extension is to consider all spherical regions throughout the

d-dimensional spacetime of the CFT, i.e., all of the ball-shaped regions of all sizes and at

all positions on all time slices. As described in [35], this extended perspective yields an

auxiliary geometry which is SO(2, d)/[SO(1, d− 1)× SO(1, 1)] and the perturbations δSEE

can be seen to obey a wave equation on this coset. Further it was noted that this auxiliary

space is 2d-dimensional and has multiple time-like directions.

This new expanded auxiliary geometry is the starting point for the present paper.

As we will describe, in the context where we are considering all spheres throughout the

spacetime, it is more natural to think in terms of the causal diamonds, where each causal

diamond is the domain of dependence of a spherical region. Following [36], our nomencla-

ture will be to refer to the moduli space of all causal diamonds as generalized kinematic

space, since it is a natural generalization of the kinematic space introduced there, i.e., the

space of ordered intervals on a time slice in d = 2. Our focus will be to construct inter-

esting nonlocal CFT observables on causal diamonds, similar to the perturbation δSEE in

1We should note that for d = 2 essentially the same dS geometry appeared in [36], which used integral

geometry to describe the relation of MERA tensor networks [37] to the AdS3/CFT2 correspondence.

– 3 –
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eq. (1.3).2 Our objective will be two-fold: the first is to examine if these new observables

and the generalized kinematic space provide a natural forum to construct a complete de-

scription of the underlying CFT. The second is to investigate how the new perspective of

the nonlocal observables interfaces with the standard holographic description given by the

AdS/CFT correspondence.

The remainder of the paper is organized as follows: section 2 contains a detailed dis-

cussion of the geometry of the moduli space of causal diamonds. In section 3 we define

linearized observables associated with arbitrary CFT primaries. These observables are

local fields obeying two-derivative equations of motion on the space of causal diamonds

and they explain and generalize various known statements about the first law of entangle-

ment entropy, the OPE expansion of twist operators, and the holographic Ryu-Takayanagi

prescription. From section 4 onwards, we focus on d = 2 and the question of extending

the previous framework to nonlinearly interacting fields on the space of causal diamonds.

Section 4 is concerned with a certain universal class of states, for which the entanglement

entropy satisfies a nonlinear equation with local interactions on the moduli space. Section 5

generalizes this discussion to higher spin theories. In particular, we construct a framework

where the entanglement and its spin-three generalization are described by two nonlinearly

interacting fields on the space of causal diamonds. Some challenges for the definition of

more general nonlinearly interacting fields are discussed in section 6. In section 7, we

conclude with a discussion of open questions and future directions for this program of

describing general CFTs in terms of nonlocal observables on the moduli space of causal

diamonds, and also formulating the AdS/CFT correspondence within this framework for

holographic CFTs. Appendix A discusses various geometric details and generalizations.

Some of our conventions are fixed in appendix B. Appendix C contains explicit computa-

tions to verify the AdS/CFT version of our generalized first law.

Note. While this work was in progress, the preprint [38] by Czech, Lamprou, McCandlish,

Mosk and Sully appeared on the arXiv, which explores ideas very similar to the ones

presented here.

2 The geometry of causal diamonds in Minkowski space

In this section, we examine the geometry of the generalized kinematic space introduced

in [35]. We begin by deriving the natural metric on this moduli space of all causal diamonds

in a d-dimensional CFT. As noted above, this 2d-dimensional metric will turn out have

multiple time directions, and in particular, has signature (d, d). We will also discuss how

to intuit this signature geometrically in terms of containment relations between causal

diamonds.

2.1 Metric on the space of causal diamonds

Spheres are destined to play a special role in CFTs, as the conformal group SO(2, d) in

d dimensions maps them into each other. The past and future development of the region

2As we review in appendix A.2, conservation and tracelessness of the stress tensor allows the modular

Hamiltonian to be evaluated on any time slice in spanning the corresponding causal diamond.

– 4 –
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y
µ

x
µ

w
µ

cµ

ℓµ

Figure 1. A causal diamond (in d = 3 dimensions) and our basic coordinates. Specifying the

timelike separated pair of points (xµ, yµ) is equivalent to specifying a spacelike (d−2)-sphere which

consists of all points wµ null separated from both xµ and yµ, i.e., satisfying eq. (2.2). The alternative

parametrization in terms of cµ = 1

2
(yµ+xµ) and ℓµ = 1

2
(yµ−xµ) will prove convenient in section 2.2.

enclosed by a (d−2)-sphere form a causal diamond and hence the space of all (d−2)-spheres

is the same as the space of all causal diamonds.3 Therefore a generic (d − 2)-sphere can

be parametrized in terms of the positions of the tips of the corresponding causal diamond.

That is, given these positions, xµ and yµ, the (d− 2)-sphere is the intersection of the past

light-cone of the future tip and the future light-cone of the past tip, as shown in figure 1.

Of course, these points are necessarily timelike separated,4 i.e.,

(x− y)2 < 0 . (2.1)

The corresponding sphere comprising the intersection of the light-cones illustrated in the

figure can be defined as the set of points wµ which are null-separated from both xµ and yµ:

(w − x)2 = 0 and (w − y)2 = 0 . (2.2)

Due to these considerations, in what follows we will interchangeably use the notions of

spheres, causal diamonds, and pairs of timelike separated points.

The generalized kinematic space is the moduli space of all causal diamonds. The easiest

way to construct the metric on this space is to start with an (d+2)-dimensional embedding

space parametrized by coordinates

Xb = (X−, Xµ, Xd) , (2.3)

3Implicitly, then we are assigning an orientation to the spheres, i.e., the interior is distinguished from the

exterior. One could also consider unoriented spheres, which would amount to an additional Z2 identification

in the coset given in eq. (2.11). See [35] for further discussion.
4Our notation here and throughout the following is that for d-dimensional vectors,

(y − x)2 = ηµν(y − x)µ(y − x)ν .

– 5 –
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with µ = 0, · · · , d−1. Further this embedding space has a flat metric with signature (2, d):

ds2(2,d) = −(dX−)2 + ηµν dX
µdXν + (dXd)2 , (2.4)

where ηµν = diag(−1,+1, . . . ,+1) is the usual d-dimensional Minkowski metric. Of course,

this geometry is invariant under Lorentz group SO(2, d) — which, of course, matches the

conformal group acting on a d-dimensional CFT.

As a warm-up, let us discuss the familiar example of anti-de Sitter space in this lan-

guage. The (d + 1)-dimensional anti-de Sitter (AdS) space with curvature radius RAdS

corresponds to a hyperboloid defined as

〈X,X〉 = −R2
AdS , (2.5)

where 〈 · , · 〉 denotes the inner product with respect to the metric (2.4). It can be thought

of as a set of all the points in the embedding space that can be reached by acting with

SO(2, d) transformations on a unit timelike vector, e.g., on the vector (1, 0, . . . , 0). Since

any timelike vector in (2.4) is preserved by an SO(1, d) subgroup of the conformal group,

(d+ 1)-dimensional anti-de Sitter space is a coset space SO(2, d)/SO(1, d). The metric on

this coset is induced by the embedding space metric (2.4). For example, the Poincaré patch

AdS metric

ds2AdS =
R2

AdS

z2
(
dz2 + ηµν dw

µdwν
)

(2.6)

is obtained from the metric (2.4) upon using the following parametrization of the AdS

hyperboloid (2.5):

X− =
z

2
+

1

2z
(R2

AdS + ηµνw
µwν) ,

Xµ =
RAdS

z
wµ , (2.7)

Xd =
z

2
− 1

2z
(R2

AdS − ηµνw
µwν) .

Of course, the asymptotic boundary of AdS space is reached by taking the limit z → 0. In

the context of the AdS/CFT correspondence, SO(2, d) transformations leaving the embed-

ding geometry (2.4) invariant become the conformal transformations acting on the bound-

ary theory. Of course, this highlights the advantage of the embedding space approach.

Namely, the SO(2, d) transformations act linearly on the points (2.3) in the embedding

space.

In the following, we will phrase our discussion in terms of the geometry of the CFT

background being defined by the boundary of the AdS hyperboloid (2.5) because we feel

that it is an intuitive picture familiar to most readers. However, with only minor changes,

the entire discussion can be phrased in terms of the embedding space formalism, e.g., [39–

41], which can be used to consider any CFT and makes no reference to the AdS/CFT

correspondence. Hence we stress that the geometry of the generalized kinematic space

that emerges below applies for general d-dimensional CFTs.

We now turn to the moduli space of causal diamonds in a CFT, which we construct

using the language of cosets, in similar manner to that introduced above in discussing the

– 6 –
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X0

X−

X1

T b

Figure 2. Anti-de Sitter hyperboloid in flat embedding space R2,d is indicated in blue. The timelike

embedding coordinates are X− and X0. The remaining directions (including the d− 1 suppressed

dimensions X2, ··· ,d at each point) are spacelike. The green d-plane is orthogonal to the timelike

vector T b and to the spacelike vector Sb (the latter being hidden in the suppressed dimensions).

The intersection of the d-plane with AdSd+1 yields the green minimal surface. Its boundary as the

hyperboloid approaches the red lightcone defines a (d− 1)-sphere in the CFT.

AdS geometry (2.5). In order to describe a sphere in a CFT, we choose a unit timelike

vector T b and an orthogonal unit spacelike vector Sb, both of which are anchored at the

origin of the (d+2)-dimensional embedding space. That is, we choose two vectors satisfying

〈T, T 〉 = −1 , 〈S, S〉 = 1 , 〈T, S〉 = 0 . (2.8)

The sphere is now specified by considering asymptotic points in the AdS boundary that

are orthogonal to both of these unit vectors, i.e.,

〈T,X〉
∣∣
z→0

= 0 and 〈S,X〉
∣∣
z→0

= 0 . (2.9)

To explicitly illustrate this construction of a sphere in the CFT, let us consider the co-

ordinates (2.7) yielding the Poincaré patch metric (2.6). A convenient choice of the unit

vectors is then

T b = (0, 1, 0, . . . , 0) −→ w0 = 0 ,

Sb = (0, 0, 0, . . . , 1) −→ ηµν w
µwν = 1 . (2.10)

The expressions on the right denote the surfaces in the asymptotic geometry that are

picked out by the orthogonality constraints (2.9), i.e., T b selects a particular time slice in

the boundary metric while Sb selects a timelike hyperboloid. Of course, the intersection of

these two surfaces then yields the unit (d−2)-sphere δijw
iwj = 1 (on the time slice w0 = 0).

Now a particular choice of the unit vectors, T b and Sb, picks out a particular sphere in

the boundary geometry. Acting with SO(2, d) transformations, we can then reach all of the

– 7 –
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other spheres throughout the d-dimensional spacetime where the CFT lives. To determine

the coset describing the space of all spheres, we must first find the symmetries preserved

by any particular choice of the unit vectors. Given two unit vectors satisfying eq. (2.8), we

have defined a timelike two-plane in the embedding space. Hence the SO(2, d) symmetry

broken to SO(1, d− 1) transformations acting in the d-dimensional hyperplane orthogonal

to this (T, S)-plane, as well as the SO(1, 1) transformations acting in the two-plane. Thus,

in analogy with AdS coset construction above, the natural coset describing the moduli

space of spheres, or alternatively of causal diamonds, in d-dimensional CFTs is

M(d)
♦

≡ SO(2, d)

SO(1, d− 1)× SO(1, 1)
. (2.11)

Of course, this is precisely auxiliary geometry already described in [35].

The interpretation of the stabilizer group, which preserves a given sphere in the CFT,

is as follows: the SO(1, d − 1) factor of the stabilizer group is the subgroup of SO(2, d)

comprising of (d−1)(d−2)/2 rotations and d−1 spatial special conformal transformations

leaving a given sphere invariant. While it is obvious that the former transformations

preserve spheres centred at the origin, it can also be verified that the latter do so as well.

Further, let us note that these transformation also leave invariant the time slice in which

the sphere is defined. The additional SO(1, 1) represents a combination of special conformal

transformations and translations, which both involve the timelike direction and leads to

a modular flow generated by the conformal Killing vector Kµ — see appendix A.2. The

latter was constructed precisely in such a way to preserve a given spherical surface.

We can also perform a simple cross-check at the level of counting dimensions. The

moduli space of causal diamonds can parametrized by a set of 2d coordinates: xµ and yµ,

i.e., the positions of the tips of the causal diamonds. Now, the number of generators of the

isometry group SO(2, d) is (d+2)(d+1)/2, whereas for the stabilizer group SO(1, d− 1)×
SO(1, 1) we have d(d− 1)/2 + 1 = d(d+ 1)/2 generators. The difference between the two

numbers matches the dimensionality of the space of causal diamonds, i.e., 2d, as it must.

In the context of the AdS/CFT correspondence, we can remove the asymptotic limit

from the orthogonality constraints (2.9), i.e., consider 〈T,X〉 = 0 and 〈S,X〉 = 0. These

constraints now specify not only the sphere on a constant time slice of the AdS boundary (at

z = 0), but the entire minimal surface anchored to this sphere. With the simple example of

T b and Sb given in eq. (2.10), these constraints yield the unit hemisphere z2+δijw
iwj = 1 on

the time slice w0 = 0. Of course, using the Ryu-Takayanagi prescription (1.1), the area of

this surface computes the entanglement entropy of the region enclosed by the (asymptotic)

sphere in the vacuum of the boundary CFT.

Let us now move to the object of prime interest for us, which is the metric on the coset

M(d)
♦

induced by the flat geometry of the (d + 2)-dimensional embedding space. Towards

this end, we parameterize motions in this generalized kinematic space by variations of the

unit vectors T b and Sb. Of course, these are naturally contracted with the embedding

space metric (2.4) and so the most general SO(1, d− 1)-invariant metric can be written as:

ds2 = αTT 〈dT, dT 〉+ αSS 〈dS, dS〉+ αTS 〈dT, dS〉 , (2.12)
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where αTT , αSS and αTS are constant coefficients. Also requiring invariance under SO(1, 1)

transformations, i.e., under boosts in the (T, S)-plane, requires that we set αTS = 0 and

αSS = −αTT ≡ L2 — only the relative sign of αSS and αTT is determined by boost

invariance but we choose αSS > 0 here for later convenience. This then yields

ds2♦ = L2 (−〈dT, dT 〉+ 〈dS, dS〉) . (2.13)

Next, we must impose the conditions (2.8) and (2.9) in the above expression to fix the

metric (up to an overall prefactor) in terms of geometric data in the CFT. This calculation

is straightforward but somewhat tedious, and we refer the interested reader to appendix A.1

for the details. Our final result for the metric on the coset M(d)
♦

given in (2.11) becomes:

ds2♦ = hµν dx
µdyν =

4L2

(x− y)2

(
−ηµν +

2(xµ − yµ)(xν − yν)

(x− y)2

)
dxµdyν , (2.14)

where xµ and yµ denote the past and future tips of the corresponding causal diamond, as

illustrated in figure 1. This metric is the main result of the present section and the starting

point for our investigations of the generalized kinematic space in the subsequent sections.

Some comments are now in order: first, it is straightforward to verify that this met-

ric (2.14) is invariant under the full conformal group. Second, the pairs (xµ, yµ) appear as

pairs of null coordinates in the metric (2.14). As a result, this metric on the coset (2.14)

has the highly unusual signature (d, d). Third, it is amusing to notice that while AdS

geometrizes scale transformations, the coset geometrizes yet another d− 1 additional con-

formal transformations.

Let us now discuss two special cases for which the general result (2.14) simplifies:

Example 1: fixed time slice. The first example concerns the moduli space of spheres

lying on a given constant time slice, which we can always take to be t = 0. That is, we

choose y0 = −x0 = R and ~x = ~y and then we are considering spheres on the t = 0 slice

with radius R and with ~x giving the spatial position of their centres. Constraining the

coordinates xµ and yµ in this way, the coset metric (2.14) reduces to

ds2♦

∣∣∣
~x=~y; y0=−x0=R

=
L2

R2

(
−dR2 + d~x2

)
≡ ds2dSd . (2.15)

That is, we have recovered precisely the d-dimensional de Sitter space appearing in eq. (1.5)

as a submanifold of the full coset M(d)
♦

.

Example 2: CFT in two dimensions. A second special case of interest is the restric-

tion to d = 2. The metric on the coset in two dimensions has a structure of a direct product

of two copies of two-dimensional de Sitter space. One can see this explicitly by introducing

right- and left-moving light-cone coordinates, e.g., we replace the Minkowski coordinates

(ξ0, ξ1) with

ξ = ξ1 − ξ0 and ξ̄ = ξ1 + ξ0 . (2.16)

Then we may specify the two-dimensional causal diamonds, defined by (xµ, yµ) above, in

terms of the positions of their four null boundaries — see figure 3,

(u, ū) ≡ (x1 − x0, x1 + x0) , (v, v̄) ≡ (y1 − y0, y1 + y0) . (2.17)
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xµ

yµ

ξ̄

ξ

ξ
=
u

ξ
=
v

ξ̄
=
v̄

ξ̄
=
ū

Figure 3. Lightcone coordinates for two-dimensional causal diamonds. The coordinates (ξ, ξ̄)

will provide a useful parametrization of the given diamond in section 3.7. Changing the endpoints

corresponds to moving in the moduli space of causal diamonds parametrized by (u, ū, v, v̄); thereby

u is constant if xµ moves along the line ξ = u, and so forth.

Finally re-expressing the coset metric (2.14) in terms of these coordinates yields

ds2♦

∣∣∣
d=2

= 2L2

{
du dv

(u− v)2
+

dū dv̄

(ū− v̄)2

}
≡ 1

2

{
ds2dS2 + ds2

dS2

}
. (2.18)

Notice that the first copy of de Sitter metric is only a function of the right-moving coor-

dinates, whereas the second copy depends only on the left-moving coordinates. We chose

the normalization on the right hand side of eq. (2.18) in such a way that L is the curvature

scale in each de Sitter component and upon restricting to a timeslice (i.e., ū = v ≡ x− R

and v̄ = u ≡ x+ R), eq. (2.15) obviously emerges. This way we can heuristically think of

each of the two copies of dS2 in (2.18) as a copy of the geometry in eq. (2.15).

Of course, the product structure found in the moduli space metric here has its origins

in the fact that for two dimensions, the conformal group itself decomposes into a direct

product, i.e., SO(2, 2) ≃ SO(2, 1) × SO(2, 1), where the two factors act separately on the

right- and left-moving coordinates. Hence the moduli space (2.11) of intervals in d = 2

CFTs becomes

M(2)
♦

=
SO(2, 1)

SO(1, 1)
× SO(2, 1)

SO(1, 1)
, (2.19)

where we recognize that each of factors corresponds to a two-dimensional de Sitter space.

2.2 The causal structure on the space of causal diamonds

Given the metric (2.14) on the moduli space of causal diamonds, we are in the position

to study the causal structure of this space. The essential feature of this causal structure

comes from the fact that the space possesses d spacelike and d timelike directions.

We start by writing the metric (2.14) in terms of the coordinates

cµ ≡ yµ + xµ

2
and ℓµ ≡ yµ − xµ

2
. (2.20)
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Here, cµ denotes the position of the centre of the causal diamond or, equivalently, the

centre of the corresponding sphere. Similarly, ℓµ denotes the vector from the centre to the

future tip of the causal diamond — see figure 1. The metric (2.14) then becomes

ds2♦ = −L2

ℓ2

(
ηµν −

2

ℓ2
ℓµℓν

)
(dcµ dcν − dℓµ dℓν) . (2.21)

First, we note that ℓ2 < 0 from eq. (2.1), i.e., the tips of the causal diamond are timelike

separated. Further, we observe that the tensor
(
ηµν − 2

ℓ2
ℓµℓν

)
is positive definite again

because ℓµ is a timelike vector. This is easily verified by picking a frame where, say,

ℓµ ∝ δµ0 . In such a frame, the metric (2.21) reduces to

ds2♦

∣∣∣
ℓµ=δµ0

= −L2

ℓ2
δµν (dc

µ dcν − dℓµ dℓν) . (2.22)

Therefore, the sign of ds2♦ is determined solely by the last factor in eq. (2.21) containing

the differentials. In particular, we can now see that cµ are the d spacelike directions in the

space of causal diamonds, while ℓµ are the d timelike directions. To make this precise, con-

sider two infinitesimally close causal diamonds specified by their coordinates ♦1 = (cµ, ℓµ)

and ♦2 = (cµ + dcµ, ℓµ + dℓµ), we say that their separation is spacelike, timelike or null if

ds2♦(c
µ, ℓµ) is positive, negative or zero, respectively. From this, it is now easy to intuit the

timelike, spacelike and null directions in the moduli space of causal diamonds as follows:

(a) Moving the centre cµ of a causal diamond by an infinitesimal amount dcµ in any of

the d directions of the background Minkowski spacetime of the CFT corresponds to

moving in a spacelike direction in the coset space. Geometrically, this corresponds to

translating the diamond without deforming it.

(b) Moving any of the ‘relative’ coordinates ℓµ by some dℓµ corresponds to a timelike dis-

placement in the coset space. In the diamond picture, this corresponds to stretching

the diamond in one of d independent ways while holding the centre of the diamond

fixed.

(c) Null movements correspond heuristically to deforming the diamond by the ‘same’

amount as it is translated in spacetime, as quantified by the condition ds2♦ = 0.

These cases are illustrated in figure 4 for infinitesimal displacements. It is noteworthy

that moving the centre of causal diamond in the time direction, i.e., with dc0, produces a

spacelike displacement in the kinematic space. We return to discuss this point in section 7.

Let us now give a slightly different perspective on the measure of distances on this

moduli space. Consider two causal diamonds, specified by the coordinates of their tips,

♦1 = (xµ1 , y
µ
1 ) and ♦2 = (xµ2 , y

µ
2 ). The conformal symmetry ensures that there exists a

natural conformally invariant measure of distance, namely, the cross ratio

r(x1, y1;x2, y2) ≡
(y1 − x2)

2 (y2 − x1)
2

(y1 − x1)2 (y2 − x2)2
. (2.23)
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(a) ds2♦ > 0 (b) ds2♦ < 0 (c) ds2♦ = 0

Figure 4. Three basic types of infinitesimal moves in the moduli space of causal diamonds (in

d = 3 dimensions): (a) spacelike moves correspond to translations of the diamond, (b) timelike

moves correspond to deformations of the diamond which leaves its centre fixed, (c) null moves

correspond to a combination of the previous two by the ‘same’ amounts.

As we will show the cross ratio paves the way to understanding the global causal structure

of the moduli space of diamonds, however, first we relate this expression to the previous

discussion. Hence we translate it to the ‘centre of mass’ coordinates and consider the two

causal diamonds with ♦1 = (cµ, ℓµ) and ♦2 = (cµ + ∆cµ, ℓµ + ∆ℓµ). Then the invariant

cross ratio reads

r(♦1,♦2) =
(2ℓ+∆ℓ+∆c)2(2ℓ+∆ℓ−∆c)2

16 ℓ2 (ℓ+∆ℓ)2
(2.24)

= 1 +
1

2ℓ2

(
ηµν −

2

ℓ2
ℓµℓν

)
(∆cµ∆cν −∆ℓµ∆ℓν) + · · · .

In the second line, we are expanding the cross ratio for infinitesimal displacements and the

ellipsis indicates terms of cubic order in ∆cµ and ∆ℓµ. Comparing to eq. (2.21), we see

that causal diamonds that are very nearby

r(♦1,♦2) ≃ 1− 1

2L2
ds2♦ + · · · . (2.25)

That is, for infinitesimal displacements, the cross ratio encodes the invariant line ele-

ment (2.21) of the generalized kinematic space. Further, we observe that eq. (2.25) shows

that timelike, spacelike and null displacements in this moduli space correspond, respec-

tively, to r > 1, r < 1 and r = 1.

Two other observations about the cross ratio in eq. (2.24): we note that the centre

of mass coordinates cµ are Killing coordinates of the metric (2.21), i.e., the metric is

independent of these coordinates. However, this feature also extends to finite separations,

as is apparent from the first line of eq. (2.24). That is, the position cµ of the reference

diamond ♦1 is irrelevant for the distance to ♦2 and only the relative ∆cµ appears in

this expression. Similarly, dcµ = dℓµ yields a null displacement in eq. (2.21) but two

diamonds separated by finite displacements with ∆cµ = ∆ℓµ are also null separated, i.e.,

it is straightforward to show that the first line of eq. (2.24) yields r = 1 in this situation.
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Geometrically, ∆cµ = ∆ℓµ corresponds to two diamonds whose past tips coincide (and

similarly, ∆cµ = −∆ℓµ corresponds to diamonds whose future tips coincide).

