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1 Introduction

Recently, there has been a significant breakthrough toward resolving the black hole infor-
mation paradox [1], where the entanglement islands play a critical role [2–4]. See [5] for
a good review. For simplicity, one considers the Hawking radiation emitted into a non-
gravitational bath. This can be naturally realized in doubly holographic models such as
Karch-Randall (KR) braneworld [6] and AdS/BCFT [7]. Let us take the doubly holographic
black-string model [8] as an example

ds2 = dr2 + cosh2(r)
dz2

f(z) − f(z)dt2 +
∑d−2
î=1 dy

2
î

z2 , (1.1)

where f(z) = 1− zd−1 with the horizon at z = 1, r denotes the distance to the brane, the
Karch-Randall (KR) brane Q locates at r = ρ, and the AdS boundary M is at r = −∞.
See figure 1 for the geometry, where a gravitational black hole lives on the KR brane Q, and
a non-gravitational black hole (bath) locates on the AdS boundary M .1 One imposes the

1Note that there is a black hole on the AdS boundary for the black string, which is different from the
usual double holography with AdS-Schwarzschild-like black holes in bulk.
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Figure 1. The black-string geometry and its interpretation in black hole information paradox. Q is
the KR brane with a gravitational black hole, and M is the AdS boundary with a non-gravitational
black hole (bath). I and Ī denotes the island region (purple line) and its complement (black line)
on the brane Q, R and R̄ denotes the radiation region (red line) and its complement (black line) on
the AdS boundary M , Σ is the defect (blue point) on the corner. Note that the island region I and
radiation region R envelop the black-hole horizon on Q andM , respectively. For simplicity, we only
show the regions outside the horizon. In bulk, the dotted line, blue, and orange lines indicate the
horizon, RT surfaces in the island phase, and Hartman-Maldacena (HM) surface in the no-island
phase at t = 0, respectively.

transparent boundary condition on the defect Σ so that Hawking radiation on Q can flow
into the bath on M . It proposes that one should use the following island rule to calculate
the entanglement entropy of Hawking radiation R

SEE(R) = min
{
ext
(
SQFT(R ∪ I) + A(∂I)

4ĜN

)}
, (1.2)

where one adjusts the island region I to minimize the above generalized entropy [9, 10] .
It is believed that one can extract information on the island from the radiation region R,
although they are disconnected in the lower-dimensional system Q ∪M . Interestingly, the
entanglement entropy of QFT can decrease by adding a disconnected region, i.e., SQFT(R∪
I) < SQFT(R). This quantum property is important in reducing the entropy and recovering
the Page curve. So far, exact derivations of the Page curve are limited to Jackiw-Teitelboim
gravity in two dimensions, where there are no gravitons. In higher dimensions, all reliable
discussions focus on doubly holographic models. See [11–14] for examples. See also [8, 15–
41] for some recent works on entanglement islands and Page curve.

Unfortunately, the gravity on the brane is massive in the usual double holography such
as Karch-Randall (KR) braneworld [6] and AdS/BCFT [7].2 Physically, that is because a
gravitational system on the brane Q is coupled with a non-gravitational system on the AdS
boundary M . As a result, the general covariance breakdowns, leading to a mass for the
graviton. Technically, that is because one imposes Neumann boundary condition (NBC)

2See also [42–45] for other proposals of AdS/BCFT with various boundary conditions.
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Figure 2. The geometry of wedge holography without DGP terms and its interpretation in black
hole information paradox. W is the bulk wedge space, Q1 is the weak-gravity “bath” brane and
Q2 is the strong-gravity brane, Σ is the defect on the corner of the wedge, H denotes the horizon
in bulk. According to [50], since both branes are gravitating, one should adjust both the radiation
region R (red line) and the island region I (purple line) to minimize the entanglement entropy in the
island phase. Remarkably, the corresponding RT surface Γ (blue line) coincides with the horizon
H (black dotted line). As a result, the potential island and radiation regions I and R of figure 1
disappear. Note that the island region envelops the black-hole horizon on the brane Q2, and only
the region outside the horizon disappears.

on the brane Q while imposing Dirichlet boundary condition (DBC) on the AdS boundary
M . However, according to [46], only if one sets both NBCs on the two boundaries Q and
M does the massless gravity appear. Besides, the massless mode is non-normalizable since
the AdS boundary M locates at infinity.

Naturally, we get normalizable massless gravity if we set M at a finite place as Q and
impose both NBCs on the two boundaries. This deformed double holography is called wedge
holography [47, 48].3 See figure 2 for the geometry and [49] for its generalization to codim-n
defects. Wedge holography proposes that the classical gravity in the (d + 1)-dimensional
bulkW is dual to “quantum gravity” on the d-dimensional branesQ = Q1∪Q2 and is dual to
the conformal field theory (CFT) on the (d−1)-dimensional corner Σ. Thus, it is also called
codim-2 holography. In wedge holography, the effective theory on the branes is a CFT plus
a ghost-free higher derivative gravity, or an equivalent multi-metric gravity, which behaves
like Einstein gravity in many aspects [46]. For example, they yield the same holographic
Weyl anomaly and the first law of entanglement entropy. Besides, all of the solutions to
Einstein gravity are also solutions to the effective higher derivative gravity on the branes.

Unfortunately, although we have massless gravity in wedge holography, the entangle-
ment island disappears [50, 51]. Let us explain how this happens in figure 2. According

3The original motivation of wedge holography is not to obtain massless gravity. The existence of massless
gravity in wedge holography is found in [46]. See also [50].
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Figure 3. Left: Penrose diagram on brane Q in the usual double holography (figure 1). Right:
Penrose diagram on the strong-gravity brane Q2 in wedge holography (figure 2). The black-dotted
line, green-dotted line, and the purple line or point denote the horizon, singularity and island, re-
spectively. It shows that the island shrinks into a point in the Penrose diagram of wedge holography.
In this sense, it claims that the entanglement island disappears in wedge holography.

to [50], since both branes are gravitating in wedge holography, one should adjust both
the radiation region R and the island region I to minimize the entanglement entropy of
Hawking radiation. Moreover, from the viewpoint of bulk, since the RT surface is minimal,
it is natural to adjust its intersections ∂R and ∂I on the two branes to minimize its area.
Following this approach, the RT surface (blue line) in the island phase coincides with the
horizon (dotted line) [50]. As a result, the island and radiation regions I and R of fig-
ure 1 disappear, and the entanglement entropy of radiation emitted into the bath becomes
a time-independent constant [50]. Note that the island region (purple line) envelops the
black-hole horizon on the brane Q2, and only the region outside the horizon disappears.
See also the Penrose diagram in figure 3 (right), which shows that the island shrinks into
a point in wedge holography. In this sense, we say that the entanglement island disap-
pears in wedge holography.4 Inspired by the above observation, it is conjectured that the
entanglement island can exist only in massive gravity theories [51, 52]. They argue that
the entanglement island is inconsistent with massless gravity obeying Gauss’s law. There
are controversies on this conjecture [24, 25]. According to [5], it is natural that the island
mechanism works for massless gravity. Interestingly, [53] finds that the absence-of-island
issue can be ameliorated in the large D limit.

It is a significant question whether there are entanglement islands in massless gravity.
From a practical point of view, the gravity in our universe is massless. Strict experimental

4The “island” is a broad concept in the literature. Here the island disappears in the sense of the
Penrose diagram as shown in figure 3 (right). On the other hand, if one defines the island as RT surfaces
ending on the branes [13], of course, there is an island in that sense. The critical point here is that the
entanglement entropy of Hawking radiation is a time-independent constant, and there is no Page curve in
wedge holography when there is massless gravity on the branes [50, 52].
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limits on gravity mass have also been set based on the gravitational wave, Yukawa po-
tential, dispersion relation, and modified gravity theories [54, 55]. Thus, addressing the
information paradox in the real world is more crucial and necessary than in a toy model of
massive gravity. From a theoretical point of view, massive gravity suffers the non-causal
problem. Although the ghost-free theory can be constructed [56], massive gravity admits
superluminal shock wave solutions and thus violates causality generally [57]. It is not sat-
isfactory if the island rule applies only to an acausal theory. This paper gives a positive
answer to the above question. We find that massless entanglement islands can exist in
wedge holography with Dvali-Gabadadze-Porrati (DGP) gravity [58] or higher derivative
gravity on the branes. It helps to clarify the theoretical controversy and strongly implies
that the entanglement island is consistent with massless gravity theories.

This paper investigates many aspects of wedge holography with DGP terms. We find
that there is normalizable massless gravity on the branes. By analyzing effective Newton’s
constants, brane bending modes, and holographic entanglement entropy, we obtain several
lower bounds for the DGP parameters. Interestingly, the DGP parameters can be negative.
We discuss the Page curve for eternal two-side black holes in this paper. For simplicity, we
show only one side of the systems in most figures (figure 1, figure 2, figure 7, figure 13). One
can double these figures for the two-side geometry as in figure 1 of [8]. We discuss two dif-
ferent situations. In case I shown in figure 7, we take approximately the black hole on weak-
gravity brane Q1 as the “bath” and focus on the Hawking radiation of the black hole on the
strong-gravity brane Q2. Following [50], the primary purpose of this approximation is to
mimic the usual case with a non-gravitating bath. We call it “case I: one black hole approx-
imately” in section 3. One may ask what happens if we take the two black holes on Q1∪Q2
seriously. This is the motivation we further consider case II, shown in figure 13. The two
branes have equal gravitational strength in case II. Thus, there is no natural way to choose
which black hole is the “bath” black hole, and we name it “case II: two black holes” in sec-
tion 4. We recover massless entanglement islands and Page curves in both cases. We argue
that the entanglement islands can consistently exist in the brane-world models of massless
gravity. Finally, we generalize the results to higher derivative gravity on the branes.

