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Entanglement in the steady state of a collective-angular-momentum (Dicke) model
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2Centre for Quantum Computer Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
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We model the behavior of an ion trap with all ions driven simultaneously and coupled collectively to a heat
bath. The equations for this system are similar to the irreversible dynamics of a collective angular momentum
system known as the Dicke model. We show how the steady state of the ion trap as a dissipative many-body
system driven far from equilibrium can exhibit quantum entanglement. We calculate the entanglement of this
steady state for two ions in the trap and in the case of more than two ions we calculate the entanglement
between two ions by tracing over all the other ions. The entanglement in the steady state is a maximum for the
parameter values corresponding roughly to a bifurcation of a fixed point in the corresponding semiclassical
dynamics. We conjecture that this is a general mechanism for entanglement creation in driven dissipative

quantum systems.
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I. INTRODUCTION

Generically, many-body quantum systems are known to
be difficult to simulate efficiently on a classical computer.
This is because the quantum system may explore regions of
state space with nonzero entanglement, giving these systems
access to a vastly larger state space than is possible classi-
cally. In an open quantum system we may, in some circum-
stances, be able to resort to stochastic methods, such as
Monte Carlo simulations. However, this will not be possible
for open systems in which the steady state itself is entangled,
as in the example we describe here. Terhal and DiVincenzo
[1] have considered the possibility of using a quantum com-
puter to simulate open quantum systems in thermal equilib-
rium. Plenio et al. [2] have considered how decay can lead to
entanglement rather than destroying it. Cabrillo ef al. [3] dis-
cuss creating entanglement in two or more atoms, by driving
the atoms with a weak laser pulse and detecting the sponta-
neous emission. In a recent paper by Arnesen et al. [4], the
authors look at a situation where the spins in a Heisenberg
chain with an external magnetic field show entanglement in
the thermal state with nonzero temperature. In this paper we
formulate a Dicke-type model of an ion-trap quantum com-
puter, and in terms of this model analyze the irreversible
dynamics of N two-level systems.

In the following we model the behavior of an ion trap
with all ions driven simultaneously and coupled collectively
to a heat bath. The equations are similar to the so-called
Dicke model [5]. This model includes resonance fluores-
cence of a set of two-level atoms driven by a resonant co-
herent laser field as well as a collective decay mechanism.
We will first describe how a collective-decay mechanism
may be realized for N trapped ions interacting with a collec-
tive vibrational mode when the vibrational mode is subject to
controlled heating. Simulating irreversible dynamics for a
trapped ion has been previously suggested by a number of
authors [6]. By coherently driving to force the system into a
nontrivial steady state, we show that, for the case of two
ions, this steady state can be partially entangled by explicitly
calculating the Wooters entanglement measure (concurrence)
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[7]. Extending this result to many ions is not possible at
present due to the lack of a general measure of the entangle-
ment of mixed states in higher dimensions. However, we can
calculate the entanglement between two ions or atoms by
tracing over all the other ions or atoms. This will show us at
least whether entanglement is present. Interestingly, the
maximum entanglement occurs for parameter values for
which the corresponding semiclassical system undergoes a
bifurcation and loss of stability of the fixed point. We con-
jecture that the loss of stability of a semiclassical fixed point
will generically be associated with entanglement in the
steady state of the full quantum system.

II. THE MODEL

In the 1970s the Dicke model and cooperative effects
were subjects of research in various groups (see, e.g., [8—10]
and references therein). The model consists of a group of
two-level atoms, which is placed in a volume with dimen-
sions small compared to the wavelength associated with the
atom’s two-level dipole and evolves on time scales shorter

than any J2-breaking relaxation mechanism (see [8]), such as
an angular momentum system, which has collective atomic

raising and lowering operators, J, and J_ , with a fixed spin
quantum number j=N/2, where N is the number of atoms.