We can go further and define an invariant ‘geodesic distance’ function between two

diamonds ♦1 = (xµ1 , y
µ
1 ) and ♦2 = (xµ2 , y

µ
2 ) in terms of the cross ratio as

d(♦1,♦2) =





L cos−1
(
2
√
r(x1, y1;x2, y2)− 1

)
if 0 ≤ r ≤ 1 ,

− L cosh−1
(
2
√

r(x1, y1;x2, y2)− 1
)

if r > 1 .
(2.26)

As we will show in examples, this distance function computes geodesic distance between

finitely separated diamonds, within the range of validity specified above. Note then that

the corresponding cross ratio is greater than, less than or equal to 1 if two diamonds may

be connected by a timelike, spacelike or null geodesic. However, the converse need not be

true, i.e., , even if the cross ratio is positive, there may not be a geodesic connecting the

corresponding diamonds — see further discussion below. Further, note that as r → ∞, the

corresponding causal diamonds become infinitely timelike separated. However, there is a

maximal spacelike separation that can achieved by following geodesics through the coset,

i.e., at r = 0, we find dmax = πL.

Equipped with the distance function (2.26), let us briefly comment on the structure of

the cross ratio (2.23). We have the following interesting cases in general:

• (x1−y1)
2 → 0 or (x2−y2)

2 → 0: if one of the diamonds’ volumes shrinks to zero,5 the

cross ratio and the distance function both diverge, in particular, d(♦1,♦2) → −∞.

This is just the statement that zero-volume diamonds lie at the timelike infinity of

the coset space M(d)
♦

.

• y1 → y2 or x1 → x2: if either the past or future tips of two diamonds coincide,

the cross ratio becomes one and the invariant distance d(♦1,♦2) vanishes, i.e., the

diamonds become null separated.

• (x1 − y1)
2 → ∞ or (x2 − y2)

2 → ∞: if either of the diamonds’ volumes grows to

infinity, the cross ratio vanishes and the distance function reaches its maximal value,

dmax = πL.

• (y1 − x2)
2 → 0 or (y2 − x1)

2 → 0: if the future (past) tip of one causal diamond

approaches the lightcone of the past (future) tip of the other diamond (as illustrated

in figure 5), the cross ratio vanishes and the corresponding separation again reaches

the maximal value dmax = πL.

Let us comment further on the domain of validity of our geodesic distance function. As

defined in eq. (2.26), this function is well-defined for r ≥ 0. However, as commented above,

merely having r ≥ 0 does not ensure that the corresponding causal diamonds are connected

by a geodesic. Further, certain pairs of causal diamonds will also yield r < 0. Examining

eq. (2.23), we see that both factors in the denominator are negative by construction, i.e.,

5The tips may not coincide in this limit rather they only need to be null separated.
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x1

y1

x2

y2

Figure 5. Illustration of lightcone singularities in the moduli space of causal diamonds. We

compare the big blue reference diamond ♦1 with the small blue diamond ♦2. If the red (green)

tip of ♦2 leaves the red (green) shaded lightcone region, the geodesic distance d(♦1,♦2) becomes

infinite, i.e., the diamonds are no longer geodesically connected. An example of this happening

would be by moving the tip x2 along the arrow towards the lightcone of y1.

the tips of each casual diamond must be timelike separated, and hence the sign of r is

determined by the numerator.

Let us consider beginning with two nearby diamonds, ♦1 and ♦2. Both (y1 − x2)
2 < 0

and (y2 − x1)
2 < 0 so that the cross ration is positive. As indicated by eq. (2.24), we will

have r ≈ 1 in this situation. If we deform the second diamond away from ♦1 in a spacelike

direction, (not necessarily along a geodesic), the cross ratio will decrease. As described

above, if the future (past) tip of ♦2 reaches the lightcone of the past (future) tip of ♦1,

the cross ratio and the corresponding distance vanishes — see figure 5. If we continue

deforming in the same direction, one of the factors in the numerator is now positive and

r becomes negative, e.g., pushing the future tip of ♦2 out of causal contact with the past

tip of ♦1 gives (y2 − x1)
2 > 0. Now in this range of r, the distance function (2.26) is not

defined and there is no geodesic connecting the corresponding causal diamonds. Hence

submanifold of configurations where r (first) vanishes defines the ‘maximum’ range which

the geodesics originating at ♦1 can reach in the kinematic space.

Note that generically if ♦2 lies on this boundary where r = 0, then the two diamonds

will not be connected by a geodesic. However there are exceptional configurations with a

vanishing cross ratio, which are connected. These are ‘antipodal’ points in the kinematic

space, which are in fact connected by multiple geodesics — see further discussion below.

As noted above, this configuration yields to the maximal spacelike separation that can be

reached along a geodesic, i.e., dmax = πL.

One can further deform ♦1 and ♦2 so that the two diamonds become completely out

of causal contact with each other, i.e., both (y1−x2)
2 > 0 and (y2−x1)

2 > 0. In this case,

the cross ratio passes through zero again to reach positive values. However, even though

eq. (2.26) is well defined for these diamonds, there will still be no geodesic connecting them.
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(a) spacelike (b) timelike (c) null

Figure 6. Causal structure on the moduli space of causal diamonds in two-dimensional case. In (a)

all three diamonds are spacelike separated from each other. Case (b) shows three timelike separated

causal diamonds. Finally, all diamonds in (c) are null separated.

Figure 6 shows some more examples of the causal structure on the moduli space of

(two-dimensional) causal diamonds. In particular, note the cases (a) and (b) of that figure,

which illustrate two statements that are generally true (in any number of dimensions):

(i) If two causal diamonds are contained within one another, then they are timelike

separated.

(ii) If two causal diamonds touch in at least one corner, then they are null separated.

Let us now return to the two examples which we identified as being of particular interest

in section 2.1:

Example 1: fixed time slice. If we compare diamonds ♦1,2 on a given time slice,

we know from our previous discussion that we are restricting to a submanifold with the

geometry of d-dimensional de Sitter space. Taking the time slice to be t = 0, we have

c01 = c02 = 0 and ℓi1 = ℓi2 = 0. Using the same coordinates as before, xi ≡ ci and R ≡ ℓ0 > 0,

the cross ratio simplifies as

r
dSd

(R1, ~x1;R2, ~x2) =

[
−(R1 +R2)

2 + (~x1 − ~x2)
2
]2

16R2
1 R

2
2

≥ 0 . (2.27)

We observe the following causal relations between spatial spheres lying on a common time

slice:6

• r
dSd

≥ 1 if (~x1 − ~x2)
2 ≤ (R1 −R2)

2, i.e., one sphere is contained within the other.

• r
dSd

≤ 1 if (~x1 − ~x2)
2 ≥ (R1 − R2)

2, i.e., the spheres overlap but neither is fully

contained within the other.

• r
dSd

= 1 if and only if (~x1 − ~x2)
2 = (R1 −R2)

2, i.e., the spheres tangentially touch in

at least one point.

6We assume here that (~x1 − ~x2)
2 ≤ (R1 + R2)

2, for otherwise the spheres would not be geodesically

connected — see further discussion in the following.
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♦1

r = ∞

r = ∞

r
=
0

r
=
0r

=
1

r
=
1

Figure 7. Penrose diagram illustrating some reference geodesics (dashed blue lines) and lines of

constant cross ratio r in dSd. The pink shaded “shadow” region is not connected to the diamond

♦1 by any geodesic. It can naturally be reached through geodesics starting at the antipodal of ♦1.

• Note that r
dSd

→ 0 as (~x1−~x2)
2 → (R1+R2)

2, which corresponds to the point where

the two spheres become disjoint.

It is straightforward to show that this de Sitter geometry is a ‘completely geodesic’

submanifold of the full kinematic space (2.11). That is, all of the geodesics within dSd
are also geodesics of M(d)

♦
. Hence upon substituting eq. (2.27), it is sensible to compare

eq. (2.26) to the geodesic distances in de Sitter space with the metric (2.15) and one can

easily verify that d(♦1,♦2) reduces to the expected geodesic distances.

To provide some intuition for our previous discussion, figure 7 illustrates representative

geodesics emanating from a particular point in the dS geometry.7 We observe here that the

cross ratio (2.27) never becomes negative for spheres restricted to a fixed time slice, however,

it does reach zero as noted above just as the spheres become disjoint. As illustrated in the

figure, the boundary where r = 0 corresponds to the past and future null cone emerging

from the antipodal point to ♦1. Hence there are ‘shadow regions’ in the dS space which

cannot be reached along a single geodesic originating from this reference point. Note,

however, that there are an infinite family of spacelike goedesics that extend from ♦1 to this

antipodal point.

Example 2: CFT in two dimensions. In our previous discusion, we showed that for

d = 2, the coset factorizes into dS2×dS2, with the metric as in eq. (2.18). The cross ratio

7The planar coordinates used in eq. (2.15) and above actually only cover half of the de Sitter geometry.

The surface R = ∞ would correspond to a diagonal running across the Penrose diagram in figure 7. The

figure and our discussion here assume a suitable continuation of the cross ratio to the entire geometry. Let

us add here that the additional Z2 identification discussed in footnote 3 would here identify points by an

inversion in the square in figure 7, as well as an inversion on the corresponding Sd−2 at each point on the dia-

gram, to produce elliptic de Sitter space. With regards to the minimal geodesic distances, this identification

would essentially remove the right half of the square, e.g., there would no longer be any shadow regions.
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r also factorizes when written in the {u, v, ū, v̄} coordinates:

r
dS2×dS2

((u, v)1, (ū, v̄)1; (u, v)2, (ū, v̄)2) = r
dS2

(u1, v1;u2, v2) rdS2
(ū2, v̄2; ū2, v̄2) , (2.28)

where the conformally invariant cross ratio for two points on the dS2 factor is given by

r
dS2

(u1, v1;u2, v2) ≡
(u2 − v1)(u1 − v2)

(u1 − v1)(u2 − v2)
(2.29)

and similarly with bars. Using this factorization of the cross ratio, one can then compute

the geodesic distance on dS2×dS2 using eq. (2.26).

We close this section with two explicit examples of simple geodesics on the full kine-

matic space M(d)
♦

. First, consider some diamond ♦1 = (cµ1 , ℓ
µ
1 ). We wish to compare it with

the family of diamonds ♦(λ) = (cµ1 ,
√
λ ℓµ1 ) for 0 < λ < ∞. One can verify that λ parameter-

izes a timelike geodesic in the space of causal diamonds. As λ → 0, the diamond shrinks to

zero size and approaches a locus in the asymptotic past. Similarly, λ → ∞ follows a geodesic

to future asymptotia. The geodesic distance in this case can be computed explicitly:

d(♦1,♦
(λ0)) = −

∣∣∣∣
∫ λ=λ0

λ=1

√
ds2

♦
(♦(λ))

∣∣∣∣ = − cosh−1

(
1 + λ0

2
√
λ0

)
. (2.30)

A second simple example corresponds to a class of null geodesics ♦(λ) = (cµ(λ), ℓµ(λ))

with ∂λc
µ = ±∂λℓ

µ, where λ denotes the affine parameter along the geodesic. Here we begin

by noting that because the center of mass coordinates are Killing coordinates for the met-

ric (2.21), the following are conserved quantities along any geodesics in the kinematic space:

Pµ =
L2

ℓ2

(
ηµν −

2

ℓ2
ℓµℓν

)
∂λc

ν . (2.31)

Further, the full geodesic equations for ℓµ(λ) simplify greatly upon substituting ∂λc
µ =

±∂λℓ
µ and one finds that they are solved by

Pµ = ±L2

ℓ2

(
ηµν −

2

ℓ2
ℓµℓν

)
∂λℓ

ν , (2.32)

which consistently maintains the desired equality between ∂λc
µ and ±∂λℓ

µ. As noted

above, ∆cµ = ±∆ℓµ corresponds to two diamonds whose past/future tips coincide and

so these geodesics correspond to a simple monotonic trajectory through a family of causal

diamonds where one tip remains fixed. A simple example is given by choosing ℓµ = δµ0 R(λ)

and c0 = δµ0 t(λ), which yields

R = R1/λ = ±t , (2.33)

where R1 is a constant determining the radius of the corresponding sphere at λ = 1.

3 Observables in a linearized approximation

As discussed in the introductions, we are interested in trying to construct new nonlocal ob-

servables SO(x, y) with a (local) primary operator O in the CFT and associated to a causal
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diamond with past and future tips, x and y. Our motivation in the present section is to

construct extensions of the first law of entanglement for spherical regions in the CFT vac-

uum. Again, as shown in eq. (1.3), the perturbations in the entanglement entropy is given

by the expectation value of a local operator, the energy density, integrated over the region

enclosed by the sphere. This result was used in [35] to show that such first order perturba-

tions obey a free wave equation on the corresponding kinematic space, i.e., d-dimensional

de Sitter space. Moreover, a generalization of the first law was constructed for a conserved

higher spin current, which yields an analogous charge Q(s) defined on the spherical region

which also obeys a free wave equation on de Sitter space. Here, we would like to extend

these results characterizing small excitations of the vacuum to arbitrary scalar primaries.8

We propose that a natural generalization of the first law to arbitrary primaries takes

the following form:9

δSO(x, y) ≡ Q(O;x, y) = CO

∫

D(x,y)
ddξ

(
(y − ξ)2(ξ − x)2

−(y − x)2

) 1
2
(∆O−d)

〈O(ξ)〉 , (3.1)

where the integral is over the causal diamond D(x, y) with past and future endpoints

x, y, and ∆O is the scaling dimension of the primary operator O. The constant CO is a

normalization constant for which there is no canonical choice at the linearized level. Note

that the integral above diverges for ∆O ≤ d− 2, however, a universal finite term can still

be extracted in this range. We return to this point in section 7.

In the following, we will show that the quantity Q(O) has the following four properties:

1. Q(O) obeys a simple two-derivative wave equation (3.8) on the moduli space of causal

diamonds M(d)
♦

, which was introduced in section 2.

2. Q(O) reduces to a known ‘charge’ associated with a spherical entangling surface in

case that O is a conserved (higher spin) current [35].

3. Q(O) can be interpreted as a resummation of all terms in the OPE of two operators

of equal dimension which contain O and all its conformal descendants. It is therefore

a natural building block of contributions to correlation function where two operators

fuse into the O-channel.

4. In the case where the CFT has a holographic dual in the standard sense, Q(O) has a

very simple bulk description. If φ is the bulk scalar that corresponds to O, we define

Qholo(O;x, y) =
Cblk

8πGN

∫

B̃(x,y)
dd−1u

√
h φ(u) , (3.2)

where B̃(x, y) is the minimal surface whose boundary ∂B̃(x, y) matches the maximal

sphere at the waist of the causal diamond in the boundary CFT, i.e., the intersec-

tion of the past light-cone of y with the future light-cone of x. We will show that

8We will briefly comment on non-scalar primaries later in this section; for two-dimensional conformal

field theories we will present results for general primaries in section 3.7.
9We are using the standard notation here that (y − x)2 = ηµν(y − x)µ(y − x)ν and hence each of the

three inner products in the kernel is negative.
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Qholo(O;x, y) = Q(O;x, y) with an appropriate choice of the normalization constant

Cblk, which is determined by CO and standard AdS/CFT parameters — as we show

explicitly in appendix C.

We stress that the first three properties above do not rely on an underlying holographic

construction and hence apply for generic CFTs. It is only point 4, which directly connects

to the AdS/CFT construction and so hints at the interesting new perspective which these

nonlocal observables may provide for holography. Below, we will provide a more detailed

explanation of each of these points and then discuss various other aspects of Q(O).

However, before proceeding, we want to highlight that eq. (3.1) can be compactly re-

expressed in terms of the conformal Killing vector Kµ which preserves the causal diamond

— see appendix A.2 and figure 8. In particular, using Kµ, eq. (3.1) becomes10

Q(O;x, y) = CO

∫

D(x,y)
ddξ

( |K|
2π

)∆O−d

〈O(ξ)〉 , (3.3)

where the factors of 2π arise from a standard choice of normalization for the vector. Of

course, these factors could easily be absorbed by redefining the constant CO.

3.1 Dynamics on the space of causal diamonds

To show that Q(O) obeys a wave equation on the moduli space of causal diamonds is fairly

straightforward. If we denote the generators of the conformal group by Li, then

(Li(x) + Li(y))Q(O;x, y) = CO

∫

D(x,y)
ddξ

(
(y − ξ)2(ξ − x)2

−(y − x)2

) 1
2
(∆O−d)

〈[Li,O(ξ)]〉 (3.4)

where Li(x) is the first order differential operator for the purely geometric action of the

conformal group on the point xµ, and similarly for Li(y).
11 The fact that eq. (3.4) holds

follows from the fact that the kernel that appears in eq. (3.1) can be interpreted formally

as a three-point function of two primary operators of dimensions zero and one primary

operator of dimension d−∆O. Such a three-point function is conformally invariant and as

a result the action of Li(x) +Li(y) on the kernel can be converted in the action of −Li(ξ)

(with a contribution from the non-trivial operator dimension of the third operator). A

partial integration then yields eq. (3.4). In fact, we could conversely have derived eq. (3.1)

by insisting that it obeys the intertwining property (3.4), and we can make this property

more transparent by rewriting eq. (3.1) using the shadow operator formalism [42] as

Q(O;x, y) = CO

∫

D(x,y)
ddξ 〈Y (x)Y (y)O∗(ξ)〉 〈O(ξ)〉 (3.5)

where Y represents a formal non-trivial primary operator of conformal dimension zero.

The action of second Casimir of the conformal group C2 ≡ CijLiLj on Q(O) is obtained

by applying eq. (3.4) twice. The left hand side of the equation then becomes

Cij(Li(x) + Li(y))(Lj(x) + Lj(y))Q(O) . (3.6)

10Recall for appendix A.2 that Kµ is a timelike vector and hence our notation is |K| =
√

−ηµνKµKν .
11That is, Li(x) and Li(y) are given by the expressions in eq. (B.2) with ∆O = 0.

– 19 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
2

Because Li(x) + Li(y) represents the action of the conformal group on the moduli space,

which is parametrized by pairs of (timelike separated) points (x, y), these are also the

Killing vectors on this space, and the Casimir operator Cij(Li(x) + Li(y))(Lj(x) + Lj(y))

is the massless Klein-Gordon operator for the metric (2.14). On the right hand side, we

get the combination12

〈Cij [Lj , [Li,O(ξ)]]〉 = ∆O(d−∆O)〈O(ξ)〉 (3.7)

and therefore Q(O) obeys the following wave equation

(∇2
♦ −m2

O)Q(O;x, y) = 0 with m2
O L2 = ∆O(d−∆O) , (3.8)

where ∇2
♦ is the Klein-Gordon operator on the metric (2.14). We conclude that the Casimir

is represented on the space of causal diamonds M(d)
♦

as C2 = L2∇2
♦. This can also be

explicitly verified by acting with the Lorentz representation of C2 on eq. (3.4). For our

conventions and normalizations in this regard, see appendix B.

3.2 Operators with spin and conserved currents

Our construction can be easily generalized to the case where the primary operator is a trace-

less symmetric tensor of rank ℓ and scaling dimension ∆O. In this case, conformal invariance

again provides a natural candidate for a ‘first law’-like expression which takes the form

Q(O;x, y) = CO

∫

D(x,y)
ddξ

(
(y − ξ)2(ξ − x)2

−(y − x)2

) 1
2
(∆O−d)

sµ1 · · · sµℓ 〈Oµ1...µℓ
(ξ)〉

(−(y − ξ)2(ξ − x)2(y − x)2)ℓ/2
.

(3.9)

where

sµ = (y − ξ)2 (x− ξ)µ − (x− ξ)2 (y − ξ)µ = − 1

2π
(y − x)2Kµ (3.10)

with Kµ, the conformal Killing vector introduced above — see appendix A.2 and figure 8.13

Using this vector as in eq. (3.3), the above generalization can be written in the compact

form:

Q(O;x, y) =
CO

(2π)∆O−d

∫

D(x,y)
ddξ |K|∆O−ℓ−dKµ1 · · ·Kµℓ 〈Oµ1...µℓ

(ξ)〉 . (3.11)

This expression in eq. (3.9) follows from the shadow field formalism developed in [43] and

the explicit result for the three-point function of two scalars and one higher spin field, e.g.,

in [44]. From conformal symmetry arguments (or alternatively from explicit calculation —

see appendix B), it follows again that the expression in eq. (3.9) satisfies a ‘spinning’ wave

equation on the space of causal diamonds:

(
∇2

♦ −m2
O

)
Q(O;x, y) = 0 with m2

O L2 = ∆O(d−∆O)− ℓ(ℓ+ d− 2) . (3.12)

12For non-scalar primaries O, there is an extra contribution on the right-hand side of the form CL〈O(ξ)〉

with CL the second Casimir of the Lorentz representation of O.
13Note that sµ and Kµ are both future-directed vectors within the causal diamond.

– 20 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
2

B̃B

xµ

K

D

yµ

Figure 8. Domain of dependence D(x, y) in the CFT2 (red shaded) of a sphere B(x, y), and the

associated causal wedge in pure AdS3 (blue shaded). The geodesic (blue) is the bulk minimal

surface B̃(x, y). Green arrows indicate the timelike Killing flow generated by Kµ, which becomes

null at the boundary of the domain of dependence (and vanishes at xµ and yµ, see also figure 10).

To illustrate the definition (3.9), we turn to the second point in our list of properties

above and show that it reproduces the known first laws [35] when the operator is a conserved

current. If the traceless symmetric tensor corresponds to a conserved current, then14

∆O = ℓ+ d− 2 . (3.13)

Hence eq. (3.11) can be written as

Q(O;x, y) =
CO

(2π)ℓ−2

∫

D(x,y)
ddξ

KµJµ
|K|2 (3.14)

where we have introduce the conserved current Jµ ≡ Kµ2 · · ·Kµℓ〈Oµµ2···µℓ
(ξ)〉.15 Now

suppose we foliate the causal diamond by slices that are everywhere orthogonal to the vector

14Note that substituting eq. (3.13) into eq. (3.12) yields m2
OL2 = −2(ℓ − 1)(ℓ + d − 2), which differs by

a factor of two from the mass-squared reported in [35]. However, as described above eq. (2.15), restricting

the submanifold of spheres on a fixed time slice requires ‘equating’ the coordinates for the two tips of the

causal diamond. This has the effect of reducing the mass. Effectively one has ∇2
♦ ∼ 2∇2

dS on this restricted

moduli space studied in [35]. In two dimensions the space M
(2)
♦ actually factorizes in two copies of dS2 as

in (2.18). In this case one can make the above statement precise by noting that ∇2
♦ = 2(∇2

dS2
+ ∇̄2

dS2

) with

each of the dS2 spaces contributing m2
dS2

L2 = −ℓ(ℓ− 1) and m2
dS2

= 0, respectively (cf., eq. (3.39) and the

discussion there).
15Current conservation follows here because 〈Oµ1...µℓ

(ξ)〉 is both traceless and conserved and because Kµ

is a conformal Killing vector [35] — see appendix A.2.
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field Kµ, and we also introduce a flow parameter in the direction of Kµ which we will call

λ: ∂λ ≡ Kµ∂µ. It is then clear that we can re-express the measure as ddξ = dλ dd−1Σ |K|
where dd−1Σ |K| is the induced measure on each (d− 1)-dimensional constant λ slice. As

a result, we obtain

Q(O;x, y) =
CO

(2π)ℓ−2

∫

D(x,y)
dλ dd−1Σ nµ Jµ (3.15)

with nµ = Kµ/|K| being the timelike unit normal to the constant λ slices. However,

because Jµ is a conserved current, the integral over a slice of nµJµ does not depend on the

slice. Hence

Q(O;x, y) =
CO

(2π)ℓ−2

∫

B(x,y)
dd−1Σ nµ Jµ ×

∫
dλ , (3.16)

where B(x, y) is a constant λ slice, e.g., the spherical region for which D(x, y) is the domain

of dependence. Note that the factor
∫
dλ is in fact divergent but it can be absorbed into

the normalization constant CO. Hence upon a redefinition of the normalization constant,

the final result can be written as

Q(O;x, y) =
C̃O

(2π)ℓ−2

∫

B(x,y)
dΣµ1 Kµ2 . . .Kµℓ 〈Oµ1...µℓ

(ξ)〉 . (3.17)

Observe, that in fact, current conservation allows the (d− 1)-dimensional surface defining

the range of the remaining integral to be chosen as any Cauchy surface within the causal

diamond D(x, y), i.e., it need not be a constant λ slice. Hence as claimed in the second

point on our list above, we have recovered precisely the first law for conserved currents

proposed previously in [35]. In particular, the covariant version of the standard first law for

entanglement entropy is immediately recovered with the choice ℓ = 2, i.e., Oµ1µ2 = Tµ1µ2 .
16

3.3 Connection to the OPE

The third point in the list of features of eq. (3.1) is the connection to the operator product

expansion. In general, the OPE of two operators takes the form

A(x)B(y) =
∑

i

COi

AB

Oi(y)

(x− y)∆A+∆B−∆Oi

+ conformal descendants (3.18)

where on the right the sum is over all primary operators Oi and its conformal descendants.

In two dimensions, where the conformal group is infinite, we will take the sum to be over

all quasi-primary operators and their descendants under the global conformal group only.

