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Abstract

We advance holographic constructions for the entanglement negativity of bipartite states
in a class of (1+1)−dimensional Galilean conformal field theories dual to asymptotically
flat three dimensional bulk geometries described by Einstein Gravity and Topologically
Massive Gravity. The construction involves specific algebraic sums of the lengths of bulk
extremal curves homologous to certain combinations of the intervals appropriate to such
bipartite states. Our analysis exactly reproduces the corresponding replica technique
results in the large central charge limit. We substantiate our construction through a
semi classical analysis involving the geometric monodromy technique for the case of
two disjoint intervals in such holographic Galilean conformal field theories
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1 Introduction

In recent years quantum entanglement has emerged as a fundamental issue connecting di-
verse areas of physics from many-body condensed matter systems to black holes and quantum
gravity. It is well known in quantum information theory that bipartite pure state entangle-
ment is characterized by the entanglement entropy which is the von Neumann entropy of
the corresponding reduced density matrix. However the entanglement entropy is not a valid
measure for mixed state entanglement due to contributions from irrelevant correlations. To
address this significant issue several entanglement and correlation measures were introduced
in quantum information theory. However most of these were not easily computable as they

2

https://scipost.org
https://scipost.org/SciPostPhys.12.2.074


SciPost Phys. 12, 074 (2022)

involved extremization over LOCC protocols. Vidal and Werner [1] in a classic work intro-
duced a computable measure for mixed state entanglement termed entanglement negativity
(logarithmic negativity) which was defined as the trace norm of the partial transpose of the
density matrix with respect to one of the subsystems and provided an upper bound to the dis-
tillable entanglement. Despite its non-convexity [2], entanglement negativity was proved to
be an entanglement monotone and is widely used to characterize mixed state entanglement.

For extended quantum many-body systems with infinite degrees of freedom such entan-
glement measures are usually computationally intractable although a formal definition may
be attempted. Significantly, it was shown in [3,4] that the entanglement entropy of bipartite
states in (1 + 1)-dimensional relativistic conformal field theories (CFT1+1) may be explicitly
computed through a replica technique. Remarkably the replica technique described above
could also be modified to compute the entanglement negativity of bipartite states in such rel-
ativistic CFT1+1 described in [5–7].

Over the last decade there has been intense focus on the holographic characterization of
entanglement in conformal field theories dual to bulk AdS geometries in the framework of the
AdS/CFT correspondence [8]. This was pioneered by the classic work of Ryu and Takayanagi
(RT) in [9, 10] where it was conjectured that the universal part of the entanglement entropy
of a subsystem in a relativistic CFTd was proportional to the area of a bulk static codimension
two minimal surface homologous to the subsystem. A covariant generalization of the above
holographic conjecture was proposed by Hubeny, Rangamani and Takayangi (HRT) for rel-
ativistic CFTd dual to bulk non-static AdS geometries in [11]. The above conjectures were
subsequently proved in a series of significant works in [12–18].

In the above context, it was natural to seek a corresponding holographic characterization
for the entanglement negativity of such bipartite states in dual CFTds. This was initially at-
tempted for the pure vacuum state of dual CFTds in [19]. Subsequently a comprehensive
holographic construction for the entanglement negativity of both pure and mixed states in
dual CFT1+1s was advanced in the context of the AdS3/CFT2 [20–23] scenario. These pro-
posals were substantiated by a large central charge analysis of the entanglement negativity
for CFT1+1s utilizing the monodromy technique in [13, 24–26]. Subsequently, the covariant
extension of the holographic entanglement negativity constructions described above were ad-
vanced for bipartite states in CFT1+1s dual to non-static AdS3 backgrounds following the HRT
construction [11] in [23,27–29]. Higher dimensional generalizations of the above holographic
constructions for bipartite states described by configurations of subsystems with long rectangu-
lar strip geometries in CFTds dual to bulk static AdSd+1 geometries were proposed in [30–32].
We should mention here that an alternate holographic construction based on the entangle-
ment wedge cross-section [33, 34], for the entanglement negativity of bipartite states in the
AdSd+1/CFTd scenario was developed in [35,36]. It has been shown in [37] that this proposal
is completely equivalent to the earlier construction for the holographic entanglement negativ-
ity upto certain overall multiplicative factors arising from the backreaction of cosmic branes
associated with bulk conical defects.1

In a separate context, a class of (1+1) dimensional field theories with Galilean conformal
symmetries obtained through a parametric İnönü-Wigner contraction of the usual relativistic
conformal algebra were investigated in [40–54]. The authors of [43, 44] developed a replica
technique for computing the entanglement entropy of such Galilean conformal field theories
(GCFT1+1). Following this a replica technique to compute the entanglement negativity of
bipartite states in a class of such GCFT1+1 was established in [55].

The above class of GCFT1+1s was proposed as possible holographic duals to bulk three-
dimensional gravity in asymptotically flat space-times [56] in the framework of flat space
holography [57, 58]. The asymptotic symmetry algebra of the bulk geometry was described

1For more recent developments see [38,39].
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by the infinite dimensional Bondi-Metzner-Sachs (BMS3) algebra isomorphic to the Galilean
conformal algebra in 1+1 dimensions (GCA2). The authors of [59] computed the holographic
entanglement entropy of a single interval in the corresponding dual BMS3 field theory located
at the null infinity of the bulk asymptotically flat geometry. Interestingly in [60], the authors
established a holographic construction for the entanglement entropy in the dual BMS3 field
theories described above, through a generalization of the covariant HRT construction [11] first
proposed in [59]. From a different perspective, the authors of [43] obtained the above flat
space holography results utilizing the Chern-Simons formulation of three-dimensional grav-
ity [61] and the Wilson line prescription [62].

The above developments bring the critical issue of a holographic description of mixed state
entanglement for these dual GCFT1+1 into sharp focus. In this article we address this issue
through the BMS3/GCA2 correspondence [58–60]. In this context we establish holographic
constructions to compute the entanglement negativity of bipartite states in GCFT1+1s dual
to bulk asymptotically flat (2 + 1) dimensional Einstein Gravity and Topologically Massive
Gravity (TMG) [59,60,63–66], following the corresponding constructions for relativistic CFT

1+1s described in [20,21,55]. Interestingly our results match exactly with the universal parts
of the corresponding replica technique results obtained in [55]. For the mixed state of disjoint
intervals in proximity we substantiate our results through a rigorous geometric monodromy
analysis [67] to obtain the corresponding large central charge limit.

