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Abstract

It has been suggested in recent work that the Page curve of Hawking radiation can be

recovered using computations in semi-classical gravity provided one allows for “islands"

in the gravity region of quantum systems coupled to gravity. The explicit computations

so far have been restricted to black holes in two-dimensional Jackiw-Teitelboim grav-

ity. In this note, we numerically construct a five-dimensional asymptotically AdS geom-

etry whose boundary realizes a four-dimensional Hartle-Hawking state on an eternal

AdS black hole in equilibrium with a bath. We also numerically find two types of ex-

tremal surfaces: ones that correspond to having or not having an island. The version

of the information paradox involving the eternal black hole exists in this setup, and it

is avoided by the presence of islands. Thus, recent computations exhibiting islands in

two-dimensional gravity generalize to higher dimensions as well.
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1 Introduction

The RT/HRT/EW formula [1–3] for computing entanglement entropies is a remarkable entry
in the holographic dictionary. We are instructed to find a codimension-two surface in the bulk
that minimizes the generalized entropy functional.1 This codimension-two surface is called
the quantum extremal surface (QES) and the value of the generalized entropy functional on
the QES gives the entanglement entropy. Furthermore, the bulk region between the QES and
the boundary, the entanglement wedge, can be reconstructed just using the knowledge of the
corresponding boundary subregion [6–11].

The papers [12,13] considered the coupling of a large AdS black hole to a flat space bath
region, allowing the black hole to evaporate. The entanglement entropy of the black hole was
seen to undergo a first order phase transition following the appearance of a new nontrivial
quantum extremal surface at late times.

Following this idea, [14] considered a two-dimensional gravity+matter theory, where the
matter sector has a three-dimensional holographic dual. The main result of [14] is that the
entanglement wedge of Hawking radiation at late times contains an “island" that lies in the
interior of the black hole. This was also suggested in [12]. From a 2d viewpoint, this island
is completely disconnected and spacelike separated from the naive domain of dependence of
the region where the Hawking radiation lives. The 3d geometry connects these two pieces of
the entanglement wedge.

The general lesson is that one should include contributions from islands in order to com-
pute entanglement wedges and entropies of quantum systems coupled to gravity. The role of
islands becomes crucial if there is a lot of entanglement between the bulk fields in the naive
region and the island, for then, it can be beneficial to pay a cost proportional to the area of
the island while incurring lots of savings in the bulk entropy. A prototypical case is to com-
pute the entanglement entropy of the Hawking radiation that lies in the asymptotically-flat,
weak-gravity region.

The state considered in [14] was time-dependent since the black hole is evaporating. In
[15], the situation was simplified and it was demonstrated that islands exist even in large
AdS black holes that are in equilibrium with a flat space bath region (and hence the geometry
is static). All explicit computations in [15] were also for a two-dimensional gravity+matter
theory, since this allows for some simple analytic expressions.

The goal of this note is to demonstrate that islands also exist in higher dimensions. For that
purpose, we consider the equilibrium setup of [15], but in four-dimensional gravity+matter
theories. To facilitate the computation of quantum extremal surfaces, we use the trick from
[14] of taking the matter CFT4 to have a five-dimensional holographic dual. In other words, we
consider a Randall-Sundrum type setup with a 4d brane in a 5d ambient spacetime [16–18].
In this setup, quantum extremal surfaces in 4d become ordinary RT surfaces in 5d, and thus it
becomes a tractable problem to compute them.

In particular, we will focus on the version of the information paradox described in section
4 of [15], see also [19].2 This involves the thermofield double of a black hole coupled to,
and in equilibrium with, a bath at some temperature. That is, there are two black holes, both
coupled to their own baths.3 One starts with a Cauchy slice through the middle of the Penrose
diagram, and moves it forward in time on both sides. See figure 4. The question is what is
the entanglement entropy of the union of the two baths as a function of this time? Naively,

1The generalized entropy functional [4, 5] depends on a codimension-two surface and equals the area of this
surface, plus the entropy of matter fields on the outer half of a Cauchy slice passing through this surface.

2This is different than the paradox discussed in [20]. See also [21] for a discussion of local operators behind
the horizon in the eternal black hole.

3Note that unlike [14], the paper [15] did not assume that the matter sector has a three-dimensional dual. In
other words the computations of [15] were all done in two dimensions.
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this entropy increases linearly in time, forever. This happens because the bath is exchanging
particles with the black hole: Hawking particles enter the bath and their entangled partners
fall into the black hole. The mass of the black hole is not changing because we are in the
Hartle-Hawking state, but the underlying exchange of quanta goes on. This is the analog of
Hawking’s calculation.

At late times, however, the entanglement wedge of the union of the bath regions contains
an island that extends outside the horizon [15]. The generalized entropy of this QES saturates
at late time, and is approximately equal to twice the Bekenstein-Hawking of a single black
hole. This happens because the island contains the Hawking partners, and thus by including
the island we save on the Sbulk term in the generalized entropy. Thus, overall, the entropy
grows linearly in time for a while before saturating.

In this note, we demonstrate that the same resolution works even in higher dimensions.
The problem of setting up the above paradox in the 4d eternal black hole with a matter sector
that has a 5d holographic dual reduces to finding a static 5d geometry with the correct bound-
ary conditions. We construct this geometry numerically using the DeTurck trick [22–24]. This
involves solving coupled PDEs for five functions of two variables each, see (17) for the ansatz
for the line element. For a picture of the integration domain and the behavior of the space
near the conformal boundaries and the Planck brane, see figure 2.