In principle, there is an infinite sum over conformal descendants on the right hand side, but

this infinite sum can be repackaged as an integral of Oi smeared against a suitable kernel,

A(x)B(y) =
∑

i

COi

AB

∫

D(x,y)
ddξ IABOi

(x, y, ξ)Oi(ξ) . (3.19)

16Note another case which deserves special attention is ℓ = 1 and ∆O = d − 1, which corresponds

to ordinary conserved current, i.e., Jµ = 〈Oµ〉. Näıvely, the above arguments would suggest that the

corresponding operator (3.17) also satisfies the wave equation (3.12) on the moduli space. However, an

implicit assumption in the derivation of the wave equation is that current vanishes on the sphere ∂B(x, y)

and this is ensured in eq. (3.17) by the vanishing of the conformal Killing vector on this surface — see

appendix A.2. However, there are no such factors of Kµ in the special case ℓ = 1 and so extra boundary

term contributions would appear in the wave equation.
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The kernel IABOi
(x, y, ξ) that appears here is completely fixed by conformal invariance.

One can in principle construct it by working out the relevant conformal Ward identities

and solving for them. If one does this one recognizes that the Ward-identities look exactly

like those of a three-point function. In fact, this should not have come as a surprise, as the

shadow field identity (3.5) indeed implies that I is proportional to a three-point function

IABOi
(x, y, ξ) ∼ 〈A(x)B(y)O∗

i 〉 . (3.20)

This three-point function (for scalar operators) equals

〈A(x)B(y)O∗
i (ξ)〉 ∼ (x− y)d−∆Oi

−∆A−∆B (x− ξ)∆Oi
−d−∆A+∆B (y − ξ)∆Oi

−d+∆A−∆B .

(3.21)

For the quantity Q(O) which appears in the first law, we imagine that there should not be

any special operators located at either x or y, and indeed we recover the form of the first law

in eq. (3.1) by taking ∆A = ∆B = 0. Of course, in an actual conformal field theory, there is

only one operator with vanishing dimension, the identity operator, for which the three-point

function above actually vanishes. One should therefore view this is as a somewhat formal

argument intended to explain the constraints imposed by conformal invariance alone.

Nevertheless, we notice from that eq. (3.21) that (x − y)∆A+∆B 〈A(x)B(y)O∗
i 〉 also

reproduces the kernel in eq. (3.1) as long as ∆A = ∆B. We can therefore use either eq. (3.1),

or its bulk counterpart (3.24), to compute the contribution of a particular operator and all

its conformal descendants to the OPE of two equal dimension scalar operators.

For example, consider a four-point function

〈A(x1)B(y1)C(x2)D(y2)〉 (3.22)

of four scalar operators with ∆A = ∆B and ∆C = ∆D. We can ask what the contribution

to this four-point function is when a particular operator O runs in the intermediate (AB)−
(CD)-channel, also known as a conformal block. Up to an overall normalization, we find

that this conformal block equals

(x1 − y1)
−∆A−∆B (x2 − y2)

−∆C−∆C 〈Q(O;x1, y1)Q(O;x2, y2)〉. (3.23)

We can now evaluate this two-point function using (3.1) and relate it to the integral of

〈O(ξ1)O(ξ2)〉 over two causal diamonds D(x1, y1) and D(x2, y2) on the boundary.

In the context of the AdS/CFT correspondence, a Euclidean version of this argument

underlies the geodesic Witten diagram prescription of [45]. Alternatively, we can use the

bulk representation (3.24) which leads immediately to an expression involving a double

integral over two minimal surfaces connected by a bulk-bulk propagator, reminiscent of

the result in [45]. Finally, the same quantity admits yet another interpretation as the

two-point function of Q(O) on the moduli space of causal diamonds. Notice that with all

of the above we are working in Lorentzian signature (or mixed signature in case of the

moduli space of causal diamonds) and one has to be careful to precisely define the types of

correlators and Green’s functions that appear. There is also a close relation to the ‘splines’

introduced in [46].
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3.4 Holographic description

So far our discussion did not assume any special features of the CFT, however, we now turn

to point 4 on our list which refers to the special case of holographic CFTs. In particular,

we will be considering CFTs with a dual description in terms of weakly coupled gravity.

In this setting, the scalar operator O in the boundary theory will be dual to a scalar field

φ in the bulk and we wish to show that the following simple bulk expression provides an

alternative definition of Q(O):

Qholo(O;x, y) =
Cblk

8πGN

∫

B̃(x,y)
dd−1u

√
h φ(u) . (3.24)

Here, as discussed above, B̃(x, y) is the extremal surface reaching the asymptotic AdS

boundary at the maximal sphere that bounds the causal diamond — see figure 8. Further,

the measure
√
h dd−1u is simply the induced volume element on B̃. Now our claim, which

we demonstrate below, is that

Qholo(O;x, y) = Q(O;x, y) , (3.25)

with an appropriate choice of the normalization constant Cblk. Note that Cblk is fixed by

standard AdS/CFT techniques once the normalization CO in (3.1) is given. In appendix C,

we explicitly compute Cblk as a function of the CFT normalization CO, the dimension d

and the weight ∆O — see eq. (C.8) for the result. Note that it is natural to include an

inverse factor of 8πGN in the definition of Qholo(O), as this factor ensures that our new

observable is dimensionless17 just as with its counterpart (3.1) in the boundary theory.

The above holographic relation (3.25) is in line with the general philosophy that minimal

surfaces should play a prominent role in the construction of these new boundary observables

Q(O;x, y), as is the case for holographic entanglement entropy.

To show the equality of eqs. (3.1) and (3.24), we can argue as follows: if we apply

the conformal generator Li(x) + Li(y) to the above expression, this has the effect of an

infinitesimal displacement of B̃(x, y) in the direction of the Killing vector field Li. The

field φ at this displaced location differs from the original value by an amount Liφ, but the

rest of the integrand remains unchanged because Li is a Killing vector field. Therefore

(Li(x) + Li(y))

∫

B̃(x,y)
dd−1u

√
hφ(u) =

∫

B̃(x,y)
dd−1u

√
h Liφ(u) . (3.26)

In case, this equation appears to be somewhat confusing, a simple one-dimensional version

of this equation which illustrates the idea is

∫ y+a

x+a
f(u) du =

∫ y

x
f(u+ a) du .

We see that the bulk description of Q(O) enjoys a similar intertwining property as in

eq. (3.4).

17Recall that 8πGN = ℓd−1
P and we are assuming the usual ‘supergravity’ convention where the bulk scalar

φ(u) is a dimensionless field.
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Applying the quadratic Casimir C2 requires iterating eq. (3.26) twice and we find

Cij(Li(x) + Li(y))(Lj(x) + Lj(y))

∫

B̃(x,y)
dd−1u

√
hφ(u) =

∫

B̃(x,y)
dd−1u

√
h CijLiLjφ(u) .

(3.27)

Now we can use the fact that in our conventions CijLiLj is proportional to the

d’Alembertian acting in the AdS spacetime, e.g., [47].18 In particular, since φ(u) obeys a

free massive field equation, we then have

CijLiLjφ(u) = −R2
AdS∇2

AdSφ(u) = −m2
AdSR

2
AdS φ(u) = ∆O(d−∆O)φ(u) , (3.28)

where we used the standard relation between the conformal dimension and the mass of the

dual field, m2
AdSR

2
AdS = ∆O(∆O−d). Hence we find that the holographic bulk expression in

eq. (3.24) yields the same eigenvalue as found for the boundary expression in section 3.1,

i.e., C2Qholo(O;x, y) = ∆O(d − ∆O)Qholo(O;x, y), and the same wave equation (3.8) on

kinematic space follows.

Hence we have shown that for scalar operators, Q(O) defined in eq. (3.1) for the

boundary theory and Qholo(O) defined in eq. (3.24) for the bulk theory obey the same wave

equation of kinematic space. If we would in addition show that both quantities obey the

same boundary conditions for these equations, this would be sufficient to establish their

equivalence up to an overall normalization. However, instead of studying the boundary

conditions, there is a more direct argument to show the equivalence of eqs. (3.1) and (3.24).

Inside the bulk causal domain attached to the boundary causal diamond, often referred

to as the bulk causal wedge, we can reconstruct the value of the field using a bulk-boundary

propagator which only involves the expectation value of the corresponding operator inside

the causal diamond [48, 49]. In other words, there exists a bulk-boundary propagator such

that

φ(u) =

∫

D(x,y)
ddξ Gb∂(u, ξ) 〈O(ξ)〉 (3.29)

for any u inside the causal wedge associated with D(x, y). Inserting this expression into

eq. (3.24), we find

Qholo(O;x, y) =
Cblk

8πGN

∫

D(x,y)
ddξ

(∫

B̃(x,y)
dd−1u

√
hGb∂(u, ξ)

)
〈O(ξ)〉 . (3.30)

The integral between brackets does not depend on the values of the field and we denote

the result of this integral by H(x, y, ξ) resulting in

Qholo(O;x, y) =
Cblk

8πGN

∫

D(x,y)
ddξ H(x, y, ξ) 〈O(ξ)〉 . (3.31)

This already takes the form of the first law and all that is left to do is to show that the

kernel H(x, y, ξ) agrees with that appearing in eq. (3.1). This can be seen as follows: the

bulk-boundary propagator Gb∂(u, ξ) is invariant under the isometries of AdS, implying

(Li(u) + Li(ξ))Gb∂(u, ξ) = 0 . (3.32)

18See appendix B for details.
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Combining the above with eq. (3.26) shows that eq. (3.31) also obeys the intertwining

property (3.4), and as discussed below eq. (3.4), this uniquely fixes H(x, y, ξ) up to an

overall constant and hence it must agree with the kernel appearing in the first law (3.1).

One potential subtlety in the above analysis is that causal wedge reconstruction strictly

speaking only applies to the interior of the causal wedge, and to extend it to the boundary

of the causal wedge requires us to make an assumption that the field is continuous there. At

the linearized level one could contemplate that there exist solutions of the φ field equations

with support outside and on the boundary of the causal wedge only. For example, one could

assume that 〈O〉 is zero everywhere inside the causal diamond and then discontinuously

jumps to a finite value at the boundary of the causal diamond. While one cannot, strictly

speaking, exclude such field configurations, they will tend to produce strange effects at

higher orders and can for example produce a singular energy-momentum tensor leading

to a large back-reaction. For simplicity, we will in this paper simply ignore this issue

and restrict to continuous field configurations. An explicit calculation demonstrating the

desired equality (3.25) for d = 2 with smooth configurations is given in appendix C.1.

It is interesting to observe that the bulk-boundary propagator for causal wedges is

usually written in momentum space and behaves in such a way that a direct Fourier trans-

form to position space is ill-defined [49–51]. However, after integrating the bulk operator

over a bulk minimal surface, we apparently obtain the rather simple expression (3.1) where

the expectation value of the operator is smeared with a perfectly well-behaved kernel. It

would be good to have a better understanding of the origin of this simplification, but one

could certainly say that this observation provides further evidence that the Q(O;x, y) are

natural objects to study in the CFT.

Vector fields. It is instructive to see what the bulk description is for an example of a

non-scalar field. We briefly describe the result for a (massless or massive) vector field,

leaving the case of higher spin fields as an interesting exercise for the reader. Given a

bulk vector field AM , we can always construct the (d− 1)-form ∗F , with the field strength

FMN = ∂MAN − ∂NAM corresponding to AM . The appropriate bulk expression for Q(O)

in this case turns out to be

Qholo(Oµ;x, y) =
Cblk

8πGN

∫

B̃(x,y)
∗F . (3.33)

To show that this agrees with the first laws (3.9) and (3.16) for massive and massless vector

fields, we can use the same group-theoretic argument that we used for scalar fields above.

Interestingly, while the CFT counterpart (3.9) diverges in the massless limit and becomes

an infinite factor times (3.16), the bulk expression (3.33) remains finite in the massless limit.

For massless vectors, the field equation reads d ∗ F = 0, and therefore we can contin-

uously deform the bulk minimal surface B̃(x, y) without changing the value of Qholo(O).

In particular, we can deform it all the way up to a spatial slice in the aymptotic AdS

boundary. Then using the asymptotic behavior of a massless vector field in AdS directly,

we find that eq. (3.33) agrees with eq. (3.17) for a spin-one current. Further this argument

can be applied for a vector field version of the derivation of the linearized Einstein equa-

tions from entanglement entropy [33], described in the introduction. For massive vectors,
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d∗F ∼ m2∗A and this simple argument no longer applies. We return to these observations

in the closing discussion section.

We finally notice that in writing eq. (3.33) we assumed the bulk action for the gauge

field to be of Maxwell type. In 2+1 dimensions it is also possible to have a topological

theory with only a Chern-Simons term instead. In that case, the bulk description should

be replaced by Wilson loop of the gauge field.

3.5 Euclidean signature

We can repeat much of the above logic in Euclidean signature, but there are some significant

modifications. In this case, one might consider two distinct possibilities: the first would

be the moduli space of pairs of (spacelike separated) points, which becomes SO(1, d +

1)/(SO(d) × SO(1, 1)). The second distinct case would be the moduli space of (d − 2)-

dimensional spheres, which becomes SO(1, d+1)/(SO(1, d−1)×SO(2)). In either case, there

is still a natural metric on the moduli space given by a suitable Wick rotation of eq. (2.14).

Similarly, as described in appendix A.2, the conformal Killing vector Kµ may be

analytically continued to produce a conformal Killing vector of Rd which has fixed points

either on a pair of points or on a (d − 2)-sphere. This provides us two extensions of

our new observables to Euclidean space through eqs. (3.3) and (3.11). However, the causal

diamonds are lost in Euclidean signature and so there is no natural finite domain with which

to associate these observables. As a result our analogous Euclidean expressions would now

involve an integral over the entire Euclidean boundary. Of course, there is no obvious reason

that such an integral should converge. However, we conjecture that it is possible to extract a

universal finite term when the integrals are suitably regulated. This issue would not arise in

the case of a conserved current where the integral in eq. (3.17) is reduced to a Cauchy surface

spanning the causal diamond. In Euclidean signature, when considering the (d−2)-spheres,

this integral naturally continues to an integral over any (d− 1)-dimensional surface whose

boundary is the corresponding sphere. In the case of pairs of points, the natural domain

would be an integral over closed (d− 1)-dimensional surface enclosing one of the points.19

The connection with the resummation of a local operator and its conformal descendants

in the OPE remains valid given a pair of points. In fact, shadow operator formalism [42, 43]

was originally developed in Euclidean signature. A similar discussion might be developed

for the case of spheres, however, it would the OPE limit of (d − 2)-dimensional surface

operators, e.g., see discussions in [52, 53].

In a holographic context, if we consider a sphere in the boundary theory, this again

naturally defines a preferred extremal surface in the bulk. Hence the discussion of the

holographic description of Qholo(O) is essentially unchanged from that given in section 3.4.

On the other hand, given two spacelike separated points on the boundary, we must turn to

a new class of natural minimal surfaces, namely, the geodesic connecting the two bound-

ary points. Of course, integrating over this bulk surface in eq. (3.24) provides a natural

19This points to the necessity of introducing sources in the Euclidean framework, i.e., otherwise such

an operator would always evaluate to zero since the closed surface is contractible to a point. We will not

pursue this issue further here but leave it as an interesting future project.
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construction of a bulk observable which is again entirely geometric in nature. The ar-

guments we gave in Lorentzian signature, which crucially relied on conformal invariance,

can be repeated in Euclidean signature (at least formally) to show that the boundary and

bulk descriptions of Q(O) agree in either case, and that it still obeys a wave equation

on the corresponding moduli space. With the case of pairs of points, one makes direct

contact with the geodesic Witten diagram prescription of [45], which was also derived in

Euclidean signature — as well as with the ‘splines’ introduced in [46]. Further in this case,

for higher-spin symmetric traceless tensor fields, the natural bulk quantity to consider is

the contraction of the rank-j tensor field with j times the unit tangent vector along the

geodesic. This object is again quite distinct from its spherical or Lorentzian counterparts,

for which we only worked out the vector field case — we return to this point in section 7.

Of course, one could also consider the moduli space of spacelike separated pairs of

points in Lorentzian signature and we discuss this possibility at length in appendix A.3. In

this case, the coset geometry is SO(2, d)/(SO(1, d− 1)× SO(1, 1)), which matches that for

the moduli space of spheres in eq. (2.11). In the appendix, by extending our considerations

from Minkowski space to R×Sd−1 geometry, we show that the two moduli spaces are in fact

identical. That is, the moduli space of spacelike pairs of points is the same geometric object

as the moduli space of spheres or timelike pairs of points. It is interesting that in the R×
Sd−1 geometry, a pair of spacelike separated points defines a region of finite volume, namely

that enclosed by the past and future lightcones of both points. Further the conformal

Killing vector Kµ is naturally extended to generate a flow on this region (with fixed points

on the spacelike pair). Hence in this context, it would be natural to define nonlocal

observables using eqs. (3.3) and (3.11) where the integration would now run over this new

volume. In a holographic CFT, these observables would naturally have a gravity description

analogous to eq. (3.24) except the bulk integral would run over the geodesic connecting the

spacelike separated pair of points on the boundary. The latter construction would again

connect directly to the discussion of geodesic Witten diagrams [45]. Of course, it would be

interesting to fully explore the implications of this equivalence of these two moduli spaces in

Lorentzian signature. It would also be good to develop a better conceptual understanding

of the peculiar differences between the various Lorentzian and Euclidean versions of Q(O).

3.6 Other fields

We have so far discussed scalar fields and some aspects of higher spin fields described by

symmetric traceless tensors. There are clearly many other types of fields one could con-

template studying carrying different representations of the Lorentz group such as fermions

or antisymmetric tensors. It would be interesting to study such fields as well, and to ex-

amine whether the natural generalization of Q(O) remains a scalar on the space of causal

diamonds or whether it can become a quantity which carries nontrivial quantum numbers

under the local SO(d, d) Lorentz group on the generalized kinematic space.

A natural starting point to explore such generalizations would be to put different fidu-

cial operators A, B at the tips of the causal diamond and to write down a first law with a

kernel of the form (3.21) for some operator O which appears in the OPE of A and B. The

corresponding Q(O), perhaps better denoted by QA,B(O), will then obey a modified field
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equation which can be obtained by repeating the logic around eq. (3.6). However, now

Li(x) and Li(y) are no longer purely geometric but also involve an internal piece due to

the non-scalar nature of A and/or B. It is however less obvious how to generalize the bulk

description (3.24) to this case, nor whether QA,B(O) can be extended in any natural way be-

yond this linearized approximation. In Euclidean signature, the bulk geodesic connecting A

and B could be understood as the leading classical trajectory for a scalar particle connecting

A and B. However, the discussion of geodesic Witten diagrams [45] suggests that integral

along the geodesic should be weighted by a measure depending on the difference in the

conformal weights of the operators A and B. Further, if A and B carry non-trivial Lorentz

representations, one should presumably use classical trajectories for particles transforming

precisely under those representations. Once again, there are many interesting directions to

explore and we have presumably only uncovered the tip of the iceberg.

3.7 Two dimensions

In the remainder of the paper, our examination will focus primarily on two-dimensional

CFTs. Hence to set the stage for the subsequent sections, we will explicitly illustrate

ideas appearing in the previous discussion of our nonlocal observables for two dimensions.

We will also show that certain straightforward generalizations and simplifications emerge

for d = 2. The latter seem to be closely related to the fact that light-cone coordinates

(or complex coordinates in Euclidean section) provide a preferred framework in which to

describe two-dimensional CFTs, e.g., conserved currents naturally split into independent

left- or right-moving components. The preferential role of null coordinates for d = 2

was also reflected in the discussion of the geometry of kinematic space in section 2.1. In

particular, we found that in this case, the metric on the moduli space of causal diamonds

factorized into two copies of the metric on two-dimensional de Sitter space when using null

coordinates — see discussion below eq. (2.16).

Hence to begin, consider a general quasi-primary operator O with conformal weights (h,

h̄) in a two-dimensional CFT. Now we adopt the null coordinates introduced in eqs. (2.16)

and (2.17) and then we may define the following observable:

Q(O;u, ū; v, v̄) =
CO

2

∫ v

u
dξ

(
(v − ξ)(ξ − u)

(v − u)

)h−1 ∫ v̄

ū
dξ̄

(
(v̄ − ξ̄)(ξ̄ − ū)

(v̄ − ū)

)h̄−1

〈O(ξ, ξ̄)〉 ,
(3.34)

where, as in eq. (3.1), the integration runs over the entire causal diamond. For general

operators with h 6= h̄, this expression is the two-dimensional version of eq. (3.9) with

∆O = h + h̄ and ℓ = h − h̄. In the spinless case with h = h̄ = ∆O/2, this formula agrees

with the d = 2 version of eq. (3.1).

When O is a component of a conserved current then either h̄ = 0 in which O depends

only on ξ, or h = 0 and O only depends on ξ̄. In either of these cases, one of the integrals

in eq. (3.34) becomes ‘trivial’ and contributes only an overall (divergent) factor. In this

case, eq. (3.34) reduces to

Q(O)
∣∣
h̄=0

= C̃O

∫ v

u
dξ

(
(v − ξ)(ξ − u)

(v − u)

)h−1

〈O(ξ)〉 . (3.35)
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Figure 9. The nonlocal observable defined in eq. (3.35) only involves right-moving modes and so

is completely insensitive to the size and position of the causal diamond in the ξ̄ direction.

for h̄ = 0 — with an analogous expression for h = 0. Note we had to redefine the

normalization constant above since the integral over ξ̄ yields a divergent result in the limit

h̄ → 0, i.e., C̃O = CO/h̄
∣∣
h̄→0

.

Note that observables of the form given in eq. (3.35) are completely independent of ū

and v̄, i.e., they are completely independent of the positions of the top-right and lower-

left boundaries of the causal diamond in figure 9. Since O(ξ) involves only right-moving

modes, the nonlocal observable in eq. (3.35) is only sensitive to expanding (or contracting)

the causal diamond in the ξ direction. In terms of the kinematic space, the result is

completely independent of the position of the causal diamond in the second dS2 factor in

eq. (2.18), i.e., the factor involving ū and v̄.

When the operator O in eq. (3.35) is the right-moving component of the stress tensor

Tξξ with h = 2, we have

Q(Tξξ; v, u) = C̃O

∫ v

u
dξ

(v − ξ)(ξ − u)

(v − u)
〈Tξξ〉 . (3.36)

Note that the above observable is completely independent of that constructed with the left-

moving component Tξ̄ξ̄, i.e., independent of Q(Tξ̄ξ̄; v̄, ū). The first law of entanglement (1.3)

(with d = 2) actually corresponds to the sum of these two expressions

δSEE = Q(Tξξ; v, u) +Q(Tξ̄ξ̄; v̄, ū) , (3.37)

along with the appropriate choice of the normalization factor, i.e., we use Ttt = Tξξ + Tξ̄ξ̄

and C̃O = 2π. Hence we observe that the entanglement entropy, at least in weakly excited

states, naturally splits into right- and left-moving contributions. We will return to this

important point in the next section.

Wave equations. Following [35], it is immediate to see that eq. (3.34) satisfies not

just one but two wave equations on the kinematic space. This follows because the right-
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and left-moving parts of the integration kernel are both bulk-boundary propagators in two-

dimensional de Sitter space, i.e., in the separate dS2 factors in eq. (2.18). As a result, we find

(
∇2

dS2 −m2
dS2

)
Q(O) = 0 , with m2

dS2 L
2 = −h(h− 1) ,

(
∇2

dS2 − m̄2
dS2

)
Q(O) = 0 , with m̄2

dS2
L2 = −h̄(h̄− 1) ,

(3.38)

where the d’Alembertians ∇2
dS2

and ∇2
dS2 only act on the copy of de Sitter space defined

in eq. (2.18) involving the right- and left-moving coordinates, respectively.

Note that the wave equation (3.8) considered above for general dimensions corresponds

to the sum of the two equations in eq. (3.38),

(
∇2

♦ −m2
O

)
Q(O;u, ū; v, v̄) = 2

[(
∇2

dS2 +∇2
dS2

)
−
(
m2

dS2 + m̄2
dS2

)]
Q(O;u, ū; v, v̄) = 0 ,

(3.39)

and hence m2
OL

2 = −2h(h−1)−2h̄(h̄−1).20 However, we see that eq. (3.8) is supplemented

here by a second equation of the form
[
∇2

dS2 −∇2
dS2 −∆m2

]
Q(O;u, ū; v, v̄) = 0 with ∆m2L2 = h̄(h̄− 1)−h(h− 1) . (3.40)

We might note that in the case of a spinless equation (with h = h̄), this second equation

reduces to
(
∇2

dS2
−∇2

dS2

)
Q(O) = 0. The importance of this constraint equation was

emphasized in [38] and we return to this point in section 6.1.