This article is organized as follows. In section 2 we briefly recollect the salient features of
GCFT1+1s and the BMS3/GCA2 correspondence. The replica techniques developed in [43,44,
55] for computing the entanglement entropy and negativity respectively in such GCFT1+1s are
reviewed in section 3. In section 4 we describe the covariant construction for computing the
entanglement entropy in [59,60]. In particular, we apply this covariant prescription to obtain
the entanglement entropy for a single interval in a GCFT1+1 describing a finite-sized system
and find perfect agreement with [43,44]. In section 5, we establish our flat-holographic con-
structions for computing the entanglement negativity for a single and two adjacent intervals in
GCFT1+1s dual to Einstein gravity in the bulk asymptotically flat spacetimes. The holographic
construction for computing the entanglement negativity for the case of two disjoint intervals
along with the large central charge analysis is described in section 6. In section 7 we generalize
the above constructions to the case of GCFT1+1s dual to bulk geometries described by TMG.
The special case of the entanglement negativity in flat chiral gravity is discussed in appendix
A. Furthermore, in appendix B we provide details of the geometric monodromy analysis and
perform a next to leading order computation to substantiate our results. Finally in appendix C
we provide further support to the same through a parametric contraction of the corresponding
relativistic CFT1+1 results reported in [23, 25]. We conclude in section 8 with a summary of
our results and discuss future open issues.

2 Review of GCFT1+1

In this section we review the basics of (1+ 1) dimensional Galilean conformal field theories
(GCFT1+1) [40–54]. Interestingly the Galilean conformal algebra (GCA2) may be obtained via
an İnönü-Wigner contraction of the usual relativistic conformal algebra in two dimensions:

t → t , x → εx , (1)

with ε→ 0. This is equivalent to the non-relativistic small velocity limit v ∼ ε. The Galilean
conformal transformations acts on the coordinates as

t → f (t) , x → f ′(t)x + g(t) , (2)
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which can be thought of as diffeomorphisms and t-dependent shifts, respectively. These are
generated by the Nöether charges which, in the plane representation, are given by

Ln = tn+1∂t + (n+ 1)tn x∂x , Mn = tn+1∂x , (3)

which obey the Lie algebra with different central extensions in each sector2:

[Ln, Lm] = (m− n)Ln+m +
cL

12
(n3 − n)δn+m,0 ,

[Ln, Mm] = (m− n)Mn+m +
cM

12
(n3 − n)δn+m,0 ,

[Mn, Mm] = 0 ,

(4)

where cL and cM are the central charges for the GCA. The cylinder and plane representations
are related via the transformation [45,67]

x = eiφ , t = iu eiφ . (5)

The maximally commuting subalgebra is that of the generators {L0, M0} and the representa-
tions are labelled by their eigenvalues (the conformal weights) hL and hM in order to construct
the highest weight representation.

L0 |hL , hM 〉= hL |hL , hM 〉 , M0 |hL , hM 〉= hM |hL , hM 〉 . (6)

The two point correlator of primary fields may be written down utilizing the Galilean conformal
symmetry as [42,55]




V1(x1, t1)V2(x2, t2)
�

= C (2)δh1
Lh2

L
δh1

M h2
M

t
−2h1

L
12 exp

�

−2h1
M

x12

t12

�

, (7)

where (h1
L , h1

M ) and (h2
L , h2

M ) are the conformal weights of the primary fields V1 and V2 respec-
tively, C (2) is a normalization constant and x12 = x1− x2, t12 = t1− t2. In a similar manner it
is easy to determine the three point function of primary fields in a GCFT1+1 to be [42,55]

〈V1(x1, t1)V2(x2, t2)V3(x3, t3)〉=C (3) t
−(h1

L+h2
L−h3

L)
12 t

−(h2
L+h3

L−h1
L)

23 t
−(h1

L+h3
L−h2

L)
13

× exp
�

− (h1
M + h2

M − h3
M )

x12

t12
− (h2

M + h3
M − h1

M )
x23

t23

− (h1
M + h3

M − h2
M )

x13

t13

�

,

(8)

where the Vi ’s are primary fields with weights {(hi
L , hi

M )} and x i j = x i − x j , t i j = t i − t j with
(i = 1, 2,3) respectively and C (3) is a constant. Similarly, the four-point function of primary
fields in the GCFT1+1 may be expressed as [55]

® 4
∏

i=1

Vi(x i , t i)

¸

=
t

h1
L+h3

L
13 t

h2
L+h4

L
24

t
h1

L+h2
L

12 t
h2

L+h3
L

23 t
h3

L+h4
L

34 t
h1

L+h4
L

14

exp
� x13

t13
(h1

M + h3
M ) +

x24

t24
(h2

M + h4
M )

−
x12

t12
(h1

M + h2
M )−

x23

t23
(h2

M + h3
M )−

x34

t34
(h3

M + h4
M )

−
x14

t14
(h1

M + h4
M )
�

G(t, x
t
),

(9)

2Note that we are working in the plane representation which differs from the familiar cylinder representation
used in [41,42] by a negative sign in the GCA.
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where {(hi
L , hi

M )} are the weights of the primary fields Vi(x i , t i) with (i = 1,2, 3,4) and

t =
t12 t34

t13 t24
,

x
t
=

x12

t12
+

x34

t34
−

x13

t13
−

x24

t24
, (10)

are the non-relativistic counterparts of the cross ratio x in the relativistic CFT1+1s. In eq. (9),
G(t, x

t ) is a non-universal function of the cross ratios that depends on the full operator content
of the specific field theory.

Interestingly the GCFT1+1s are equivalent to the BMS3 field theories at the level of the
algebra [58]. This leads to a conjectured GCA2/BMS3 correspondence between the asymptotic
symmetry algebra of three dimensional Minkowski spacetime at null infinity and the above
class of GCFT1+1 [44, 45, 58]. Note that the central charges of these contracted algebras are
related with the parent Virasoro central charges as [58]

cL = c + c̄ , cM = ε(c − c̄) , (11)

for GCA2, and as
cL = ε(c − c̄) , cM = c + c̄ , (12)

for BMS3. Also, the kinematics in the two sectors are related by the replacement x ←→ t [44].
We will be using the BMS3/GCA2 correspondence for the computations in the context of flat
holographic entanglement in sections 5 to 7.