As already noted, quantum extremal surfaces in 4d become ordinary extremal surfaces in
5d. In the numerically constructed 5d geometry, we numerically find the extremal surfaces
that are relevant for computing the entropy of the union of the two baths. There are two
qualitatively different types of extremal surfaces, see figure 5. The extremal surface that dom-
inates at early times goes through the horizon, and the entropy computed using this surface
increases linearly in time. This is because of the stretching of space inside the horizon, as
described in [25]. However, there is another extremal surface that dominates at late times.
This extremal surfaces always stays outside the horizon and ends on the Planck brane. The en-
tropy computed using this surface saturates at late times, essentially because, being completely
outside the horizon, it does not get affected by the stretching of space inside the horizon.

Thus, our results provide a highly nontrivial check that the results of [12–15] are un-
changed upon increasing the spacetime dimension: The information paradox is averted by the
emergence of an island in the relevant entanglement wedge at late times.

Increasing the dimensionality of the setup of section 4 of [15] is a significant step forward
because a possible criticism of [13–15] is that the explicit computations were only done in 2d
AdS-JT gravity [26–29], which is known to be dual to an ensemble of Hamiltonians, rather than
a single fixed Hamiltonian [30,31]. So one might wonder if 2d AdS-JT gravity is somehow not
representative of a typical gravity theory, and that islands might not exist in higher dimensions.
Even from the perspective of the gravity equations of motion, it is not completely obvious
that the gravity computations of [13–15] generalize to higher dimensions. By our numerical
construction, we explicitly provide this generalization.

The organization of this paper is as follows. In section 2, we discuss the action for the
5d gravity theory and the boundary conditions. In section 3, we describe the technique for
numerically finding the static geometry. In section 4, we describe the relevant extremal sur-
faces, including the one that corresponds to having an island, and discuss how it avoids the
information paradox in this setting. We conclude in section 5 with some discussion and future
directions. Appendix A contains some details about the convergence of the numerical methods
used.
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Figure 1: A simple geometry with a RS or a Planck brane, discussed in [32]. The RS
or the Planck brane along lies along the locus z = −w tanθ . The induced geometry on
the brane is AdS4 with length scale (9). The angle θ is fixed by the tension parameter
α in the action (1) via the relationship (6).

2 Setup of the problem

As mentioned in the introduction, following [14], we want to consider a “doubly-holographic"
setup, but in higher dimensions. We take a 4d AdS gravity theory coupled to a matter CFT4

that has a 5d holographic dual. We wish to consider a large black hole in this theory that is in
equilibrium with a flat space bath region containing the same matter CFT4. Thus, we are led
to consider the following action:

I =
1

16πG5

∫

M

d5 x
p
−g

�
R+

12

L2

�
+

1

8πG5

∫

B

d4 x
p
−h (K −α) . (1)

Here B denotes the Planck or the RS brane [16] and it should be seen as one of the boundary
components of the bulk spacetime. The quantity L is the AdS5 length scale, and α is pro-
portional to the tension of the brane, see (8) below. The Gibbons-Hawking term at the UV
boundary has been omitted to avoid clutter.

As discussed in detail in [14], the fundamental description of such a system should be
taken to be a (2+1)-d holographic theory, coupled to a (3+1)-d bath system. In the first step,
one replaces the (2+1)-d holographic theory with an AdS4 spacetime. This AdS4 spacetime
is coupled to a flat space reservoir, and we have (3+1)-d matter fields propagating on this
hybrid spacetime. In the second step, one assumes that the (3+1)-d matter fields are also
holographic and replaces them with the (4+1)-d geometry. The (3+1)-d gravitational fields
are represented by a Randall-Sundrum brane embedded inside this (4+1)-d geometry.

Varying the action (1) with respect to the metric gives us the Einstein equations

RAB −
R

2
gAB −

6

L2
gAB = 0 on M . (2)

Henceforth, upper case Latin indices will refer to the five-dimensional indices and lower case
Latin indices will refer to coordinates along the brane. The boundary term in (1) allows for the
usual Dirichlet boundary conditions, but we will infact impose the other possible alternative

Kab − Khab +αhab = 0 on B . (3)

Recall from (1) that hab is the induced metric onB. This boundary condition is what one would
call a Neumann boundary condition. In fact, imposing this Neumann boundary condition
rather than the Dirichlet one is what allows a given boundary component of M to be called a
Planck brane.
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Before proceeding, let us review a simple Randall-Sundrum geometry [16,17], which has a
Planck brane ending on the conformal boundary of AdS. This configuration was also considered
in [32,33] in the context of AdS/BCFT. We start with pure AdS written in Poincaré coordinates

ds2 =
L2

z2

�
−dt2 + dz2 + dw2 + dw2

1 + dw2
2

�
. (4)

Now consider the surface z = −w tanθ , where θ is some angle between 0 and π/2. We only
keep the region z > −w tanθ for w< 0. Of course, we always restrict to z > 0 even for w> 0.
See figure 1.