Relation to OPE. We wish to return to the arguments of section 3.3 in the special case

of two dimensions, where we can make the necessary calculations more explicit. Let us

consider the OPE of two general operators A(u, ū) and B(v, v̄) inserted at the tips of the

causal diamond, e.g., see figure 9. It is natural to write the analog of the resummation

ansatz (3.19) for the OPE blocks in a factorized form for two dimensions:

A(u, ū)B(v, v̄) =
∑

i

COi

AB

∫ v

u
dξ

∫ v̄

ū
dξ̄ IABOi

(u, v; ξ) ĪABOi
(ū, v̄; ξ̄)Oi(ξ, ξ̄) . (3.41)

As in general dimensions, the kernels IABOi
and ĪABOi

are fixed by the global part of the

conformal group. However, we can easily carry out this exercise in the case of d = 2. Recall

that for a quasi-primary O(z, z̄) we have

[Lk,O] = (k + 1)h zk O + zk+1 ∂zO , (3.42)

where Lk is the k-th element of the Virasoro algebra and k = −1, 0, 1 (for a primary this

holds for all k ∈ Z). Commuting Lk through the OPE (3.41) therefore yields
[
(k + 1)hAu

k + uk+1∂u + (k + 1)hBv
k + vk+1∂v

]
IABOi

(u, v; ξ)

=
[
(k + 1)hCξ

k − ∂ξξ
k+1
]
IABOi

(u, v; ξ) .
(3.43)

20Of course, we recover precisely the mass in eq. (3.8) upon substituting ∆O = h + h̄ and ℓ = h − h̄.

Note that here we can see the reason why m2
OL2 appears to be twice the mass that one would expect from

the analysis on a fixed time-slice (as in [35]): the mass on each copy of dS2 in (3.38) contributes twice (i.e.,

with a factor of 2 in eq. (3.39)) to the full mass m2
OL2.
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The solution to the three differential equations found by setting k = −1, 0, 1 in the above

equation is

IABOi
(u, v; ξ) ∼ (u− v)1−hA−hB−hC (u− ξ)−1−hA+hB+hC (ξ − v)−1+hA−hB+hC , (3.44)

where the symmetry analysis does not fix the normalization. Eq. (3.44) provides then the

right-moving contribution. One can repeat the same argument for the left-moving factor

and find the kernel ĪABOi
(ū, v̄, ξ̄) which has an analogous form. Let us add that having

found a unique consistent solution of the Ward identities then justifies the validity of our

factorized ansatz in eq. (3.41).

Again, above we are only considering global conformal blocks, however, it would be

interesting to extend this analysis to a resummation of entire Virasoro blocks. The holo-

graphic description of such full conformal blocks has already been studied in [54].

4 Interacting fields on d = 2 moduli space

In the previous section, our considerations focused on new nonlocal observables Q(O) whose

construction was motivated as a generalization of the first law of entanglement (1.3). A

natural question then is whether for each observable Q(O), we can go beyond the linearized

approximation implicit in the first law. That is, whether there is some nonlinear quantity

equivalent to the full SEE in the first law, which can be defined for finite excitations away

from the vacuum state. Of course, one would hope that such nonlinear quantities would

still share at least some of the nice features of the corresponding observable Q(O), such as

local 2-derivative equations of motion in the auxiliary space M(d)
♦

or a natural appearance

in the OPE. We start this line of investigation here by considering the full entanglement

entropy SEE and asking whether there is a nonlinear extension of the wave equation (3.12)

for this quantity.

4.1 Vacuum excitations

When we apply the entanglement first law (1.3) as a diagnostic to characterize CFT states,

i.e., we apply the first law to all possible spheres, implicitly we are considering excited states

which have a very small expectation value of the energy-momentum tensor everywhere. So

our next step is to consider states where the expectation value 〈Tµν〉 may be finite. In

particular, we will focus on two-dimensional CFTs, where an infinite number of excited

states characterized only by the expectation value of the energy-momentum tensor can be

obtained simply by acting with a local conformal transformation on the CFT vacuum on

a plane. The expectation value of the energy-momentum tensor for any of these states is

given by the Schwarzian derivative, i.e., with a local conformal transformation21

w = f(z) and w̄ = f̄(z̄) , (4.1)

21For simplicity, we will continue to phrase our discussion here in terms of the null coordinates introduced

in eq. (2.16). This is not entirely consistent with certain points in the following discussion where a Euclidean

signature is implicit, e.g., the path integral representation of TrρnA. However, one can easily Wick rotate to

complex coordinates in Euclidean signature, i.e., z = x+ i τ and z̄ = x− i τ with τ = it.
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we obtain right- and left-moving components of the stress tensor

〈Tzz(z)〉 =
c

12

{
f ′′′

f ′
− 3(f ′′)2

2(f ′)2

}
and 〈Tz̄z̄(z̄)〉 =

c

12

{
f̄ ′′′

f̄ ′
− 3(f̄ ′′)2

2(f̄ ′)2

}
. (4.2)

Such functions f(z) and f̄(z̄) may not exist globally, but we will ignore global issues in

what follows, in particular the fact that minimal surfaces can change discontinuously as,

e.g., in the BTZ black hole. Our discussion will therefore only be valid for sufficiently short

intervals or for excited states which are connected to the ground state via a diffeomorphism.

Now let us consider the entanglement entropy in the above states.22 First, we recall

that the entanglement entropy can be evaluated using the replica trick, e.g., [52, 55–57]:

one begins with the Rényi entropies

Sn(A) =
1

1− n
log TrρnA (4.3)

which involves the reduced density matrix ρA on the spatial domain A. Here TrρnA can be

evaluated as a path integral on an n-fold cover of the original geometry on which the CFT

lives. However an alternative description of this quantity comes in terms of twist fields,

σn, which act in an n-fold replicated version of the CFT and implement twisted boundary

conditions connecting the copies of the CFT along the entangling surface, i.e., the boundary

of A. In general dimensions then, the σn are codimension-two surface operators with

support on the boundary of A. However, two dimensions are special since A will consist of

a union of a set of disjoint intervals and the twist fields are local primary operators inserted

the endpoints of each interval. In particular, in two-dimensional CFTs, the twist operators

σ±n are local primaries with conformal weights [55, 56]

hn = h̄n =
c

24

(
1− 1

n2

)
. (4.4)

Now we are interested in the n → 1 limit in which the Rényi entropy reduces to the

entanglement entropy, i.e., SEE = limn→1 Sn.

In particular, the above discussion lets us relate the entanglement entropy of a single

interval or of a single causal diamond to the two-point correlator of a pair of twist operators

SEE(w1, w2) = lim
n→1

1

1− n
log〈σn(w1)σ−n(w2)〉 , (4.5)

where in the Minkowski vacuum of the CFT, the desired correlation function takes the

form [55]

〈σn(w1)σ−n(w2)〉 =
an

|w1 − w2|2(hn+h−n)
(4.6)

where an is a numerical coefficient, with a1 = 1. Since the twist operators are primaries in a

replicated CFT, this two-point function transforms in a standard way under the conformal

transformations (4.1). Hence using eqs. (4.4) and (4.5), the final result for the entanglement

entropy in any of the above states (4.2) is given by

SEE(u, ū; v, v̄) =
c

12
log

(f(u)− f(v))2

δ2 f ′(u)f ′(v)
+

c

12
log

(
f̄(ū)− f̄(v̄)

)2

δ2 f̄ ′(ū)f̄ ′(v̄)
, (4.7)

22Further discussion of twist operators is presented in section 7.
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where we introduced the short distance cut-off δ. Further, (u, ū) and (v, v̄) denote the

tips of the causal diamond, as in figure 9, after the conformal transformation (4.1). As a

simple example, if we choose f(z) = z and f̄(z̄) = z̄, we recover the standard result for a

single interval

SEE =
c

3
log

|u− v|
δ

, (4.8)

where, however, the length of the interval is specified here by the distance between the

past and future tips of the corresponding causal diamond.

A number of comments are in order here: first, eq. (4.7) appeared already in [58] and

subsequently this approach was applied in [55] to obtain the entanglement entropy of a

single interval both in a circular spatial domain and inin a thermal state (on an infinite

line). Second, for holographic CFTs, eq. (4.7) can be derived in full generality by using the

Ryu-Takayanagi prescription and AdS3 gravity — see the discussion in the next section,

as well as [59]. Finally, we observe that the full entanglement entropy (4.7) is the sum of

independent contributions from the right- and left-moving modes

SEE(u, ū; v, v̄) = SR(f ;u, v) + SL(f̄ ; ū, v̄) (4.9)

with

SR(f ;u, v) =
c

12
log

(f(u)− f(v))2

δ2 f ′(u)f ′(v)
and SL(f̄ ; ū, v̄) =

c

12
log

(
f̄(ū)− f̄(v̄)

)2

δ2 f̄ ′(ū)f̄ ′(v̄)
. (4.10)

That is, we interpret SR(f ;u, v) as the contribution to the entanglement entropy for the

right-moving modes in the state generated by the conformal transformation w = f(z) since

it is only sensitive to variations in the width of the causal diamond in the ξ direction,

as illustrated in figure 9. Of course, SL(f̄ ; ū, v̄) is the analogous contribution from the

left-movers. Recall that the same split for δSEE in eq. (3.37). There it resulted since ‘holo-

morphicity’ was a general feature of the observables constructed with conserved currents,

e.g., the stress tensor, as in eq. (3.35). With our analysis here, we see that this splitting

survives at nonlinear level for the entanglement entropy.

Furthermore, the right-moving contribution SR(f) turns out to solve the Liouville

equation in the form

δ2
∂2

∂u ∂v
SR(f) =

c

6
exp

(
−12

c
SR(f)

)
, (4.11)

and similarly with SL(f̄). To relate this result to our previous wave equations, we turn

back to our motivation which was to find a nonlinear generalization of δSEE, or rather of

Q(Tzz; v, u) in eq. (3.37). Having right- and left-moving contributions to the entanglement

entropy, which are still sensibly defined in eq. (4.10) for states with finite energy densities,

it is natural to define

∆SR(u, v) = SR(f ;u, v) − SR(f(z)=z;u, v) . (4.12)

That is, we consider the finite difference between the right-moving contribution to the

entanglement entropy for intervals in the state generated by w = f(z) and that in the
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original vacuum state. Of course, there is a completely analogous difference ∆SL for the

left-moving contribution. Note that these differences are UV finite and independent of the

short distance cut-off δ. Further, for an infinitesimal conformal transformation (4.1), e.g.,

f(z) = z + ǫ g(z) and using eq. (4.2), one can confirm that to leading order in ǫ,

∆SR(u, v) = Q(Tzz; v, u) +O(ǫ2) , (4.13)

with C̃O = 2π. That is, to leading order, the finite difference observable (4.12) matches

the linearized observable (3.36) which yields the right-moving contributions to δSEE in the

first law (3.37).

Quite remarkably, eq. (4.11) yields a local equation of motion for both ∆SR and ∆SL

on, respectively, the right- and left-moving de Sitter factors in the kinematic space for

two-dimensional CFTs, e.g., see eq. (2.18),

∇2
dS2 ∆SR − V ′(∆SR) = 0 and ∇2

dS2 ∆SL − V ′(∆SL) = 0 , (4.14)

where the nonlinear potential is given by

V ′(s) = − c

6

[
1− exp

(
−12

c
s

)]
= −2s+

12

c
s2 + . . . . (4.15)

Hence if we linearize the wave equation (4.14) for, e.g., ∆SR, then the term −2s is the

above expression corresponds precisely to the mass term (with L2 = 1) for h = 2 and

h̄ = 0 needed to reproduce eq. (3.38). Of course, we also recover the desired linearized

wave equation for ∆SL. Implicitly, we also have the equations

∇2
dS2 ∆SR = 0 and ∇2

dS2 ∆SL = 0 , (4.16)

which remain unchanged from their linearized counterparts. Further, we might note that

the higher order interactions in eq. (4.15) are suppressed by inverse powers of the central

charge at large c. Finally, notice that we have written the wave equations (4.14) as though

they resulted from the variation of an action. In particular then, the underlying potential

would be V (s) = − c
6 s− 1

2 exp(−12s/c), which has a single unstable extremum at s = 0.

Our results here demonstrate that at least for the universal family of states charac-

terized by (4.2), the spatiotemporal organization of the entanglement entropy, or more

precisely of its right- and left-moving contributions over the vacuum entanglement entropy,

is governed by the Lorentzian structure of the moduli space of causal diamonds (2.18) and

obeys a nonlinear and local propagation law on this space.

4.2 Beyond vacuum excitations

In eq. (4.12), the vacuum state was chosen as the reference state in defining ∆SR and ∆SL.

However, this choice was arbitrary and we could easily consider the difference

∆̃SR(u, v) = SR(f ;u, v) − SR(f0;u, v) , (4.17)
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where the reference state is that generated from the vacuum by the conformal transfor-

mation w = f0(z). In this case, the corresponding wave equation derived from eq. (4.11)

becomes
(f0(u)− f0(v))

2

f ′
0(u)f

′
0(v)

∂2

∂u ∂v
∆̃SR − V ′(∆̃SR) = 0 , (4.18)

with the same potential as in eq. (4.15). Inspecting the derivative term, we recognize this

as the Laplacian on two-dimensional de Sitter space in transformed coordinates. That is,

if we begin with dS2 with null coordinates (u0,v0) — e.g., , see eq. (2.18) — then the

coordinate transformation u0 = f0(u) and v0 = f0(v) yields
23

ds2dS2 =
4 du0 dv0
(u0 − v0)2

=
4 f ′

0(u)f
′
0(v) du dv

(f0(u)− f0(v))
2 . (4.19)

Of course, the analogous discussion applies for the left-moving contribution with w̄ = f̄0(z̄)

defining the reference state. Hence, with a new choice of reference state, one recovers

precisely the same nonlinear wave equations and the only change is a coordinate transfor-

mation on the corresponding dS2 geometry. We should note that we are only examining

the local geometry of the moduli space here and we have not concerned ourselves with any

subtleties that may arise at the global level.

The above results connect directly to the recent work of [60]. They examined the

linearized propagation of entanglement excitations in various nontrivial states, e.g., for

finite temperature or for finite spatial periodicity. Of course, both of these states in the CFT

can be generated with an appropriate conformal transformation [55], e.g., w = exp(2πz/β)

generates the thermal state from the flat space vacuum.24 Hence these states fall into

the universal class of states studied above and as described above, the auxiliary geometry

describing the appropriate moduli space for these two examples will again be the direct

product of two de Sitter spaces. Upon restricting to a fixed time slice as in [60], one then

finds that δSEE propagates on the diagonal dS2.

A natural interpretation emerging from the above discussion is that SR(f) and SL(f̄)

are proportional to conformal factors in the corresponding de Sitter factors of the kinematic

space metric (2.18), i.e.,

ds2♦ = 4 exp

(
−12

c
SR(f ;u, v)

)
du dv + 4 exp

(
−12

c
SL(f̄ ; ū, v̄)

)
dū dv̄ . (4.20)

This expression for the metric then directly connects the independent diffeomorphisms on

each of the two-dimensional de Sitter spaces with the conformal transformations (4.1) in

the CFT, as discussed above. In this interpretation, the short distance cut-off δ sets the

curvature scale for each of the dS2 geometries:

RdS2 =
2

δ2
, (4.21)

where RdS2 is the Ricci scalar for each of the de Sitter geometries. Hence this approach

makes a definite choice of the curvature of the moduli space, i.e., L = δ. Evaluating the

23Again, we have set L2 = 1 here.
24In this case, we are thinking of a conformal transformation of Euclidean space.
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above constant curvature condition on the right-moving part of the ansatz (4.20) yields

precisely the Liouville equation (4.11). While this approach is very peculiar to two di-

mensions, the interpretation of the wave equation on the moduli space of causal diamonds

as a constant curvature condition might well be more general. Indeed, as we discuss in

section 7, a field equation identical to the one obeyed by δSEE can be derived in arbitrary

dimensions by observing that M(d)
♦

has constant scalar curvature.

5 More interacting fields on d = 2 moduli space: higher spin case

In the previous section, we have seen that entanglement entropy obeys nontrivial and

local field equations on the moduli space which has the dS2×dS2 geometry. In fact, the

‘fields’ on the moduli space were right- and left-moving contributions to the entanglement

entropy, e.g., as defined in eq. (4.12). These results explicitly applied for a universal family

of states, which were generated by a conformal transformation acting on the flat space

vacuum or alternatively by exciting the vacuum state by the action of the stress tensor

alone. Moreover, the field equations (4.14), as well as (4.16), are independent of the precise

reference state. Rather all dependence on the latter is encoded in a choice of coordinates, or

implicitly on the form of the boundary conditions, on dS2×dS2. In section 3, we introduced

the idea that in more general states where new operators (other than the stress tensor)

acquire an expectation value, one would have to expand the discussion to consider new fields

on the moduli space to account for these operators. In this section, we wish to provide

an explicit example of this generalization in the context of d = 2 CFTs with higher spin

symmetries. In particular, we will consider a theory with a conserved spin-three current. At

the linearized level, we have seen that there are new nonlocal observables (3.35) associated

with the right- and left-moving components of this current and that these satisfy linearized

wave equations (3.38) on the moduli space. In the following, we will demonstrate that the

latter extend to nonlinear equations where the fields corresponding to the spin-three current

and to the entanglement entropy develop local interactions with each other on dS2×dS2.

More specifically, we will consider a theory with only spin-two and spin-three fields,

which can be described by a SL(3,R) × SL(3,R) Chern-Simons theory (for a review with

an emphasis on black hole solutions see e.g., [61]). The most general solution of the field

equations is described by a flat gauge field subject to suitable boundary conditions, the lat-

ter encoding the expectation values of the stress-tensor and spin-three currents in the dual

CFT. In keeping with the general philosophy of this paper, we would like to probe such back-

grounds both with ordinary entanglement entropy as well as with a spin-three generalization

thereof. The existence and definition of such a generalization of entanglement entropy was

proposed in [62] and some additional features were discussed in [63]. The spin-three entan-

glement entropy of [62] can be viewed as a generalization of the expressions for ordinary

entanglement entropy in higher spin theories in terms of Wilson lines originally proposed

in [64, 65]. These two proposals were shown to be equivalent in [66] and were tested against

CFT computations in [67, 68], for more recent work see [69] and references therein. In this

section we will consider theories holographically dual to classical Chern-Simons theory, i.e.,

we assume a large central charge (equivalently, a large Chern-Simons level k).
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We will be interested in computing the entanglement entropy in nontrivial states in

Lorentzian signature and in particular we will not be turning on any chemical potentials or

any sources for the higher spin currents. In the presence of such sources there are different

types of boundary conditions depending on whether one takes a Lagrangian or Hamiltonian

point of view [70] but we will not have to worry about this issue. Thanks to this the

proposals of [64, 65] and [62] can be phrased as follows. In Chern-Simons theory one has

two gauge fields A and Ā, one for each copy of the gauge group. Entanglement entropy for

the interval with endpoints P,Q is computed by constructing the open Wilson loop W(P,Q)

from P to Q for A, the open Wilson loop W̄(Q,P ) from Q to P for Ā, and then to evaluate

SR(P,Q) = cR log TrR(W̄(Q,P )W(P,Q)) (5.1)

with a suitable normalization and in a suitable representation R. Depending on the choice

of representation R, different types of entanglement can be computed, as we will see

below. Standard entanglement entropy is for example obtained by taking R to be the

fundamental representation for pure gravity constructed with SL(2,R)× SL(2,R), and the

adjoint representation for the spin-three theory based on SL(3,R)× SL(3,R).

5.1 Evaluation of Wilson loops

The boundary condition on the Chern-Simons gauge fields A, Ā states that these should

be gauge transforms of a suitable two-dimensional gauge field with a purely radial gauge

transformation. It is more convenient to write everything purely in terms of 2d data and

write the radial dependence explicitly. So from now on the open Wilson loops and gauge

fields will be 2d and not 3d, and SR(P,Q) becomes

SR(P,Q) = cR log TrR(W̄(Q,P )eρΛ0W(P,Q)e−2ρΛ0) (5.2)

Here Λ0 is the diagonal element of a sl(2,R) subalgebra of the gauge group. This sl(2,R)

subalgebra (given by a choice of an embedding of sl(2,R) in the gauge group) is what sets

the boundary conditions for Chern-Simons theory and is also what determines the precise

nature of the higher-spin symmetry of the dual CFT. Each inequivalent choice of sl(2,R)

embedding describes a different higher spin theory. There is a preferred sl(2,R) embedding

in sl(N,R), the so-called principal embedding, for which the fundamental representation

of sl(N,R) is an irreducible representation of sl(2,R). These give rise to the standard

WN -algebras with one generator of spins 2, . . . , N each, and this is for N = 3 the case that

we will study.

To regulate the divergent quantity SR(P,Q), we need to pick a fixed and large value of

ρ. The two-dimensional gauge fields are of the following form, where, as discussed above,

we assume no sources have been turned on:

A = (Λ+ + U(x+))dx+, Ā = (Λ− + Ū(x−))dx− . (5.3)

Here, Λ−,Λ+ together with Λ0 are the three generators of the sl(2,R) subalgebra, and

U(x+) is short-hand notation for
∑

Ui(x
+)Ti where the sum runs over all generators Ti of

sl(N,R) which obey [Λ−, Ti] = 0. Similarly, Ū(x−) =
∑

i Ūi(x
−)T̄i with [Λ+, T̄i] = 0. The
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particular form of the gauge fields in eq. (5.3) is sometimes referred to as Drinfeld-Sokolov

gauge and the explicit form for the principal embedding in sl(3,R) will be given below. In

eq. (5.3), U and Ū contain the expectation values of the right- and left-moving conserved

currents, respectively.

Since A and Ā are flat, they are locally pure gauge,25 A = g−1dg and Ā = ḡ−1dḡ, and

SR(P,Q) = cR log TrR(ḡ
−1(P )ḡ(Q)e2ρΛ0g−1(Q)g(P )e−2ρΛ0) (5.4)

We will now assume that when we decompose the representation R in eigenvectors of Λ0

there are unique eigenvectors with a smallest and largest eigenvalue, and we will refer

to these highest and lowest weight vectors as |µ+〉 and |µ−〉. This assumption will hold

in the cases that we will consider, and if it holds the dominant contribution to SR(P,Q)

is coming from the matrix elements where we pick up the largest powers of eρ, which

is precisely given by the matrix elements between the highest and lowest weights. The

dominant contribution is then

SR(P,Q) = cR log
[
e2ρη〈µ−|ḡ−1(P )ḡ(Q)|µ+〉〈µ+|g−1(Q)g(P )|µ−〉

]
(5.5)

with η = 〈µ+|Λ0|µ+〉 − 〈µ−|Λ0|µ−〉. If we denote ǫR = e−ηρ where ρ is a fixed and large

cutoff, we find that SR(P,Q) can be written as

SR(P,Q) = cR log

[〈µ−|ḡ−1(P )ḡ(Q)|µ+〉
ǫR

]
+ cR log

[〈µ+|g−1(Q)g(P )|µ−〉
ǫR

]
. (5.6)

Hence we see that the result splits into separate right- and left-moving contributions.

Our experience in the previous section suggests that these separate terms will form a

interesting basis to develop a local field theory on the moduli space. Hence from now on,

we will restrict to the right-moving contribution to SR(P,Q), which we denote by SR(P,Q)

SR(P,Q) ≡ cR log

[〈µ+|g−1(Q)g(P )|µ−〉
ǫR

]
(5.7)

which only depends on the right-moving coordinates P+ and Q+ and therefore naturally

defines a function on one of the two-dimensional de Sitter spaces.

5.2 Pure gravity example

It is instructive to see how this works in the pure gravity case. There the two-dimensional

gauge field is of the form

A =

(
0 1

T (x+) 0

)
, (5.8)

25This need not be the case globally, because the gauge field can have a non-trivial monodromy around

the spatial circle. For example, this is the case for the higher spin analogues of conical defect and black

hole geometries. Therefore, our analysis is strictly speaking restricted to sufficiently small intervals on the

boundary if the spatial geometry is a circle, but should be valid for arbitrarily large intervals in the planar

case. It would be interesting to explore global aspects and possible consequences for the field equations on

dS2×dS2 in more detail.
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where T (x+) is the right-moving component of the stress tensor. Now we can write A =

g−1∂+g with

g =




∂+

(
1√
∂+f

)
1√
∂+f

∂+

(
f√
∂+f

)
f√
∂+f


 , (5.9)

which indeed has the property that

g−1∂+g =

(
0 1

T 0

)
(5.10)

and where, not surprisingly, T is expressed as a Schwarzian derivative

T = −1

2
{f(x+), x+} . (5.11)

In the pure gravity case, the embedding of sl(2,R) in sl(2,R) is given by the identity map

and in particular

Λ0 =

(
1 0

0 −1

)
, |µ+〉 =

(
1

0

)
and |µ−〉 =

(
0

1

)
(5.12)

where the highest and lowest weight states above correspond to R being the fundamental

representation. To compute Sfun(P,Q) in this case we therefore only need the 12-matrix

element of g−1(Q)g(P ) and we get

Sfun(P,Q) = cfun log

[
g−1(Q) g(P )

]
12

ǫfun
= cfun log

[
f(P+)− f(Q+)

ǫfun
√

∂f(P+) ∂f(Q+)

]
(5.13)

which is indeed in precise agreement with the results (4.10) obtained in the previous section,

when we identify cfun = c/6, as well as ǫfun = δ.

