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Abstract We study a singlet ground-state of the D-dimensional Hooke’s law model for D = 1, 2, 3. We
explore an effect of the dimensionality of the space D on the entanglement in the whole range of the repulsive
interaction. Among other features, it is found that there exists a critical interaction strength above which for
D = 3 the amount of entanglement contained in the singlet ground-state becomes larger than that for D = 2.

1 Introduction

In recent years, there has been a considerable interest in studies of entanglement properties of systems of
interacting particles because of their possible application in quantum information technology [1]. In particular,
quantum entanglement in systems of two interacting particles confined in a harmonic trap has attracted much
attention [2–8]. In this Letter we study the singlet ground-state of the Hooke’s law atom in one, two and three
dimensions. The main aim of this Letter is to investigate the effect of the dimensionality of the space on the
entanglement, which, to the best of our knowledge, has not been done so far.

The Hamiltonian of the D-dimensional system consisting of two electrons that repel Coulombically and
are bound by the harmonic potential is of the form

H =
2∑

i=1

[
p2

i

2m
+ mω2x2

i

2

]
+ λ

|x2 − x1| , (1)

where x1 = (x1, . . . , xD) and x2 = (y1, . . . , yD). Stationary states of the Hamiltonian (1) have the form

�(ζ1, ζ2) = ψ(x1, x2)χ(σ1, σ2), (2)

where 	 is a spin function.

After the scaling x �→
√

h̄
mωx, E �→ h̄ωE , the Schrödinger equation takes the form

Hψ(x1, x2) = Eψ(x1, x2), (3)

with
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H =
2∑

i=1

[
−1

2
�xi + x2

i

2

]
+ g

|x2 − x1| , (4)

where g = λ
√

m
ωh̄3 represents the ratio of Coulomb interaction strength.

Introducing the variables

Z = x1 + x2√
2

, z = x2 − x1√
2

, (5)

the Hamiltonian (4) separates as H = HZ + H z. Since the Hamiltonian HZ = − 1
2

[
∂2

∂Z2
1

+ ∂2

∂Z2
2

+ · · · + ∂2

∂Z2
D

]

+ Z2
1

2 + Z2
2

2 + · · · + Z2
D

2 is exactly solvable, the problem is reduced to the eigenvalue equation

H zϕ(z) = εzϕ(z), (6)

with

H z = −1

2

[
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]
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2
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√
2
√

z2
1 + z2

2 + · · · + z2
D

. (7)

Here we consider the cases D = 1, 2, 3 and restrict our investigation to the study of the singlet ground-state

�(ζ1, ζ2) = e− Z2
2 ϕ(z)χS(σ1, σ2), where χS = 1√

2
(α(1)β(2)−α(2)β(1)) is the spin singlet function. We will

solve (6) by the Rayleigh-Ritz (RR) method. In the D = 2 and D = 3 cases, to solve the radial Schrödinger
equation we use in the RR calulations the basis of two and three dimensional radial harmonic oscillator eigen-
functions with frequency ω = 1, respectively. The RR method enables to obtain very accurate results. As an
example, in the D = 3 case, for the smallest positive value of g at which an exact ground-state wavefunction
is known i.e., g = √

2; εz = 2.5 [9], a good approximation to the energy is already obtained using 10 basis
functions i.e., εz

R R = 2.50098.
In the case of D = 1, because the Columbic interaction 1/|z1| diverges when z1 → 0, the symmetric

spatial ground-state wavefunctionψ+(x1, y1) is given byψ+(x1, y1) = |ψ−(x1, y1)|, where ψ− is the lowest

energy antisymmetric spatial wavefunction i.e., ψ−(x1, y1) = e− Z2
1

2 ϕ1(z1) (see, for example, a discussion in
[10]). Since ϕ1(z1) is odd under inversion z1 → −z1, to obtain it we use the RR method with a set of odd
eigenfunctions of the one-dimensional harmonic oscillator.

2 The Participation Ratio

The one-particle reduced density matrix (RDM) is defined as

ρred(ζ, ζ
′
) = trζ2 [|�〉〈�|]. (8)

The RDM corresponding to (2) factors into spatial and spin components

ρred(ζ, ζ
′
) = ρ(x, x

′
)ρ(spin)(σ, σ

′
), (9)

where ρ(x, x
′
) = ∫

ψ∗(x, x2)ψ(x
′
, x2)dx2. To measure the amount of entanglement in the pure state |�〉, we

use the participation ratio defined as [11]

R = 1

tr [ρ2
red ] . (10)