In the rotating frame with Markov, electric-dipole, and
rotating-wave approximations and ignoring a small atomic-
frequency shift, the master equation for the density matrix of
this group of atoms under the cooperative influence of an
electromagnetic field is [9,11,12]

WG 1 I g pid)
ot H W+ Td—p ) -pJ+— I J_pTpIiI—),
(2.1)

where () is the Rabi frequency and 7y, is the Einstein A
coefficient of each atom. This model can be solved exactly
[11] and it exhibits a critical-point nonequilibrium phase
transition for }/j= vy, in the limit {,j—o [9].
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A. Collective driving

How do we get a similar master equation to Eq. (2.1) in
an ion trap? The coherent evolution is easy: We just shine the
same laser at the carrier frequency on all the ions at the same
time, thus forcing each ion to undergo Rabi oscillations at
the same frequency. If we start initially with all the ions in
their electronic ground state |g), the ions will not leave the
Jj=N/2 space. From there we can then define collective an-
gular momentum operators in the following way:

N

j_=zl o, (2.2)
N

J.=2 ¢, (2.3)

where the raising and lowering operators for each ion are
defined by o_=|g)(e| and o, =|e){g|. With this the
Hamiltonian for simultaneous resonant driving of all the ions
can be written as

PR O N
H=ho (I, +].), (2.4)

where () is the Rabi frequency for the electronic transition.

B. Cooperative damping

For the collective-decay mechanism we need to couple
the ions equally to the same heat reservoir. In this paper we
will argue that the reservoir may be taken to be the center-
of-mass vibrational mode. It is subject to heating and we
assume that it is in a thermal state. To couple the ions to the
vibrational mode we need another laser, which, again, illu-
minates all the ions at the same time, but which is detuned
from the carrier frequency to the red region by the trap fre-
quency so that the electronic state of each atom gets coupled
simultaneously to the center-of-mass vibrational mode. This
is described by a Hamiltonian for the ith ion of the form

A

AD=1Q0,(0Va+d"a"), (2.5)

where we have introduced the bosonic annihilation operator
a for the vibrational mode and the coupling constant is (),
=7Qy. The parameter 7*=E,/(AMw,) is the Lambe-
Dicke parameter, where E, is the recoil kinetic energy of the
atom, w is the trap vibrational frequency, and M is the ef-
fective mass for the center-of-mass mode. The Lamb-Dicke
limit assumes 7n<<1, which is easily achieved in practice.
The frequency () is the effective Rabi frequency for the
electronic transition involved. This sideband transition is
used to efficiently remove thermal energy from the vibra-
tional degree of freedom. If the rate of this cooling process
can overcome heating due to external fluctuations in the trap
potential, the ion may eventually be prepared in the vibra-
tional ground state. However, in general, the vibrational state

will reach a thermal mixture, p,=Z ~'exp(—hwya'alkyT),
where Z=Ti[exp(—hwya'alkyT)], at some effective tem-
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perature 7. If the heating and cooling rates are such that the
system relaxes at a rate «, large compared with any other
time scale for ion motion, the ion can effectively be regarded
as interacting with a thermal reservoir at temperature 7. We
can also arrange that the associated rate of energy dissipation
is small, y,<<w(, which simply requires that the coupling to
the vibrational degree of freedom is weak. Finally we as-
sume that the temperature of the vibrational degree of free-
dom is such that y,<<kgT/h. Under these assumptions we
may eliminate the description of the vibrational motion from
the dynamics and obtain a master equation for the electronic

state ﬁ(i)i of the ion,

5 i
== AT+ iDL 015
+ya(n+1)DLaV]p?, (2.6)
where the superoperator is defined by
D[A][):ApAT—%(ATAﬁJrﬁATA), 2.7)

and where H is the Hamiltonian for any other reversible

electronic dynamics and 7 is the mean thermal occupation
number of the vibrational degree of freedom. In what follows

we assume that the cooling is very efficient and set n=0. At
any time we may turn off the cooling lasers, thus reducing
v4 suddenly to zero. We note that the irreversible dynamics
of the electronic state is due entirely to the interaction with
the phonons associated with the vibrational degree of free-
dom.