The paper is organized as follows. In section 2, we formulate wedge holography with
DGP gravity on the brane. Then, we show massless gravity on the branes and get several
lower bounds for the DGP parameter. Section 3 discusses the entanglement island and
the Page curve in case I: one strong-gravity black hole coupled with a weak-gravity bath
black hole. Section 4 generalizes the discussions to case II: two black holes associated with
two strong-gravity baths. Section 5 discusses the possible resolutions to the puzzle of the
massless island raised by [51]. Section 6 generalizes the discussions to higher derivative
gravity on the branes. Finally, we conclude with some open problems in section 7.

Note that parts of the results have been shown in the letter [59]. We give more details
and new developments in this paper. The new results include the mass spectrum, brane
bending mode, holographic entanglement entropy, details for calculations of Page curves,
an inspiring analog of the island puzzle and its possible resolutions in AdS/CFT, and
generalizations to higher derivative gravity on the branes.
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2 Wedge holography with DGP terms

This section investigates the wedge holography with DGP gravity on the brane. First,
we work out the effective action for one novel class of solutions and verify that there is
normalizable massless gravity on the brane. We get a lower bound of the DGP parameter
to have a positive effective Newton’s constant. Second, we find the mass spectrum on the
brane obeys the Breitenlohner-Freedman boundm2 ≥ −(d−1)2/4, so the system is tachyon-
free. Third, we derive the effective action of brane bending modes, which yields another
lower bound of the DGP parameter. Finally, we discuss the holographic entanglement
entropy and get an additional lower bound of the DGP parameter.

Let us recall the geometry of wedge holography shown in figure 2, where W is the bulk
wedge space, Q = Q1 ∪Q2 denote two end-of-the-world branes, Σ labels the corner of the
wedge, where the defect lives. Let us take a typical metric to illustrate the geometry

ds2 = dr2 + cosh2(r)
dz2 − dt2 +

∑d−2
î=1 dy

2
î

z2 , −ρ1 ≤ r ≤ ρ2, (2.1)

where the left brane Q1, the right brane Q2, and the defect Σ locate at r = −ρ1, r = ρ2
and z = 0, respectively. Wedge holography has three equivalent descriptions:

1. a classical gravity coupled with two branes in the (d+ 1)-dimensional bulk W ,

2. a “quantum gravity” coupled with CFTs on the d-dimensional branes Q = Q1 ∪Q2,

3. a CFT on the (d− 1)-dimensional defect Σ.

Now we quickly formulate wedge holography with DGP gravity on the branes. The
action is given by

I =
∫
W
dxd+1√−g

(
RW + d(d− 1)

)
+ 2

∫
Q
dxd

√
−hQ(K − Ta + λaRQ), (2.2)

where RW is the Ricci scalar in bulk W , K is the extrinsic curvature, hQ ij and RQ are the
induced metric and the intrinsic Ricci scalar (DGP term) on the branes Q = Q1 ∪Q2, and
Ta and λa with a = 1, 2 are free parameters. For simplicity, we have set Newton’s constant
16πGN = 1 together with the AdS radius L = 1. Following [7], we choose Neumann
boundary condition (NBC) on Q

Kij − (K − Ta + λaRQ)hijQ + 2λaRijQ = 0, (2.3)

which yields a massless gravitational mode on the brane [46]. On the other hand, the gravity
becomes massive if one imposes Dirichlet boundary condition (DBC) [44] or conformal
boundary condition (CBC) [45] on one or two of the branes. In general, it isn’t easy to
find exact solutions which satisfy both Einstein equations in bulk and NBC (2.3) on the
boundary.

– 6 –
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Figure 4. The lower bound λcri(ρ) in various dimensions. The larger the spacetime dimension is,
the larger the lower bound is.

2.1 Effective action

Fortunately, there is one novel class of exact solutions [48]

ds2 = dr2 + cosh2(r)hij(y)dyidyj , −ρ1 ≤ r ≤ ρ2, (2.4)

if hij obeys Einstein equations on the brane

Rh ij −
Rh + (d− 1)(d− 2)

2 hij = 0, (2.5)

and the brane tensions are given by

Ta = (d− 1) tanh(ρa)− λa
(d− 1)(d− 2)

cosh2(ρa)
. (2.6)

Note that Rh of (2.5) denotes Ricci scalar defined by hij , which is different from RQ defined
by hQ ij = cosh(ρa)hij . Substituting the metric (2.4) into the action (2.2) and integrating
r, we get an effective action on each brane

Ia = 1
16πGaeff N

∫
Qa

√
−h
(
Rh + (d− 1)(d− 2)

)
, (2.7)

where Rh is the Ricci scalar defined by hij and Gaeff N denotes the effective Newton’s
constant

1
16πGaeff N

= 2λa coshd−2(ρa) +
∫ ρa

0
coshd−2(r)dr. (2.8)

In the above derivations, we have used (2.6), K = d tanh ρa, hQ ij = cosh2(ρa)hij , RQ =
sech2(ρa)Rh and

RW = Rhsech2(r)− d
(
2 + (d− 1) tanh2 r

)
. (2.9)

From the EOM (2.5) and effective action (2.7), it is clear that there is massless gravity
on the branes. We require that the effective Newton’s constant (2.8) is positive, which
yields a lower bound on the DGP parameter

λa ≥ λcri(ρa) = −1
2

∫ ρa

0

coshd−2(r)
coshd−2(ρa)

dr. (2.10)

– 7 –
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We draw λcri(ρ) in figure 4, which shows that λcri has a lower bound too

λcri(ρa) &


−1

2 , for d = 3,
−0.300, for d = 4,
−0.236, for d = 5.

(2.11)

The larger the spacetime dimension is, the larger the lower bound is. In the large d limit,
λcri approaches zero, i.e., limd→∞ λcri → 0.

2.2 Mass spectrum

In this subsection, we study the mass spectrum of gravitons on the branes in wedge holog-
raphy with DGP terms. We find the mass spectrum obeys Breitenlohner-Freedman bound
m2 ≥ −(d−1)2/4. In particular, it includes a massless mode, which agrees with the results
of the last subsection. We focus on the fixed brane locations in this subsection, which yield
m2 ≥ 0. We leave the discussions of brane bending modes with m2 = −(d − 2) to the
following subsection.

We take the following ansatz of the perturbation metric and the embedding function
of Q

ds2 = dr2 + cosh2(r)
(
h

(0)
ij (y) + εH(r)h(1)

ij (y)
)
dyidyj +O(ε2), (2.12)

Q1 : r = −ρ1 +O(ε2), Q2 : r = ρ2 +O(ε2), (2.13)

where h(0)
ij (y) is the AdS metric with a unit radius and h(1)

ij (y) denotes the perturbation, ε
denotes the order of perturbations. In terms of bulk metric perturbations, we have

δgrµ = 0, δgij = cosh2(r)H(r)h̄(1)
ij (y). (2.14)

Imposing the transverse traceless gauge

∇µδgµν = 0, gµνδgµν = 0, (2.15)

we get
Dih

(1)
ij = 0, h(0)ijh

(1)
ij = 0, (2.16)

where ∇µ and Di are the covariant derivatives with respect to gµν and h(0)
ij , respectively.

Substituting (2.12) and (2.16) into Einstein equations and separating variables, we obtain(
�+ 2−m2

)
h

(1)
ij (y) = 0, (2.17)

cosh2(r)H ′′(r) + d sinh(r) cosh(r)H ′(r) +m2H(r) = 0, (2.18)

where m denotes the mass of gravitons and � = DkD
k is the d’Alembert operator defined

by h(0)
ij . Solving (2.18), we derive

H(r) = sech
d
2 (r)

(
c1P

d
2
λg

(tanh r) + c2Q
d
2
λg

(tanh r)
)
, (2.19)

– 8 –
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where P
d
2
λg

and Q
d
2
λg

are the Legendre polynomials, c1 and c2 are integral constants and λg
is given by

λg = 1
2

(√
(d− 1)2 + 4m2 − 1

)
, (2.20)

which yields the correct Breitenlohner-Freedman bound of massive gravity in AdSd

m2 ≥ −
(
d− 1

2

)2
. (2.21)

By using EOM (2.17), we can simplify the NBC (2.3) as

cosh2 (ρ1)H ′ (−ρ1) + 2λ1m
2H (−ρ1) = 0, (2.22)

cosh2 (ρ2)H ′ (ρ2)− 2λ2m
2H (ρ2) = 0. (2.23)

Substituting the solution (2.19) into (2.22), (2.23), we derive a constraint for the mass

m2(M00 +M10λ1 +M01λ2 +M11λ1λ2
)

= 0, (2.24)

with

M00 =
√

1− x2
1

√
1− x2

2

(
P

d
2−1
λg

(x2)Q
d
2−1
λg

(−x1)− P
d
2−1
λg

(−x1)Q
d
2−1
λg

(x2)
)
, (2.25)

M10 = 2
(
x2

1 − 1
)√

1− x2
2

(
P

d
2
λg

(−x1)Q
d
2−1
λg

(x2)− P
d
2−1
λg

(x2)Q
d
2
λg

(−x1)
)
, (2.26)

M01 = 2
√

1− x2
1

(
x2

2 − 1
)(

P
d
2
λg

(x2)Q
d
2−1
λg

(−x1)− P
d
2−1
λg

(−x1)Q
d
2
λg

(x2)
)
, (2.27)

M11 = −4
(
x2

1 − 1
) (
x2

2 − 1
)(

P
d
2
λg

(x2)Q
d
2
λg

(−x1)− P
d
2
λg

(−x1)Q
d
2
λg

(x2)
)
, (2.28)

where x1 = tanh ρ1, x2 = tanh ρ2 and λg is given by (2.20). From (2.24), we notice a
massless mode with m2 = 0, which agrees with the results of the last subsection. There
is an easier way to see that there is a massless mode. Clearly, H(r) = 1 and m2 = 0
are solutions to EOM (2.18) and BCs (2.22), (2.23). Furthermore, this massless mode is
normalizable ∫ ρ2

−ρ1
dr coshd−2(r)H(r)2 is finite. (2.29)

Thus, there is indeed a physical massless gravity on the brane in wedge holography with
DGP terms. On the other hand, the massless mode is non-normalizable due to the infinite
volume in the usual double holography∫ ρ2

−∞
dr coshd−2(r)H(r)2 →∞. (2.30)

Naively, one can check that m2 = −(d−2) is also a solution to (2.24). However, this is
not the case. According to [45], (2.19) is no-longer the general solution for m2 = −(d− 2).
Instead, one should re-solve EOM (2.18) with m2 = −(d − 2) to get the general solution.
One can check this solution does not satisfy the NBCs (2.22), (2.23) at fixed brane positions.
Instead, they correspond to the brane bending modes, allowing the brane positions to

– 9 –
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1 2 3 4 5
m2 for λa = 0.1 0 5.124 25.011 61.667 117.415
m2 for λa = −0.1 0 22.511 74.747 149.216 245.281

Table 1. Mass spectrum for d = 3.