3 Entanglement measures in GCFT1+1

In this section we briefly review the replica techniques employed to compute the entanglement
entropy and entanglement negativity, in the special class of GCFT1+1 described above. As
in the case of relativistic CFT1+1s [3, 4], the entanglement entropy for a bipartite state in
these GCFT1+1s may be computed using a replica technique developed in [43, 44]. To this
end, one considers n-copies of the GCFT1+1 plane sewed together along cuts describing the
intervals (subsystems) under consideration. The partition function on this replica manifold
then computes the Renyi entropy S(n)A for the boosted interval A 3, in terms of the two-point
function of twist fields Φ±n inserted at endpoints ∂iA of the interval A as

(1− n)S(n)A = Trρn
A = 〈Φn(∂1A)Φ−n(∂2A)〉 , (13)

where the twist fields are primary fields of the GCFT1+1 with scaling dimensions

∆n =
cL

24

�

n−
1
n

�

, χn =
cM

24

�

n−
1
n

�

, (14)

and ρn
A is the reduced density matrix corresponding to the subsystem A. The entanglement

entropy for the bipartite state corresponding to the interval A in the GCFT1+1 may now be
obtained by taking the replica limit n→ 1 as

SA = lim
n→1

S(n)A = lim
n→1

∂n 〈Φn(∂1A)Φ−n(∂2A)〉 . (15)

Interestingly it was possible to compute the entanglement negativity for mixed states in
relativistic CFT1+1s through a related replica technique [5–7]. To define the entanglement

3 Note that in the case of GCFT1+1s one cannot consider subsystems at a fixed time slice due to the lack of Lorentz
invariance. Therefore one must consider Galilean boosted intervals of the form A= [(x1, t1), (x2, t2)] [43,55].
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negativity in quantum information theory a tripartite system in a pure state consisting of sub-
systems A1, A2 and B is considered. Subsequently the degrees of freedom of the subsystem B
are traced over to obtain the reduced density matrix of the mixed state configuration described
by A= A1 ∪ A2, as ρA = TrBρ, where ρ describes the tripartite state A∪ B. The entanglement
negativity of the bipartite mixed state described by the reduced density matrix ρA is then de-
fined as the trace norm of the partially transposed density matrix ρT2

A [1,5–7]

E = ln Tr ||ρT2
A || , (16)

where the trace norm is defined as the sum of absolute eigenvalues of ρT2
A . The operation of

partial transpose is described as
¬

e(1)i e(2)j |ρ
T2
A |e

(1)
k e(2)l

¶

=
¬

e(1)i e(2)l |ρA|e
(1)
k e(2)j

¶

, (17)

where |e(1)i 〉 and |e(2)j 〉 are the basis elements for the Hilbert spaces H1 and H2 corresponding
to A1 and A2, respectively.

Next we briefly discuss the replica construction for computing the entanglement negativity
of bipartite states in a GCFT1+1 developed in [55] which closely follows [5, 6] for relativistic
CFT1+1.

As for the relativistic CFT1+1, in this case one considers a replicated manifold described by
ne-copies (with ne even) of the GCFT1+1 plane glued together in an appropriate fashion [55].
The entanglement negativity for the bipartite mixed state configuration A≡ A1 ∪A2 may then
be obtained through a replica technique as

E = lim
ne→1

logTr(ρT2
A )

ne . (18)

In eq. (18), we have used the replica limit ne→ 1 and the quantity Tr(ρT2
A )

ne can be expressed
in terms of a four-point correlator of twist fields Φ±ne

inserted at the endpoints of the intervals
as

Tr(ρT2
A )

ne =



Φne
(x1, t1)Φ−ne

(x2, t2)Φ−ne
(x3, t3)Φne

(x4, t4))
�

. (19)

The authors of [55] computed the entanglement negativity for various bipartite pure and
mixed state configurations involving a single interval and two adjacent intervals in a GCFT1+1.
In the subsequent sections, we will develop holographic constructions to compute the entan-
glement negativity for such configurations in a GCFT1+1. Furthermore, in section 6 we will
describe a geometric monodromy technique to obtain the universal part of the four-point twist
correlator in (19) from which it is possible to establish a holographic construction for the
entanglement negativity of the mixed state configuration of two disjoint intervals in proximity.

4 Entanglement in flat holography

In this section we review the salient features of the covariant construction in [59,60] for com-
puting entanglement entropy in flat holography in the spirit of the HRT prescription [11] in the
usual AdS/CFT scenario. The entanglement entropy of a bipartite state described by a single
interval in the BMS3/GCA2 field theory located at the null infinity of the dual asymptotically
flat bulk geometry will be given by the length of a bulk extremal geodesic homologous to the
interval. We first consider the case of the BMS3/GCA2 field theory dual to bulk asymptotically
flat (2+1)-dimensional Einstein Gravity for which the Brown-Henneaux symmetry analysis at
null infinity leads to the infinite dimensional BMS3/GCA2 algebra. For the appropriate bound-
ary conditions, the general solution to Einstein equations in the Bondi gauge is [59]

ds2 = Θ(φ)du2 − 2 dudr + 2
h

Ξ(φ) +
u
2
∂φΘ(φ)

i

dudφ + r2dφ2 , (20)
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where u= t− r in the (retarded) Eddington-Finkelstein time, r is the holographic coordinate,
and Θ(φ) and Ξ(φ) are arbitrary functions of the angular coordinate φ. It is interesting to
note that by construction the holographic direction is null.

As stated earlier the flat space holographic principle requires a dual BMS3/GCA2 field
theory located at the null infinity of the bulk asymptotically flat spacetime. The corresponding
central charges for this dual field theory are obtained from the asymptotic symmetry analysis
as [59,67–69]

cL = 0 , cM =
3
G

. (21)

It is interesting to note that the global subalgebra of the BMS3 group is identical to the Poincare
algebra. Therefore the corresponding conformal weights ∆ and χ which label the represen-
tations of the BMS3/GCA2 must correspond to the quadratic Casimirs of the Poincare algebra.
This indicates the presence of a massive particle with spin propagating in the bulk geome-
try. For Einstein gravity in the bulk however the equations (14) and (21) indicate that ∆= 0,
which corresponds to the propagation of a spinless massive particle in the bulk spacetime [60].