We now want to implement the boundary condition (3), which is a form of the Israel
junction conditions [34]. Computing the extrinsic curvature on the surface w + z tanθ = 0,
we get

Kab =
cosθ

L
hab . (5)

Plugging this into (3), we get that the parameter α in the action (1) determines the angle θ
via the relationship

α=
3cosθ

L
. (6)

From the Israel junction condition we know that the quantity

−
1

8πG5
(Kab − habK) =

1

8πG5

3 cosθ

L
hab (7)

can be interpreted as the stress tensor of a codimension one object. This stress-tensor can be
interpreted as arising from 3-brane with tension

T3 =
α

8πG5
. (8)

This value of the brane tension is consistent with the fact that the last term in the action
(1) is equal to α

8πG5
times the worldvolume of the brane. Finally, note that by substituting

w= −z cotθ in the AdS5 line element (4), and rescaling z, we see that the induced metric on
the brane is nothing but AdS4 with a length scale

L4 =
L

sinθ
. (9)

Let us now turn to the description of the actual numerical solution that we seek.

3 The numerical solution

3.1 The DeTurck trick

To find solutions, we will use the so-called DeTurck trick, which was first proposed in [22],
and reviewed extensively in [23,24].

Let us first write the Einstein equation (2) in trace reversed form

RAB +
4

L2
gAB = 0 . (10)

The idea is that, instead of directly solving (10), one considers the modified equation

RAB +
4

L2
gAB −∇(AξB) = 0 , (11)

5
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where ξA :=
�
Γ

A
BC(g)− Γ

A
BC( ḡ)

�
gBC is the so-called DeTurck vector, and ḡ is a reference met-

ric.4 The reference metric ḡ is required only to be regular and satisfy the same boundary
conditions as g on Dirichlet boundaries, but is otherwise arbitrary. In particular, if there are
Neumann boundaries, the reference metric ḡ is not required to satisfy the Neumann bound-
ary condition there. The equation (11) is nice because the choice of gauge needed to solve
Einstein’s equations now appears as a choice of ḡ. Further, if we are looking for static solu-
tions, then (11) together with either Dirichlet or Neumann boundary conditions is an elliptic
problem, and is thus locally well-posed. (For Neumann boundaries, the DeTurck vector is also
required to satisfy ξ · n = 0, where n is the normal vector to the boundary.) This is a major
advantage over the original Einstein equation (10), whose character depends on the gauge
choice even when seeking static solutions.

Solutions of (11) are not necessarily solutions of (10), because of the new added term
∇(AξB). Possible solutions with ξ 6= 0 are called DeTurck solitons. It can be shown that
DeTurck solitons do not exist for static and certain stationary solutions of (11) with purely
Dirichlet boundaries [35, 36]. In this case there is a complete equivalence between solutions
of (11) and (10). On solutions with ξ = 0, the gauge choice is a generalisation of harmonic
coordinates, given by△xA = Γ A

BC( ḡ)g
BC , where△ stands for the scalar Laplacian in the metric

g.
However, for Neumann boundary conditions on the metric, of the form (3), this has never

been proved. Although in this case one cannot prove ξ = 0 on solutions of (11), one can still
make progress because solutions of elliptic equations are locally unique. Hence, an Einstein
solution cannot be arbitrarily close to a DeTurck soliton, and one should be able to distin-
guish the Einstein solutions of interest from DeTurck solitons by monitoring the quantity ξAξ

A

appropriately.

3.2 The metric ansatz

Let us define ew := w+z cotθ . For numerical purposes, we take the domain of integration to be
ew > 0 and impose (3) together with ξAnA = 0 on the edge of the computation domain. Since
we are interested in the Hartle-Hawking state, we want to have a bulk horizon that intersects
the brane. Furthermore, the geometry should be such that at large ew it should approach a
five-dimensional planar black hole, whose line element reads

ds2
P
=

L2

z2

�
−

�
1−

z4

z4
+

�
dt2 +

�
1−

z4

z4
+

�−1

dz2 + dew2 + dw2
1 + dw2

2

�
. (12)

For numerical convenience we want to work with compact coordinates only, so we define a
new coordinate x ∈ (0, 1) via

x

1− x
:= ew= w+ z cotθ . (13)

Note that x = 1 is the asymptotic region ew→ +∞. Finally, we change from z to a coordinate
y where constant t slices are manifestly regular at the event horizon z = z+. One such choice
is given by

y :=

√√
1−

z

z+
. (14)

In terms of (t, x , y, w1, w2) coordinates, the planar black hole reduces to

ds2
P
=

L2

(1− y2)2

�
−y2 G(y) y2

+ dt2 +
4dy2

G(y)
+ y2

+

�
dx2

(1− x)4
+ dw2

1 + dw2
2

��
, (15)