5.3 Spin-three entanglement entropy

We would now like to consider the spin-three case with the principal embedding, in which

case the right-moving two-dimensional gauge field takes the form

A =




0 1 0

T (x+) 0 1

W (x+) T (x+) 0


 dx+ , (5.14)

where T (x+) and W (x+) are the right-moving components of the stress tensor and the

spin-three current, respectively. Once again, we need to find a g which obeys g−1dg = A.

Such a g can be parametrized in terms of two functions γ1 and γ2, but the equations are

quite a bit more cumbersome compared to the pure gravity case. To write g, it is convenient

to first define

χ1 =
1

(γ′1γ
′′
2 − γ′2γ

′′
1 )

1/3
, χ2 = γ1χ1, χ3 = γ2χ1 (5.15)
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and to parametrize g as

g =




∂2χ1 − θχ1 ∂χ1 χ1

∂2χ2 − θχ2 ∂χ2 χ2

∂2χ3 − θχ3 ∂χ3 χ3


 . (5.16)

One can explicitly show that with this choice of g

g−1dg =




0 1 0

T1 0 1

W T2 0 ,


 (5.17)

where T1, T2 and W are lengthy expressions in terms of γ1, γ2 and θ, which can be viewed

as generalizations of the Schwarzian derivative to the spin-three case. For a suitable choice

of θ in terms of γ1 and γ2, which one can algebraically determine, one gets T1 = T2. We

will however not need the explicit form of θ in what follows.

As an aside, we notice that there is an interesting action of SL(3,R) on γ1 and γ2,

which follows from g → ǫg, and which leaves T and W invariant. It takes the form

γ′1 =
a+ bγ1 + cγ2
g + hγ1 + iγ2

, γ′2 =
d+ eγ1 + fγ2
g + hγ1 + iγ2

, (5.18)

which is a direct generalization of the standard SL(2,R) action in the pure gravity case

and which presumable plays some sort of role in ‘W-geometry’.

With the explicit form of g at hand we can now evaluate SR(P,Q) for various choices of

representations R. From [64, 65] we know that ordinary entanglement entropy is obtained

by taking R to be the adjoint representation. It is, however, a priori less clear which

representation one should take in order to get the spin-three generalization of entanglement

entropy. We claim that the right quantity (up to an overall normalization) is obtained by

taking a linear combination of the fundamental and adjoint representations

S
(3)
EE ∼ Sfun −

1

2
Sadj , (5.19)

where we put the normalization constants cfun = cadj.

To see that eq. (5.19) is the right quantity one can either consider its expansion around

the vacuum to first order in 〈T (x+)〉 and 〈W (x+)〉, and verify that it produces an observable

of precisely the form in eq. (3.35) with h = 3 — see also below. Alternatively, one can

translate the original proposal of [62] (see also appendix B of [63]) in the present language

and also arrive at eq. (5.19). The relation of these papers to eq. (5.19) can be summarized

as follows: the highest weight of the fundamental representation minus one half the highest

weight of the adjoint representation is proportional to the sl(3,R) generator

U0 =
1

3




1 0 0

0 −2 0

0 0 1


 . (5.20)

which is precisely the generators used in the construction of [62].
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We notice that if we decompose the adjoint representation of SL(3,R) with respect

to the SL(2,R) subgroup, we obtain a three- and a five-dimensional representation which

contain T (x+) and W (x+) as lowest weight respectively. The Cartan generator of the

five-dimensional representation is precisely U0. This suggests that to obtain a higher spin

entropy in more general cases we should take linear combination of SR with various rep-

resentations R in such a way the the corresponding highest weight is proportional to a

Cartan generator which is part of the same SL(2,R) representation as a particular higher-

spin generator.

We are thus led to consider the following two quantities

S
(2)
EE = Sadj , (5.21)

S
(3)
EE = Sfun −

1

2
Sadj ,

which we refer to as the spin-two and spin-three ‘entanglement entropies’, respectively.

That is, S
(2)
EE is proportional to the ordinary entanglement entropy while S

(3)
EE defines a

new nonlinear observable related to the spin-three current, i.e., it vanishes in states where

〈W (x+)〉 = 0. We also note that the short distance regulators cancel out in our definition

of S
(3)
EE since ǫadj = ǫ 2fun — see the definition of ǫR above eq. (5.6). Hence our spin-three

entanglement entropy is a completely UV finite observable.

Note that both expressions (5.21) carry an overall factor of the normalization constant

cfun since as above, we set cfun = cadj. However, we have not fixed the precise normalization

of S
(2)
EE and S

(3)
EE since we are mostly interested in the question whether these obey local

field equations on dS2 or not. It is in principle straightforward, by examining the first laws

for S
(2)
EE and S

(3)
EE and using the known relation between the generators in eq. (5.14) and

the spin-two and spin-three generators with their canonical normalization to determine the

precise normalization factors.

5.4 De Sitter field equations for higher spin entanglement entropy

We can now explicitly compute S
(2)
EE and S

(3)
EE in the most general spin-two and spin-three

background. To simplify the final answers, we will denote u = P+ and v = Q+, and define

Σ1 = (γ2(u)− γ2(v))γ
′
1(u)− (γ1(u)− γ1(v))γ

′
2(u) ,

Σ2 = (γ2(u)− γ2(v))γ
′
1(v)− (γ1(u)− γ1(v))γ

′
2(v) , (5.22)

Φ1 = (γ′1(u)γ
′′
2 (u)− γ′2(u)γ

′′
1 (u)) ,

Φ2 = (γ′1(v)γ
′′
2 (v)− γ′2(v)γ

′′
1 (v)) ,

and with these we find that

S
(2)
EE = cfun log

(
− Σ1Σ2

ǫ 2fun Φ1Φ2

)
and S

(3)
EE =

cfun
6

log

(
−Σ 3

2 Φ1

Σ 3
1 Φ2

)
. (5.23)

Interestingly, these quantities obey the following local field equations,

ǫfun
∂S

(2)
EE

∂u∂v
= 2 cfun e

−S
(2)
EE/(2cfun) cosh

(
3S

(3)
EE /cfun

)
,

ǫfun
∂S

(3)
EE

∂u∂v
= −cfun e

−S
(2)
EE/(2cfun) sinh

(
3S

(3)
EE /cfun

)
.

(5.24)
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These equations are our spin-three extension of the Liouville equation appearing in

eq. (4.11) in the previous section. In particular, they reduce to (4.11) if we set S
(3)
EE = 0 and

identify S
(2)
EE with SR. In passing, we observe that these equations (5.24) are identical to

the so-called Toda equations for SL(3,R) (for a summary of some aspects of Toda theory

and further references see, e.g., [71]) and reserve further comments for later.

To see the de Sitter geometry of the kinematic space emerge in the field equations, we

follow our previous approach in eq. (4.12) and consider the following difference

∆S
(2)
EE = S

(2)
EE − S

(2)
EE

∣∣∣
γ1(z)=z; γ2(z)=z2

. (5.25)

The second term corresponds to the usual vacuum entanglement entropy, i.e., one can easily

verify from eqs. (5.22) and (5.23) that

S
(2)
EE

∣∣∣
γ1(z)=z; γ2(z)=z2

= 2 cfun log
(u− v)2

2 ǫfun
(5.26)

and further that S
(3)
EE = 0 with this choice of γ1 and γ2. We can match this result with the

expected flat space entanglement entropy (4.8) (more precisely, the right-moving contribu-

tion (4.10)) with cfun = c/24 and ǫfun = δ2/2.26 Now in terms of ∆S
(2)
EE and ∆S

(3)
EE = S

(3)
EE ,

the field equations become

∇2
dS2 ∆S

(2)
EE + 4 cfun − 4 cfun e

−∆S
(2)
EE/(2cfun) cosh

(
3∆S

(3)
EE /cfun

)
= 0 ,

∇2
dS2 ∆S

(3)
EE + 2 cfun e

−∆S
(2)
EE/(2cfun) sinh

(
3∆S

(3)
EE /cfun

)
= 0 ,

(5.27)

with L2 = 1. It is therefore indeed true that spin-two and spin-three entanglement entropy

obey local interacting field equations on dS2. Note that at the linearized level, these equa-

tions yield the expected masses — see eq. (3.38) — for the nonlocal observables (3.35) asso-

ciated with conserved currents with h = 2 and 3. Further notice that these equations can be

formulated in terms of extremizing the following action of an interacting field theory in dS2

∫
d2ξ

√−g

[
−1

2
[∇(∆S

(2)
EE )]

2 − 6[∇(∆S
(3)
EE )]

2 − V (∆S
(2)
EE ,∆S

(3)
EE )

]
(5.28)

where

V (∆S
(2)
EE ,∆S

(3)
EE ) = −4 cfun ∆S

(2)
EE − 8 c2fun e

−∆S
(2)
EE/(2cfun) cosh

(
3∆S

(3)
EE /cfun

)
. (5.29)

This action can again be related to the SL(3,R) Toda equations.

The Toda equations (5.24) are widely believed to have to same relation to W3-gravity

as Liouville theory has to ordinary two-dimensional gravity (see, e.g., [72]). It therefore

26Recall that below eq. (5.13), we found cfun = c/6. However, note that in the conventions implicit in our

calculations, the normalization factor cR for the representation R which yields the ordinary entanglement

entropy (i.e., the fundamental representation for SL(2,R) and the adjoint representation for SL(3,R)) is

given by the level k of the Chern-Simons theory. Further, the relation between c and k is different for

different gauge groups, i.e., for SL(2,R), c = 6k and for SL(3,R), c = 24k. Combined with our choice that

cfun = cadj here, this gives a precise explanation of the two different values found for cfun.
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appears that we have found the field equations of some higher spin theory of gravity on

de Sitter space. Since SL(3,R) Toda theory is intimately related to the W3-algebra, and

in fact has the W3-algebra as its symmetry, one suspects that there should be more direct

argument to explain the appearance of Toda equations here, and it would be interesting

to explore this further.

In defining ∆S
(2)
EE and ∆S

(3)
EE above, we only considered subtracting the vacuum en-

tanglement entropies. However, we could consider subtracting the result of other reference

states as in section 4.2. In particular, if we choose states with γ2 = (γ1)
2, these are all

states where the spin-three current vanishes and eq. (5.26) becomes

S
(2)
EE

∣∣∣
γ2=γ 2

1

= 2 cfun log
(γ1(u)− γ1(v))

2

2 ǫfun γ′1(u)γ
′
1(v)

. (5.30)

As above, this matches the right-moving contribution to the entanglement entropy in

eq. (4.10) with γ1(z) playing the role of the ‘holomorphic’ function f(z). Hence we could

carry out the same analysis in section 4.2 choosing any of these states as the reference

state, e.g., as in eq. (4.12). The results would be essentially the same, i.e., the conforma-

tion transformation in the CFT would produce a coordinate transformation on the moduli

space with u0 = γ1,0(u) and v0 = γ1,0(v).
27 Of course, 〈W (x+)〉 = 0 for all of these refer-

ence states. An interesting new direction to explore, however, would be to consider using a

general reference state from the class defined by eqs. (5.22) and (5.23). That is, a reference

state where γ1(z) and γ2(z) are completely independent functions and so the spin-three

current has a nonvanishing expectation value. This may well reveal some ‘higher spin’

structure in the geometry of the moduli space.

Let us mention once more that the results derived in the spin-three case are only valid

for large c and large Chern-Simons level k, and one expects these results to receive 1/c

corrections in the full quantum theory.

5.5 First law from Wilson loops

To conclude this discussion of higher-spin CFTs, we briefly describe the form of the ‘first

law’ in this formalism for a general SL(N,R)×SL(N,R) theory. Given the form of SR(P,Q)

in eq. (5.7), we can vary it by varying g, and with a bit of algebra, the general variation

becomes

δSR(P,Q) = cR

∫ P

Q
dz

〈µ+|g−1(Q)g(z)δ(g−1(z)∂g(z))g−1(z)g(P )|µ−〉
〈µ+|g−1(Q)g(P )|µ−〉 . (5.31)

However, since we have g−1∂g = Λ+ + U from eq. (5.3), the variation δ(g−1(z)∂g(z)) is

just δU . In other words,

δSR(P,Q) = cR

∫ P

Q
dz

〈µ+|g−1(Q)g(z)δUg−1(z)g(P )|µ−〉
〈µ+|g−1(Q)g(P )|µ−〉 . (5.32)

27Here, w = γ1,0(z) denotes the conformal transformation from the CFT vacuum in the flat space to the

new reference state.
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This indeed has the form of some sort of kernel integrated against the local perturbation

δU . The usual first law is obtained by perturbing global AdS3 background, which we get

by taking as background g−1∂g = Λ+, so g = exp(zΛ+). Then

δSR(P,Q) = cR

∫ P

Q
dz

〈µ+|e(z−Q)Λ+δUe(P−z)Λ+ |µ−〉
〈µ+|e(P−Q)Λ+ |µ−〉 . (5.33)

From this one can see that the various components of δU will be multiplied by (z −
Q)a(P − z)b/(P −Q)c for suitable powers a, b, c and with further work one can show that

a = b = c = h− 1 with h being the conformal dimension of the relevant component of δU .

This then is precisely the expression that appears in eq. (3.35) but we have not attempted

to determine the precise numerical coefficients which multiply each of the components of

δU in eq. (5.33) as function of the representation R. But in explicit examples, like the

spin-three ‘entanglement entropy’ (5.19), this expression can easily be evaluated explicitly

and can be used to verify that only the spin-three currents appear in the first law for

eq. (5.19), as required.

6 Dynamics and interactions: future challenges

As we have seen in the previous section, there exist examples where nonlinear and local

interactions in the space of causal diamonds occur naturally. This nonlinear dynamics was

found to describe scale dependence of entanglement entropy (and its spin-three generaliza-

tion) in states with general spin-two and spin-three excitations.

A very interesting question is whether this extends to higher dimensions (see also the

discussion section), and whether other degrees of freedom can be included, i.e., other fields

on the moduli space associated with our new observables (3.1). One might be tempted to

look for local field equations just as in the spin-two and spin-three example, however, even

in that case there was an issue with the apparent locality: to write local equations we had

to decompose entanglement entropy into left- and right-moving contributions and each of

which obeyed a local field equation on a single dS2. It is not possible to capture this in terms

of a single local field equation obeyed by the sum of the left- and right-moving contributions.

When moving to scalar primaries as in eq. (3.1), the situation becomes more compli-

cated, since for these scalars in d = 2, no simple separation in terms of left- and right-moving

modes exists, while scalars do obey the constraint (3.40). As is familiar from several dif-

ferent examples such as exceptional and doubled field theory (for reviews of the latter see,

e.g., [73–76]), constructing interacting theories for constrained fields can be quite difficult.

For example, it is in general not true that the product of two fields that obey the con-

straints still continues to satisfy them. Sometimes it is possible to modify the constraints

in perturbation theory, but then there is the potential issue that the theory becomes over-

constrained. Keeping the constraints unaltered, one may have to introduce explicit projec-

tion operators acting on products of fields, projecting the product back into the subspace

of fields which obey the constraints, thereby introducing nonlocalities into the theory.

While we have not been able to find a compelling systematic framework to incorporate

interactions, we believe this is an important open problem with possibly many new applica-
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tions, and as a prelude we describe below a preliminary attempt at including interactions,

which clearly demonstrates the sorts of issues one is running into.

6.1 Constraints

Even at the linearized level, there is already a challenge since we have identified a single

wave equation in the moduli space M(d)
♦

with the signature is (d, d), i.e., where there are d

timelike directions. Hence conventional techniques are unlikely to adequate to find physical

solutions for this equation. An alternative perspective is that functions on the moduli space

of the form in eq. (3.1) will only form a small subset of the solutions of eq. (3.8). Of course,

in section 3.7, we showed that in fact our wave equation was only one of two independent

equations in d = 2. The origin of these two equations can be traced to the structure of

the the conformal group, which factorizes as SO(2, 2) ≃ SL(2,R)× SL(2,R). Each of these

factors has an independent quadratic Casimir, which in turn produce two independent wave

equations on the moduli space, as shown in eq. (3.38). The sum of these equations (3.39)

matches the wave equation (3.8) which we constructed for general dimensions, while their

difference (3.40) can be regarded as a supplemental constraint.

Unfortunately, the conformal group is irreducible in higher dimensions and so the same

structure does not appear in general. However, it was proposed in [38], that one can identify

constraints by examining SO(2, 2) subgroups of the full SO(2, d) group. The reasoning will

become apparent in section 6.2, where we consider the left- and right-moving Casimirs

acting on the holographic version of our observables given in eq. (3.24). In either case, the

action of the Casimir acting on Qholo(O) will produce the AdS d’Alembertian acting on

the bulk scalar field, using eqs. (6.17) and (6.20), and hence their difference vanishes. This

calculation is then easily lifted higher dimensions by considering AdS3 submanifolds within

the full AdSd+1 bulk geometry. The form and action remains unchanged for the quadratic

Casimirs of the left- and right-moving SL(2,R) factors in the SO(2, 2) group acting on the

AdS3 slice and hence their difference again vanishes when acting on eq. (3.24). Hence in

this holographic framework, one is able to identify additional operators which annihilate

the nonlocal observables (3.24). We observe that implicitly a key ingredient here was the

intertwining property (3.26) which carries the action of the conformal generators on the

boundary observable to the scalar field appearing inside the bulk integral. It then turns

out that the difference of the ‘Casimirs’ is trivial when acting on the scalar.

The latter observation allows us to extend this construction of constraints to the non-

local observables (3.1) for general CFTs. Here again the conformal generators satisfy an

intertwining property (3.4). Hence the idea is to find (combinations of) generators which

are trivial in the representation acting on a scalar primary — see eq. (B.2). Motivated by

the holographic discussion, we can identify a large number of such trivial operators, which

can be elegantly written in pure CFT language as

Γabcd |O(x)〉 ≡ J[abJcd] |O(x)〉 = 0 , (6.1)

where Jab are the generators of SO(2, d) defined in appendix B.1 (with indices running

over embedding space coordinates a, b, c, d = −, 0, . . . , d) and O(x) is an arbitrary scalar

– 46 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
2

primary. In fact, eq. (6.1) identifies a family of
(
d+2
4

)
= (d+2)(d3−d)/24 ‘trivial’ operators,

which then outnumbers the number of independent SO(2, 2) subgroups. One might think

of this extended family of constraints as being associated with a SO(k, 4 − k) subgroup,

where k corresponds to the number of timelike directions in the four-plane spanned by the

a, b, c, d directions in the embedding space. Clearly, this set of operators is closed under

conformal transformations, i.e., Γabcd forms an antisymmetric tensor representation of the

conformal group.

The operators identified with SO(2, 2) subgroups then emerged from the four-planes

spanned by X−, Xµ, Xν , Xd, where µ, ν = 0, · · · , d− 1 correspond to the spacetime direc-

tions of the CFT. The corresponding operators can be written in terms of the conformal

generators as:

12 Γ−µνd ≡ Σµν = 2{Mµν , D} − {Pµ, Qν}+ {Qµ, Pν} . (6.2)

Again acting on any scalar primary, we have Σµν |O(x)〉 = 0. That is, substituting for

the generators in eq. (6.2) with the expressions in eq. (B.2), one finds that the above

combination of generators simply vanish, i.e., Σµν = 0. As we will see below, when we

substitute the representation of the generators acting on functions on the moduli space,

these operators are nontrivial and hence Σµν Q(O) = 0 becomes an nontrivial constraint

on the nonlocal observables.

With k = 1, we can consider the four-planes spanned by X− ±Xd, Xµ, Xν , Xρ in the

embedding space (in the notation of eq. (2.4)), for which we find constraints of the form

Γµνρ− + Γµνρd = M[µνPρ] and Γµνρ− − Γµνρd = M[µνQρ] . (6.3)

One can readily verify that these operators vanish identically on scalar primaries, using the

explicit representation given in (B.2). The final case (i.e., k = 0) comes from considering

a four-plane spanned by Xµ, Xν , Xρ, Xσ, for which we obtain

Γµνρσ = M[µνMρσ] . (6.4)

Again, given the expressions (6.2)–(6.4), the identities Γabcd|O(x)〉 = 0 may not look terri-

bly familiar, however, they follow from conformal invariance and one can readily confirm

that they hold for any scalar primary in any CFT by substituting for the conformal gen-

erators using eq. (B.2).

Having identified the family (6.1) of trivial operators acting on scalar primaries, we

again make use of the intertwining property (3.4) satisfied by the conformal generators to

write

Γabcd(x, y)Q(O;x, y) = CO

∫

D(x,y)
ddξ

(
(y − ξ)2(ξ − x)2

−(y − x)2

) 1
2
(∆O−d)

〈Γabcd(ξ)O(ξ)〉 = 0 .

(6.5)

Hence eq. (6.5) identifies a nontrivial set of constraints which any physical solution of

the wave equation (3.8) must satisfy. That is, any solution corresponding to the ‘smeared’

expectation value of a scalar primary, as in eq. (3.1), must satisfy the additional constraints:

Γabcd(x, y) f(x, y) = 0 . (6.6)
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Acting on functions on the moduli space, the operators above take the form

Γabcd(x, y) = (J[ab(x) + J[ab(y)) (Jcd](x) + Jcd](y))

= J[ab(x)Jcd](y) + J[ab(y)Jcd](x) .
(6.7)

where Jab(x) and Jab(y) are given by the differential operators in eq. (B.2) with ∆O = 0.

To illustrate this, we show the explicit form of eq. (6.2) when acting on a function f(x, y)

on the moduli space M(d)
♦

:

1

2
Σµν(x, y) f(x, y) = (x2 − y2)

(
∂

∂xν
∂

∂yµ
− ∂

∂xµ
∂

∂yν

)
f(x, y)

−2

(
(xµ − yµ)

∂

∂xν
− (xν − yν)

∂

∂xµ

)(
yα

∂

∂yα

)
f(x, y) (6.8)

+2

(
(xµ − yµ)

∂

∂yν
− (xν − yν)

∂

∂yµ

)(
xα

∂

∂xα

)
f(x, y) .

It is also interesting to consider this constraint in the center of mass coordinates of

eq. (2.20), with which the same operator takes the form

1

2
Σµν(c, ℓ) f(c, ℓ) = 4

(
(c · ℓ) δα[µ δ

β
ν] + ℓ[µ δ

α
ν] c

β − ℓ[µ δ
β
ν] c

α
) ∂

∂cα
∂

∂ℓβ
f(c, ℓ)

+ 4
(
ℓ[µ δ

α
ν] ℓ

β
)( ∂

∂cα
∂

∂cβ
− ∂

∂ℓα
∂

∂ℓβ

)
f(c, ℓ) .

(6.9)

As a consistency check, we note that in two dimensions there is only one non-trivial

constraint and that it reduces to the spinless constraint equation, i.e., eq. (3.40) with h = h̄:

for d = 2 : Σ01(u, v, ū, v̄) = 4(u− v)2∂u∂v − 4(ū− v̄)2∂ū∂v̄

= 4L2
(
∇2

dS2 −∇2
dS2

)
,

(6.10)

where we are using the null coordinates defined in eq. (2.17).

As a further confirmation of these conclussions, consider inserting a point-like source for

the operator O at a point ξµ in R
1,d−1, which is timelike separated from the causal diamond

♦ = (xµ, yµ), i.e., timelike separated from both xµ and yµ. This source generates an expec-

tation value 〈O〉 inside the causal diamond and it follows, for example, from the shadow field

representation (cf., eq. (3.5)) that in this case the xµ and yµ dependencies are captured by

Q(O;x, y) ∼ 〈1(x) 1(y)O(ξ)〉 ∼
( −(x− y)2

(x− ξ)2(ξ − y)2

)∆O/2

(6.11)

— see also eq. (C.18) for the two-dimensional version of this formula. Now one can verify

that Σµν(x, y) indeed yields zero when acting on this expression, for all values of ∆O and

all choices of ξµ.

As commented above, eq. (6.6) produces (d + 2)(d3 − d)/24 additional constraints in

higher dimensional CFTs. However, not all of these constraint equations are independent.

In particular, there are relations which show that the Σµν constraints are sufficient to
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ensure all constraints of the form (6.6) will be satisfied. One can show this by using simple

but tedious algebra to express all the combinations in eq. (6.1) in terms of Σµν as follows:

Γµνρd(x, y) =
1

2(x2 − y2)

(
(y2 − 1)x[µ − (x2 − 1)y[µ

)
Σνρ](x, y) ,

Γµνρ−(x, y) =
1

2(x2 − y2)

(
(y2 + 1)x[µ − (x2 + 1)y[µ

)
Σνρ](x, y) ,

Γµνρσ(x, y) =
4

x2 − y2
x[µ yν Σρσ](x, y) ,

(6.12)

where these relations are to be understood to hold with the Γabcd(x, y) expressed as in

eq. (6.7), i.e., the operators are represented as acting on functions f(x, y) on the moduli

space. Therefore the Σµν alone form a sufficient set of constraints. Hence we expect that

these together with the field equation and initial data on a codimension-d surface determine

the value of the physical solutions (corresponding to the nonlocal observables) everywhere

on the space of causal diamonds.