4.1 Holographic entanglement in flat Minkowski space

We start with the holographic computation of the entanglement entropy for a single interval
in the vacuum state of a GCFT1+1. To this end we consider the dual geometry of the bulk flat
(2+1) dimensional Minkowski spacetime in Eddington-Finkelstein coordinates which is given
as

ds2 = dr2 − du2 + r2dφ2 , (22)

where the coordinates are as described earlier. We consider an interval A= [(u∂1 ,φ∂1 ), (u
∂
2 ,φ∂2 )]

on the dual GCFT1+1 plane located at the null infinity of the flat spacetime. It was shown
in [60] the length of the bulk extremal curve joining the endpoints ∂iA (i = 1, 2) of the interval,
is given by

Lextr
tot =

�

�

�

�

u∂12

tan
φ∂12
2

�

�

�

�

. (23)

Note that the bulk extremal curve consists of two null curves descending from the endpoints
∂iA which do not intersect and a third extremal curve is required to connect them. Recall that
for Einstein gravity in the bulk we have cL = 0 from eq. (21). Therefore, as described in [60],
in the large cM limit, the twist fields inserted at the endpoints of the interval correspond to
a bulk propagating particle of mass mn = χn. Consequently the two point correlator (13) of
these twist fields can be expressed as the exponential of the on-shell action of such a particle
propagating along an extremal trajectory Xµ(s) homologous to the interval. With such an
identification we write following [60]:

〈Φn(∂1A)Φ−n(∂2A)〉= e−mn Son-shell , (24)

where mn = χn and

Son-shell =
Ç

ηµνẊµẊ ν = Lextr
tot . (25)

Therefore the entanglement entropy for the single interval A in eq. (15) is given by the flat
space analog of the HRT formula [59,60,70]

SA =
1

4G
Lextr

tot =
1

4G

�

�

�

�

u∂12

tan
φ∂12
2

�

�

�

�

, (26)

where we have used eq. (21).
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4.2 Holographic entanglement in global Minkowski orbifolds

Next we focus on a GCFT1+1 compactified on a spatial circle of circumference L. The dual
geometry is the global Minkowski orbifold, which is described as the quotient of the usual
Minkowski spacetime with the compact spatial circle [59]:

(u,φ)∼ (u,φ + Lφ) . (27)

The metric for global Minkowski orbifolds reads [59]

ds2 = −
�

2π
Lφ

�2

du2 − 2du dr + r2dφ2 . (28)

The holographic entanglement entropy of the boosted interval A= [(u∂1 ,φ∂1 ), (u
∂
2 ,φ∂2 )] is ob-

tained from the length of a bulk extremal curve homologous to the interval in the dual field
theory. Note that the bulk geodesics are not necessarily straight lines for this case which ren-
ders the analysis to be more involved than for the bulk flat Minkowski spacetime. To this end
we compute the geodesic length in the Cartesian coordinates and map the endpoints to the
global Minkowski orbifold through the the coordinate transformations which implements the
quotienting [59,60]. These coordinate transformations are given as

r =
2π
Lφ

p

x2 − t2 ,

u=
� Lφ

2π

�2 �2πi
Lφ

y − r

�

,

φ =
Lφ
2πi

log

�

2πi
Lφ

(t − x)
r

�

=
Lφ
2π

sin−1

�

π(t − x)
Lφ r

+
Lφ r

4π(t − x)

�

.

(29)

Inverting these relations, we obtain

x =
Lφ r

2π
sin

�

2πφ
Lφ

�

, t =
Lφ r

2π
cos

�

2πφ
Lφ

�

, y =
Lφ
2πi

r −
2πi
Lφ

u . (30)

The length of the bulk geodesic from y1 to y2 obtained through this procedure is expressed as

L(y1, y2) =
Lφ
2π

�

2r1r2

�

1− cos
2π(φ1φ2)

Lφ

�

− 8π2

L2
φ

(r1 − r2)(u1 − u2)−
�

2π
Lφ

�4

(u1 − u2)
2

�1/2

. (31)

Similar to the previous case of the bulk pure Minkowski spacetime [60], we have null hyper-
surfaces on which the null curves descending from the endpoints (u∂i ,φ∂i ) of the boundary
interval lie:

Ni :
2π
Lφ
(u∂i − ui)− 2ri sin2

�

π(φi −φ∂i )
Lφ

�

= 0 . (32)

The invariant length between yi ∈ Ni and the boundary endpoint ∂iA is given by

L(yi ,∂iA) =
Lφ
2π

ri sin

�

2π(φi −φ∂i )
Lφ

�

. (33)

The null lines now correspond to ui = u∂i , φi = φ∂i which usually do not intersect and another
extremal curve connecting the null lines is required. The total length of the extremal curve
may then be expressed as follows

Ltot = Lextr(y1,∂1A) + Lextr(y1, y2) + Lextr(y2,∂2A) = Lextr(y1, y2) . (34)
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The extremization of the length in eq. (31) with respect to the position of the endpoints leads
to

∂ Ltot

∂ ri
= 0 =⇒ r2 =

4π2u∂12/L2
φ

1− cos
�

2πφ∂12
Lφ

� = −r1 . (35)

Substituting this back into the expression (34) we obtain the length of the extremal curve
homologous to the interval as

Lextr
tot =

2πu∂12

Lφ
cot

�

πφ∂12

Lφ

�

. (36)

Consequently the holographic entanglement entropy for the interval A in the dual field theory
is given by

SA =
1

4G
Lextr

tot =
cM

6

πu∂12

Lφ
cot

�

πφ∂12

Lφ

�

, (37)

where in the last expression we have used eq. (21). This matches with the cL = 0 part of the
entanglement entropy of the single interval in the BMS3/GCA2 field theory dual to the global
Minkowski orbifold obtained in [43].

4.3 Holographic entanglement in flat space cosmologies

In this subsection we will consider a finite temperature GCFT1+1 with a compactified thermal
cycle (u,φ) ∼ (u+ iβu,φ + iβφ). The corresponding holographic dual is another interesting
quotient of Minkowski spacetime called Flat Space Cosmology (FSC), with the metric [43–45]

ds2 = Mdu2 − 2 dudr + J dudφ + r2dφ2 , (38)

where the temperatures in the dual field theory at null infinity are related to the ADM mass and
angular momentum of the spacetime as βu = πJ M−3/2 and βφ = 2πM−1/2. For this geometry
a similar computation of the geodesic length as above yields the following expression for the
geodesic length [60]

Lextr
tot =

p
M
�

u∂12 +
J

2M
φ∂12

�

coth

�p
Mφ∂12

2

�

−
J
M

. (39)

We are mainly interested in the non-rotating geometry, therefore putting J = 0 and writing β
for βφ , we obtain

Lextr
tot =

2πu∂12

β
coth

�

πφ∂12

β

�

, (40)

and consequently the holographic entanglement entropy for the boundary interval A in the
thermal GCFT1+1 is given by

SA =
cM

6

πu∂12

β
coth

�

πφ∂12

β

�

. (41)