4Also, Γ A
BC
(g) is the Christoffel symbol associated with a metric g.
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<latexit sha1_base64="Fe7dUSJFDy31asTbqBBFx3SHUOU=">AAAB+XicbVC7SgNBFJ2Nrxhfq5Y2g0GwCrtR0DJoY2ERwTwgWcLs5G4yZPbBzN1gWPInNhaK2Pondv6Nk2QLTTwwcDjnXu6Z4ydSaHScb6uwtr6xuVXcLu3s7u0f2IdHTR2nikODxzJWbZ9pkCKCBgqU0E4UsNCX0PJHtzO/NQalRRw94iQBL2SDSASCMzRSz7a7CE+Y3UOA1Gc4nPbsslNx5qCrxM1JmeSo9+yvbj/maQgRcsm07rhOgl7GFAouYVrqphoSxkdsAB1DIxaC9rJ58ik9M0qfBrEyL0I6V39vZCzUehL6ZjI06fSyNxP/8zopBtdeJqIkRYj44lCQSooxndVA+0IBRzkxhHElTFbKh0wxjqaskinBXf7yKmlWK+5FpfpwWa7d5HUUyQk5JefEJVekRu5InTQIJ2PyTF7Jm5VZL9a79bEYLVj5zjH5A+vzB7Khk7I=</latexit>
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<latexit sha1_base64="46OoXXTNaiJ7ZwUPP7MVw+C4huo=">AAACDnicbVC5TsNAEF1zE64AJc2KKBINkc0hKAM0lEGQQ0qsaL2ZkBXrtbU7RkSWv4CGX6GhACFaajr+hs1RQMKTRnp6b0Yz84JYCoOu++3MzM7NLywuLedWVtfWN/KbWzUTJZpDlUcy0o2AGZBCQRUFSmjEGlgYSKgHdxcDv34P2ohI3WA/Bj9kt0p0BWdopXa+2EJ4wLQimWKaXvPe/lnnOmsf05EeAmrBs3a+4JbcIeg08cakQMaotPNfrU7EkxAUcsmMaXpujH7KNAouIcu1EgMx43fsFpqWKhaC8dPhOxktWqVDu5G2pZAO1d8TKQuN6YeB7QwZ9sykNxD/85oJdk/9VKg4QVB8tKibSIoRHWRDO0IDR9m3hHEt7K2U95hmHG2CORuCN/nyNKkdlLzD0sHVUaF8Po5jieyQXbJHPHJCyuSSVEiVcPJInskreXOenBfn3fkYtc4445lt8gfO5w9XUJxM</latexit>
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<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

y = 1
<latexit sha1_base64="uoPrbbtcxZrIDgfsXijjqjPU8gE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8NOME/YgOJA85o8ZKD+Nrr1cquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7dUJOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/8jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdoQvMWXl0mzWvHOK9X7i3LtJo+jAMdwAmfgwSXU4A7q0AAGA3iGV3hzhPPivDsf89YVJ585gj9wPn8A2suNgw==</latexit>

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

x = 1
<latexit sha1_base64="ApPc2rZmXo/JTHB5NlvntNBDupw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9C0IvHiOYByRJmJ51kyOzsMjMrhiWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcSCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItQKqUXCJdcONwFaskIaBwGYwupn6zUdUmkfywYxj9EM6kLzPGTVWun+68rrFklt2ZyDLxMtICTLUusWvTi9iSYjSMEG1bntubPyUKsOZwEmhk2iMKRvRAbYtlTRE7aezUyfkxCo90o+ULWnITP09kdJQ63EY2M6QmqFe9Kbif147Mf1LP+UyTgxKNl/UTwQxEZn+TXpcITNibAllittbCRtSRZmx6RRsCN7iy8ukUSl7Z+XK3Xmpep3FkYcjOIZT8OACqnALNagDgwE8wyu8OcJ5cd6dj3lrzslmDuEPnM8f2UWNgg==</latexit>

A
<latexit sha1_base64="Lihtv2jYSe0RaYbwwPdS8141boc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI+oF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftMrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwdXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AJQrjMk=</latexit> B

<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit>
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<latexit sha1_base64="OmnsBIcI7uL9xT1nnclacUzB0Hk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELxwhkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj+7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1bssjjycwTlcggc3UIUa1KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJ7HjNA=</latexit>

C
<latexit sha1_base64="re76Zkt0iSC9uIARbCEdpPGTKdg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELh4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj2txvP6HSPJYPZpKgH9Gh5CFn1FipUesXS27ZXYCsEy8jJchQ7xe/eoOYpRFKwwTVuuu5ifGnVBnOBM4KvVRjQtmYDrFrqaQRan+6OHRGLqwyIGGsbElDFurviSmNtJ5Ege2MqBnpVW8u/ud1UxPe+lMuk9SgZMtFYSqIicn8azLgCpkRE0soU9zeStiIKsqMzaZgQ/BWX14nrUrZuypXGtel6l0WRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJczjMs=</latexit>

D
<latexit sha1_base64="WoflC9OsYADNdO+14nzcYBdCAmo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5i3jMw=</latexit>

A
<latexit sha1_base64="Lihtv2jYSe0RaYbwwPdS8141boc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI+oF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftMrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1dssjjycwCmcgwdXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AJQrjMk=</latexit>

B
<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit>

C
<latexit sha1_base64="re76Zkt0iSC9uIARbCEdpPGTKdg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELh4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj2txvP6HSPJYPZpKgH9Gh5CFn1FipUesXS27ZXYCsEy8jJchQ7xe/eoOYpRFKwwTVuuu5ifGnVBnOBM4KvVRjQtmYDrFrqaQRan+6OHRGLqwyIGGsbElDFurviSmNtJ5Ege2MqBnpVW8u/ud1UxPe+lMuk9SgZMtFYSqIicn8azLgCpkRE0soU9zeStiIKsqMzaZgQ/BWX14nrUrZuypXGtel6l0WRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJczjMs=</latexit>

D
<latexit sha1_base64="WoflC9OsYADNdO+14nzcYBdCAmo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5i3jMw=</latexit>

H
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Figure 2: On the left, we show the Penrose diagram of the 4d geometry. We have
a two-sided AdS black hole, with each side coupled to a bath. On the right, we
show the integration domain used in the numerics x ∈ (0,1) and y ∈ (−1,1). The
objective is to solve for five metric functions Q1, . . . ,Q5 of two variables each (17),
in this domain. We numerically solve only in the region y > 0, the rest is obtained
simply by symmetry. On the left edge of this diagram, at x = 0, we have the RS or
the Planck brane where the 4d gravity region lives and the boundary condition (3) is
imposed. On the top and bottom edges we have the two baths. As x → 1, the metric
approaches that of a 5d planar AdS-Schwarzschild black hole. The reader might find
it useful to note the points ABHC D on both diagrams. The precise induced geometry
on the segment BC is determined by the numerical solution, and the left picture is
just a cartoon.