It approximately measures the ‘average’ number of Slater orbitals involved in the Slater expansion of�. For the
singlet states we have tr [ρ2

red ] = tr [(ρ(spin))2]tr [ρ2] = 1
2 tr [ρ2], and the participation ratio can be expressed

as R = 2/
∑

l λ
2
l , where {λl} are the eigenvalues (occupancies) of the spatial RDM i.e.,

∫
ρ(x, x

′
)vl(x

′
)dx

′ =
λlvl(x).
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The Schmidt decomposition of the real and symmetric spatial wavefunction may be written down as

ψ(x1, x2) =
∞∑

l=0

klvl(x1)vl(x2), (11)

where the coefficients kl and the orbitals vl satisfy the integral equation
∫
ψ(x1, x2)vl(x1)dx1 = klvl(x2). The

former are related to λl through λl = k2
l .

The nature of degeneracy appearing in the spectrum of the RDM of the singlet ground-state in the D = 2
and the D = 3 cases has been recently explained in [4] and [5], respectively. In the former case, the results for
R have already been obtained in [4]. In the latter one, to calculate R, we apply the method of Ref. [5].

3 Results

The main numerical results of this paper are presented in Fig. 1, where the values of R are displayed as a
function of g for D = 1, 2, 3. As we mentioned earlier, in the case of D = 1, the spatial wavefunction of
the singlet ground-state is given by ψ+(x1, y1) = |ψ−(x1, y1)| as long as g �= 0. This is the reason way for
D = 1 the participation ratio R has a discontinuity at the point g = 0. For g = 0, the value of R of the
singlet ground-state � equals, of course, exactly 2, regardless of D. Obviously, only in that case � may be
represented by a Slater determinant and the state can be regarded as non-entangled.

We see from Fig. 1 that the amount of correlation depends strongly not only on g but also on D. We may
extract four regimes of the interaction strength with different behaviors of R with respect to D. In the first (I)
regime 0 < g � 8, generally a decrease in D causes an increase in R. In the second (II) regime 8 � g � 11,
the entanglement in the system with D = 1 becomes smaller than that in the system with D = 2, but still
remains larger than that in the one with D = 3. As g exceeds the value g ≈ 11 (the beginning of the III
regime), the system with D = 1 starts to exhibit the smallest entanglement compared with the entanglements
in the remanning cases. Interestingly, when it comes to the cases D = 2 and D = 3, the situation changes
essentially in the fourth (IV) regime g � 20, namely the entanglement in the former case becomes smaller
than that in the latter one. We find that both in the D = 2 and the D = 3 case, R increases monotonically
with the increase in the interaction strength g and tends to ∞ as g → ∞. On the other hand, for D = 1,R
saturates at a constant value in the regime of strong interaction (in fact, already above g ≈ 8). We find the
value of R to be about 4 as g → ∞, which suggests that the corresponding total two-electron wavefunc-
tion �g→∞(ζ1, ζ2) can be well approximated by a combination of two Slater determinants. We have found
numerically that kg→∞

0 ≈ 0.7, kg→∞
1 ≈ −0.7 which gives λg→∞

0 = λ
g→∞
1 ≈ 0.49. Hence, because of the

conservation of probability
∑

l λl = 1, it immediately follows that in (11) only two terms are important as
g → ∞ and, as a result, the spatial wavefunction approaches the form

ψg→∞(x1, y1) ≈ 0.7[v0(x1)v0(y1)− v1(x1)v1(y1)]. (12)

Combining (12) and the spin singlet function, we get that indeed�g→∞(ζ1, ζ2) constitutes a sum of two Slater
determinants. We want to stress at this point that, in the case of D = 1, all eigenvalues of the spatial RDM

0 10 20 30 40 50 60
2

4

6

8

10

12

14

g

R

IVIIIIII

D 1

D 2

D 3

Fig. 1 The participation ratio R calculated as a function of g for D = 1, 2, 3
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become doubly degenerate at g → ∞ limit. This can easily be proved in the framework of the harmonic
approximation, in a similar way as it has been done in [8] in the case of D = 2 with the anisotropic harmonic
trap. Also, it should be stressed that the approximation given by Eq. (12) has already been obtained in [8]
where calculations are performed in the presence of strong anisotropy of the harmonic trap.

4 Summary

In conclusion, we carried out the calculation for the participation ratio of the singlet ground-state of the
D-dimensional Hooke’s law atom for D = 1, 2, 3, thereby investigating the effect of D on the entangle-
ment. In particular, we have found that above g = λ

√
m
ωh̄3 ≈ 20 the entanglement contained in the singlet

ground-state of the system with D = 3 becomes larger than that in the system with D = 2.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are
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