5 Holographic entanglement negativity in flat Einstein gravity

In this section we detail the holographic constructions for computing the entanglement neg-
ativity of bipartite states in the class of GCFT1+1s dual to bulk asymptotically flat geometries
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using results from the flat space holography described in the last section 4. In particular we
will consider the asymptotically flat bulk spacetimes described by Einstein gravity for which
the asymptotic symmetry analysis reveals that the dual GCFT1+1s possess only one non zero
central charge cM (cf eq. (21)). We will first describe the holographic construction to compute
the entanglement negativity of various bipartite states described by a single interval in the
dual GCFT1+1. These include a single interval for a GCFT1+1 in its ground state, a GCFT1+1
describing a finite-sized system and a GCFT1+1 at a finite temperature respectively. Next we
turn our attention to the configuration of two adjacent intervals in the dual GCFT1+1 and
establish holographic constructions to compute the entanglement negativity for the configura-
tions described above using the results of flat space holography. The case of the two disjoint
intervals will require an analysis of the semi-classical Galilean conformal blocks in the large
central charge limit of the GCFT1+1. We will postpone the discussion of such configurations
till section 6.

5.1 Holographic entanglement negativity for a single interval

In this subsection we will consider various bipartite pure and mixed states consisting of a single
interval in a large system described by a GCFT1+1. We start with the simplest configurations of
bipartite pure states described by a single interval A≡ [(x1, t1), (x2, t2)]. As described in [55],
the corresponding entanglement negativity involves a two-point correlator of composite twist
fields, given by

E = lim
ne→1

log
¬

Φ2
ne
(x1, t1)Φ

2
−ne
(x2, t2)

¶

. (42)

We now apply the flat space holographic dictionary in eqs. (24) and (25) to obtain the follow-
ing form for the above twist correlator:

¬

Φ2
ne
(x1, t1)Φ

2
−ne
(x2, t2)

¶

=
�


Φne/2(x1, t1)Φ−ne/2(x2, t2)
��2
= e−2χne/2 Lextr

12 , (43)

where χne/2 is the non-trivial scaling dimension of the twist fields Φ±ne/2 and Lextr
12 is the length

of the bulk extremal curve homologous to the interval in question. In obtaining eq. (43), we
have made use of the fact that for pure states the two point correlator of composite twist
operators factorizes into that of usual twist operators spanning half of the replica geometry
[55]. From eq. (14), in the replica limit ne → 1 , we have χne/2 → −

cM
16

4, and therefore we
obtain the following expression for the entanglement negativity of a pure state described by a
single interval A in a holographic GCFT1+1:

E = 3
8G

LA , (44)

where we have made use of eq. (21). In the following, we will employ our holographic pro-
posal in eq. (44) to compute the holographic entanglement negativity in some pure quantum
states in a holographic GCFT1+1. Particularly we will investigate the case of a single interval
in the ground state of the GCFT1+1, which is dual to the asymptotically flat pure Minkowski
spacetime. Then we will turn our attention to the pure state described by the single interval in
a finite-sized system described by a GCFT1+1 compactified on a spatial cylinder, which is dual
to the boost orbifold of Minkowski spacetime. We will find that the results obtained using our
holographic formula will reproduce the universal behaviour of the entanglement negativity for
both of these configurations [55]. Later, in subsection 5.1.3 we will consider the mixed state
configuration of a single interval at a finite temperature which involves a particular four-point
twist correlator in the large central charge limit.

4 Note that the negative scaling dimension of the twist fields Φ2
ne

and Φne/2 in the replica limit ne → 1 has to be
understood only in the sense of an analytic continuation.
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5.1.1 Single interval at zero temperature

To obtain the entanglement negativity in the bipartite pure state configuration described by
a single boosted interval in a GCFT1+1 (cf. footnote 3) at zero temperature we use the re-
sults from the flat space holography reviewed in section 4 . At this point, we recall that the
computation of the length of the extremal geodesic in the dual gravity theory in cylindrical
coordinates (u,φ) results in eq. (23) [60]. In the planar coordinates in eq. (5) [45, 60] this
translates to

Lextr
12 = 2

x12

t12
. (45)

Therefore, using the above expression for Lextr
12 , we obtain the entanglement negativity for a

single interval in a GCFT1+1 at zero temperature from eq. (44) to be

E = 3
8G

LA =
cM

4
x12

t12
. (46)

This is precisely the result obtained in [55] using field theory methods, for cL = 0. It is
interesting to note that we may recast the above expression for entanglement negativity in
the form

E = 3
2

SA , (47)

using the flat space analogue of the HRT formula in eq. (26), where SA is the entanglement
entropy for the single interval A in the GCFT1+1 vacuum. This indicates that for pure states
the holographic entanglement negativity is given by the Rënyi entropy of order half as in the
case of quantum information theory [6].

5.1.2 Single interval in a finite-sized system

Next we turn our attention to the computation of holographic entanglement negativity for
the pure state configuration of a single boosted interval in a finite-sized system admitting
periodic boundary conditions described by a GCFT1+1 defined on an infinite cylinder with
circumference Lφ . The bulk gravity dual is the global Minkowski orbifold described by the
metric in eq. (28). The extremal geodesic length was computed in section 4 and is given by

Lextr
i j =

2πui j

Lφ
cot

�

πφi j

Lφ

�

, (48)

where ui j = ui − u j and φi j = φi −φ j are the differences in the coordinates of the endpoints
of the boundary interval.

We may now employ our holographic proposal in eq. (44) to compute the holographic
entanglement negativity for the single boosted interval in a finite-sized system. Utilizing eq.
(48) we obtain

E =
cM

4
πu12

Lφ
cot

�

πφ12

Lφ

�

, (49)

which matches exactly with the universal part of the dual field theory result for cL = 0 [55].
Again using the flat holographic HRT formula in (26) we may express the above result in the
form (47).