where
y+ := z−1

+ , and G(y) :=
�
2− y2

� �
2− 2y2 + y4

�
. (16)

We are finally ready to present our metric ansatz:

ds2 =
L2

(1− y2)2

�
− y2 G(y) y2

+Q1 dt2 +
4Q2 dy2

G(y)
+

Q4

(1− x)4

�
y+dx + 2(1− x)2 y Q3 dy

�2
+ y2

+Q5

�
dw2

1 + dw2
2

��
. (17)

Here Q I , with I ∈ {1,2, 3,4, 5}, are functions of (x , y) ∈ (0,1)2 to be determined by solving
(11). For the reference metric we take the line element (17) with Q1 =Q2 =Q4 =Q5 = 1 and
Q3 = cotθ .

Let us now discuss the boundary conditions. At the horizon, located at y = 0, we impose
Neumann boundary conditions for all variables, i.e. ∂yQ I

��
y=0

= 0 together with

Q1(x , 0) =Q2(x , 0), which in turn enforces the Hawking temperature to be

TH =
y+

π
. (18)

At the conformal boundary, located at y = 1, and also at x = 1 we demand g to approach the
reference metric ḡ, that is to say Q1 =Q2 =Q4 =Q5 = 1 and Q3 = cotθ . Finally, at the brane
location, that is x = 0, we demand the boundary condition (3) together with Q3(0, y) = cotθ
and ξana = −ξ

x = 0. See figure 2 for a cartoon depiction of the integration domain.
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Figure 3: Plots of −gt t/L
2
4 and gw1 w1

/L2
4 on the RS brane (located at x = 0) as a

function of the proper distance from the horizon P4D. In the top row, θ ≈ 1.47113,
and in the bottom row, θ ≈ 0.343024. The blue disks correspond to the numerical
data, and the solid blue lines are obtained from the 4d planar AdS black hole geom-
etry. It is clear that as θ becomes smaller, the induced geometry on the brane gets
closer to that of a 4d planar AdS black hole

These boundary conditions yield Robin-type boundary conditions on Q1, Q2, Q4 and Q5 at
x = 0. It is then a simple exercise to show that (11) with such boundary conditions, gives rise
to an elliptic problem [35].

To solve the resulting system partial differential equations, we used a standard pseu-
dospectral collocation approximation on Chebyshev-Gauss-Lobatto points and solved the re-
sulting non-linear algebraic equations using a damped Newton-Raphson method. The result-
ing method does not exhibit exponential convergence in the continuum limit due to the exis-
tence of non-analytic behaviour close the conformal boundary [37,38].5 Instead, we will find
a power law convergence as we approach the continuum limit.
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3.3 Induced geometry on the brane

Recall that the boundary condition for the metric on the brane is Neumann rather than Dirich-
let. Hence, the actual induced metric on the brane is determined numerically, and does not
have a simple analytic expression. All we know is that there is a horizon at y = 0. In this
subsection, we characterize the behavior of the induced geometry as θ becomes small. The
upshot is that, in the limit θ ≪ 1, the induced geometry on the brane is close to that of a 4d
planar AdS black hole.

In order to see this, consider the auxiliary line element of a four-dimensional planar black
hole with horizon located at Z+ and AdS4 length scale L4:

ds2
4D =

L2
4

Z2

�
−

�
1−

Z3

Z3
+

�
dt2 +

�
1−

Z3

Z3
+

�−1

dZ2 + dw2
1 + dw2

2

�
. (19)

Its associated Hawking temperature is given by T4D =
3

4πZ+
. If we want to match the temper-

ature of our numerical solution reported in (18), we should impose Z+ =
3

4 y+
.

To compare the line element (19) with the induced metric on the brane, we change to a
new set of coordinates {t,P4D, w1, w2}, where P4D is the proper distance from the horizon:

P4D(Z)

L4
=

∫ Z+

Z

dZ̃

Z̃

�
1−

Z̃3

Z3
+

�− 1
2

=
2

3
log

 √√√
1−

Z3

Z3
+

+ 1

!
− log

�
Z

Z+

�
. (20)

We then look at −gt t/L
2
4 and gw1 w1

/L2
4 as functions of (P4D), and compare with the results

obtained from computing the same quantities using the induced metric on the brane.
More explicitly, the induced metric on the brane can be read off from (17) and is given by

ds2
B
=

L2

(1− y2)2

�
− y2 G(y) y2

+Q1(0, y)dt2 + 4
�

Q2(0, y)

G(y)
+ y2 cot2 θ Q4(0, y)

�
dy2

+ y2
+Q5(0, y)

�
dw2

1 + dw2
2

��
. (21)

Again, we can change to proper distance coordinates {t,P4D, w1, w2} by defining

P4D(y)

L4
=

2 L

L4

∫ y

0

d ỹ

(1− ỹ2)

√√Q2(0, ỹ)

G( ỹ)
+ ỹ2 cot2 θ Q4(0, ỹ) , (22)

where L4 was is given by (9). Numerically, computing P4D(y) can be tricky, because of the
divergence of the integrand in the limit ỹ → 1−. To bypass this difficulty, we consider instead

P4D(y)

L4
=

2 L

L4

∫ y

0

d ỹ

(1− ỹ2)

�√√Q2(0, ỹ)

G( ỹ)
+ ỹ2 cot2 θ Q4(0, ỹ)−

Æ
1+ ỹ2 cot2 θ

�

+
2 L

L4

∫ y

0

d ỹ

(1− ỹ2)

Æ
1+ ỹ2 cot2 θ . (23)

One can show that the integrand in the first line is finite6 as ỹ → 1−, while the integral in the
second line can be readily done analytically, and carries all the divergences:

L

L4

∫ y

0

d ỹ

(1− ỹ2)

Æ
1+ ỹ2 cot2 θ = arctanh

�
y

sinθ
p

1+ y2 cot2 θ

�
− cosθ arcsinh(y cotθ ) .