If the external laser field on each ion is identical (in am-
plitude and phase) the interaction Hamiltonian is

H=0Q,(al,+a'J_), (2.8)
where J and J_ are defined in Eqgs. (2.3) and (2.2). For the
case of a linear ion trap, with separately addressable ions,
identical laser fields could easily be obtained by splitting the
cooling laser into multiple beams. In this way we can simu-
late an angular momentum system with quantum number j
= N/2. This imposes a permutation symmetry on the system,
which reduces the effective Hilbert-space dimension from 2V
to 2N+ 1. Thus an exponentially large portion of the avail-
able Hilbert space, i.e., all the states with j<<N/2, is not used
in this simulation. However, it is easy to generate the rel-
evant unitary transformations to simulate the j=N/2 angular
momentum quantum system.

It is not trivial to keep the vibrational mode in a thermal
state of fixed temperature. One way of doing this was re-
cently suggested by Kielpinski et al. [13]: They propose to
put one ion, which is of a different species than all the other
ions, in the center of a string of ions, so that they have an
odd number of ions in the trap. Through this center ion,
which can be cooled at will without disturbing the coherence
of the other ions, all the other ions get sympathetically
cooled and this allows for keeping the string of ions at a
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well-defined temperature. The authors conclude that such a
scheme of sympathetic cooling is “well within the reach of
current experimental technique™ [13]. We assume for further
calculations that the center-of-mass mode is kept in such a
thermal state by the outlined technique. In the following
derivation of the master equation we do not explicitly put
laser cooling into the equation. We just assume that the vi-
brational state instantly, i.e., on a time scale fast compared to
all the other processes involved, relaxes back into the ther-
mal state.

With all these assumptions we get the master equation
describing the collective motion of the density matrix of all
the ions,

wp QL B s e e aoas s
——=—iy Uit pltyas(2Jpl =T Jip—pJ_J)
ot 2 2
ntl o . .. s
tya—(2Ipli =T p=pJido), (2.9)

where n is the mean phonon number of the vibrational

center-of-mass mode and 7A=2Q§7]2. Note that for n=0
this equation is identical to Eq. (2.1) for the Dicke model.

II1. STEADY STATE AND ENTANGLEMENT FOR j=1

With two ions we have j=1 and from the master equa-
tion, Eq. (2.9), we can write down the equation of motion for
the components of the 3 X3 density matrix of the state of the

system, taking into account that Tr(p)=1 and that p is Her-
mitian. Getting the steady state is then a matter of simple
algebra.

Once we have determined the steady state of the j=1
system, we can rewrite this state in the underlying two-qubit
basis. What we are interested in is the change of entangle-

ment in the system as the parameters y and n change. The
entanglement of two qubits is well defined [7,14,15] and we
choose the concurrence [7] as a measure for it.

A numeric evaluation of the concurrence leads to the plot
in Fig. 1. What we see is that we can get a certain amount of
entanglement in the steady state of a coherently driven sys-
tem that is coupled to a thermal reservoir. This is remarkable
as the steady state is independent of the initial state, which
can be unentangled. The coherent evolution alone does not
lead to any entanglement for an initially unentangled state
either, as it only consists of (simultaneously acting) single-
qubit rotations and no coupling between the qubits is present.
Thus the entanglement is due to the cooperative decoherence
in the system acting together with the coherent evolution.

IV. ZERO-TEMPERATURE CASE

The analysis here is restricted to the case j=1. For j

>1 and n# 0, numerical methods will need to be employed
to derive the steady state; however, in this case another prob-
lem will arise due to the fact that there is currently no mea-
sure of entanglement for N coupled qubits. Nevertheless,
other phase transitions analogous to that in the Dicke model

PHYSICAL REVIEW A 65 042107

C(p)

0.12+

0.1+

0.06+

FIG. 1. Plot of the concurrence as a measure of entanglement

depending on the parameters y=y,/{Q and n, the mean phonon
number of the thermal vibrational state.