1 2 3 4 5
m2 for λa = 0.1 0 4.776 24.950 61.837 117.742
m2 for λa = −0.1 0 22.721 75.211 149.764 245.866

Table 2. Mass spectrum for d = 4.

change. We will discuss the brane bending modes in the next subsection. To end this
subsection, we list the mass spectrum in table 1 and table 2 below. Without loss of
generality, we take ρa = 0.5, λa = 0.1 and ρa = 0.5, λa = −0.1 as examples. Table 1 and
table 2 show that the mass m and mass gap ∆m become larger for negative λa. Thus,
Einstein’s gravity is a better approximation at the low energy scale as the brane effective
theory for negative λa. That is because the massive mode is more difficult to be excited
due to the more significant mass gap for negative λa.

2.3 Brane bending mode

Let’s study the brane bending modes [60, 61]. In the last subsection, we focus on the fixed
brane locations (2.13). In general, there are fluctuations for the brane positions

Q1 : r = −ρ1 − ε φ1(y), Q2 : r = ρ2 − ε φ2(y). (2.31)

We assume that the metric perturbation is still given by (2.12) with the gauge (2.16). By
using (2.12), (2.16), (2.17), (2.31), we can simplify the NBC (2.3) as

(
− 1

2 cosh2(ρ1)H ′(−ρ1)− λ1H(−ρ1)m2
)
h

(1)
ij

−
(
DiDjφ1 − (�+ (1− d))φ1h

(0)
ij

)
(1 + 2(d− 2)λ1 tanh ρ1) = 0, (2.32)(1

2 cosh2(ρ2)H ′(ρ2)− λ2H(ρ2)m2
)
h

(1)
ij

+
(
DiDjφ2 − (�+ (1− d))φ2h

(0)
ij

)
(1 + 2(d− 2)λ2 tanh ρ2) = 0, (2.33)

where � is the d’Alembert operator defined by h
(0)
ij . Note that (2.32), (2.33) agree

with (2.22), (2.23) at fixed brane locations, i.e., φ1 = φ2 = 0. Taking the trace
of (2.32), (2.33) and using h(1)i

i = 0, we derive

(�− d)φa = 0, (2.34)

– 10 –
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where a denotes 1, 2. The traceless parts of (2.32), (2.33) give

h
(1)
ij = −2 (2(d− 2)λ1 tanh (ρ1) + 1)

cosh2 (ρ1)H ′ (−ρ1) + 2λ1m2H (−ρ1)

(
DiDj −

1
d
h

(0)
ij �

)
φ1, (2.35)

h
(1)
ij = 2 (2(d− 2)λ2 tanh (ρ2) + 1)

2λ2m2H (ρ2)− cosh2 (ρ2)H ′ (ρ2)

(
DiDj −

1
d
h

(0)
ij �

)
φ2, (2.36)

which implies that φ1 and φ2 are not independent generally. Substituting either (2.35)
or (2.36) into (2.17), we derive

m2 = −(d− 2), (2.37)

where we have the following formula [61] in the above calculations(
�+ 2 + (d− 2)

)(
DiDj −

1
d
h

(0)
ij �

)
φa =

(
DiDj −

1
d
h

(0)
ij �

)
(�− d)φa = 0. (2.38)

Thus, the brane bending modes produce a metric perturbation (2.35), (2.36) with m2 =
−(d− 2).

Note that, for the ansatz of bulk metric (2.12) with gauge (2.16), the bending modes
φ1 and φ2 are not independent. One may consider a more general ansatz of the metric per-
turbation with non-zero δgri to have independent brane bending modes.5 Or equivalently,
one chooses two coordinate patches, the first (second) of which includes only the left (right)
brane. In each coordinate patch, the bulk metric is still given by (2.12). An additional
coordinate transformation is needed to relate the metrics in the overlap of these patches.
See [62] for more discussions. For simplicity, we focus on the case of one independent brane
bending mode in this paper. We discuss the left and right bending modes, respectively.
Take the left one as an example. We choose

Q1 : r = −ρ1 − ε φ1(y), Q2 : r = ρ2, (2.39)

and impose the BC for H(r)

−2 (2(d− 2)λ1 tanh (ρ1) + 1)
cosh2 (ρ1)H ′ (−ρ1) + 2λ1m2H (−ρ1)

= 1, (2.40)(1
2 cosh2(ρ2)H ′(ρ2)− λ2H(ρ2)m2

)
= 0. (2.41)

Then we get the metric perturbation (2.35)

h
(1)
ij =

(
DiDj −

1
d
h

(0)
ij �

)
φ1 (2.42)

with m2 = −(d− 2). Similarly, one can obtain the bending mode for the right brane.
Now let us study the effective action for the brane bending mode. It is more convenient

to take another ansatz of the bulk metric instead of (2.12). By performing suitable coor-
dinate transformations, one can rewrite the metric (2.12) with h(1)

ij ∼
(
DiDj − 1

dh
(0)
ij �

)
φ

5Near one brane, we may remove δgri by suitable coordinate transformations. However, generally, one
cannot delete δgri near both branes.
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into the following form [62]. See also [63].

ds2 =
(
1 + εH1(r)φ(y)

)
dr2 +

(
1 + εH2(r)φ(y)

)
cosh2(r)h(0)

ij dy
idyj , (2.43)

where φ(y) denotes the brane bending mode, H1(r) and H2(r) are functions to be deter-
mined. Compared with (2.12), the metric (2.43) has the advantage that it includes less
derivatives of φ. Solving Einstein equations at the linear order, we obtain

H1(r) = −c1(d− 2)sechd−2(r), H2(r) = c1sechd−2(r), (2.44)

and
(�− d)φ = 0, (2.45)

where c1 is an integral constant. Comparing (2.45) with (2.34), we see that φ obeys the
EOM of the brane bending mode. In fact, φ indicates the relative motion of the two branes,
which is called the radion [62, 63].

Let us go on to derive the location of the two branes. Substituting the embedding
functions (2.31) into the NBC (2.3), we solve

φ1 = − c1(d− 2)λ1sechd−2 (ρ1)
1 + 2(d− 2)λ1 tanh (ρ1)φ, φ2 = c1(d− 2)λ2sechd−2 (ρ2)

1 + 2(d− 2)λ2 tanh (ρ2)φ. (2.46)

Substituting the bulk metric (2.43), (2.44) together with the embedding functions of
branes (2.31), (2.46) into the action (2.2) and integrating along r, we finally obtain the
squared action of the radion

Iφ = B c2
1ε

2
∫
dyd

√
−h(0)

(
− 1

2DiφD
iφ− d

2φ
2
)
, (2.47)

where B is given by

B =
2∑

a=1

((d− 1)(d− 2)
2

∫ ρa

0
dr sechd−2(r) + (d− 1)(d− 2)sechd−2 (ρa)

1 + 2(d− 2)λa tanh (ρa)
λa

)
. (2.48)

Note that we have drop some total derivative terms in the above derivations. In particular,
the linear action of φ is a total derivative as expected. From the action (2.47), we can
derive the correct EOM of φ (2.45). This can be regarded as a test of our calculations. To
have the positive kinetic energy, we require that

B ≥ 0, (2.49)

which imposes another constraint on the parameters (ρa, λa). Now we have obtained two
constraints (2.10) and (2.49) for the parameters of our model.

2.4 Holographic entanglement entropy

In this subsection, we study the holographic entanglement entropy (HEE) [65] for CFTs
on the (d− 1)-dimensional defect Σ in wedge holography with DGP gravity. We focus on
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Figure 5. Various lower bounds of the DGP parameter λ2 for ρ1 = 0.5, λ1 = 0, d = 4, i.e.,
λ2 ≥ λcri. The blue, orange, green, red curves denote the lower bounds derived from HEE (2.55),
brand bending modes (2.48), effective Newton’s constants (2.8), respectively. Here 1

G = 1
G1

+ 1
G2

,
and G1, G2 are the effective Newton’s constants on the two branes. It shows that the Newton’s
constant G2 and HEE impose the strongest constraint for ρ2 < 0.638, and ρ2 > 0.638, respectively.
In the large tension limit ρ2 →∞, all lower bounds approach to λcri → −1/(2(d− 2)).

Figure 6. Various lower bounds of the DGP parameter λ2 for ρ1 = 0, λ1 = 0, d = 4, i.e., λ2 ≥ λcri.
The blue, orange, green curves denote the lower bounds derived from HEE (2.55), brane bending
modes (2.48), effective Newton’s constants (2.8), respectively. It shows that the HEE impose the
strongest lower bound of λ2. In the large tension limit ρ2 → ∞, all lower bounds approach to
λcri → −1/(2(d− 2)).
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the vacuum state on the whole defect Σ for simplicity. Since it is a pure state, the HEE is
expected to be zero,6 which causes another lower bound of the DGP parameter.