(24)
5This non-analytic behaviour is a consequence of the DeTurck trick.

6Explicitly, we have lim
ỹ→1−

2 L

(1− ỹ2)

��
Q2(0, ỹ)

G( ỹ)
+ ỹ2 cot2 θ Q4(0, ỹ)

� 1
2

−
�
1+ ỹ2 cot2 θ

� 1
2

�
= −L sinθ .
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Figure 4: Shown here is a two-sided 4d black hole (with two of the spatial dimen-
sions suppressed) coupled to two baths. See also figure 2. We want to compute the
entanglement entropy of the union of the two blue regions shown. This diagram
lives on the boundary of a static 5d spacetime whose exterior region was computed
numerically in section 3.

We plot our comparisons in figure 3. The top row corresponds to θ ≈ 1.47113 and the
bottom row corresponds to θ ≈ 0.343024. In all plots in figure 3, we have taken y+ = 1. The
blue disks correspond to the numerical data, and the solid blue lines are obtained from the 4d
planar black hole geometry, as detailed above. The trend is clear: As θ becomes smaller, the
induced geometry gets closer to that of a 4d planar AdS black hole.

4 Extremal surfaces and the island

Recall that we want to consider a version of the information paradox in 4d gravity theory
coupled to a 4d matter sector. In this theory, we are considering a black hole coupled to, and
in equilibrium with, a bath at nonzero temperature. We are also working in the two-sided
purification, or the thermofield double, of the coupled system. So there are two black holes
and two baths. We would like to compute the von Neumann entropy of the union of the left
and the right bath regions as a function of time, where the time dependence is introduced
by moving time forwards on both sides. See figure 4. The two-dimensional version of this
problem was considered in section 4 of [15]. See also [19] and the recent paper [39].

We would like to compute 4d quantum extremal surfaces [3] for the union of the blue
regions in figure 4. Since this is a very hard problem, we have made the simplification that the
matter CFT4 has a 5d holographic dual, as in [14], and so the 4d quantum extremal surfaces
become ordinary 5d RT surfaces. Note that we are imagining toroidally compactifying the
transverse directions to get IR-finite entropies.

4.1 Extremal surfaces at t = 0

We would like to compute these 5d RT surfaces [1]. More precisely, we would like to extract
the extremal surfaces that anchor at the boundary at a given location x = x∂ > 0. We will
numerically compute extremal surfaces on the t = 0 slice of the line element (17).

As emphasized in [14], there are two extremal surfaces of interest emanating from x∂ :
the ones that penetrate the horizon, and the ones that end up anchoring on the brane (recall
that the brane is located at x = 0), see figure 5. We will denote the area of the surface that
penetrates the horizon by AH(x∂ ) and the area of the surface that ends on the Planck brane by
A∂M(x∂ , yB), where yB is the value of y at which this surface intersects the brane. Formally,
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Figure 5: The two types of extremal surfaces, computed numerically at t = 0 in the
background geometry found numerically in section 3. In this figure, we have taken
θ = π/4 and x∂ = 1/2. The horizontal black dotted lines ∂ at the top and bottom are
the left and right baths. The dashed black line B along the left edge is the location of
the brane, which contains the 4d black hole. The horizontal red dashed-dotted line
in the middle is the 5d bifurcate horizon, which meets the brane at the 4d horizon.
Compare with figure 2. The orange curve corresponds to an extremal surface ending
on the brane with yB ≈ 0.31602(1), while the blue curve correspond to an extremal
surface that penetrates the bifurcating Killing surface smoothly. There is, in fact, a
continuous family of orange extremal surfaces and there is a unique one amongst
them with the smallest area, see figure 6.

both these areas are infinite, because of the divergence at the conformal boundary. However,
the difference between these two is well defined.

Let us define the area difference

∆A(x∂ , yB) :=A∂M(x∂ , yB)−AH(x∂ ) , (25)

which is finite for any pair (x∂ , yB). We should also minimize this with respect to yB and
define

∆A(x∂ ) := min
yB∈(0,1)

∆A(x∂ , yB) . (26)

We will simply compute∆A(x∂ , yB) for several values of yB and look for a minimum. We will
see that there is unique value of yB that minimizes ∆A(x∂ , yB).
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Our extremal surfaces are parametrized by coordinates σµ̂, with µ̂ = 1,2, 3. For the sur-
faces that penetrate the horizon, we choose σ1 = y , σ2 = w1 and σ3 = w2, so that the
extremal surfaces can be parametrized by x = F(y) in the (x , y) plane. To compute such
curves we look at the Euler-Lagrange equations derived from

S =

∫
d3σ

Ç
det

�
(∂σµ̂ x ȧ) (∂σν̂ x ḃ) gȧ ḃ

�

=∆w1∆w2

∫ 1

0

dy
L3 y2

+Q5(F(y), y)

(1− y2)3
×

�
4Q2(F(y), y)

G
+

Q4(F(y), y)

[1− F(y)]4

�
y+

dF(y)

dy
+ 2[1− F(y)]2 yQ3(F(y), y)

�2� 1
2

, (27)

where dotted indices run over the spatial coordinates x , y, w1, w2, but not over time. We
will not present the explicit equations of motion following from (27) because they are not
illuminating. Suffice it to say that they are second order ODEs in F(y), and thus can only
be solved once two boundary conditions are supplied. One of these boundary conditions is
imposed at the conformal boundary, where we demand F(1) = x∂ , while at the horizon we
demand F ′(0) = 0.