5.1.3 Single interval at a finite temperature

The mixed state configuration described by a single interval in a finite temperature GCFT1+1
requires a more careful analysis. To start with we recall that a GCFT1+1 at a finite temperature
is defined on an infinite cylinder of circumference equal to the inverse temperature β . The
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corresponding entanglement negativity involves a four-point twist correlator on the infinite
cylinder arising from the configuration of a single interval sandwiched between two adjacent
large but finite intervals [55]. The entanglement negativity may then be obtained through a
bipartite limit subsequent to the replica limit. Therefore in order to understand the configura-
tion described by a single interval at a finite temperature, we first consider a four-point twist
correlator on the GCFT1+1 plane [55] (cf. eq. (9)):

¬

Φne
(x1, t1)Φ

2
−ne
(x2, t2)Φ

2
ne
(x3, t3)Φ−ne

(x4, t4)
¶

=
kne

k2
ne/2

t
2∆ne
14 t

2∆(2)ne
23

Fne
(t, x/t)

t∆
(2)
ne

(50)

× exp

�

− 2χne

x14

t14
− 2χ(2)ne

x23

t23
−χ(2)ne

x
t

�

,

where kne
is a constant that depends on the full operator content of the theory. The corre-

sponding weights of the twist fields Φ±ne
are given in eq. (14), from which one can determine

the weights of the composite twist fields Φ2
±ne

as [55]:

∆(2)ne
= 2∆ne/2 =

cL

12

�

ne

2
−

2
ne

�

, χ(2)ne
= 2χne/2 =

cM

12

�

ne

2
−

2
ne

�

. (51)

Equipped with eq. (7) for the two-point twist correlators, the universal part of the four-point
function (which is dominant in the large central charge limit of the GCFT1+1) in eq. (50) can
be factorized as

¬

Φne
(x1, t1)Φ

2
−ne
(x2, t2)Φ

2
ne
(x3, t3)Φ−ne

(x4, t4)
¶

=
�


Φne/2(x2, t2)Φ−ne/2(x3, t3)
��2 

Φne
(x1, t1)Φ−ne

(x4, t4)
�

×




Φne/2(x1, t1)Φ−ne/2(x2, t2)
� 


Φne/2(x3, t3)Φ−ne/2(x4, t4)
�




Φne/2(x1, t1)Φ−ne/2(x3, t3)
� 


Φne/2(x2, t2)Φ−ne/2(x4, t4)
� +O

�

1
c

�

.

(52)

Note that the arbitrary non-universal function of the GCFT1+1 cross ratios Fne
(t, x/t) has been

neglected in the above factorization. We may justify this as follows. In the semi-classical limit
(G→ 0) of the bulk asymptotically flat gravity, the flat space holographic dictionary described
in section 4 dictates that the dual GCFT1+1 theory has a large central charge cM →∞ (cf. eq.
(21)). Hence, we require a large central charge analysis of the twist-correlator in eq. (50)
for the entanglement negativity before giving its holographic description. In section 6 we will
develop a monodromy technique to understand the large central charge behaviour of a specific
four-point function of twist fields relevant to the computation of entanglement negativity for
the mixed state configuration of two disjoint intervals. There we will show that in the large
central charge limit cM →∞ the non-universal part of the four-point twist correlator is sub-
leading in comparison to the universal part. In the present context, we assume that the four-
point twist correlator in (50) has a similar large-cM structure and therefore the subleading
contributions from the non-universal function Fne

(t, x/t) in eq. (50) is neglected as shown
by the O(1/c) contribution in eq. (52).

Now we utilize the flat space holographic dictionary in eqs. (24) and (25) to find that the
four-point function in eq. (52) may be written in the following form

¬

Φne
(x1, t1)Φ

2
−ne
(x2, t2)Φ

2
ne
(x3, t3)Φ−ne

(x4, t4)
¶

= exp
�

−χne
Lextr

14 −χne/2

�

2Lextr
23 + Lextr

12 + Lextr
34 − Lextr

13 − Lextr
24

��

,
(53)

where Lextr
i j denotes the length of the extremal geodesic in the bulk, which connects the points

(x i , t i) and (x j , t j) on the boundary. Figure 1 shows the schematics for the configuration
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Figure 1: Schematics of the extremal geodesics anchored on different subsystems
corresponding to the computation of entanglement negativity for a single interval
in a finite temperature GCFT1+1. The null planes descending from the boundary
endpoints are shown. The non-trivial contributions to the geodesic lengths land on
the crossings of the corresponding null planes.

of a single interval A = [(x2, t2), (x3, t3)] sandwiched between two large auxiliary intervals
B1 = [(x1, t1), (x2, t2)] and B2 = [(x3, t3), (x4, t4)] with B1 ∪ B2 ≡ B. As briefly alluded to in
section 4 the orientations of extremal geodesics anchored on different subsystems follow the
construction in [60].

From fig. 1 we identify that

Lextr
12 = LB1

, Lextr
23 = LA , Lextr

34 = LB2
,

Lextr
13 = LA∪B1

, Lextr
24 = LA∪B2

, Lextr
14 = LA∪B . (54)

In the replica limit ne → 1, we have from eq. (14) χne
→ 0 and χ ne

2
→ − cM

16 . Therefore, eq.
(53) leads to the following expression for the holographic entanglement negativity

E = lim
B→Ac

3
16G

�

2LA+ LB1
+ LB2

− LA∪B1
− LA∪B2

�

. (55)

In writing eq. (55) from eq. (53) we have first taken the replica limit ne → 1 and subse-
quently taken the bipartite limit B → Ac in which the intervals B1 and B2 are extended to
infinity such that B1 ∪ B2 = Ac [55]. We have also utilized the fact that for Einstein gravity
the asymptotic symmetry analysis following the Brown-Henneaux procedure [71] dictates that
the central charges of the dual GCFT1+1 are given by (21). Therefore we conclude that the
holographic formula for the entanglement negativity of a single interval in a finite temperature
dual GCFT1+1 relies on a specific linear combination of the lengths of bulk extremal surfaces
homologous to the boundary intervals, as shown in fig. 1. Remarkably the flat-holographic
proposal for the entanglement negativity for asymptotically flat gravity in eq. (55) has exactly
the same structure as in the AdS/CFT scenario obtained in [20]. Interestingly, implementing
the flat-holographic counterpart of the HRT formula in eq. (26) we may rewrite our proposal
in eq. (55) in the following form

E = lim
B→Ac

3
4

�

2SA+ SB1
+ SB2

− SA∪B1
− SA∪B2

�

= lim
B→Ac

3
4
(I(A; B1) + I(A; B2)) ,

(56)
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which shows a particular connection between two different entanglement measures, namely
the entanglement negativity and the mutual information, in holographic theories. Note how-
ever that these measures are quite distinct in the quantum information theory. It is important
to mention here that this specific relation in eq. (56) seems to be unique to the configurations
described by single intervals in holographic GCFT1+1s at a finite temperature.