From the action (2.2), we read off HEE

SHEE = min
{
ext
(

4π
∫

Γ
dxd−1√γ + 8π

∫
∂Γ
dxd−2√σλa

)}
, (2.50)

where Γ denote the RT surface in the bulk, ∂Γ = Γ∩Q is the intersection of the RT surface
and the brane Q, γ and σ represent the induced metric on Γ and ∂Γ respectively. Since we
are interested in the vacuum state of the defect, we focus on the AdS space (2.1) in bulk.
Substituting the embedding functions z = z(r) and t = constant into the AdS metric (2.1)
and entropy formula (2.50), i.e., SHEE = 4πA, we get the area functional of RT surface

A =
∫ ρ2

−ρ1
dr

coshd−2(r)
z(r)d−2

√
1 + cosh2(r)z′(r)2

z(r)2 +
2∑

a=1

2λa coshd−2(ρa)
zd−2
a

, (2.51)

where we have set the tangential volume V =
∫
dyd−2 = 1, and za = z((−)aρa) denotes

the endpoints of the RT surfaces on the branes. Taking variations of (2.51), we derive the
Euler-Lagrange equation

z2 cosh(r)
(
d sinh(r)z′ + cosh(r)z′′

)
+ (d− 2)z3

+(d− 3)z cosh2(r)
(
z′
)2 + (d− 1) sinh(r) cosh3(r)

(
z′
)3 = 0 (2.52)

and NBC on the branes
(−)az′a√

z2
a + cosh2(ρa)z′2a

= 2λa(d− 2)
cosh2(ρa)

. (2.53)

Note that the AdS metric (2.1) is invariant under the rescale z → cz. Due to this rescale
invariance, if z = z0(r) is an extremal surface, so does z = cz0(r). Under the rescale z → cz,
the area functional (2.51) transforms as A→ A/cd−2. Recall that the RT surface is the ex-
tremal surface with minimal area. By choosing c→∞, we get the RT surface z = cz0(r)→
∞ with zero area A = A0/c

d−2 → 0, provided A0 is positive. Here A0 denotes the area of the
input extremal surface z = z0(r) <∞. On the other hand, if A0 is negative for sufficiently
negative λa, the RT surface is given by choosing c→ 0 so that A = A0/c

d−2 → −∞. To rule
out this unusual case with negative infinite entropy, we must impose a lower bound on λa.

For simplicity, we focus on the case with λ1 = 0 and discuss how to derive the lower
bound of λ2. The approach is as follows. We take an arbitrarily start point 0 < z1 =
z(−ρ1) <∞ on the left brane Q1, and impose the orthogonal condition z′1 = z′(−ρ1) = 0,
then we solve EOM (2.52) to determine the extremal surface z = z0(r) numerically. By
requiring the corresponding area A0 (2.51) is non-negative, we obtain a lower bound

λ2 ≥ λHEE, (2.54)
6Note that we are studying regularized finite HEE since the branes locate at a finite place instead of

infinity. Similar to Casimir energy, the regularized HEE can be negative in principle. As a result, we can
relax the constraint and require that the HEE is bounded from below. Interestingly, this relaxed constraint
yields the same lower bound for the DGP parameter as zero HEE.
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where λHEE is derived from A0 = 0. Note that A0 = 0 means that the corresponding
extremal surface is the RT surface with minimal area. As a necessary condition, it should
satisfy the NBC (2.53) on the right brane Q2. From (2.53), we derive

λHEE(ρ2) = cosh2(ρ2)z′2
2(d− 2)

√
cosh2(ρ2)z′22 + z2

2

, (2.55)

where z2 = z(ρ2) is the endpoint on the right brane Q2. Due to the rescale invariance of
AdS, any input start point z1 = z(−ρ1) gives the same λHEE (2.55). In other words, there
are infinite zero-area RT surfaces, which obey NBCs on both branes. It is similar to the
case of AdS3 in AdS/BCFT. On the other hand, for λ > λHEE, the RT surface locates only
at infinity, i.e., z →∞. And the NBC (2.53) can be satisfied only at infinity for λ2 > λHEE.
Please see blue curves of figure 5 and figure 6 for the lower bound λHEE(ρ2). In figure 5 with
ρ1 = 0.5 and d = 4, we notice that Newton’s constant G2 imposes the strongest lower bound
for ρ2 < 0.638, while HEE imposes the strongest lower bound for ρ2 > 0.638. In figure 6
with ρ1 = 0 and d = 4, we find that HEE always gives the strongest lower bound for λ2.

In summary, we have discussed various constraints of the DGP parameters from effec-
tive Newton’s constants, brane bending modes, and HEE. We find that HEE imposes the
strongest lower bound of λ2 for sufficiently large ρ2.

3 Page curve of case I: one black hole approximately

The above section investigates some aspects of wedge holography with DGP gravity (DGP
wedge holography) on the branes. In particular, we find that there is massless gravity on
the branes, and we get several constraints (2.10), (2.49), (2.54) for the parameters (ρa, λa).
This section studies the Page curve in DGP wedge holography for case I. We focus on the
eternal two-side black hole, which is dual to the thermofield double state of CFTs [64]. See
figure 7 for one side of the system at the time slice t = 0. See also figure 8 for the Penrose
diagram of the two-side black holes on the branes.

Let us focus on the black string in bulk

ds2 = dr2 + cosh2(r)
dz2

f(z) − f(z)dt2 +
∑d−2
î=1 dy

2
î

z2 , −ρ1 ≤ r ≤ ρ2, (3.1)

where f(z) = 1 − zd−1, the weak-gravity brane Q1 and strong-gravity brane Q2 locate at
r = −ρ1 and r = ρ2, respectively. See figure 7 for the geometry. Note that there are two
black holes on the branes Q1∪Q2. Following [50], we take the black hole on the weak-gravity
brane Q1 as the bath approximately. Since both branes are gravitating, we should adjust
both the radiation region R (red line) and the island region I (purple line) to minimize the
entanglement entropy of the radiation R [50]. Once this approach determines the radiation
region R, we can follow the usual procedure to calculate the entanglement entropy of R,
which is given by the Hartman-Maldacena (HM) surface (orange curve of figure 7) at early
times and given by RT surface in the island phase (blue curve of figure 7) at late times.

To warm up, we start with wedge holography without DGP gravity. See figure 2 for
the geometry. We first investigate the island phase, where the RT surface ends on the
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Figure 7. Geometry for case I: one black hole approximately. Q1 denotes the bath brane with
weak gravity, and Q2 is the AdS brane with intense gravity. The red and black lines denotes the
radiation R and its complement R̄ on the left brane, the purple and black lines denotes the island
I and its complement Ī on the right brane. The island region I and radiation region R envelop the
black-hole horizon on Q1 ∪Q2. For simplicity, we only show the regions outside the horizon. The
dotted line, blue, and orange lines in the bulk indicate the horizon, RT surface in the island phase
and HM surface in the no-island phase at t = 0, respectively.

Figure 8. Penrose diagram on the branes for case I: one two-side black hole approximately. The
left and right vertical lines are glued together. The black-dotted, green-dotted, red, and purple
lines denote the horizon, singularity, radiation region, and island region, respectively. The black
lines linking R and I represent R̄ ∪ Ī.
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branes and stays outside the horizon. Assuming the embedding function z = z(r) and
t = constant, from (3.1) we derive the area functional of the RT surface

AI = V

∫ ρ2

−ρ1
dr

coshd−2(r)
z(r)d−2

√
1 + cosh2(r)z′(r)2

z(r)2f(z(r)) , (3.2)

where I means the island phase, and V =
∫
dyd−2 denotes the tangential volume. From

0 ≤ z(r) ≤ 1 and f(z) ≥ 0, we derive an inequality

AI ≥ V
∫ ρ2

−ρ1
dr coshd−2(r) = ABH, (3.3)

where ABH is the horizon area in bulk. The above inequality shows that the area func-
tional (3.2) minimizes on the horizon z(r) = 1. In other words, as shown in figure 2, the RT
surface (minimal area surface) coincides with the horizon in the island phase. Comparing
figure 1 with figure 2, we notice that the island region I in the usual double holography
disappears in wedge holography without DGP terms.7 Now we reproduce the results of [50]
in a simpler method.

3.1 Island phase

Let us go on to discuss the island phase in wedge holography with DGP gravity on the
branes. We find a non-trivial RT surface outside the horizon and, thus a non-trivial island
region for suitable DGP terms. See figure 7 for the geometry at a time slice.

For the DGP wedge holography, the area functional becomes

AI = SHEE
4π = V

∫ ρ2

−ρ1
dr

coshd−2(r)
z(r)d−2

√
1 + cosh2(r)z′(r)2

z(r)2f(z(r)) + V
2∑

a=1

2λa coshd−2(ρa)
zd−2
a

, (3.4)

where za = z((−)aρa) denotes the endpoints of the RT surfaces on the branes. To have a
well-defined variational principle for (3.4), we can impose either Dirichlet boundary condi-
tion (DBC) δza = 0 or NBC on each brane

(−)az′a

f(za)
√

1 + cosh2(ρa)z′2a
z2

af(za)

= 2λa(d− 2)za
cosh2(ρa)

. (3.5)

Usually, NBC yields a smaller area than DBC since it allows the endpoint of the RT surface
to move on the brane. From (3.4), we derive the Euler-Lagrangian equation

cosh2(r)
(
z′
)2 ((d− 1) sinh(2r)z′ − (d− 5)zd + 2(d− 3)z

)
+2(d− 2)z

(
z − zd

)2
− 2z

(
zd − z

)
cosh(r)

(
d sinh(r)z′ + cosh(r)z′′

)
= 0, (3.6)

where we abbreviate z(r) by z to simplify the above equation.
Note that the first term of the area functional (3.4) decreases with z(r), while the

second term of (3.4) increases with za for negative DGP parameters λa. These two terms
7We mean the region outside the horizon disappears.
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compete and can yield non-trivial RT surfaces outside the horizon, i.e., z(r) < 1. As a
result, the island region becomes non-zero for negative λa, as shown in figure 7.

Let us take the method of [50] to understand why DGP gravity can recover the entan-
glement islands. Without the DGP terms, as a minimal area surface, the RT surface should
end orthogonally on both branes, i.e., z′a = 0. This orthogonal condition rules out all of the
extremal surfaces except the horizon [50]. When the DGP gravity appears, the orthogonal
condition breakdowns [13], i.e., z′a 6= 0. See the NBC (3.5), which gives z′a ∼ λa 6= 0. As
a result, the no-go theorem based on z′a = 0 disappears. That is why there could be non-
trivial RT surfaces outside the horizon, equivalently, non-vanishing entanglement islands.