For the surfaces that end on the Planck brane, one has to proceed with more care, because
if we try to think of these surfaces as a function y(x) or x(y), these functions will be multi-
valued, see the orange curve in figure 5. To bypass this, we introduce two parametrizations
in two different parts of the surface. For a range y ∈ (1, yc) we take x = F(y), i.e. we
choose σ1 = y , σ2 = w1 and σ3 = w2. As boundary conditions we demand F(1) = x∂ and
F(yc) = xc > x∂ , which yields a unique solution in this interval for given values of x∂ , xc

and yc . For x ∈ (0, xc) we choose σ1 = x , σ2 = w1 and σ3 = w2 with y = P(x). We view
the resulting second order ordinary differential equation as an initial value problem, where we
demand P(xc) = yc and P ′(xc) = F ′(yc)

−1. Finally, we read off yB = P(0) from the integration
procedure.

For numerical stability, we found that it was crucial to use the same parametrization for
both surfaces near the boundary, as the leading divergences in (25) were easier to cancel.

The results are shown in figure 5, where we plot an example of the two types of curves in the
(x , y) plane. In this figure we used θ = π/4 and x∂ = 1/2. Also, the value of yB ≈ 0.31602(1)
for this specific plot. For the surface that ends on the brane, we vary xc and yc , which in turn
varies yB. As we do so, we compute ∆A(x∂ , yB) as in the left panel of figure 6. In the right
panel of figure 6, we zoom in close to the point where the horizon intersects the brane and
find that ∆A(x∂ , yB) is minimized for some value yB = y⋆

B
> 0. For the particular run shown

in figure 6, we find that this occurs for y⋆
B
≈ 0.067224(5). Since the minimum is very shallow,

one might wonder whether this is a numerical artefact. To show that this is not the case, we
also plot error bars in figure 6, which are estimated via the numerical convergence studies
performed in appendix A.

4.2 Time dependence of the entropy and the island

As shown in figure 6, the surface that penetrates the horizon (blue in figure 5) has smaller area
at t = 0 and thus is the correct RT surface to use. The time dependence we are considering
involves moving the two sides forwards in time, see figure 4.

As in [15, 25], the area of of this surface increases (linearly after a few thermal times) as
we perform the time evolution. As explained nicely in [25], the intuitive reason behind this
is the stretching of space behind a black hole horizon [40, 41]. We would have an informa-
tion paradox if this entropy increase continued forever, because the von Neumann entropy of
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Figure 6: This figure depicts∆A(x∂ , yB) as a function of yB, computed for x∂ = 1/2
and θ = π/4. In the left panel we have yB ∈ [0.0028(7), 0.35379(9)], whereas on
the right we zoom in close to the point where the horizon intersects the brane. The
surface corresponding to the minimum in this figure is the correct RT surface at late
times.

the union of the two baths should saturate close to 2SBH. (Note that we are imagining the
transverse directions to be toroidally compactified.)

The resolution is that the area of the surface that ends on the Planck brane (orange in figure
5) approaches approximately 2SBH at late times, as in [15]. Again, the intuitive reason is that
since this surface does not penetrate the horizon, it does not get affected by the stretching
of space inside the horizon. Thus, the surface that ends on the Planck brane will win at late
times.

The exchange of dominance between these two surfaces leads to an entropy that increases
linearly for a while before saturating. This is the resolution of the information paradox in this
setting.

Note that at late times, the entanglement wedge of the union of the left and the right baths
contains an island. The island is the region on the left vertical line in figure 5 in between the
two points where the orange curves intersect it.

4.3 Relation to Penington’s work and comments on greybody factors

Higher-dimensional evaporating black holes were also discussed in section 2.4 of [12], where
an argument using the intermediate value theorem was presented for the existence of a quan-
tum extremal surface behind the horizon. The quantitative location of the QES in higher di-
mensions was left undetermined. While we believe that a more accurate computation will not
qualitatively change the results in [12], at the same time it is desirable to obtain quantitatively
the location of the QES.

Our work sidesteps the complications of an evaporating black hole and direct computations
of Sbulk by considering an eternal black hole in the doubly holographic setup. In this toy setup,
we are able to make quantitative predictions because Sbulk gets geometrized as the area of the
five-dimensional RT surface.

We would also like to make some comments on greybody factors which are present in
higher dimensions.7 The direct computation of greybody factors is hard. In our doubly holo-
graphic setup, the effect of 4d greybody factors is packaged into the numerical 5d geometry.

7We thank the referees of SciPost for emphasizing the issue of greybody factors.

13

https://scipost.org
https://scipost.org/SciPostPhys.9.1.001


SciPost Phys. 9, 001 (2020)

Thus, even though we have not been explicit about greybody factors, they are taken into ac-
count in our computations.