We now perform an explicit holographic computation of the entanglement negativity for
the finite temperature mixed state configuration described by a single Galilean boosted interval
in a thermal GCFT1+1, using our proposal in eq. (55). The finite temperature field theory is
dual to the Minkowski orbifold describing the locally flat geometry of Flat Space Cosmologies
(FSC). The length of the extremal geodesic in the FSC geometry with the metric in eq. (38)
is given in eq. (39). To relate with the field theory computations in [55] we will consider the
non-rotating geometry with J = 05. In this non-rotating limit, we obtain another Minkowski
orbifold, namely the boosted null orbifold. In this case, the expression for the length of the
extremal geodesic homologous to the interval at the boundary in eq. (39) simplifies to eq.
(40), namely

Lextr
i j =

p
M u12 coth

�p
Mφi j

2

�

=
2πui j

β
coth

�

πφi j

β

�

, (57)

where we have simply written β for βφ = 2πM−1/2 and ui j = ui − u j and φi j = φi −φ j are
the differences in the coordinates of the endpoints of the interval at the boundary. Now sub-
stituting for the extremal geodesic length in eq. (55) the holographic entanglement negativity
for a single interval in a GCFT1+1 at a finite temperature is obtained as

E =
cM

4

�

πu12

β
coth

�

πφ12

β

�

−
πu12

β

�

. (58)

In obtaining eq. (58) we have used the understanding that B→ Ac corresponds to taking the
lengths of B1 and B2 to infinity. This matches exactly with the cL = 0 version of the universal
part of the result obtained from the dual field theory in [55]. Although this stands as a strong
consistency check for our proposal, it is important to mention that the analysis leading to eq.
(55) relies on the large central charge behaviour of the dual GCFT1+1 and a bulk proof remains
an open issue.

Finally, it is interesting to note that using the flat space analogue of the HRT formula (26),
the expression for the holographic entanglement negativity for a single interval in a GCFT1+1
at a finite temperature obtained in eq. (58) can be rewritten in the following form

E = 3
2

�

SA − Sth
�

, (59)

where SA and Sth are the entanglement entropy and the thermal entropy respectively, for the
single interval A in the holographic GCFT1+1.

5.2 Holographic entanglement negativity for adjacent intervals

Having computed the holographic entanglement negativity for various bipartite mixed states
involving a single interval in the dual GCFT1+1, we now proceed to advance a similar holo-
graphic construction for the bipartite states described by two adjacent intervals in a holo-
graphic GCFT1+1. As described before, the large central charge behaviour for the entangle-
ment negativity in a GCFT1+1 indicates the plausibility of a holographic characterization for

5Note that the FSC geometry is defined for non-vanishing angular momentum J . Switching off the angular
momentum leads to a Big-Bang like naked singularity [45]. The limit of J → 0 has to be understood in the sense
of an analytic continuation.
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the entanglement negativity in a dual asymptotically flat spacetime through flat space holog-
raphy. To this end, we consider two Galilean boosted adjacent intervals A= [(x1, t1), (x2, t2)]
and B = [(x2, t2), (x3, t3)], as depicted in fig. 2, where the system A∪ B is in a mixed state.
We start with the following three-point twist correlator on the GCFT1+1 plane relevant to the
computation of the entanglement negativity of two adjacent intervals [55] (cf. eq. (8)):

¬

Φne
(x1, t1)Φ

2
−ne
(x2, t2)Φne

(x3, t3)
¶

= k2
ne

KΦneΦ
2
−ne
Φne

t
−∆(2)ne
12 t

−∆(2)ne
23 t

−(2∆ne−∆
(2)
ne
)

13

× exp

�

−χ(2)ne

x12

t12
−χ(2)ne

x23

t23
− (2χne

−χ(2)ne
)

x13

t13

�

.
(60)

Utilizing equations (43) and (51) the three-point twist correlator in eq. (60) can be rewritten
in the following form

¬

Φne
(x1, t1)Φ

2
−ne
(x2, t2)Φne

(x3, t3)
¶

=K



Φne
(x1, t1)Φ−ne

(x3, t3)
�





¬

Φ2
ne
(x1, t1)Φ2

−ne
(x2, t2)

¶¬

Φ2
ne
(x2, t2)Φ2

−ne
(x3, t3)

¶

¬

Φ2
ne
(x1, t1)Φ2

−ne
(x3, t3)

¶





1/2

,
(61)

where the constant K is given by

K = k2
ne

KΦneΦ
2
−ne
Φne

k(1)
p

k(2). (62)

Now using the relation (cf. eq.(43))

¬

Φ2
ne
(x1, t1)Φ

2
−ne
(x2, t2)〉=

�

〈Φne/2(x1, t1)Φ−ne/2(x2, t2)
�

�2
, (63)

the universal part (which gives the dominant contribution to the entanglement negativity in
the large-cM limit) of the three-point twist correlator may be written as

¬

Φne
(x1, t1)Φ

2
−ne
(x2, t2)Φne

(x3, t3)
¶

=K



Φne
(x1, t1)Φ−ne

(x3, t3)
�




Φne/2(x1, t1)Φ−ne/2(x2, t2)
� 


Φne/2(x2, t2)Φ−ne/2(x3, t3)
�




Φne/2(x1, t1)Φ−ne/2(x3, t3)
� .

(64)

Finally using the flat holographic dictionary in eqs. (24) and (25), we obtain the universal
part of the three-point twist correlator as

¬

Φne
(x1, t1)Φ

2
−ne
(x2, t2)Φne

(x3, t3)
¶

= exp
�

−χne
Lextr

13 −χne/2

�

Lextr
12 + Lextr

23 − Lextr
13

��

, (65)

where Lextr
i j denotes the length of the extremal curve connecting the endpoints (x i , t i) and

(x j , t j) of an interval on the boundary. In figure 2, we show the schematics of the extremal
curves anchored on the subsystems A, B and A∪ B respectively, where we have identified

Lextr
12 = LA , Lextr

23 = LB , Lextr
13 = LA∪B . (66)

In the replica limit ne→ 1, from eq. (14) we obtain χne
→ 0 and χ ne

2
→− cM

16 (cf. footnote 4).
Note that the large central charge limit has to be taken prior to the replica limit. This order of
limits is critical since the scaling dimension of the twist field Φne

vanishes in the replica limit
and has to be understood in the sense of an analytic continuation. Hence, eq. (65) leads to
the following expression for the holographic entanglement negativity for adjacent intervals

E = 3
16G

�

Lextr
12 + Lextr

23 − Lextr
13

�

, (67)
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Figure 2: Holographic construction for the computation of the entanglement negativ-
ity for two Galilean boosted adjacent intervals A= (x1, t1) and B = (x2, t2). Extremal
geodesics anchored on different subsystems are shown in: red - Lextr

12 ≡ Lextr
A , yellow

- Lextr
23 ≡ Lextr

B , green- Lextr
13 ≡ Lextr

A∪B

where we have again used the fact that for Einstein gravity the central charges of the dual
GCFT1+1 are given by eq. (21). Therefore we conclude that the flat holographic entanglement
negativity for two adjacent intervals in the class of holographic GCFT1+1s that we consider
in the present article, is expressed in terms of a specific algebraic sum of the lengths of bulk
extremal geodesics anchored on the endpoints of the intervals at the boundary. Remarkably
the flat space holographic formula in eq. (67) has exactly the same structure as its relativistic
counterpart obtained in [21].