Now we show how to construct the RT surface outside the horizon exactly. To do so,
we turn the logic around. Suppose we have solved a series of extremal surfaces outside the
horizon from the EOM (3.6). For any extremal surface, we can derive za, z′a on the branes
and obtain λa from NBC (3.5). Let us return to our problem. For the DGP parameters
λa fixed above, the RT surface is just the input extremal surface outside the horizon
because it satisfies both the Euler-Langrangian equation (3.6) and NBC (3.5). We should
further check that the extremal surface is minimal instead of maximal. As shown below,
we can always do so by choosing suitable parameters. Now we finish the construction of
entanglement islands in wedge holography with DGP gravity on the branes.

Let us study an exact example. Without losing generality, we choose the parameters

ρ1 = 0.5, λ1 = 0, ρ2 = 1.2, λ2 ≈ −0.246, d = 4, V = 1, (3.7)

which obey the constraints from Newton’s constants (2.10)

0 < G1
eff N ≈ 0.037 < G2

eff N ≈ 0.056, (3.8)

brane bending modes (2.49) and HEE (2.54)

B ≈ 1.391 > 0, λ2 > λHEE ≈ −0.250. (3.9)

Note that we show only three valid digits after the decimal point in this paper. In the
numerical calculations, we keep more valid numbers. For instance, we have λ2 ≈ −0.245829.

Naturally, we choose the left brane as the bath brane since it has a smaller effective
Newton’s constant 3.8, i.e., G1

eff N < G2
eff N. Solving the Euler-Langrangian equation (3.6)

together with NBC (3.5), we obtain numerically the RT surface z(r), which starts at
z1 ≈ 0.950 on the left brane and ends at z2 ≈ 0.484 on the right brane. Please see figure 9.
Let us show more details of the numerical calculations. We impose BCs z = z1 and z′1 = 08

on the left brane, and adjust the left endpoint z1 so that the NBC (3.5) on the right brane
is satisfied. It is the so-called shooting method. In this way, we derive the RT surface
shown in figure 9. There is another method to calculate the RT surface. For any given
0 ≤ z1 ≤ 1 and z′1 = 0, we can solve the extremal surface and its area AI (3.4). We adjust
the left endpoint z1 to minimize the area AI. See figure 10 for AI(z1), which shows the
area AI becomes minimal at z1 ≈ 0.950. From the RT surface with z1 ≈ 0.950, we derive

8Recall that we have chosen λ1 = 0, which gives z′1 = 0 from (3.5).
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Figure 9. The RT surface z(r) in the island phase, which starts at z1 ≈ 0.950 on the left brane
r = −0.5 and ends at z2 ≈ 0.484 on the right brane r = 1.2. It shows that z′

1 ∼ −λ1 = 0 and
z′

2 ∼ λ2 < 0, which agrees with our parameters (3.7) and NBC (3.5).

Figure 10. Relation between the area AI and the endpoint z1 on the left brane, which shows that
area functional (3.4) becomes minimal at z1 ≈ 0.950.

the right endpoint z2 ≈ 0.484 and its derivative z′2 ≈ −0.150. We verify that the obtained
z2 and z′2 satisfy the NBC (3.5), which agrees with the first method. The second method
has the advantage that it is clear that the obtained RT surface is minimal rather than
maximal. See figure 10 again.

With the above numerical results, we derive the area of RT surface

AI ≈ 0.842 < ABH ≈ 0.898, (3.10)

which is smaller than the black hole area. Thus there is indeed a nontrivial RT surface
outside the horizon. Note that ABH includes the contributions from DGP terms. Note
also that we focus on half of the two-side black hole in (3.10). Recall that the RT surface
ends on z1 ≈ 0.950 and z2 ≈ 0.484 on the left and right brane, respectively. According to
figure 7, it means the radiation region lies in z ≥ z1 ≈ 0.950 on the left brane, and the
island region locates at z ≥ z2 ≈ 0.484 on the right brane. Clearly, the island region is
non-zero in wedge holography with DGP terms.
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3.2 No-island phase

In this subsection, we discuss the RT surface in the no-island phase, which is also called
the Hartman-Maldacena (HM) surface. The HM surface starts at z1 ≈ 0.950 on the left
weak-gravity brane, ends on the horizon at the beginning time t = 0, and then passes the
horizon at t > 0. Let us first study the case at t = 0 (orange line of figure 7). By varying
the endpoint on the horizon, we get the HM surface with the minimal area

AN ≈ 0.384 < AI ≈ 0.842, at t=0, (3.11)

where N labels the no-island phase. Since AN < AI at t = 0, the no-island phase dominates
at the beginning.

As the black hole evolves, the HM surface crosses the horizon. To avoid coordinate
singularities, we choose the infalling Eddington-Finkelstein coordinate dv = dt − dz

f(z) .
Substituting the embedding functions v = v(z), r = r(z) into the metric (3.1) and entropy
formula (2.50), we get the area functional

AN = SHEE
4π = V

∫ zmax

z1
dz

coshd−2(r)
zd−2

√
r′2 − cosh2(r)

z2 v′(2 + f(z)v′), (3.12)

and the time on the left bath brane

t1 = t(z1) = −
∫ zmax

z1

(
v′ + 1

f(z)

)
dz, (3.13)

where r = r(z), v = v(z) are abbreviations, zmax ≥ 1 denotes the turning point of the
two-side black hole. According to [66], we have v′(zmax) = −∞ and t(zmax) = 0, and
zmax = 1 corresponds to the beginning time t1 = 0. For simplicity, we label t1 by t in this
paper. Note that AN (3.12) is independent of the DGP parameters λa. That is because we
have chosen λ1 = 0 in our model (3.7) on the left brane. Besides, the HM surface does not
intersect the right brane. As a result, no terms depend on λ2 in the area functional (3.12)
either. From (3.12) and −v′(2 + f(z)v′) ≥ 0 [66], we can derive an inequality

AN ≥ V
∫ zmax

z1
dz

1
zd−1

√
−v′(2 + f(z)v′), (3.14)

where the r.h.s. is obtained by setting r(z) = 0. We remark that r(z) = 0 is an exact solu-
tion to the Euler-Lagrangian equations derived from (3.12) [50]. However, this solution does
not obey the boundary condition on the left since the left brane is located at r = −ρ1 rather
than r = 0. Instead of an exact solution, r(z) = 0 is actually an asymptotic solution at
t→∞. We observe that r0 = r(zmax) approaches zero in the large time limit. See figure 18
of appendix A. Note also that, in the large time limit, the integrations around the turning
point z = zmax contribute most to the area AN (3.12) and the time (3.13). Thus we have

lim
t→∞

AN = lim
r→0

AN = V

∫ zmax

z1

dz

zd−1

√
−v′(2 + f(z)v′). (3.15)

Remarkably, (3.15) is the same as the volume conjecture of holographic complexity [67, 68]
for a d−dimensional AdS-Schwarzschild black hole. Following [66–68], we obtain

lim
t→∞

dAN
dt

= V

2 , (3.16)
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which yields the expected result that the HM surface area increases linearly over time at
late enough times. Interestingly, the late-time growth rate (3.16) is the same as that of
holographic complexity. This seems to imply a deep relation between entanglement entropy
and complexity. This issue is worth more study in the future. Note that the late-time
growth rate of AN is universal and is independent of the choices of parameters (ρa, λa).

Let us provide some details on how to derive (3.16). Since the area functional (3.15)
does not depend on v(z) exactly, we can derive a conserved quantity

EN = −∂L
∂v′

= z−d (1 + f(z)v′)√
−v′(f(z)v′+2)

z2

=
√
−f(zmax)
zd−1

max
, (3.17)

where AN = V
∫
dzL, EN is a constant at a fixed time, and we have used v′(zmax) = −∞ to

derive the last equality of (3.17). According to [66], the conserved quantity EN approaches
to an extremum in the large time limit

lim
t→∞

dEN
dzmax

= −
(d− 1)z−d−1

max

(
z̄dmax − 2z̄max

)
2
√
z̄d−1

max − 1
= 0, (3.18)

which yields the maximal value of zmax

z̄max = lim
t→∞

zmax = 2
1

d−1 . (3.19)

From (3.17), we solve

v′(z) =
ENz

d
(√

E2
Nz

2d + z2f(z)− ENz
d
)
− z2f(z)

f(z)
(
E2
Nz

2d + z2f(z)
) . (3.20)

By using (3.18) and (3.20), we get

lim
t→∞

∂v′(z)
∂zmax

= lim
t→∞

∂v′(z)
∂EN

∂EN
∂zmax

= 0, (3.21)

lim
t→∞

∂L

∂zmax
= lim

t→∞

∂L

∂v′(z)
∂v′(z)
∂zmax

= 0. (3.22)

Recall that L is defined by AN = V
∫
dzL. From (3.12), (3.13), (3.21), (3.22) and v′(z̄max) =

−∞, we have

lim
t→∞

dAN
dt

= lim
t→∞

dAN/dzmax
dt/dzmax

= V

1
z̄d−2

max

√
−v′(z̄max)(2+f(z̄max)v′(z̄max)))

z̄2
max

+
∫ z̄max
z1

dz ∂L
∂z̄max

−
(
v′(z̄max) + 1

f(z̄max)

)
−
∫ z̄max
z1

dz ∂v
′(z)

∂z̄max

= V

√
−f(z̄max)
z̄d−1

max
= V EN(z̄max) (3.23)

Substituting (3.19) and f(z) = 1− zd−1 into (3.23), we finally obtain the late-time growth
rate of AN (3.16).
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Figure 11. Page curve of case I for d = 4 and V = 1. The orange and blue lines denote the
RT surface in the no-island and island phases, respectively. The Page curve is given by the orange
line before Page time, and is given by the blue after Page time. The entanglement entropy firstly
increases with time (orange line) and then becomes a constant (blue line), which recovers the Page
curve of eternal black holes.