However, note that we have not explicitly computed the time dependence of the initial RT
surface. In particular, we do not know the precise coefficient of the linear growth of entropy. It
would be desirable to do so, but the time dependent calculation is numerically more involved
and is beyond the scope of this work. In principle, one could compute that coefficient and
compare it to the same coefficient in the Hartman-Maldacena setup [25], which does not have
the RS brane. One could also compare the times at which the entropy saturates. We expect that
the coefficient of linear growth in our setup with the RS brane should be smaller, and the time
to saturation should be larger than the corresponding quantities in the Hartman-Maldacena
setup because of greybody effects.

5 Discussion

Following section 4 of [15], we discussed a version of the information paradox in a four-
dimensional black hole coupled to a bath in the Hartle-Hawking state. Time dependence is
introduced by moving time forwards on both sides. We ask for the von Neumann entropy of
the union of the left and right baths as a function of time, as depicted in figure 4. To facilitate
computations of quantum extremal surfaces, the matter is described by a CFT4 that has a
five-dimensional holographic dual [14].

We numerically solved Einstein’s equations using the DeTurck trick and found a static five-
dimensional geometry having two flat UV boundaries and a Planck brane, see figure 2. This
geometry has a bifurcate horizon that intersects the Planck brane. In this setup, quantum
extremal surfaces in 4d become usual RT surfaces in 5d. We have computed the extremal
surfaces that correspond to computing the entropy of the union of the left and the right baths.
There are two types of surfaces, as shown in figure 5. One type of extremal surface (blue in
figure 5) penetrates the horizon and is the dominant one at early times. However, its area
increases as a function of time because of the stretching of space inside the horizon [25]. If
there was no competing extremal surface, this would lead to an indefinite growth of entropy.
However, we know that the entropy of the union of the two baths, being equal to the entropy
of the two black holes, should saturate close to 2SBH. The resolution is that, in fact there is a
second type of surface (orange in figure 5) that ends on the Planck brane. Its area saturates at
2SBH, and thus, it wins at late times. Overall, we get an entropy that grows linearly and then
saturates.

This also means that the entanglement wedge of the union of the two baths contains an
island at late times [15]. In figure 5, this island is the region on the left vertical edge between
the two points where the orange curves intersect the vertical line.

The results of this paper unambiguously show that at least some of the gravity computa-
tions of [13–15] done in AdS-JT gravity generalize to higher dimensions. In particular, the
microscopic fact that 2d AdS-JT gravity is dual to an ensemble of Hamiltonians, rather than a
single one, plays no crucial role as far as gravity computations are concerned. One can spec-
ulate about the possibility that quantities computed using path integrals over metrics should
always be interpreted as suitably-ensemble-averaged quantities, and that to reproduce all the
features present in observables of normal unitarily evolving quantum systems, one perhaps
needs stringy physics in the bulk and all sorts of additional effects. See [42] for a recent
discussion of ensemble averages vs. unitary evolution in this context.

In conclusion, this paper provides the first setup where quantitatively precise entangle-
ment islands [12–15] have been computed in higher dimensions. The conclusion is the same:
Islands appear in entanglement wedge of the Hawking radiation at late times and this stops
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Figure 7: (a) Plot of δN (x∂ , yB) computed for several values of N labeled in the plot.
For yB ∈ [0.0028(7), 0.35379(9)] the relative error is smaller than 10−6. (b) Plot
of δN (0.5, 0.3) in a log− log scale computed for several values of N . The numerical
data is represented by the blue disks, and the solid blue line is a best fit curve which
yields δN (0.5, 0.3)∼ N−3.13.

the indefinite growth of von Neumann entropy, giving an answer consistent with unitarity and
a finite density of states.

There are quite a few natural extensions of our work. We found the static geometry and
the two types of extremal surfaces numerically at t = 0, and then used general reasoning to
deduce the time dependence of the areas. It would be interesting to explicitly compute the time
dependence of the extremal area surfaces. It would also be interesting to see if one can make
any analytic statements in the limit θ → 0. This is the limit where the length scale of AdS4 (9)
goes to infinity. Finally, it would be interesting to see if the scenario of “uberholography" [43],
found to hold in the 2d/3d setup of [14] in the recent paper [44], persists in higher dimensions.
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A Numerical convergence

In this appendix we study the numerical convergence of our numerical method. To discretize
the PDEs we use a pseudo-spectral collocation scheme on two Chebyshev grids along the x

and y directions. We then solve the resulting nonlinear algebraic equations using a standard
damped Newton-Raphson algorithm. See [24] for a review of such methods applied in the
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context of the Einstein equation.
Our main figure of merit for extremal surfaces is figure 6, so we shall use it to study nu-

merical convergence. In figure 7a we plot

δN (x∂ , yB) :=

����1−
∆A

N (x∂ , yB)

∆AN+50(x∂ , yB)

���� , (28)

as a function of yB. Here, ∆AN (x∂ , yB) stands for computing ∆A(x∂ , yB) using two Cheby-
shev grids, along x and y , each with N gridpoints. The range quoted in the caption of figure
6 corresponds to a relative error of no larger than 10−6. This explicitly shows that the shallow
minimum of figure 6 is clearly resolved for resolution with N ≥ 200. All the plots in the main
text were generated with N = 250.

To extract the convergence of the method, we fix x∂ = 1/2 and yB = 0.3 and vary N . Fixing
other values of x∂ or yB give very similar results. The results are displayed in figure 7b, where
the observed behaviour is consistent with power law convergence δN (0.5, 0.3)∼ N−3.13. This
in turn agrees with the non-analytic behavior of the DeTurck gauge close to the conformal
boundary that was uncovered in [37,38].
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