However, let us observe that the number of constraints is still larger than what one

might have näıvely expected: Σµν has d(d − 1)/2 components,28 while we would a priori

expect d − 1 independent constraint equations. That is, we might expect that the total

number of equations, i.e., the wave equation and the constraints combined, would equal

d, the number of timelike directions. Hence, we conjecture that further analysis will show

that the sufficient set of constraints can be further reduced to Σ0i, which would give the

desired number of equations.

It is relatively straightforward to establish that there are no algebraic relations amongst

the Σµν , i.e., relations of a form similar to those given in eq. (6.12).29 However, one can

still consider differential relations between the constraints. For example, one can show that

J[ab(x, y) Γcdef ](x, y) f(x, y) = 0 (6.13)

for all sets of six indices. Note here we are saying that these combinations of operators

vanish when acting on any function on the moduli space.30 Hence eq. (6.13) yields
(
d+2
6

)

relations amongst the Γabcd, and implicitly then, amongst the Σµν through eq. (6.12). For

example, with d = 4, eq. (6.13) provides 1 additional relation, whereas our discussion above

suggested we should be able to find 3 extra relations. We have preliminary results on a set

of further relations between the Σµν operators, which may allow us to reduce them to a

set of (d− 1) independent constraints. However, the full structure is intricate and we hope

to report on these issues elsewhere — see also further discussion in section 7.

Notice that there is an interesting similarity between the constraints that appear here

and those that feature in doubled and exceptional field theories, e.g., [73–76], in that both

28We note that [38] also found d(d− 1)/2 constraint equations, however, their constraints have a slightly

different form from that given in eq. (6.8), e.g., their constraints would be independent of the cµ coordinates

which appear in eq. (6.9).
29One approach is to consider these operators on a specific submanifold of the moduli space where their

explicit form simplifies, e.g., the submanifold ℓµ = Rδµ0 .
30Substituting eq. (6.7), as well as Jab(x, y) = Jab(x) + Jab(y), one finds that the result contains either

J[ab(x) Jcd](x) = 0 or the analogous expression for y.
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are expressed in terms of a set of second order differential operators. It would be interesting

to explore whether the techniques developed in the context of these theories could be of

relevance for understanding dynamics on the moduli space of causal diamonds as well. We

expect that there will be further relations, however, we defer a more detailed analysis of

the constraints, which is presumably essential in order to properly formulate interactions,

to future work.

6.2 Holographic dynamics in AdS3

To illustrate some of issues one encounters while attempting to generalize Q(O;x, y) to

nonlinear order, we consider possible nonlinear generalisation of the decoupled dS2×dS2
wave equations, eqs. (3.38), for operators which are not conserved currents. We will seek

guidance in holography, that is, we want to define holographically Qholo(O;x, y) by in-

sisting that it obeys a local wave equation on the space of causal diamonds even if the

corresponding bulk probe scalar φ interacts nonlinearly in AdS3.

We assume that the equation of motion for the scalar φ reads

∇2
AdS3φ = V ′(φ) . (6.14)

Eventually we will specialize to

V ′(φ) = m2
AdSφ+ ζφ2 (6.15)

and we will work perturbatively in the bulk coupling constant ζ. We use the standard

holographic result

m2
AdS R

2
AdS = 4h(h− 1), (6.16)

with h̄ = h = 1
2∆O.

Let us briefly recapitulate the group theory behind dynamics on the space M(d)
♦

.

As explained in section 3.4, the second Casimir has a natural action on the bulk charge

Qholo(O;x, y) defined as an integral over the bulk geodesic γ(x, y):

C2Qholo(O;x, y) ≡ Cij(Li(x) + Li(y))(Lj(x) + Lj(y))

[
Cblk

8πGN

∫

γ(x,y)
dκφ

]

=
Cblk

8πGN

∫

γ(x,y)
dκ C2φ ,

(6.17)

where we now work with the explicit representation of C2 on AdS3 of the form

C2 φ ≡ −4

[
L2
0 −

1

2
(L1L−1 + L−1L1)

]
φ . (6.18)

with AdS3 isometry generators

L−1 = ∂ξ, L0 = −1

2
z ∂z − ξ ∂ξ and L1 = z ξ ∂z + ξ2 ∂ξ − z2 ∂ξ̄ , (6.19)

where ξ = x− t and ξ̄ = x+ t. This immediately yields

C2 φ = −R2
AdS ∇2

AdS3 φ . (6.20)
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Note that we used ‘right-moving’ generators Ln above. One can similarly define ‘left-

moving generators’ L̄n by exchanging ξ and ξ̄ in their definition, which would lead to the

same Laplacian on AdS3. Using these results, eq. (6.17) reads

C2Qholo(O;x, y) =
Cblk

8πGN

∫

γ(x,y)
dκ
(
−R2

AdS ∇2
AdS3 φ

)
. (6.21)

Hence it is clear that the dynamics of the AdS3 scalar field φ is intimately linked to the

dynamics of Qholo(O;x, y). If φ satisfies a linear wave equation, so will Qholo(O;x, y).

However, if we assume that φ interacts nonlinearly as in (6.15), we find the following

identity on the moduli space M(d)
♦

:

∇2
♦Qholo(O;x, y) = −4h(h− 1)

L2
Qholo(O;x, y)− Cblk ζ R

2
AdS

8πGN L2

∫

γ(x,y)
dκφ2 , (6.22)

where we used ∇2
♦ = 1

L2 C2 on the space causal diamonds. It is clear that the last term in

this expression,
∫
γ dκφ

2 is not a local functional of Qholo(O;x, y). One may for example

notice that while local functionals of Qholo(O;x, y) will no longer obey the constraints, the

additional quadratic term in (6.22) still does because it is the integral of a scalar quantity

over a minimal surface. As a result, the equation of motion in the space of causal diamonds

becomes nonlocal. In the next two subsections we will examine possible remedies. First,

we will study whether there are any quadratic interaction terms that can be consistently

added to eqs. (3.38). Subsequently, we will look for natural quadratic modifications of

the holographic definition of Qholo(O;x, y) given by eq. (3.24) which will induce simple

nonlinear dynamics in dS2×dS2.

6.3 Allowed quadratic local interaction terms on the space of causal diamonds

The simplest possible solution to the nonlocality encountered in eq. (6.22) would be a

nonlinear modification of the dS wave equations. We will now give an argument that

there is no straightforward and consistent nonlinear extension of the field equations at the

quadratic 2-derivative level.

To quadratic order in Q(O;x, y), we can try to supplement eqs. (3.38) by the following

general set of local (i.e. at most 2-derivative) interaction terms

(
∇2

dS2 −m2
dS2

)
Q(O) = λ

{
α1Q(O)2 + α2 (∇dS2Q(O))2 + α3

(
∇̄dS2

Q(O)
)2}

,

(
∇̄2

dS2
− m̄2

dS2

)
Q(O) = λ

{
ᾱ1Q(O)2 + ᾱ2

(
∇̄dS2

Q(O)
)2

+ ᾱ3 (∇dS2Q(O))2
}

,

(6.23)

where αi and αj are numbers independent of λ. The solutions to these equations will

also have an expansion in λ of the form Q(O) = Q(O)(0) + λQ(O)(1) + O(λ2). If the

equations (6.23) are consistent, we should be able to consistently solve for Q(O)(1) given

an initial solution Q(O)(0) of the free wave equation. A trivial set of consistent solutions

of (6.23) is of the form α2 = ᾱ2 = 2a, α1 = −am2
dS2

, ᾱ1 = −am̄2
dS2

, for some constant a.
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For these values one finds the solution Q(O)(1) = a(Q(O)(0))2, but this can be removed

using a field redefinition

Q(O) → Q(O) + λ aQ(O)2. (6.24)

To avoid such trivial solutions of (6.23) we can for example choose

ᾱ2 = −α2, (6.25)

but for simplicity we keep our notation for α1 and α2 unaffected. To examine whether (6.23)

is an consistent set of equations for Q(O)(1), we notice that a necessary condition is the

“integrability” condition

[∇2
dS2 −m2

dS2 , ∇̄
2
dS2

− m̄2
dS2

]Q(O)(1) = 0. (6.26)

Expanding the commutator and using the field equations (6.23) converts this into

0 = 2(m̄2
dS2

α1 −m2
dS2ᾱ1)(Q(O)(0))2

+ 2(m̄2
dS2

α2 − ᾱ1)(∇dS2Q(O)(0))2 + 2(m2
dS2α2 + α1)(∇̄dS2

Q(O)(0))2

+ 4α2(∇dS2∇̄dS2
Q(O)(0))2+α3∇̄2

dS2
(∇̄dS2

Q(O)(0))2−ᾱ3∇2
dS2(∇dS2Q(O)(0))2.

(6.27)

A consistent, nontrivial interactive generalization of eqs. (3.38) to quadratic terms exists if

and only if the above expression vanishes for completely generic Q(O)(0) of the form given

by eq. (3.34) with some nonzero αi or ᾱj .

To test it, we consider several sample forms31 of 〈O〉 and evaluate the integrability

condition using Q(O)(0) obtained from eq. (3.34). Perhaps unsurprisingly, we need to make

all αi and ᾱj vanish in order to satisfy the integrability condition (6.27) for generic 〈O〉. As a
result, the only consistent 2-derivative set of local equations for Q(O) up to quadratic order

in the amplitude are the free wave equations (3.38) or the trivial modifications obtained

from them using the field redefinition (6.24).

6.4 Quadratic modifications of the holographic definition of Q(O)

Let us now sketch an attempt to extend our definition of Qholo(O;x, y) beyond the linearized

approximation, and in particular let us specify to the case of quadratic interactions as in

eq. (6.15) and work perturbatively in the coupling ζ. To this end, we start with the most

general ansatz for a charge Qholo(O;x, y) which is quadratic in the bulk field φ, contains

two derivatives acting on φ and a double integral over the bulk geodesic. Since points in

the space of causal diamonds are represented by minimal surfaces, having a double integral

over the same bulk surface has a chance of corresponding to local interactions in the space

of causal diamonds. We will show that these requirements are insufficient.

31Note that we do not insist on 〈O〉 being the expectation value in an actual CFT state. However,

quite remarkably, for 〈O〉 coming from insertion(s) of O at a point outside but causally affecting the causal

diamond, one can fulfill the integrability condition by fixing only one of the interaction terms leaving the rest

arbitrary. Precisely in these cases the expectation value of 〈O〉, but also Qholo(O;x, y) are holomorphically

factorized, which was a crucial feature in the derivation of the Liouville equation for entanglement entropy.

One might speculate that holomorphic factorization will be an important ingredient in understanding the

role of interactions in two dimensions.
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Before writing the ansatz, we need a convenient parametrization of the geodesic γ. On

a constant time slice (t = 0) this is a semi-circle of the form

(x− x0)
2 + z2 = R2 . (6.28)

The AdS3 isometry generators are then given by Ln and L̄n, cf., eq. (6.19). We are going

to substitute

x = −r tanhκ , z =
r

coshκ
, (6.29)

so that r = R describes a geodesic centered at x = x0, and the latter is affinely parametrized

by κ ∈ [−∞,∞]. The AdS3 metric in this coordinate system is

ds2 = R2
AdS

[
dκ2 +

cosh2 κ

r2
(dr2 − dt2)

]
. (6.30)

In these variables, the symmetry generators (6.19) read

L−1 =
1

2
∂t −

1

2
tanhκ ∂r −

1

2r
∂κ , (6.31)

L0 = −1

2
(t− r tanhκ)∂t −

1

2
(r − t tanhκ)∂r +

t

2r
∂κ , (6.32)

L1 =
1

2

(
r2 + t2 − 2tr tanhκ

)
∂t −

1

2

(
(r2 + t2) tanhκ− 2tr

)
∂r +

r2 − t2

2r
∂κ , (6.33)

and the barred generators are obtained by sending t → −t. The AdS3 wave equation now

reads

R2
AdS ∇2

AdS3
φ ≡

[
∂2
κ + 2 tanhκ ∂κ +

r2

sinh2κ
(∂2

r − ∂2
t )

]
φ = m2

AdS φ+ ζ φ2 . (6.34)

The last observation needed before we can write our ansatz for the nonlinear

Qholo(O;x, y) is that the generators simplify when evaluated on the geodesic t = 0 and

r = R:

L−1

∣∣
γ
=

1

2
(∂t − tanhκ ∂r)−

1

2R
∂κ , L1

∣∣
γ
=

R2

2
(∂t − tanhκ ∂r) +

R

2
∂κ ,

L0

∣∣
γ
=

R

2
(tanhκ ∂t − ∂r) .

(6.35)

From this it is clear that, while the combination L−|γ ≡
(
RL−1 −R−1L1

)
γ

= −∂κ
parametrizes derivatives along the geodesic, there are two independent derivative oper-

ators, which act as derivatives orthonormal to the geodesic: on the one hand, we have

simply L0|γ , on the other hand L+|γ ≡
(
RL−1 +R−1L1

)
γ
= R(∂t − tanhκ ∂r).

We can now write the general two-derivative ansatz for a quadratic charge Qholo(O;x, y)

as the linearized solution known from (3.24) plus the following double integral:

Qholo(O;x, y) =
Cblk

8πGN

∫

γ(x,y)
dκφ+

∫

γ(x,y)
dκ

∫

γ(x,y)
dκ′
{
K0 φφ′ +K1 (L

+φ)(L+φ′)

+K2 (L
+φ)(L0φ

′) +K3 (L0φ)(L
+φ′) +K4 (L0φ)(L0φ

′) (6.36)

+K5 φ(L0L0φ
′)+K6 φ(L0L

+φ′)+K7 φ(L
+L+φ′)+K8 φ(L0L

−φ′)

}
,
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where Ki ≡ Ki(γ(κ), γ(κ
′)) is a bilocal kernel along the two integrals over the geodesic,

and we also abbreviate φ ≡ φ(γ(κ)) and φ′ ≡ φ(γ(κ′)). The idea behind this ansatz is that

it makes manifest some of the desired symmetry properties. At the same time the ansatz is

completely general (within our assumptions) for the following reason: we have distributed

the two orthonormal transverse derivatives over the φ’s in all possible ways. Further, we

have not used any L− generators as ‘outermost’ derivatives because they would reduce to

pure κ-derivatives along the geodesic, as noted above — but ∂κ can always be integrated by

parts and absorbed into the definition of the kernel Ki. Finally, we used the equations of

motion (see below) to remove some other combinations (such as φL0L0φ
′) that one could

have written in (6.36). We note that in a time-independent setup, one can show that the

kernels Ki≥5 provide nothing new and can be absorbed into Ki≤4.

Giving the ansatz (6.36), the goal is to determine the kernels Ki such that the quantity

thus defined satisfies a nonlinear wave equation of the form

∇2
♦Qholo(O;x, y) = m2

O Qholo(O;x, y) + ζO Qholo(O;x, y)2 , (6.37)

where we expect as before m2
OL

2 = −m2
AdSR

2
AdS and an analogous identity relating ζO to

ζ. To evaluate the left hand side of (6.37) explicitly, we write32

∇2
♦ =

1

L2
C2 =

2

L2

[(
−L2

0 +
1

4
((L+)2 − (L−)2)

)
+

(
−L̄2

0 +
1

4
((L̄+)2 − (L̄−)2)

)]
. (6.38)

The round brackets make it clear that the full Casimir written above factorizes into a holo-

morphic and an anti-holomorphic part. If we write Ln and L̄n in terms of AdS3 derivative

operators, then the two parts act as the same operator (i.e., each of them is proportional to

the AdS3 Klein-Gordon operator). For our present purposes we can therefore replace all L̄n

in (6.38) by Ln. The operator (6.38) is then written in a form that makes it easy to act on

the ansatz (6.36) and manipulate the resulting expression purely by using group theoretic

commutators between the Ln, and the equations of motion of φ which can now be stated as

∇2
AdS3

φ ≡ 1

R2
AdS

[
4L2

0 − ((L+)2 − (L−)2)
]
φ = m2

AdS φ+ ζ φ2 . (6.39)

Commuting the Ln through the ansatz and demanding a result of the form of the right

hand side of eq. (6.37) yields a set of differential equations for the kernels Ki. We find

that these differential equations have no non-trivial solution. An ansatz of the form (6.36)

is therefore not consistent with the nonlinear dynamics described by (6.37).

It will be a very interesting future problem to investigate this issue more closely. What

nonlinear form of Qholo(O;x, y) does satisfy nonlinear dynamical equations on the space of

causal diamonds? One can start by including higher derivative terms in the ansatz (6.36).

One quickly finds that only an infinite number of derivatives leads to a consistent set of

differential equations for the kernels. The resulting solution is hence highly nonlocal. We

believe that all these facts might be a hint that a nonlocal completion of the generalized first

law might suffer from similar nonlocal behavior as does the general modular Hamiltonian in

32See appendix B for details.
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the familiar case of entanglement entropy. We hope that the space of causal diamonds might

provide a useful new perspective for reorganizing (or perhaps resumming) such objects in

an illuminating way.

Another approach that would be interesting to explore in this context involves integrals

not just over bulk minimal surfaces, but over codimension one spatial slices connecting the

minimal surface B̃ to the boundary interval B (cf., figure 8). This approach has recently

been taken in [77] to compute perturbations of entanglement entropy at second order in

perturbation theory around the vacuum state. It would be interesting to use the second

order results of [77] as a starting point to learn about the general structure of higher order

interactions also for scalar primaries: if there is interesting dynamics on the space of causal

diamonds then the second order expansion of entanglement entropy should tell us about

the three-point function between δSEE and two other operators Q(O;x, y), and higher

order terms about higher-point functions involving at least one δSEE. If δSEE somehow

couples universally to the other degrees of freedom Q(O;x, y), just like gravity couples

universally to all fields in AdS, this should allow us to completely construct essentially

the full interacting theory on the space of causal diamonds, and, by working backwards,

also tell us what the right nonlinear extension of Q(O;x, y) should be. It is tempting to

speculate that the integrals over spatial slices which appear in the second order expansion of

entanglement entropy need to be upgraded to integrals over the entire bulk causal wedge

to describe the nonlinear extension of Q(O;x, y). We leave the investigation of these

interesting possibilities for future work.

7 Discussion

With the goal of extending the ‘holographic’ structure presented in [35] to a dynamical

framework, in this paper, we extended our discussion to consider all spherical regions

throughout the d-dimensional spacetime of the CFT, rather than focusing on those in a

fixed time slice. In this context, it is also useful to think in terms of the causal diamonds as-

sociated with each of the spheres. Then one readily shows that the moduli space of all causal

diamonds is described the coset geometry M(d)
♦

≡ SO(2, d)/[SO(1, d−1)×SO(1, 1)], which

investigated in some detail in section 2. Motivated by the first law of entanglement (1.3),

we constructed families of nonlocal observables in CFT, which involved integrating the ex-

pectation value of a standard local primary operator over a causal diamond, as in eqs. (3.1)

and (3.9). One of the nice features of these observables was that they satisfy a simple two-

derivative wave equations, (3.8) and (3.12), on the moduli space M(d)
♦

. In sections 4 and 5,

we showed that in two-dimensional CFTs, these linear wave equations could be extended to

nonlinear equations with local interactions, at least for particular observables evaluated in

a certain universal class of states. Hence these CFT observables can be described in terms

of local dynamics on the moduli space of causal diamonds. Another nice feature of our

new observables is that for holographic CFTs, they have a simple bulk description (3.24)

involving a integral of the dual field over the extremal bulk surface reaching the asymptotic

AdS on the sphere in the boundary theory. In many earlier works, e.g., [16–19, 36, 78],

these extremal Ryu-Takayanagi surfaces were found to serve as useful probes of the bulk
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geometry. Then here, we are beginning to see that they also provide interesting probes of

the configuration of the matter fields in the bulk. While we have presented a number of

compelling results in this paper, the program of describing general CFTs in terms of non-

local observables on the moduli space of causal diamonds, and also formulating holography

in this framework for holographic CFTs, still faces a number of technical challenges.

Two features of the moduli space, which seem rather surprising at first, are that this

new space is 2d-dimensional and has signature (d, d). Of course, recognizing the space of

causal diamonds and the space of timelike separated pairs of points makes clear that the

dimension of the moduli space must be 2d, i.e., twice the number of coordinates needed

to specify a single point. However, this represents quite a departure from the framework

studied in [35], which had a character more akin to standard holography. In particular, for

spheres on a fixed time slice, there was a single ‘holographic’ direction associated with the

size of the spheres.

Too many times. On the other hand, coming to grips with the (d, d) signature of the

moduli space presents a greater challenge. In particular, as noted in section 6.1, the wave

equations, (3.8) and (3.12), that we have identified are quite unconventional since they

involve d timelike directions, i.e., the ℓµ directions in eq. (2.21). A related comment would

be that a natural set of initial conditions would come from the value of the observables

on infinitesimal causal diamonds, i.e., from the submanifold where ℓµ → 0. From the

discussion of section 2.2, i.e., eq. (2.24), this submanifold lies on the time infinity of the

moduli space, however, by definition, it is a codimension d surface. Hence it seems clear

that the wave equation by itself is insufficient to produce full solution. Rather, it must be

supplemented by additional constraint equations, as discussed in part in section 6.1.

The case of d = 2 is special and in fact two independent (conventional) wave equations

emerged very naturally, as shown in Eq (3.38). The sum of these equations (3.39) matches

the wave equation identified for general dimensions, and hence their difference (3.40) can

be regarded as a supplemental constraint. These two equations (3.38) appeared because

the moduli space factorized into the product of two de Sitter geometries for d = 2 CFTs,

as discussed below eq. (2.18). However, an alternative perspective is that, as shown

in section 3.1, the wave equation results from acting on the new observables with the

quadratic Casimir of the conformal group. In this regard, d = 2 is special because the

conformal group factorizes as can be seen to SO(2, 2) ≃ SL(2,R) × SL(2,R) and hence

each factor produces an independent quadratic Casimir. The sum of the two Casimirs

yields that for the full group and hence generates the expected wave equation, while their

difference yields the constraint equation (3.40).

In higher dimensions, the conformal group is irreducible and however, as proposed

in [38], one can still focus on SO(2, 2) subgroups (as well as other subgroups) of the full

SO(2, d) group. This approach gives rise to an elaborate system of constraints (6.2)–(6.4),

as discussed in section 6.1. However as discussed there, there are various (algebraic and dif-

ferential) relations amongst the Γabcd(x, y) operators constructed there, e.g., see eqs. (6.12)

and (6.13). While we were unable to prove it, it seems that a natural conjecture is that the

Σ0i form a sufficient set of constraints to identify the physical solutions of the wave equa-
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tion (3.8). It is interesting to note then that the operators appearing in these constraints

are second order differential operators in the timelike directions on the moduli space, i.e.,

ℓµ. This becomes clearer if we consider eq. (6.9) on the submanifold where ℓµ = Rδµ0 :

1

2
Σ0i(c, ℓ) f(c, ℓ) = 2R2

(
∂

∂ℓ0
∂

∂ℓi
− ∂

∂c0
∂

∂ci

)
f(c, ℓ)

+ 2R

(
ck

∂

∂ck
∂

∂ℓi
− ck

∂

∂ℓk
∂

∂ci

)
f(c, ℓ) ,

(7.1)

where k is only summed over k = 1, · · · , d− 1. For comparison purposes, we also consider

1

2
Σij(c, ℓ) f(c, ℓ) = −2Rc0

(
∂

∂ci
∂

∂ℓj
− ∂

∂cj
∂

∂ℓi

)
f(c, ℓ) . (7.2)

Here we see these latter constraints are only first order in ‘time’ derivatives.

While the appropriate initial value problem is not entirely clear, our proposal above

was that initial data would be specified on the codimension d submanifold where ℓµ → 0.

Then, combining the constraints Σ0i(x, y) f(x, y) = 0 with eq. (3.8), we have d second-

order wave equations which would propagate the physical solutions out across the moduli

space.33 In this context, we can regard the constraints Σij(x, y) f(x, y) = 0 as imposing

constraints on the initial data, i.e., the values of f and its first ‘time’ derivatives on the

codimension d initial value surface. Further, the additional constraints discussed towards

the end of section 6.1 would verify that the Σij constraints are consistent with the propa-

gation produced by the Σ0i equations. This intriguing structure is then reminiscent of the

constraint equations appearing in gauge theories or gravity and it may be hinting that there

is a hidden gauge symmetry underlying the present equations. However, the full structure

of the constraints and the associated initial value problem is intricate and remains to be

understood. We hope to return to these issues in future work.

Let us note in this context that one might anticipate some simplifications when we

restrict attention to stationary configurations. In particular, it seems that in such a case,

we would only need to consider spherical domains on a fixed time slice. The moduli

space of such balls34 again reduces the d-dimensional de Sitter geometry studied in [35],

as discussed in section 2. Hence one may expect that the problem reduces to solving the

standard Lorentzian wave equation on this geometry. However, it turns out that when

evaluated on a stationary configuration, our nonlocal observables (3.1) do not satisfy the

näıve wave equation on the dSd space. In the case of holographic CFTs, there is a simple

intuition for this fact: stationary bulk solutions do also not obey the Euclidean AdSd

equations of motion. That is, performing the time integral in the first law with stationary

sources yields a stationary kernel which is not appropriate for a free wave propagation on

Euclidean AdSd. It would be interesting to fully investigate this in a more general context.