We can obtain the general time dependence of AN by numerical calculations. The
numerical method developed in [41] is quite helpful in studying the HM surface. Although
it is designed for codim-2 branes, it can be easily generalized to this paper’s case of codim-
1 branes. See appendix A for more details. We draw the Page curve in figure 11, where
A and t are half those of a two-side black hole. The entanglement entropy (orange line)
increases with time at early times, and then becomes a constant (blue line) after the Page
time, which reproduces the expected Page curve of the eternal black hole.

To end this section, let us make some comments. 1. As shown in this section, there are
non-trivial entanglement islands and Page curves in wedge holography with DGP gravity.
This strongly implies the entanglement island is consistent with massless gravity. 2. To
recover the entanglement islands in wedge holography with massless gravity on the branes,
at least one of the DPG parameters λa is negative. Nothing goes wrong for negative λa
as long as the constraints (2.10), (2.49), (2.54) are satisfied. We stress that our model is
physically well-defined since it has positive effective Newton’s constants and kinetic energy
of brane bending modes, stable mass spectrum, and obeys the holographic c-theorem [59].
3. As discussed at the end of section 2.2, the brane low-energy-effective theory is better
approximated by Einstein’s gravity for negative λa. That is because the massive mode is
more difficult to be excited due to the more significant mass gap for negative λa. 4. We get
AI = 0 if the AdS black hole is replaced by an AdS space on the branes. From (3.4) with
f(z) = 1, we observe that AI → 0 for z = za →∞. See also figure 12, which shows that AI
decreases with z1 and minimizes at the AdS horizon z1 →∞. AI = 0 means entanglement
entropy on the whole defect Σ is zero for CFTs in a vacuum state, which is reasonable. 5.
One may identify the DGP term of the entropy formula (2.50) with the second term of the
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Figure 12. The figure of AI(z1) for an AdS space on the branes, where AI denotes the area of
extremal surface, and z1 is its endpoint on the left brane. We take the same parameters (ρ1 =
0.5, λ1 = 0, ρ2 = 1.2, λ2 ≈ −0.246, V = 1, d = 4) as in section 3.1. It shows that the area of the
extremal surface decreases with z1 and approaches zero at the AdS horizon z1 →∞. Since the RT
surface is defined as the extremal surface with minimal area, we get AI = 0 for the RT surface when
the AdS black hole is replaced by an AdS space on branes.

island rule (1.2). Then it seems that λa ∼ 1/ĜN should be positive. However, this is not
true. Note that we are studying the island rule (1.2) on the branes. The effective action on
the brane is given by Ieff = ICFT + 1

16πGeff N

∫
Q2

√
−h(Rh + (d− 1)(d− 2)) + . . . with higher

derivative corrections suppressed around the solution (2.4) [46]. As a result, ĜN should
be identified with the effective Newton’s constant on the brane instead of 1/λa. 6. Note
that the entanglement entropy of our model is finite. It is the renormalized entanglement
entropy since the branes locate at finite places instead of asymptotic infinity. Similar to
Casimir energy, in principle, the renormalized entropy can be negative. For simplicity, we
do not consider this situation in this paper. 7. The results of this paper can be generalized
to cone holography [49]. Cone holography can be regarded as a holographic dual of the
edge modes on the codim-n defect, which is a generalization of wedge holography.

4 Page curve of case II: two black hole

In the above section, we focus on the case G1
eff N < G2

eff N (case I), where the brane with a
smaller Newton’s constant can be chosen as the bath. This case describes approximately
one black hole on a strong-gravity brane coupled with a bath on the weak-gravity brane.
In this section, we investigate the situation G1

eff N = G2
eff N (case II), where two black holes

interact with each other on two branes of equal gravitational strength. See figure 13 for
the geometry at a time slice, and see figure 14 for the Penrose diagram on the branes.

Unlike case I, there is no natural way to choose the weak-gravity bath brane for case
II. As a result, we have to take the two black holes on Q1 ∪ Q2 seriously. By symmetry
and naturalness, the region near the black-hole horizon can be chosen as the island region
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Figure 13. Geometry for case II: two black holes. The red and purple lines denote the radiation
R and island I on branes. The dotted line, blue, and orange lines indicate the horizon, RT surface
in the island phase, and RT surface in the no-island phase at t = 0, respectively.

Figure 14. Penrose diagram for case II: two two-side black holes. The left and right vertical
lines are glued together. The black-dotted, green-dotted, red, and purple lines denote the horizon,
singularity, radiation region, and island region, respectively.

(purple line of figure 13), and its complement on Q1 ∪Q2 is the radiation region (red line
of figure 13). Similar to case I, since both branes are gravitating, we adjust the radiation
region R (equivalently, the island region I, since ∂R = ∂I ) to minimize the entanglement
entropy of R in the island phase. In this way, we fix the radiation region R. Then, we can
follow the usual procedure to calculate the entanglement entropy of R, which is given by
the Hartman-Maldacena (HM) surface (orange curve of figure 13) at early times and given
by RT surface in the island phase (blue curve of figure 13) at late times.

In case II, the island region (purple line of figure 13) and the radiation region (red
line of figure 13) constitute the whole space. Naturally the “island” of case II is not one
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component of the radiation but that of the black hole. In other words, the “island” of case
II does not lie in the entanglement wedge of the radiation. This differs from the case with
a non-gravitational bath or case I with a weak gravitational bath. As a result, the island
rule (1.2) should be modified as

SEE(R) = SEE(I) = min
{
ext
(
SQFT(R) + A(∂I)

4ĜN

)}
, (4.1)

where ∂R = ∂I and SQFT(R) = SQFT(I). Interestingly, (4.1) is the usual formula for
generalized entropy before the island theory is developed. Remarkably, this formula can
give the Page curve. We give a holographic derivation of the Page curve for case II below.
Since the method is the same as that of section 3, we show only some key results below.

We choose the following parameters

ρ1 = ρ2 = 0.5, λ1 = λ2 ≈ −0.182, V = 1, d = 4, (4.2)

which obeys the constraints (2.10), (2.49), (2.54)

G1
eff N = G2

eff N ≈ 0.248 > 0, B ≈ 0.179 > 0, λ1 = λ2 > λHEE ≈ −0.188. (4.3)

Following the approach of section 3, we numerically derive the RT surface ending at za ≈
0.886 on the two branes, where z ≥ za corresponds to the island region (purple line of
figure 13). Thus, there exist non-vanishing entanglement islands. We also obtain the area
of HM surface at t = 0, the area of RT surface in the island phase, and the black hole area
with corrections from the DGP gravity as follows

AN ≈ 0.049 < AI ≈ 0.160 < ABH ≈ 0.161. (4.4)

Because AN < AI, the no-island phase dominates at the early times. As the black hole
evolves, AN grows over time. In the large time limit, we get

lim
t→∞

dAN
dt

= V, (4.5)

which is twice of (3.16) since there are two HM surfaces now. Please see the orange lines
of figure 13. Since AN ∼ t > AI at late times, the island phase becomes dominated later,
which produces the Page curve of the eternal black hole. See figure 15 for the Page curve
of case II. Finally, we want to mention that the parameters of this section also give AI = 0
if the AdS black hole is replaced by an AdS space on the branes.

5 Discussions on massless-island puzzle

In section 3 and section 4, we show that the massless entanglement island exists in wedge
holography with suitable DGP terms. And the Page curve of eternal black holes can be
recovered. In this section, we discuss the puzzle of massless islands raised in [51] and argue
that the entanglement island is consistent with massless gravity.

Let us first give a brief review of the massless-island puzzle [51]. Following [51], we take
the Karch-Randall braneworld with non-gravitational baths to illustrate the main ideas.
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Figure 15. Page curve of case II for d = 4 and V = 1. The orange and blue lines denote the RT
surface in the no-island and island phases. The Page curve is given by the orange line before Page
time, and is given by the blue after Page time. The entanglement entropy firstly increases with
time (orange line) and then becomes a constant (blue line), which recovers the Page curve of the
eternal black hole.

See figure 1 for the geometry at a constant time slice. Let us consider the late-time evolution
of the black hole, where the island phase dominates, and the RT surface is given by the blue
line of figure 1. According to the entanglement wedge reconstruction [69, 70], operators in
the island region I and its complement Ī on the brane can be reconstructed by operators in
the radiation region R and its complement R̄ on the AdS boundary, respectively. Now let
us focus on the d-dimensional system on the brane Q and AdS boundary M . On one hand,
we have a QFT system without gravity on the AdS boundary M . The CFT operators of
R commute with those of R̄ since they are space-like separated

[OR, OR̄] = 0, (5.1)

where OA denote operators defined in the region A. As a result, according to the entangle-
ment wedge reconstruction [69, 70], the operators in the island I dressed to the radiation
R commute with operators in Ī dressed to R̄

[OI, OĪ] = 0. (5.2)

On the other hand, according to the gravitational Gauss’s law, the action of operators in
the island I must be accompanied by a disturbance in the metric outside the island, i.e., Ī.
In other words, the energy fluctuation inside I can be measured in the spacetime boundary
of Ī. Thus we have

[OI, OĪ] 6= 0, (5.3)

at least for some operators, which conflicts with (5.2). It is not a problem in the Karch-
Randall braneworld since the gravity on the brane is massive and Gauss’s law breakdowns.
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Figure 16. Schematic diagram for AdS black hole, where the gray area denotes the black hole
“interior”. Note that the dotted line is the RT surface derived from the generalized entropy, which
is not necessarily the horizon. Oin and Oout corresponds to OI and OĪ in the puzzle of massless
island, respectively.

As a result, (5.3) becomes invalid. However, it is problematic for massless gravity with
Gauss’s law. For the above reasons, [51] conjectures that the entanglement island is incon-
sistent with the long-range gravity obeying Gauss’s law.