(see, e.g., [8,9] and references therein) will appear.

For n=0 we can compare our results for the steady state
to those calculated by Puri and Lawande [16] (see also La-
wande et al. [17]). They calculate the steady state to be

2

- 1 —-m —njm yn
ps=p 2 (%) "(g) ML, (4.1)
m,n=>0
where
2
D:kZO Hyylgl (4.2)

is a normalization constant, g =i/7y, where y= y,/{) as de-
fined above, and

~(2+m+1)(m!)?
T (2=m)!2m+1)!"

4.3)

With this we can write the density matrix of the steady state
in matrix form as

1 —i\2y -2y
L1
ps=p| W2y 12y —i2y—ia2yY |,
—29% i\2y+i2\2y 14297445
(4.4)
where we have calculated D as
D=3+4y>+4* 4.5)

This gives the same result as above if we set n=0. The
concurrence for this special case is plotted in Fig. 2, but this
time we plot it against |g|=1/y as well. Thus the Dicke
model, as a special case of our model, shows entanglement
in the steady state.

To date, no definite measure of entanglement exists for
N>2 up . But we can calculate the entanglement between
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C(p) 0.12
0.1} roN
0.08}
0.06}
0.04}

0.02f

(=)

7

FIG. 2. Plot of the concurrence as a measure of entanglement
depending on the parameters |g|=1/y=Q/y, and 1/|g| =y (dashed
line) with n=0, i.e., for the Dicke model.

just two of the N ions at least for the Dicke model, where the
temperature of the bath is zero. The steady is then given by
[11,16,17]

2j  2j A NDfa N\
. 1 J_ Ji
=— — =] . 4.6

By writing this as a sum of states with angular momentum
ji=1and j,=j—1 we can trace over the part of the Hilbert
space with j,=j—1 and thus get the density matrix in the
steady state for just two ions (or atoms in the original Dicke
model). From there we can again calculate the concurrence.
This time we plot it against the relative Rabi frequency [11]
Q,=Q/(jy). We note that the maxima of the entanglement
occur close to the critical point in the cooperative limit
j,Q— of the Dicke model, i.e., around {},=1. The two-
ion entanglement is not the real measure of entanglement in
the system. Thus we cannot take the cooperative limit as the
two-ion entanglement goes to zero in this limit. However, we
note from the plots in Fig. 3 that the maximum value of the
two-ion entanglement indeed does move closer to the point
Q,=1 for increasing N.

PHYSICAL REVIEW A 65 042107

o)
0.1 (a)
0.08
0.06
0.04 (b)
0.02 . (d)
0.5 1 1.5 2
Qr =Q/(G14)

FIG. 3. Plot of the two-ion concurrence as a measure of en-
tanglement depending on the parameters Q,=Q/(jy,) for (a) j
=1, (b) j=4, (c) j=16, and (d) j=64.

V. CONCLUSION

In this paper we have demonstrated how the steady state
of a dissipative many-body system, driven far from equilib-
rium, may exhibit nonzero quantum entanglement. This re-
sult is significant for two reasons. First, the steady state is a
mixed state and the study of quantum entanglement for
mixed states is a very active field of inquiry [18]. It imme-
diately raises the question of whether the entanglement can
be distilled and used as a resource for some quantum com-
munication or computation task [19]. Second the maximum
entanglement occurs at the same parameter values for which
the semiclassical dynamics of the system undergoes a bifur-
cation of the fixed point corresponding to the quantum steady
state. At the bifurcation point the time constant associated
with the fixed point goes to zero as the bifurcation is ap-
proached. This is reminiscent of a phenomenon that charac-
terizes quantum phase transitions, in which a morphological
change in the ground state, as a parameter is varied, is asso-
ciated with a frequency gap tending to zero [20,21]. We con-
jecture that the association between the bifurcation of a fixed
point of the semiclassical description and the maximum of
entanglement will be a general feature of dissipative many-
body systems driven far from equilibrium.
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