33Note that the distinction between different types of constraints, e.g., as in eqs. (7.1) and (7.2), should

be done covariantly with the projection operators: P
‖
µν = ℓµℓν/ℓ

2 and P⊥
µν = ηµν − P

‖
µν . That is the two

classes of constraints would be replaced by Σ0i → P
‖σ
µ P⊥ρ

ν Σσρ and Σij → P⊥σ
µ P⊥ρ

ν Σσρ. This covariant

description reinforces the idea that all d(d− 1)/2 components of Σµν play a role in describing the physical

observables on the moduli space.
34Equivalently we can consider the space of maximally symmetric minimal surfaces of codimension-one

in Euclidean AdSd.
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Time evolution. One of our motivations here was to move extend the construction

of [35], which focused on fixed time slices, to a new framework which could describe the

time dynamics of the CFT. Hence we must observe that describing the time evolution of

the CFT remains to be understood in the current framework. As discussed in section 2.2,

according to the metric (2.21), the displacements dcµ of the centre of the causal diamond

are all spacelike while the displacements dℓµ deforming the causal diamond are all timelike.

But in particular then, translating the causal diamonds in time corresponds to a spacelike

motion on the moduli space!

This ‘unusual’ feature becomes readily evident in eq. (2.22), however, we can gain some

insight into the time evolution as follows: choose a fixed time foliation of the original flat

spacetime and consider spheres restricted to these time slices. Following the discussion

of section 2.1, this amounts to choosing the coordinates for the tip and the tail of the

corresponding causal diamonds as x0 = t+R, y0 = t−R and ~x = ~y. With this restriction,

the metric (2.14) becomes

ds2dSd+1
=

L2

R2

(
−dR2 + dt2 + d~x2

)
. (7.3)

Hence we have identified a submanifold of the full coset with the geometry of (d + 1)-

dimensional de Sitter space.35 However, this submanifold clearly exposes the somewhat

surprising feature noted above, namely, the sphere radius R plays the role of time while

the CFT time t appears as a space-like coordinate.

Hence this key issue remains an open question for this new moduli space approach,

i.e., how to construct a natural description of the real-time dynamics of the underlying

CFT using this framework.

Kähler-like structure. In a two-dimensional CFT, we saw that right- and left-moving

contributions (4.10) to the entanglement entropy had an interesting interpretation as con-

formal factors for the two de-Sitter factors of the moduli space in eq. (4.20). With this

interpretation the Liouville equations (4.11) were equivalent to demanding a positive con-

stant curvature for the conformally rescaled de-Sitter metrics. One problem with this

interpretation, however, is that the sum SEE = SR(f) + SL(f̄) itself does not appear in the

geometry and we need to able to split it into right- and left-moving components to write

eq. (4.20). As a consequence, it is not easy to generalize this structure to higher dimensions.

Interestingly, it is possible to identify a different mode in the metric on the moduli

space such that demanding constant scalar curvature gives rise to a field equation which

is identical to the field equation obeyed by δSEE, suggesting a close relation between the

two. To write down this mode, we first point out that the metric on the space of causal

diamonds (2.14) can be obtained from the following Kähler-like structure:

V = 2L2 log
[
−(x− y)2

]
(7.4)

35One might note that the above de Sitter geometry is a somewhat unusual choice in the context of the

present paper because it is not a totally geodesic submanifold. This can be seen since we can regard the

new submanifold (7.3) as a coset itself: dSd+1 = SO(1, d+1)/SO(1, d). However, the SO(1, d+1) isometries

of the submanifold do not form a subgroup of SO(2, d), the isometries of the full coset. As a result, as is

easily verified, our nonlocal operators do not satisfy a simple wave equation on the dSd+1 geometry.
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via

hµν =
∂2

∂xµ∂yν
V . (7.5)

This is reminiscent of the findings of refs. [36, 79], where the role of the potential V was

played by the entanglement entropy in a two-dimensional CFT. It is clear though that in

higher dimensions this direct association is no longer true, albeit one might still try to

express eq. (7.4) in terms of the entanglement entropy through its leading divergent term,

i.e., the area law contribution.

To make the connection with Kähler geometry more transparent, we will temporarily

relabel yµ as xµ̄ and define gµν̄ ≡ 1
2hµν̄ and gµν ≡ 0. The Ricci tensor for this type of

Kähler metric takes a simple form

Rµν̄ = −∂µ∂ν̄ log det gαβ̄ =
d

L2
gµν̄ , Rµν = 0 , (7.6)

where we used a specific property of the metric (2.14) that

det gαβ̄ =
(2L2)d

(x− x̄)2d
. (7.7)

The moduli space is therefore a constant curvature space with Ricci scalar

R =
2d2

L2
. (7.8)

Another property of Kähler metrics is the simplicity of the scalar Laplacian

∇2
♦ = 2gαβ̄∂α∂β̄ . (7.9)

Let us now try to look for variations of the Kähler potential that do not change the

value of the scalar curvature and see whether these variations obey an interesting equation.

By explicitly varying the scalar curvature R = 2gµν̄Rµν̄ , we find

δR = −2gµλ̄δgλ̄ρg
ρν̄ Rµν̄ − 2gµν̄∂µ∂ν̄

(
gαβ̄δgαβ̄

)

= − 2d

L2
gµλ̄δgλ̄ρg

ρν̄gµν̄ −∇2
♦

(
gαβ̄δgαβ̄

)

=

(
− 2d

L2
−∇2

♦

)(
gαβ̄δgαβ̄

)
, (7.10)

where in the second line we used eq. (7.7). Using the explicit form of gαβ̄ in terms of δV

we can finally write the requirement δR = 0 as

(
∇2

♦ +
2d

L2

)
∇2

♦δV = 0 . (7.11)

If we therefore were to take δV = δSEE, this equation would indeed be satisfied.

It would be interesting to explore this intriguing potential connection between δSEE and

δV further. If correct one could speculate that it might even be valid at the nonlinear level,

and that constant scalar curvature on the moduli space of causal diamonds yields the full
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nonlinear equation for entanglement entropy valid in generic gravitational backgrounds but

in the absence of other sources. It is also intriguing to notice that for space-like separated

points, V itself is proportional to the geodesic distance between the two points, so that

the constant curvature condition may have a natural meaning in that case as well. To test

these ideas, one could for example check whether they apply to entanglement entropy in

explicitly known non-trivial gravitational backgrounds such as black holes. We hope to

return to these issues at some point in the future.

Generalized twist operators. One open question is to provide a nonlinear generaliza-

tion of observables introduced in section 3. Motivated by considerations of entanglement

entropy, we are drawn to consider twist operators with regards to this issue. Recall that as

was briefly reviewed in section 4, the entanglement entropy, as well as the Rényi entropies,

can be evaluated in terms of twist operators in an n-fold replicated version of the CFT

— see also [52, 55–57]. Further in higher dimensional CFTs, i.e., for d ≥ 3, the twist op-

erators σn are codimension-two surface operators with support on the entangling surface.

In [52, 80], it was argued that an effective twist operator σ̃n is defined if one considers

correlation functions where the twist operator only interacts with other operators which

are all from a single copy of the replicated CFT. In particular, one finds

σ̃n = e−(n−1)Hm (7.12)

where Hm is the modular Hamiltonian. This expression should apply for general geometries

but, of course, the special case of a spherical entangling surface (in the CFT vacuum) is

of interest here, where Hm is given by the local expression in eq. (1.3). This expression is

particularly useful to investigate the limit n → 1, which then yields

σ̃n ≃ 1− (n− 1)Hm + · · · . (7.13)

In particular, this demonstrates that the modular Hamiltonian is the only nontrivial con-

tribution in the OPE limit of the twist operator which survives in the n → 1 limit. Ref. [81]

suggested augmenting the twist operators with (the exponential of) a charge term which

had the form of one of our new observables (3.17) with a spin-one conserved current. A

similar extension [62] involving higher spin observables (3.35) was considered in the context

of two-dimensional CFTs of the form discussed in section 5.

Given these considerations, it is tempting to generalize eq. (7.12) to a family of ‘gen-

eralized twist operators’ based on our nonlocal observables, e.g.,

σ̃(O) = e−µQ(O) . (7.14)

We have included a numerical coefficient µ so that the linearized observable would emerge

in a ‘first law’-like expression with the limit µ → 0.36 However, it is not immediately

clear whether one can meaningfully construct the power series in µ implicit in the above

definition of σ̃(O). We hope to return to study this question and other issues for this

possible nonlinear generalization of our nonlocal observables in the future.

36We have distinguished µ from the index n in eq. (7.12) since we need not consider the replicated CFT

in defining σ̃(O), i.e., it can be defined in a single copy of the CFT.
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Universal constant? As noted in section 3, the integral in eq. (3.1) diverges for ∆O ≤
d− 2 unless the expectation value vanishes at the boundaries of the causal diamond. That

is, if 〈O〉 is nonvanishing somewhere, then eq. (3.1) diverges for causal diamonds over

some region of the moduli space. However, we still expect that a universal finite term

can be extracted from this expression in this situation. Examining eq. (C.3), where Q(O)

is evaluated for a constant expectation value, we see that the result remains finite for

∆O < d−2. In fact, divergenes only arise for ∆O = d−2, d−4, · · · . Hence our calculation
has implicitly analytically continued the expression to produce a finite result in the range

∆O < d − 2. We expect that the same universal result could be produced if we explicitly

introduced a short distance cut-off and focused on the cut-off independent constant term in

the final result. Further we expect for the special values of O where eq. (C.3) corresponds

to the appearance of a logarithmic divergence whose coefficient would yield the universal

contribution. These considerations would then put these universal contributions on the

same footing as the constant F in the F -theorem [10, 11, 82, 83]. However, there are

subtleties defining F using entanglement entropy [84] and so as in that case, one might ask

if a more robust definition of Q(O) for the cases where eq. (3.1) contains divergences.

Using the usual AdS/CFT dictionary, e.g., eqs. (C.5) and (C.6), it is straightforward

to see that analogous divergences appear in the holographic definition in eq. (3.24). That

is, the integral over the extremal surface in Qholo(O) will diverge for ∆O ≤ d−2. Of course,

the result in eq. (C.7) for a constant expectation value indicates that these divergences can

again be avoided by a suitable analytic continuation or with a suitable regulator, i.e., the

results there precisely match those in eq. (C.3). Hence the equivalence Q(O) = Qholo(O)

survives for operators with ∆O ≤ d − 2. However, the question of whether the wave

equation (3.8) applies in this regime still requires more careful investigation.

It is clear from the discussion above that our studies here have left open a variety of

interesting questions and we hope to continue to study these in future research.
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A Geometric details

In this appendix, we consider various geometric details which are useful for the discussions

in the main text. In particular, in the first section, we discuss the details of the derivation

of the precise form of the metric (2.14) on the moduli space of causal diamonds. In the

second section, we discuss the moduli space for pairs of spacelike separated points, which

arises naturally in a number of instances, e.g., two dimensions. Finally, in the last section,

we elaborate on the form and properties of the conformal Killing vector which can be

constructed to preserve the form of any given causal diamond.

A.1 Derivation of metric on the space of causal diamonds

In the following, we present further details in the derivation of the metric (2.14) on the

moduli space of causal diamonds. Our approach is to continue working in the embed-

ding space introduced in section 2.1, make a general ansatz compatible with the required

symmetries, and subsequently impose conditions which fix the free parameters.

We remind the reader that the metric needs to be of the form (2.13), which we repro-

duce here for convenience:

ds2♦ = L2 (−〈dT, dT 〉+ 〈dS, dS〉) , (A.1)

where the vectors T b and Sb still need to be fully determined, subject to the conditions in

eqs. (2.8) and (2.9), i.e.,

〈T, T 〉 = −1 , 〈S, S〉 = 1 , 〈T, S〉 = 0 , (A.2)

〈S,X〉
∣∣
z→0

= 〈T,X〉
∣∣
z→0

= 0 . (A.3)

The form of the metric (A.1) was derived in section 2.1 by demanding SO(1, d−1)×SO(1, 1)

invariance.

Let us start with the observation that for any metric of the form

ds2 = N da2 + 2Ni da dm
i + gij dm

idmj , (A.4)

where a is a Killing coordinate, i.e., none of the metric components depends on a, one

obtains its SO(1, 1) coset by taking

ds2 =
(
gij −NiNj/N

2
)
dmidmj , (A.5)

where mi are the coordinates on the final coset. In order to obtain the metric on the space

of causal diamonds, we thus need to parametrize T b and Sb in terms of the corresponding

mi-coordinates, which in our case are simply xµ and yµ specifying the tips of a causal

diamond. We then need to evaluate eq. (A.1). The corresponding Killing coordinate will

be that associated with the SO(1, 1) boost and this will allow us to use eq. (A.5) to explicitly

write out the desired coset metric.

As it turns out, the following parametrization of T b and Sb does the job for us:

T b = (T−1, τx x
µ + τy y

µ, T d) and Sb = (S−1, σx x
µ + σy y

µ, Sd) . (A.6)
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In order to demonstrate this, let us start with the conditions (A.3), which by taking their

two independent linear combinations can be recast as

C(0)
x − 2wx+ C(2)

x w2 = 0 and C(0)
y − 2wy + C(2)

y w2 = 0 , (A.7)

where

C(0)
x = −σy(−T−1 + T d) + τy(S

−1 − Sd)

τyσx − τxσy
,

C(2)
x = −−σy(T

−1 + T d) + τy(S
−1 + Sd)

τyσx − τxσy
,

C(0)
y =

σx(T
−1 − T d) + τx(−S−1 + Sd)

τyσx − τxσy
,

C(2)
y =

σx(T
−1 + T d)− τx(S

−1 + Sd)

τyσx − τxσy
. (A.8)

Clearly, neither T b nor Sb can depend on wµ. As a result, demanding conditions (A.3)

amounts to solving a set of 4 independent equations:

C(0)
x = x2 and C(2)

x = 1 and C(0)
y = y2 and C(2)

y = 1 . (A.9)

Together with the three normalization conditions (A.2), eqs. (A.9) allow to solve for 7 out

of 8 parameters specifying T b and Sb vectors (up to an irrelevant discrete choice of the

vectors’ orientations). The remaining real parameter corresponds to the boost freedom.

Let us then solve eqs. (A.9) together with eqs. (A.2) for T d = 0. The solution reads

T−1 =
x2 − y2√

−(x− y)2(1− x2)(1− y2)
,

τx = − −1 + y2√
−(x− y)2(1− x2)(1− y2)

,

τy =
−1 + x2√

−(x− y)2(1− x2)(1− y2)
,

T d = 0 ,

S−1 =
−1 + x2y2√

−(x− y)2(1− x2)(1− y2)
,

σx = τx ,

σy = −τy ,

Sd =
(−1 + x2)(−1 + y2)√

−(x− y)2(1− x2)(1− y2)
. (A.10)

We will regenerate the missing parameter by evaluating the metric (A.1) by performing a

boost in the (T, S)-plane,

(T ′)b = cosh a T b + sinh aSb , (S′)b = cosh aSb + sinh a T b , (A.11)
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yµ

xµ

Figure 10. Flow lines of the conformal Killing vector Kµ. The causal diamond ♦(xµ, yµ) is shaded

blue.

which preserves the conditions in eqs. (A.2) and (A.3). It is then a matter of tedious and

rather unilluminating calculation to recast the metric in the form (A.4) and identify the

corresponding gij and Ni. After using eq. (A.5), we are led to the desired metric on the

SO(2, d)/[SO(1, d− 1)× SO(1, 1)] coset:

ds2♦ = hµνdx
µdyµ =

4L2

(x− y)2

(
−ηµν +

2(xµ − yν)(xν − yν)

(x− y)2

)
dxµdyν . (A.12)

A.2 Conformal Killing vectors

Given a causal diamond in Minkowski space, which is defined by the positions of the future

and past tips (yµ, xµ), there is a conformal Killing vector which preserves the diamond:37

Kµ(w) ∂µ = − 2π

(y − x)2
[
(y − w)2 (xµ − wµ)− (x− w)2 (yµ − wµ)

]
∂µ . (A.13)

From this expression, one can easily see that the vector vanishes at wµ = xµ and wµ = yµ,

and when both (y − w)2 = 0 and (x− w)2 = 0, i.e., when eq. (2.2) is satisfied. Hence the

tips of the causal diamond and also the maximal sphere at the waist of the causal diamond

are fixed points of the flow defined by K. Further, one sees that K is null on the boundaries

of the causal diamond, i.e., when either (y − w)2 = 0 or (x − w)2 = 0. Finally, one can

also observe that within the rest of the causal diamond K is timelike and future directed.

Figure 10 illustrates the Killing flow both inside and outside of the causal diamond for a

cross-section of the diamond.

37As usual, our notation here is that (y − x)2 = ηµν(y − x)µ(y − x)ν .
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Working with standard ‘Cartesian’ coordinates wµ = (t, ~x) in Minkowski space, if one

chooses the frame where yµ = (R, ~x0) and xµ = (−R, ~x0) then the conformal Killing vector

takes a recognizable form, e.g., [33]

Kµ ∂µ =
π

R

[
(R2 − |~x− ~x0|2 − t2) ∂t − 2t (xi − xi0) ∂i

]
. (A.14)

Given this expression, one sees that the perturbation of the entanglement entropy in

eq. (1.3) can be written in a covariant form as

δSEE =

∫

B
dΣµ 〈Tµν〉 Kµ , (A.15)

where the integration runs over |~x − ~x0|2 ≤ R2 on the t = 0 time slice. However, in this

form, we can regard the integrand is a conserved current which allows us to move the

surface of integration to be any Cauchy surface spanning the associated causal diamond.

That is, if we define Jµ ≡ 〈Tµν〉 Kµ, it follows that ∇µJµ = 0 because the stress tensor is

conserved and traceless, i.e., ∇µ〈Tµν〉 = 0 = 〈Tµ
µ〉, and because K is a conformal Killing

vector, i.e., ∇µKν + ∇νKµ = 2
d ∇ · K ηµν . Of course, similar statements apply for the

higher spin observables constructed in section 3.2.

We might note that in two dimensions using the null coordinates introduced in

eqs. (2.16) and (2.17), the conformal Killing vector takes a particularly simple form:

Kξ = 2π
(v − ξ)(ξ − u)

(v − u)
and K ξ̄ = 2π

(v̄ − ξ̄)(ξ̄ − ū)

(v̄ − ū)
. (A.16)

This allows us to re-express the observables (3.34) for d = 2 CFTs as

Q(O;u, ū; v, v̄) =
CO

2

∫ v

u
dξ

(
Kξ

2π

)h−1 ∫ v̄

ū
dξ̄

(
K ξ̄

2π

)h̄−1

O(ξ, ξ̄) . (A.17)

In the context of the AdS/CFT correspondence, the conformal Killing vector (A.13)

extends to a proper Killing vector of the AdS geometry as follows: we describe the AdS

geometry with Poincaré coordinates

ds2 = GMN dWMdWN =
R2

AdS

z2
(
dz2 + ηµν dw

µdwν
)
, (A.18)

where we have introduced a (d+ 1)-dimensional vector notation, e.g., we denote the bulk

coordinates as WM = (wµ, z). Hence we indicate the tips of the causal diamond in the

boundary with Y M = (yµ, 0) and XM = (xµ, 0). With this notation, the bulk Killing

vector becomes

KM ∂M = − 2π

(Y −X)2
[
(Y −W )2 (XM −WM )− (X −W )2 (Y M −WM )

]
∂M , (A.19)

where our notation here is that (Y −X)2 = GMN (Y −X)M (Y −X)N . With this expression,

one can easily verify that the tips of the causal diamond in the boundary are fixed points

of the Killing flow, as is the extremal surface where (Y − W )2 = 0 and (X − W )2 = 0.

– 65 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
2

Further one can see that the Killing vector becomes null on the boundaries of the causal

wedge in the bulk.

One can also consider the analytic continuation of eq. (A.13) to Euclidean signature,

which follows by simply replacing the Lorentzian inner product there by (y−x)2 = δµν(y−
x)µ(y−x)ν . As discussed in section 3.5, there are two distinct moduli spaces to consider in

Euclidean signature and associated conformal Killing vectors arise from different choices of

the vectors xµ and yµ. If we choose real vectors, then xµ and yµ now define a pair of space-

like points and these points are the only fixed points of the flow defined by Kµ.38 Hence this

conformal Killing vector generates the SO(1, 1) symmetry in the coset SO(1, d+1)/(SO(d)×
SO(1, 1)), which corresponds to the moduli space of pairs of points discussed in section 3.5.

The second distinct moduli space in Euclidean space is the space of all (d − 2)-

dimensional spheres, which is described by the coset SO(1, d+1)/(SO(1, d−1)×SO(2)). In

this case, the associated conformal Killing vector results from choosing ‘complex’ vectors

xµ and yµ. In particular, using the notation of eq. (2.20), we choose

yµ = cµ + ℓµ = cµ + iR nµ (A.20)

xµ = cµ − ℓµ = cµ − iR nµ = (y∗)µ

where nµ is an arbitrary unit vector in Rd. The conformal Killing vector then becomes

K̃µ(w) ∂µ = − 2πi

(y − y∗)2
[
(y − w)2 ((y∗)µ − wµ)− (y∗ − w)2 (yµ − wµ)

]
∂µ (A.21)

where we have introduced an extra overall factor of i to produce a real vector. Since wµ

correspond to real positions, we cannot satisfy the equations wµ = yµ or wµ = (y∗)µ. On

the other hand, the equations (y−w)2 = 0 and (y∗−w)2 = 0 can be simultaneously solved

by setting

(c− w)2 −R2 = 0 and n · (c− w) = 0 . (A.22)

That is, the flow of the new vector K̃µ has a fixed point on a (d − 2)-sphere of radius R

centred at wµ = cµ and lying in the (d−1)-dimensional hyperplane defined by n·(c−w) = 0.

Hence this new Killing vector generates the SO(2) symmetry in the coset describing the

moduli space of (d− 2) dimensional spheres in R
d.

A.3 Moduli space of spacelike separated pairs of points

Here we would like to consider the analog of our generalized kinematic space (2.11) for pairs

of spacelike separated points in a d-dimensional CFT (with Lorentzian signature). Recall

that M(d)
♦

was the moduli space of all causal diamonds, or equivalently of all spheres, or

equivalently of all timelike separated pairs of points. Considering the space of spacelike

separated points arises naturally in a number of instances, e.g., upon analytically continuing

to a Euclidean signature, as discussed briefly in section 3.5. In fact, in two dimensions,

38That is, in Euclidean signature, the only solution of (x − w)2 = 0 is wµ = xµ and hence we cannot

simultaneously solve (y − w)2 = 0 and (x− w)2 = 0. Note that if we were considering spacelike separated

points but in Lorentzian signature, there would be the simultaneous solution of these two equations would

define a spacelike hyperbola — see the following section.
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Figure 11. Illustration of the one-to-one correspondence between spacelike separated points and

the space of spacelike hyperbolas: the intersection of lightcones of two spacelike separated points

forms a spacelike hyperbola (dashed maroon curve) which lies in a timelike codimension-one hyper-

plane (shaded in yellow).

a causal diamond can be defined either in terms of a pair of timelike separated points or

a pair of spacelike separated points.39 Hence it seems that d = 2 is a special case where

the two moduli spaces are equivalent, i.e., the space of timelike separated pairs of points

is the same geometric object as the space of spacelike separated pairs of points. Our final

conclusion here is that in fact this equivalence extends to CFTs in arbitrary dimensions!

To understand this new moduli space, we begin by considering the intersection of the

lightcones from a pair of spacelike separated points. As illustrated in figure 11, the inter-

section of the lightcones defines a spacelike hyperbola lying in a fixed timelike hyperplane

(of codimension one). Hence in analogy to the previous discussion of kinematic space, we

may say that the moduli space of pairs of spacelike separated points is equivalent to the

moduli space of spacelike hyperbola. There is no obvious analog of the causal diamonds

since for spacelike separated points, the two lightcones do not enclose a finite-volume region

anywhere, as can be seen in the figure.

Next we would like understand the coset structure of this moduli space by turning to

the embedding space introduced in section 2.1. However, it is easiest to think in terms of a

construction of the moduli space of spacelike hyperbolae in a d-dimensional CFT. A bit of

thought shows that such a hyperbola will be described by choosing a pair of orthogonal unit

vectors, T b and Sb, satisfying precisely the same conditions given in eqs. (2.8) and (2.9).