Now we discuss the possible resolutions to the island puzzle. To warm up, let us study
an inspiring analog of the above puzzle in AdS/CFT. Consider an AdS black hole as shown
in figure 16, where Oin and Oout are operators inside and outside the black hole region,
which corresponds to OI and OĪ in the above puzzle. Please note that the dotted line of
figure 16 is the RT surface derived from the generalized entropy, which is not necessarily
the horizon. For the static AdS black hole, the entanglement wedge of the whole space
of CFTs is the region bounded by the RT surface and AdS boundary (white region of
figure 16). As a result, operators Oin and Oout lie outside and inside the entanglement
wedges and satisfy [Oin, Oout] = 0 in analogy of (5.2). On the other hand, gravity is
massless in AdS/CFT. Similar to (5.3), the commutator [Oin, Oout] 6= 0 cannot vanish due
to the Gauss’s law. Now there is a contradiction. Of course, AdS/CFT is well-defined
and cannot be wrong. For the thermal CFT state obtained by tracing one side of the
thermofield double state [64], the puzzle can be resolved. The operator Oin can be dressed
to the other side of the black hole, which yields [Oin, Oout] = 0 and agrees with Gauss’s
law.9 While for the pure thermofield double state, the problem is more subtle. Take Oin
and Oout to be the total operators on both sides, Oin has to be dressed to the AdS boundary
on one side, which leads to [Oin, Oout] 6= 0. Recall that the black hole interior increases
monotonically over time. If Oin can be completely dressed to the fast growing black hole
interior, then the puzzle can be resolved. Recently, there is an interesting paper [71], which
finds that operators Oin and Oout commute, provided that the state breaks all asymptotic
symmetries. If this is the case, the puzzle can be resolved too. Our key observation is that

9We thank X. Dong for valuable comments on this problem.
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if the puzzle can be resolved in the some way in AdS/CFT, so does it in wedge holography.
In fact, wedge holography is equivalent to AdS/CFT for the class of solutions (2.4) studied
in this paper [48], that is because they have the same effective action (2.7).

Finally, we are ready to discuss wedge holography with DGP terms, where there is
massless gravity on the branes. We first discuss case II with two AdS black holes on the
two branes, which is very similar to the above case in AdS/CFT. Comparing figure 13 with
figure 16, we notice that the island region I and radiation region R of case II correspond to
the grey region and white region of figure 16 in AdS/CFT. Following the same arguments
of AdS/CFT, we can resolve the potential puzzle in case II. It should be mentioned that
the puzzle [51] reviewed around (5.1)–(5.3) does not directly apply to case II since there
are no regions of Ī and R̄ in case II. Besides, the operators on the island are not described
by operators in the radiation. Thus the island of case II is not the one defined in [51],
which lines in the entanglement wedge of the radiation region R but is disconnected from
R. In this sense, case II does not conflict with [51]. Now let us turn to case I with one
black hole and one weak-gravity bath. See figure 7 for the geometry. There are several
possible resolutions. First, unlike the case on the AdS boundary without gravity, because of
Gauss’s law, operators on R and R̄ do not commute anymore on the left brane with massless
gravity. Thus (5.1), (5.2) breakdown and the puzzle disappears. Second, one persists in
that operators on R and R̄ commute and gives up Gauss’s law. According to [71], operators
on I and Ī commute, provided that the state breaks all asymptotic symmetries. Third, we
can choose similar island and radiation regions divisions as in case II. It is a natural choice
if we take into account the Hawking radiation from the black hole on the left weak-gravity
brane. On the other hand, if we are interested in only the Hawking radiation from the
black hole on the right strong-gravity brane, case I is a good approximation and is similar
to the situation discussed in the usual double holography with non-gravitational baths.

6 Higher derivative gravity on branes

In this section, we generalize the above discussions to higher derivative gravity on the
branes. Higher derivative gravity is interesting in many aspects. Maybe most interestingly,
the general higher curvature gravity is renormalizable [72]. Although it may suffer the
ghost problem, one can construct a ghost-free and potentially renormalizable higher
derivative gravity by choosing the parameters carefully [73–75]. Besides, string theory
predicts higher derivative corrections in gravitational action. The motivation here is to
show that massless entanglement islands exist in general gravity theories. For simplicity,
we focus on the following action

I =
∫
W
dxd+1√−g

(
RW + d(d− 1)

)
+2
∫
Q
dxd

√
−hQ(K − Ta + λaRQ + baR̄

2
Q + daR̄QijR̄

ij
Q ), (6.1)

where ba, da are the higher derivative parameters and

R̄Q = RQ + d(d− 1)sech2 (ρa) , R̄Q ij = RQ ij + (d− 1)sech2 (ρa)hQ ij , (6.2)
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which vanishes for the class of solutions (2.4). As a result, at least for the solutions (2.4),
the higher derivative action (6.1) is equal to the DGP action (2.2) on-shell. However,
they are different generally. In fact, R̄2

Q and R̄QijR̄
ij
Q are “irrelevant” higher derivative

terms in the sense that they do not contribute to the Weyl anomaly [76], universal terms
of entanglement entropy (logarithmic divergent term) [77] and correlation functions (up
to three-point functions) [78] for the dual CFTs. On the other hand, R̄QijklR̄ ijkl

Q is
“relevant”. However, it excludes the novel class of solutions (2.4).10 Thus, we do not
consider the “relevant” term R̄QijklR̄

ijkl
Q in this paper and leave its study to future works.

Similar to section 2, we impose NBC so that there is massless gravity on the branes

Kij − (K − Ta + λaRQ)hijQ + 2λaRijQ + 2H ij = 0, (6.3)

where L = baR̄
2
Q+daR̄QijR̄

ij
Q , ∇Q i denotes covariant derivative with respect to hQ ij and

Hij = P mnl
(i RQ j)mnl−2∇mQ∇nQPimnj−

1
2LhQ ij , (6.4)

P ijkl = ∂L
∂RQ ijkl

= baR̄Q(hikQh
jl
Q−h

il
Qh

jk
Q )+ da

2 (R̄ikQh
jl
Q−R̄

il
Qh

jk
Q +hikQ R̄

jl
Q−h

il
QR̄

jk
Q ). (6.5)

Note that Hij = R̄Qij = R̄Q = Pijkl = 0 for the class of solutions (2.4). As a result, the
bulk metric (2.4) obeys NBC (6.3) provided that Ta and λa satisfy the relation (2.6).

Substituting the metric (2.4) into the action (6.1) and integrating r, we get the effective
action on branes

Ia = 1
16πGaeff N

∫
Qa

√
−h
(
Rh + (d− 1)(d− 2)

)
+2 cosh(ρa)d−4

∫
Qa

√
−h
(
baR̄

2
h + daR̄h ijR̄

ij
h

)
, (6.6)

where Gaeff N denotes the effective Newton’s constant (2.8) on Qa, R̄h = Rh + d(d− 1) and
R̄h ij = Rh ij +(d−1)hij . We require that the CFTs dual to the effective theory (6.6) have
positive central charges and no negative energy fluxes appear in scattering processes [79, 80].
This yields Gaeff N > 0 but does not restrain ba and da [76, 78]. Usually, one treats the higher
derivative terms as small corrections. Thus we focus on the case

|ba| < 1, |da| < 1. (6.7)

It should be mentioned that the above higher-derivative model includes massless grav-
ity on the brane. The reasons are as follows. First, since (2.4) is a solution, the induced
metric on the brane obeys Einstein equations (2.5). Thus, it is clear that there is a massless
mode. Second, the effective theory (6.6) on the brane is a higher derivative gravity, which
generally includes a massless graviton and a massive graviton. Usually, the massive mode
is a ghost, which can be deleted by fine-tuning the parameters. See critical gravity [73, 81],
and the higher derivative gravity from ghost-free multi-metric gravity [46, 82] for examples.

10Only if the bulk is a local AdS space, (2.4) is a solution to wedge holography with R̄QijklR̄
ijkl

Q on the
branes. On the other hand, the black string is no longer a solution.
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Now let us discuss the entanglement entropy of Hawking radiation. From the ac-
tion (6.1), we can derive the holographic entanglement entropy [83, 84]

SHEE = 4π
∫

Γ
dxd−1√γ + 8π

∫
∂Γ
dxd−2√σ

(
λa + 2baR̄Q + da

(
R̄ α
Q α −

1
2KαK

α
))

, (6.8)

where Γ denotes RT surface, ∂Γ = Γ∩Q is the intersection of the RT surface and the branes,
Kα denote the trace of extrinsic curvatures of ∂Γ, as viewed from the brane geometry, and
α are the directions normal to ∂Γ on the branes. For the black string geometry (3.1), we
derive the extrinsic curvature at a constant time slice t = costant and z = za on the branes

KαK
α = (d− 2)2f(za)sech2(ρa), (6.9)

which is non-zero generally. Here f(za) = 1 − zd−1
a and za is the endpoint of the bulk

RT surface on the brane Qa. Following the approach of section 3.1, we obtain the area
functional of the RT surface in the island phase

AI = SHEE
4π = V

∫ ρ2

−ρ1
dr

coshd−2(r)
zd−2

√
1 + cosh2(r)z′2

z2f(z)

+V
2∑

a=1

(2λa coshd−2(ρa)
zd−2
a

− da(d− 2)2f(za)
coshd−4(ρa)

zd−2
a

)
, (6.10)

where we have used (6.9) and R̄Qij = R̄Q = 0 for the black string. Note that only the
higher derivative term R̄QijR̄

ij
Q contributes to the area (6.10). Consider the variation of

the above area functional, we derive the NBC on the branes

(−)az′a

f(za)
√

1 + cosh2(ρa)z′2a
z2

af(za)

= 2λa(d− 2)za
cosh2(ρa)

−
da(d− 2)2

(
(d− 2) + zd−1

a

)
za

cosh4 (ρa)
. (6.11)

Following the discussions of section 3.1, we observe that positive da can yield a non-
trivial RT surface outside the horizon. The reasons are as follows. First, the boundary
term of the area functional (6.10) increases with za for positive da, while the bulk term
of (6.10) decreases with z and takes minimal value at z = 1. As a result, the total area
functional (6.10) could minimize outside the horizon z < 1. Second, from NBC (6.11), we
note that z′a 6= 0, which gets rid of the no-go theorem of [50] based on z′a = 0. Thus there
could be massless entanglement islands in wedge holography with higher derivative gravity
on the branes.

Now we are ready to study the Page curve in wedge holography with higher derivative
gravity on the branes. For simplicity, we focus on case I and choose the left weak-gravity
brane as the bath. Besides, we remove the DGP terms and consider only R̄QijR̄ ij

Q on the
right brane. Without loss of generality, let us take the following parameters

d = 4, V = 1, ρ1 = 0.6, ρ2 = 0.1, λa = 0, d1 = 0, d2 ≈ 0.107678 ≈ 0.108, (6.12)

which yields
0 < G1

eff N ≈ 0.029 < G2
eff N ≈ 0.198, B ≈ 1.910 > 0. (6.13)

– 30 –



J
H
E
P
0
3
(
2
0
2
3
)
2
1
4

Figure 17. Page curve of case I with higher derivative gravity on the branes. We have set d = 4
and V = 1. The orange and blue lines denote the RT surface in the no-island and island phases. The
Page curve is given by the orange line before Page time, and is given by the blue after Page time.
The entanglement entropy firstly increases with time (orange line) and then becomes a constant
(blue line), which recovers the Page curve of the eternal black hole.

Following the approaches of section 3, we obtain the RT surface in the island phase, which
starts at z1 ≈ 0.900 on the left brane and ends on z2 ≈ 0.705 on the right brane. Thus the
radiation region (red line of figure 7) locates at z ≥ z1 ≈ 0.900, and the island region (purple
line of figure 7) locates at z ≥ z2 ≈ 0.705. Then, we numerically derive various areas

AN ≈ 0.646 < AI ≈ 0.730 < ABH ≈ 0.778, (6.14)

which implies that the no-island phase dominates at the beginning t = 0. At late enough
times, the time-growth rate of AN approaches a universal constant limt→∞ dAN/dt = V/2.
Since AN ∼ t > AI in the late times, the island phase dominates later, which recovers
the Page curve of the eternal black hole. To end this section, we draw the Page curve in
figure 17. Similar to section 3, this section’s higher derivative model also gives AI = 0 if the
AdS black hole is replaced by an AdS space on the branes. It means that the entanglement
entropy of the whole space is zero for the CFTs on the defect in a vacuum. This is
reasonable and can be regarded as a test of our model. Recall that the entanglement
entropy of this paper is the renormalized entropy. Similar to Casimir energy, in principle,
the renormalized entanglement entropy can be negative as long as it is bounded from
below. For simplicity, we focus on the case AI ≥ 0 in this paper.

7 Conclusions and discussions

This paper investigates the entanglement island and Page curve in wedge holography with
DGP gravity and higher derivative gravity on the branes. We work out the effective action
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for one novel class of solutions and find that the mass spectrum obeys the Breitenlohner-
Freedman bound. Interestingly, the effective action and mass spectrum show that there is
massless gravity on the brane. By studying the effective Newton’s constant, brane bending
modes and HEE, we get several lower bounds for the DGP parameters. Remarkably, there
are non-trivial entanglement islands outside the horizon in wedge holography with suitable
DGP gravity or higher derivative gravity on the branes. We study two cases. In case I,
there is one black hole on the strong-gravity brane and a bath on the weak-gravity brane; in
case II, there are two black holes on the two branes with equal gravitational strength. We
find non-vanishing entanglement islands and recover the Page curve in both cases. Finally,
we study an inspiring analog of the island puzzle in AdS/CFT and discuss its possible
resolutions. We argue that if the contradiction can be resolved in AdS/CFT, so does it
in wedge holography. Our results strongly imply that the entanglement islands exist in
massless gravity theories.

There are many significant problems to explore. First, [50, 52] prove the absence of
entanglement islands in the black string geometry in the initial theory of wedge hologra-
phy [47]. We show that the island can be recovered in wedge holography with suitable
DGP or higher derivative gravity on the branes. This raises the question if the spacetime
studied in [50, 52] is too particular. Does the entanglement island exist in more general
spacetime in the initial model of wedge holography? It is a significant problem worth
studying. Second, this paper only discusses the effects of curvature terms on the branes. It
is interesting to see what happens when one adds appropriate matter fields on the branes.
Third, we focus on the Page curve of eternal black holes. It is interesting to generalize the
discussions to evaporating black holes. See some interesting progress in [53]. Fourth, there
is also a massless gravitational mode on the branes of cone holography [49], which general-
izes wedge holography to codim-n defects. It is interesting to generalize the results of this
paper to cone holography. Fifth, we focus on the doubly holographic model in this paper.
It is a fundamental and non-trivial problem to study the entanglement islands directly in
four-dimensional Einstein gravity. We hope these problems can be addressed in the future.
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A Numerical calculation for the no-island phase

In this appendix, we numerically calculate the time evolution of the area of the RT surface
in the no-island phase. We take the same parameters as in section 3.1. Thus, the RT
surface starts at z1 = 0.95 on the left brane and ends on the horizon z = 1 at the beginning
time t = 0 and then passes the horizon at t > 0. We find that r approaches zero, and the
area of the RT surface increases linearly with time in the late times.
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Figure 18. Left: function r0(zmax); right: function r0(t). Note that zmax = 1 corresponds to t = 0
and zmax = 2

1
d−1 ≈ 1.260 corresponds to t→∞. It shows that r0 = r(zmax) approaches zero in the

large time limit.

Figure 19. Left: function AN(zmax); right: function t(zmax). The figures show that AN and t

increase with zmax. The right figure shows that zmax = 1 corresponds to t = 0 and zmax = 2
1

d−1 ≈
1.260 corresponds to t→∞.

Figure 20. The area of RT surface increases with time in the no-island phase. In this large time
limit, we have limt→∞ dAN/dt = 1/2, where we have set V = 1 for simplicity.
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Note that the area functional (3.12), i.e., AN = V
∫ zmax
z1

dzL(r, r′, v′, z), does not include
v(z) exactly. Thus we can derive a conserved quantity

E = −∂L
∂v′

= z−d coshd(r) (1 + f(z)v′)√
cosh2(r)v′(−f(z)v′−2)

z2 + (r′)2

=
√
−f(zmax)

(cosh (r0)
zmax

)
d−1, (A.1)

where E is a constant at a fixed time, z1 is the endpoint of the RT surface on the left brane,
zmax ≥ 1 is the turning point of the two-side black hole [66], and we have used r(zmax) = r0
and v′(zmax) = −∞ to derive the last equality of (A.1). From (A.1), we can solve v′(z) in
functions of r′(z) and r(z). Substituting v′(z) into the Euler-Langrangian equation derived
from (3.12), we get the EOM of r(z) decoupled with v(z)

r′′
(

8z2d+1z2
max cosh2(r)f (zmax)

(cosh (r0)
zmax

)
2d − 8fz3 cosh2 (r0) cosh2d(r)

)
−4z2dz2

maxr
′f (zmax)

(cosh (r0)
zmax

)
2d
(
zr′
(
zr′
(
zf ′ − 2f

)
+ sinh(2r)

)
− 4 cosh2(r)

)
+4z2r′ cosh2 (r0) cosh2d−2(r)
×
(
fzr′

(
2(d− 2)fzr′ + d sinh(2r)

)
+ 2(d− 3)f cosh2(r)− zf ′ cosh2(r)

)
+8(d− 1)z sinh(r) cosh2 (r0) cosh2d+1(r) = 0. (A.2)

Similarly, substituting v′(z) into the area functional (3.12) and the time (3.13), we obtain

AN = V

∫ zmax

z1
dz

(cosh(r)
z

)d−2
√√√√√ 2z2f(z) (r′)2 + cosh(2r) + 1

2z2
(
f(z)− f (zmax)

(
z cosh(r0)
zmax cosh(r)

)
2d−2

) , (A.3)

and the time in functions of only r(z). Now we have simplified the problem into solving a
single differential equation (A.2) of r(z).

Solving (A.2) perturbatively around the turning point z = zmax, we derive

r(z) = r0 + r1(z − zmax) + r2(z − zmax)2 +O(z − zmax)3, (A.4)

where

r1 = sinh(2r0)
zdmax−2zmax

, (A.5)

r2 =
sinh(2r0)

(
2zd+1

max((d−5)cosh(2r0)−2d−5)+(d+4)z2d
max+24z2

maxcosh2(r0)
)

6zmax(2zmax−zdmax)3 . (A.6)

From (A.4) we get the BC around the turning point

r(zmax − ε) = r0 + r1ε+ r2ε
2, r′(zmax − ε) = r1 + 2r2ε, (A.7)

where ε is a small cutoff. For instance, we can choose ε = 10−9. For any given −ρ1 < r0 ≤ 0
and 1 ≤ zmax ≤ z̄max = 2

1
d−1 , we can numerically solve EOM (A.2) with the BC (A.7), and

then derive the value of r on the left brane

r(z1) = −ρ1, (A.8)
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where we have chosen the parameters z1 = 0.95, ρ1 = −0.5, and d = 4 as in section 3. Of
course, for arbitrary inputs r0 and zmax, the additional BC (A.8) is not satisfied generally.
We can apply the shooting method to resolve this problem. For any given 1 ≤ zmax ≤ 2

1
d−1 ,

we adjust the input r0 so that the BC (A.8) is obeyed. In this way, we fix the relation
between r0 and zmax. See figure 18 for r0(zmax). Note that zmax = 1 corresponds to t = 0
and zmax = 2

1
d−1 corresponds to t→∞.

Now we have numerically solved r(z) for the parameter 1 ≤ zmax ≤ 2
1

d−1 . Substituting
the solution into the area (A.3) and the time (3.13),11 we can derive AN(zmax), t(zmax)
and thus AN(t). See figure 19 for AN(zmax) and t(zmax). See figure 20 for AN(t) with
V = 1, which shows that AN increases with time and the grown rate approaches a constant
limt→∞ dAN/dt = 1/2 at late times, which agrees with the analytical result (3.16). Now
we finish the numerically derivations of the time evolution of AN.
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