This construction is again easily illustrated with the Poincaré patch coordinates (2.7) where

39For example in figure 3, the causal diamond can be defined in terms of the extreme points at the left

and right corners, i.e., (ξ, ξ̄) = (v, ū) and (u, v̄).
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a convenient choice of the unit vectors is

T b = (1, 0, 0, . . . , 0) −→ ηµν w
µwν = −1 ,

Sb = (0, 0, 1, . . . , 0) −→ w1 = 0 . (A.23)

The expressions on the right denote the surfaces in the asymptotic geometry that are picked

out by the orthogonality constraints (2.9), i.e., Sb selects a particular timelike codimension-

one hyperplane in the boundary while T b selects a spacelike hyperboloid. The intersection

of these two surfaces then yields the (codimension-two) hyperbola

(w0)2 −
d−1∑

i=2

(wi)2 = 1 on the hyperplane w1 = 0 . (A.24)

Now following the discussion of section 2.1, a particular pair of unit vectors, T b and

Sb, specifies a particular hyperbola in the boundary geometry. We sweep out the rest of

the moduli space by acting with SO(2, d) transformations, i.e., Lorentz transformations

in the embedding space. However, the coset structure of the resulting moduli space of

hyperbolae is then determined by the symmetries preserved by any particular choice of the

unit vectors. However, since the constraints on the present unit vectors are precisely the

same as in section 2.1, these symmetries are also the same and hence we arrive at the same

coset as given in eq. (2.11), namely,

SO(2, d)

SO(1, d− 1)× SO(1, 1)
. (A.25)

At first sight, this result may seem rather counterintuitive. Spacelike and timelike

separated pairs of points are by definition very different kinds of objects in Minkowski

space and yet we found that in a d-dimensional CFT, the moduli spaces of such pairs are

described by the same coset structure irrespective of whether the separation is spacelike

or timelike. Further in the language of the embedding space, the two spaces are being

described by precisely the same family of orthogonal unit vectors, i.e., pairs satisfying

eqs. (2.8) and (2.9). Of course, this indicates that not only do we have two moduli spaces

described by the same coset geometry (A.25) but that in fact we are considering one and

the same moduli space from two different perspectives!

In order to develop a better understanding of this counterintuitive result consider

the following: the first point to note is that our intuition about spacelike and timelike

separated pairs of points is firmly rooted in flat Minkowski space. However, recall that

in the embedding space, the the Poincaré patch coordinates (2.7) only cover a portion

of the AdS hyperboloid (2.5) and some SO(2, d) transformations will take us out of this

region, i.e., pairs of points maybe mapped beyond the corresponding Minkowski space in

the asymptotic boundary. Hence it is more appropriate to think of working on global

coordinates for the AdS geometry or transforming the CFT to the ‘cylindrical’ background

R× Sd−1 (with R being the time direction).40

40With this transformation, we are actually extending the original Minkowski space to a geometry where

the conformal group acts properly everywhere.
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yµ

xµ zµ

S

S
x̄µ

(t = 0)

(t = 2πRsph)

(t = πRsph)

(t = −πRsph)

Figure 12. Illustration of the CFT on cylindrical background R×S1. The point zµ is the antipodal

point from the point xµ on the constant time slice containing this point and zµ has the maximal

spacelike geodesic distance πRsph from xµ. Blue lines are past and future lightcones of xµ. The

point x̄µ corresponds to the position where the future light cone of xµ first self-intersects. The

sphere S (indicated by black points) can be described as the intersection of past lightcone of yµ

either with future lightcone of xµ, or alternatively with past lightcone of the antipodal point x̄µ.

In the former case, S is characterized by a pair of timelike separated points, in the latter case by a

pair of spacelike separated points.

In the latter geometry, there are limits to how far apart the pairs of points can be.41

In particular for spacelike separated points, the maximum separation is πRsph where Rsph

is the radius of curvature of the Sd−1, i.e., maximally separated pairs are antipodal pairs

on the (d−1)-sphere — see figure 12. Similarly, the maximal separation for a timelike pair

is 2πRsph. For example, if the two points lie at the same pole on the sphere, then with

this maximal time separation, the lightcones from these two points intersect at a point on

the the opposite pole and hence the corresponding sphere has the maximal angular size,

i.e., the sphere’s proper size has actually shrunk to zero but the ‘enclosed’ ball covers the

entire Sd−1. In fact, as illustrated in the figure, the null cones of these two maximally

(timelike) separated points actually coincide.42 This leads to the observation that because

41As in flat space, we measure the separation between points in R×Sd−1 as the (minimal) proper distance

along geodesics connecting the points.
42In the embedding space, the two points considered here are actually coincident points on the boundary

of the AdS hyperboloid (2.5). It is only when we consider the universal cover of the AdS hyperboloid (as

we do implicitly here) that the points are separated. In particular, if we had been more precise we should

have replaced the SO(2, d) group in the numerator of (A.25) by a suitable infinite cover in this case.
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of the compact structure of the Sd−1, when we choose any single point in the R × Sd−1,

by following the past and future null cones, we actually specify two families of preferred

points. The first being points lying at the same pole of the sphere at t = 2πnRsph where n

is any integer (and we have assumed the initial point lies at t = 0, i.e., n = 0). The second

family is points on the opposite pole lying at t = 2π(n+ 1
2)Rsph where n is again any integer.

This insight then allows us to understand the equivalence of the two spaces discussed

above in very concrete terms. Consider the two timelike separated points designated x and

y shown in figure 12. The future lightcone of x and the past light cone of y intersect on

the sphere designated S. However, now consider the point x̄ where the future lightcone of

x (first) converges to a point on the opposite pole of the sphere. The pair x̄ and y is now

a spacelike separated pair of points. The past and future lightcones from these two points

intersect at the spheres, S and S̃, respectively. Now, in an appropriate conformal frame,

where x̄ and y are spacelike separated points in flat Minkowski, these two spheres become

the two branches of the corresponding spacelike hyperbola discussed above.43 However,

the key point here is that in the R× Sd−1 conformal frame, we can specify spheres either

in terms of the intersection of the past and future lightcones of a pair of timelike separated

points or in terms of the intersection of the past light cones from two spacelike separated

points. Hence we recognize that moduli spaces of spacelike and timelike pairs in fact

provide two different perspectives of the same geometric object!

Given that the moduli spaces of spacelike and timelike pairs (on R × Sd−1) are the

same, it is interesting that the discussion in section 2.2 implies that the limit in which a

timelike separated pair approaches a null separated pair of points is a limit that takes us to

timelike infinity in the moduli space — see footnote 5. This is a consistency check in that

it shows that there is no trajectory on the moduli space that carries one between timelike

separation to spacelike separation. Of course, it would be interesting to further explore the

implications of this equivalence.

B Conventions for symmetry generators

B.1 General definitions

Spinless case. Given the conformal symmetry generators Li(x), we define the second

Casimir as the object C2 ≡ CijLi(x)Lj(x) (where i, j = 1, · · · , (d+1)(d+2)/2) which acts

on scalar primaries O in the CFT with dimension ∆O such that:

[C2,O(x)] = ∆O(d−∆O)O(x) . (B.1)

In this appendix we discuss various realizations of C2 on objects which carry a representation

of the conformal group: fields in AdSd+1 and functions on the moduli space of causal

diamonds.

The conformal algebra in d dimensions is isomorphic to the group SO(2, d) Lorentz

group of the embedding space (2.4). We write the action of SO(2, d) generators on primaries

43Each branch is topologically a (d− 1)-sphere when we include the point at infinity.
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as (see, e.g., [85])

Mµν |O(x)〉 = i(xµ∂ν − xν∂µ)|O(x)〉 ,
Pµ|O(x)〉 = i∂µ|O(x)〉 ,
Qµ|O(x)〉 = i

(
x2∂µ − 2xµx

ν∂ν − 2xµ∆O

)
|O(x)〉 ,

D|O(x)〉 = i (xµ∂µ +∆O) |O(x)〉 ,

(B.2)

where |O(x)〉 = O(x)|0〉 and the vacuum state |0〉 is annihilated by all of the generators.

The SO(2, d) Lorentz generators Jab = −Jba are hence represented by

Jµν = Mµν , Jµ− =
1

2
(Pµ +Qµ) , Jdµ =

1

2
(Pµ −Qµ) , J−d = D . (B.3)

These satisfy the algebra

[Jab, Jcd] = i η(2,d)

bc Jad − i η(2,d)
ac Jbd − i η(2,d)

bd Jac + i η(2,d)

ad Jbc , (B.4)

where η(2,d)

ab = diag(−1,−1, 1, . . . , 1) is the embedding space metric. In terms of these

Lorentz generators, we can represent the action of the Casimir on operators by C2 ≡
−1

2J
abJab, which acts as a differential operator whose eigenfunctions are the primary states:

C2|O(x)〉 ≡ −1

2
Jab(x)Jab(x)|O(x)〉 = ∆O(d−∆O) |O(x)〉 . (B.5)

Since SO(2, d) acts on the AdSd+1 hyperboloid in embedding space as standard Lorentz

transformations, the above generators can also be represented as isometry generators of

AdSd+1. This representation is given in embedding space coordinates by Jab = i(Xa∂b −
Xb∂a). In particular, the AdSd+1 Laplacian is represented by the combination

R2
AdS ∇2

AdS =
1

2
JabJab = −C2 . (B.6)

Similarly, the action of the Casimir is represented on the moduli space of causal dia-

monds. Using the explicit representation (B.2), it is straightforward to verify the following

relation between the second Casimir as a differential operator acting on the space of causal

diamonds, and the scalar Laplacian on the same space:

C2f(x, y) ≡ −1

2
(Jab(x) + Jab(y))(Jab(x) + Jab(y))f(x, y) = L2∇2

♦ f(x, y) , (B.7)

where f(x, y) is any function on the space of diamonds ♦ = (xµ, yµ), and ∇2
♦ is the

Laplacian on the moduli space of diamonds (2.14).

As an application of this, one can explicitly check that the kernel in eq. (3.4) is an

eigenfunction of the Casimir as represented by eq. (B.7):

C2
( |y − ξ||ξ − x|

|y − x|

)∆O−d

= ∆O(d−∆O)

( |y − ξ||ξ − x|
|y − x|

)∆O−d

. (B.8)
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Generalization with spin. It is straightforward to generalize the above discussion to

the case of primary operators with symmetric-traceless indices, Oµ1···µℓ
. In this case, the

eigenvalues of the conformal Casimir are

[C2,Oµ1···µℓ
(x)] = [∆O(d−∆O)− ℓ(ℓ+ d− 2)]Oµ1···µℓ

(x) . (B.9)

One can explicitly verify that eq. (B.7) then still holds for tensors instead of functions

f(x, y). Most importantly, we find that the kernel in our proposal (3.9) for the ‘first

law’-like expression with spin satisfies

L2∇2
♦ (G

µ1···µℓ(x, y; ξ)Tµ1···µℓ
(ξ)) = [∆O(d−∆O)− ℓ(ℓ+ d− 2)]Gµ1···µℓ(x, y; ξ)Tµ1···µℓ

(ξ)

(B.10)

where Tµ1···µℓ
(e.g., Tµ1···µℓ

= 〈Oµ1···µℓ
〉) is an arbitrary symmetric traceless tensor and we

abbreviated the kernel as

Gµ1···µℓ(x, y; ξ) ≡
( |y − ξ||ξ − x|

|y − x|

)∆O−d sµ1 . . . sµℓ

(|y − ξ||ξ − x||y − x|)ℓ . (B.11)

B.2 Two-dimensional case

Let us briefly make the statements of the previous subsection more explicit in the case of

two-dimensional CFTs (and AdS3, respectively). In this case, we can work in right- and

left-moving coordinates

ds2CFT2
= −dt2 + dx2 = dξ dξ̄ . (B.12)

In these coordinates, the non-zero generators (B.2) can be written as:

M01|O〉 = −M10|O〉 = i(ξ∂ξ − ξ̄∂ξ̄)|O〉 ≡ i(L̄0 − L0)|O〉 ,
P0|O〉 = i(∂ξ̄ − ∂ξ)|O〉 ≡ i(L̄−1 − L−1)|O〉 ,
P1|O〉 = i(∂ξ̄ + ∂ξ)|O〉 ≡ i(L̄−1 + L−1)|O〉 ,
Q0|O〉 = i(ξ̄2∂ξ̄ − ξ2∂ξ + (ξ̄ − ξ)∆O)|O〉 ≡ i(L̄1 − L1)|O〉 ,
Q1|O〉 = i(−ξ̄2∂ξ̄ − ξ2∂ξ − (ξ̄ + ξ)∆O)|O〉 ≡ −i(L̄1 + L1)|O〉 ,
D|O〉 = i(ξ̄∂ξ̄ + ξ∂ξ +∆O)|O〉 ≡ −i(L̄0 + L0)|O〉 .

(B.13)

This defines conformal generators Ln satisfying the usual de Witt algebra

[Ln, Lm] = (n−m)Ln+m , [L̄n, L̄m] = (n−m)L̄m+n , [Lm, L̄n] = 0 , (B.14)

for n,m = −1, 0, 1. The conformal Casimir defined in (B.5) reads as follows in terms of Ln:

C2|O〉 = 2
(
C(d=2)
2 + C̄(d=2)

2

)
|O〉 , (B.15)

where we make the factorization into natural left- and right-moving Casimir operators

explicit by defining

C(d=2)
2 ≡ −L2

0 +
1

2
(L1L−1 + L−1L1) and C̄(d=2)

2 ≡ −L̄2
0 +

1

2
(L̄1L̄−1 + L̄−1L̄1) . (B.16)
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The above discussion concerned the action of conformal generators on CFT states.

There is an analogous set of identities for AdS3 isometry generators. We work in Poincaré

coordinates

ds2AdS3
=

R2
AdS

z2
(
dz2 + dξ dξ̄

)
. (B.17)

Using the general definitions of section B.1, we then find the following isometry generators

in AdS3:

L−1 = ∂ξ, L0 = −1

2
z ∂z − ξ ∂ξ and L1 = z ξ ∂z + ξ2 ∂ξ − z2 ∂ξ̄ , (B.18)

and similarly for L̄n with ξ and ξ̄ interchanged. We then have that the combinations

appearing in the Casimir C2, and its left- and right-moving parts defined in (B.16), all

correspond to the scalar Laplacian on AdS3:

C2 φ(u) = −R2
AdS ∇2

AdS3
φ(u) , C(d=2)

2 φ(u) = C̄(d=2)
2 φ(u) = −1

4
R2

AdS ∇2
AdS3

φ(u) . (B.19)

C Relative normalization of CFT and bulk quantities

In this appendix we demonstrate how to fix the relative normalization between Q(O) as de-

fined in eq. (3.1) and its holographic couterpart Qholo(O) in eq. (3.24). Our strategy will be

to exploit the fact that the normalization can be determined in the limit of very small dia-

monds, or equivalently with 〈O〉 = constant. For simplicity, we assume the centre of the di-

amond is located at 1
2(x

µ+yµ) = 0, and we work on a time slice such that 1
2(y

µ−xµ) = Rδµ0 .

Consider first the field theory observable Q(O;x, y) in the limit x → y, i.e., for a

constant expectation value 〈O〉 throughout the causal diamond:

Q(O;x, y) = CO 〈O〉
∫

D(x,y)
ddξ

(
(y − ξ)2(ξ − x)2

−(y − x)2

) 1
2
(∆O−d)

. (C.1)

To evaluate the integral, it is useful to parameterize the causal diamond as follows:

ξµ =

(
ζ − ζ̄

2
R,

ζ + ζ̄

2
R~ω

)
, yµ = (R,~0 ) , xµ = (−R,~0 ) , (C.2)

where ~ω ∈ Sd−2 is a unit vector that parameterizes the spacelike spherical slices. The full

range ζ, ζ̄ ∈ [−1, 1] would cover the diamond twice. Considering the symmetries of the

integrand in (C.1), we can effectively integrate over the range ζ ∈ [−1, 1] and ζ̄ ∈ [0, 1]:

Q(O;x, y) =

=
CO 〈O〉
2∆O−1

Ωd−2R
∆O

∫ 1

−1
dζ

∫ 1

0
dζ̄
(
1− ζ2

)(∆O−d)/2 (
1− ζ̄2

)(∆O−d)/2 (
ζ + ζ̄

)d−2

=
CO 〈O〉
2∆O+1

Ωd−2 Γ

(
∆O + 2− d

2

)2

R∆O

d−2∑

n=0

(
d− 2

n

)
(1 + (−1)n) Γ

(
d−n−1

2

)
Γ
(
n+1
2

)

Γ
(
∆O−n+1

2

)
Γ
(
∆O−d+n+3

2

)

=
CO 〈O〉
4π1/2

Ωd−2

Γ
(
d−1
2

)
Γ
(
∆O+2−d

2

)2
Γ
(
∆O
2

)2

Γ
(
∆O + 1− d

2

)
Γ (∆O)

(2R)∆O , (C.3)
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where we binomially expanded the measure factor (ζ + ζ̄)d−2 to perform a term-by-term

integration. The final line can be simplified slightly by substituting Ωd−2 = 2π
d−1
2 /Γ

(
d−1
2

)

for the volume of a unit (d − 2)-sphere, however, the present form is convenient for our

comparison below.

Next, we compute Qholo(O) as defined in eq. (3.24) using standard holographic tech-

niques. In particular, we will work in Poincaré coordinates

ds2AdS =
R2

AdS

z2
(
dz2 − dt2 + dr2 + r2 dΩ2

d−2

)
. (C.4)

If one considers the dual field φ(u) in a linearized approximation in this background, the

asymptotic behaviour takes the following form:

φ(z → 0, wµ) = φ0(w) z
d−∆O + φ1(w) z

∆O + · · · (C.5)

where

λ = φ0 and 〈O〉 = Rd−1
AdS

2ℓd−1
P

(2∆O − d)φ1 . (C.6)

Here λ(ξ) is the coupling to the operator in the boundary CFT and we set it to zero in the

following.44 In keeping with the previous calculation, we also assume that 〈O〉 is constant,
at least within the boundary region of interest.

The boundary sphere in the previous calculation was chosen to be: t = 0 and r = R.

The corresponding extremal surface in the bulk is the hemisphere: t = 0 and z2+ r2 = R2.

We can parameterize this bulk surface with z = R sinλ and r = R cosλ where 0 ≤ λ ≤ π
2 .

Then keeping on the leading term in the asymptotic expansion of the bulk scalar, the

computation of the observable Qholo(O) reads as follows:

Qholo(O) = Cblk φ1
Rd−1

AdS

ℓd−1
P

∫
dΩd−2

∫ π/2

0
dλ

cosd−2λ

sind−1λ
(R sinλ)∆O

= Cblk
2 〈O〉

2∆O − d
Ωd−2

Γ
(
d−1
2

)
Γ
(
∆O+2−d

2

)
Γ
(
∆O
2

)

4π1/2Γ (∆O)
(2R)∆O ,

(C.7)

where we have substituted ℓd−1
P = 8πGN and applied eq. (C.6) in the second line.

We can now equate the two results (C.3) and (C.7) and thus fix the relative normal-

ization:

Cblk = CO

Γ
(
∆O+2−d

2

)
Γ
(
∆O
2

)

Γ
(
∆O − d

2

) . (C.8)

C.1 Holographic computation for a free scalar in AdS3

We expect that the generalized first law (3.34) provides the leading order contribution to

a set of novel physical quantities in CFTs in an analogous way in which the entanglement

44Eqs. (C.5) and (C.6) present a standard set of holographic conventions, e.g., see [86], although perhaps

not unique. Further we note that the choice λ = 0 means that we are only studying excitations the CFT

ground state here. It would be interesting to extend the discussion in this paper to holographic RG flows

where the boundary theory is deformed away from a conformal fixed point.

– 74 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
2

first law provides the leading order perturbation of the vacuum entanglement entropy for

excited states. In the present section we want to corroborate this proposal by providing the

holographic dual of δSO in a class of CFTs which admit a semi-classical gravity description.

In section 3.4, we argued that Q(O) = Qholo(O) with an appropriate choice of the bulk

normalization constant Cblk. The latter was fixed above by comparing the two expressions

in a situation where 〈O〉 was a constant. In the following, we explicitly demonstrate that the

equivalence of the boundary and bulk expressions for a more nontrivial field configuration.

To do so, we focus on AdS3 with a free probe scalar field φ dual to a primary operator O
with h = h̄ = ∆O/2 in a two-dimensional holographic CFT. In this case, the ‘sphere’ of

interest becomes an interval of length 2R, which for simplicity, we assume is centred at the

origin on the t = 0 time slice. Further eq. (3.34) becomes

Q(O) =
CO

2

∫ R

−R
dξ

(
R2 − ξ2

2R

)∆O−2

2
∫ R

−R
dξ̄

(
R2 − ξ̄2

2R

)∆O−2

2

〈O(ξ, ξ̄)〉 . (C.9)

The holographic expression in eq. (3.24) reduces to an integral of the bulk scalar over the

spatial geodesic γ connecting the endpoints of the interval in the boundary theory:

Qholo(O) =
CO

ℓP

Γ (∆O/2)
2

Γ (∆O − 1)

∫

γ
dλ

√
h φ(λ) , (C.10)

where we have used 8πGN = ℓP for d = 2 and substituted for the normalization constant

Cblk using eq. (C.8).

For our explicit computation, we pick a simple linearized perturbation by putting a

delta-function source at a point (ξ0, ξ̄0) on the boundary. The linearized solution is given

by the usual bulk-boundary propagator

φ(r, ξ, ξ̄) = α

(
z

z2 + (ξ − ξ0)2

)∆O

, (C.11)

Here, α is an arbitrary constant measuring the strength of the source and we are using

Poincaré coordinates on AdS3

ds2 =
1

z2
(
dz2 + dξ dξ̄

)
(C.12)

where the curvature radius is set to unity and w, w̄ denote the null coordinates introduced

in eq. (2.16), i.e., ξ = x− t and ξ̄ = x+ t. For simplicity, we will assume that the source is

spacelike separated from the interval, i.e., (ξ − ξ0)
2 > 0 for any point ξ = ξ̄ = x ∈ [−R,R]

in the interval.

The bulk geodesic spanning the boundary interval above may be parametrized by

x = R cosλ and z = R sinλ . (C.13)
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The line element along the geodesic is dλ/ sinλ and then eq. (C.10) yields

Qholo(O) =
CO

ℓP

Γ(∆O
2 )2

Γ (∆O − 1)
α

∫ π

0

dλ

sinλ

(
R sinλ

R2 sin2 λ+ (R cosλ− ξ0)(R cosλ− ξ̄0)

)∆O

=
CO

2ℓP

Γ(∆O
2 )2

Γ (∆O − 1)
α (2R)∆O

∫ π

0
dλ

sin∆O−1 λ
2 cos∆O−1 λ

2(
|R− ξ0|2 cos2 λ2 + |R+ ξ0|2 sin2 λ2

)∆O

=
CO

2ℓP
α (∆O − 1)

Γ(∆O
2 )4

Γ(∆O)2

(
4R2

(ξ02 −R2)(ξ̄02 −R2)

)∆O/2

. (C.14)

where in a slight abuse of notation, we have defined |R±ξ0|2 ≡ (R±ξ0)(R±ξ̄0) in the second

line. The integral there can be found, e.g., in [87]. Note that the final result can be split

into right- and left-moving factors, which was not at all clear from the initial expression.45

Now let us now turn to the boundary computation. First we should extract the expec-

tation value from the 〈O〉 from our linearized solution (C.11) for the bulk scalar. As we

take z → 0 in eq. (C.11), we immediately recognize the behavior of a normalizable mode

φ(z → 0, ξ, ξ̄) = α

(
z

(ξ − ξ0)2

)∆O

+ · · · . (C.15)

Now applying eq. (C.6) with d = 2, we find

〈O(ξ, ξ̄)〉 = ∆O − 1

ℓP

α

(ξ − ξ0)∆O(ξ̄ − ξ̄0)∆O
. (C.16)

Since this profile factorizes into right- and left-moving contributions, upon substitution

into eq. (C.9), we also find a factorized answer:

Q(O) =
CO

2ℓP
α (∆O − 1)

∣∣∣∣∣∣

∫ R

−R
dξ

(
R2 − ξ2

2R

)∆O−2

2 1

(ξ − ξ0)∆O

∣∣∣∣∣∣

2

, (C.17)

where as above, we are using |f(ξ)|2 = f(ξ)f(ξ̄) in the notation of complex coordinates.

This integral can also be performed, e.g., see eq. (3.199) in [87] and one finds46

Q(O) =
CO

2ℓP
α (∆O − 1)

Γ(∆O
2 )4

Γ(∆O)2

(
4R2

(ξ02 −R2)(ξ̄02 −R2)

)∆O/2

, (C.18)

which provides a perfect agreement with the holographic result in eq. (C.14).

Since this is a linearized calculation, the agreement (3.25) readily extends to arbitrary

field configurations that are generated by the insertion of sources that are spacelike sep-

arated from the interval of interest. Of course, eqs. (C.14) and (C.18) show that there

are singularities that appear when the sources cross the lightcones of the endpoints of the

interval, i.e., when the sources move into causal contact with the interval. It would be

interesting to investigate further here to understand if Q(O) = Qholo(O) still applies in the

latter situation. Following the general arguments in section 3.4, this is intimately related

to the question of better understanding causal wedge reconstruction in the bulk.

45In the limit ξ20 ≫ R2, the expectation value is essentially constant across the interval — see eq. (C.16).

Hence in this limit, the leading contribution above can be matched with that in eq. (C.7) with d = 2. Note

that in this case, Ω0 = 2.
46Again in the limit ξ20 ≫ R2, the leading contribution in expression (C.18) agrees with eq. (C.3) for d = 2.
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