It is interesting to note that the holographic entanglement negativity formula in eq. (67)
may be recast, using the flat holographic HRT formula of [60] in eq. (25), in the form of an-
other entanglement measure in such holographic GCFT1+1s, namely the mutual information:

E = 3
4
(SA+ SB − SA∪B) =

3
4
I(A : B) . (68)

Note that this particular connection between the two different entanglement measures is spe-
cial to the configuration of two adjacent intervals in holographic GCFT1+1s.

5.2.1 Adjacent intervals at zero temperature

We start with the mixed state configuration of two adjacent intervals in the vacuum state
of the boundary GCFT1+1 for which the bulk dual geometry is that of Minkowski spacetime.
Substituting eq. (45) for the length of the extremal geodesic in pure Minkowski spacetime dual
to the GCFT1+1 vacuum, in the expression (67) for the holographic entanglement negativity
for adjacent intervals, we obtain

E =
cM

8

�

x12

t12
+

x23

t23
−

x13

t13

�

. (69)

17

https://scipost.org
https://scipost.org/SciPostPhys.12.2.074


SciPost Phys. 12, 074 (2022)

This matches exactly with the dual field theory result for cL = 0 in [55].

5.2.2 Adjacent intervals at a finite temperature

Next we turn our attention to the holographic computation of the entanglement negativity for
the bipartite mixed state configuration of two adjacent intervals in a thermal GCFT1+1 defined
on an infinite cylinder compactified in the timelike direction. The corresponding bulk dual is
the J = 0 FSC geometry described in section 4. Substituting eq. (57) for the length of the
extremal geodesic, in eq. (67), we obtain

E =
cM

8

�

πu12

β
coth

�

πφ12

β

�

+
πu23

β
coth

�

πφ23

β

�

−
πu13

β
coth

�

πφ13

β

��

. (70)

Again this matches exactly with the dual field theory result for cL = 0 in [55].

5.2.3 Adjacent intervals in a finite-sized system

Finally we compute the holographic entanglement negativity for the bipartite mixed state con-
figuration of two adjacent intervals in a finite-sized system described by a GCFT1+1 with pe-
riodic boundary conditions defined on a spatially compactified cylinder. The bulk dual is the
global Minkowski orbifold in eq. (28) described in section 4. Utilizing the length for extremal
geodesics given in eq. (36), we obtain from eq. (67)

E =
cM

8

�

πu12

Lφ
cot

�

πφ12

Lφ

�

+
πu23

Lφ
cot

�

πφ23

Lφ

�

−
πu13

Lφ
cot

�

πφ13

Lφ

��

, (71)

which is exactly the result in [55] obtained from the dual field theory computations, for cL = 0.

6 Holographic entanglement negativity for two disjoint intervals

In this section we proceed to establish a holographic conjecture for computing the entangle-
ment negativity in the context of flat space holography for the bipartite mixed state configura-
tion of two disjoint intervals in the dual GCFT1+1. As briefly alluded to in subsection 5.1.3, the
computation of the entanglement negativity for such configurations involves the large central
charge analysis of a particular four-point twist correlator. From eq. (9), it is clear that the
GCFT1+1 four-point function involves an arbitrary function of the cross ratios which depends
on the full operator content of the specific field theory under consideration. Also, for Einstein
gravity in the bulk the semi-classical limit in the gravitational theory (G→ 0) corresponds to
the large central charge limit cM → ∞ in the dual GCFT1+1. Motivated by these consider-
ations, in the following we advance a holographic proposal for computing the entanglement
negativity for two disjoint intervals in a GCFT1+1.

Before proceeding, we briefly review the computation of entanglement negativity for two
disjoint intervals in the AdS3/CFT2 scenario performed in [23]. In [25], the authors demon-
strated that the entanglement negativity for two disjoint intervals in a CFT2 vanishes in the
s-channel (x → 0) where the two intervals are far away, while remains non-trivial in the t-
channel (x → 1) which corresponds to the two intervals being in close proximity. Inspired
by these findings, the authors in [23] performed a monodromy analysis of the semi-classical
structure of the following four-point function in the vacuum state of a generic CFT2:




Tne
(z1) T̄ne

(z2) T̄ne
(z3)Tne

(z4)
�

= z
−2∆ne
13 z

−2∆ne
24 x−2∆neGne

(x) , x =
z12z34

z13z24
, (72)
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where Tne
and T̄ne

are respectively the twist and anti-twist fields inserted at the endpoints of
the two disjoint intervals [z1, z2] and [z3, z4]. In eq. (72), x is the usual CFT2 cross ratio
and Gne

(x) is an arbitrary function of the cross ratio. Subsequently, it was found in [23] that
the entanglement negativity for the two disjoint intervals in proximity obtained through this
procedure has a holographic description in terms of a particular linear combination of the
lengths of bulk spacelike geodesics homologous to specific subsystems.

In the following we will utilize similar semi-classical techniques developed in [67] to
compute the entanglement negativity for two disjoint intervals A1 = [(x1, t1), (x2, t2)] and
A2 = [(x3, t3), (x4, t4)]. This involves an analysis of the large-central charge behaviour of the
following four-point twist-correlator in a GCFT1+1 vacuum 6:




Φne
(X1)Φ−ne

(X2)Φ−ne
(X3)Φne

(X4)
�

= t
−2∆ne
23 t

−2∆ne
14 t−2∆ne

× exp

�

−2χne

x23

t23
− 2χne

x14

t14
− 2χne

x
t

�

F(t, x
t
) .

(73)

In eq. (73), t, x/t are the non-relativistic cross ratios given in eq. (10) and F(t, x
t ) is a non-

universal function of cross ratios that depends on the specific operator content of the field
theory. In particular, we will focus only on the behaviour of the four-point twist correlator in
eq. (73) in the t-channel defined as t → 1 , x → 0 7, which renders the two disjoint intervals
in close proximity. We will be working with the GCFT1+1s with only one non-vanishing central
charge cM for which the dual bulk geometry is described by Einstein gravity.

6.1 Four-point twist correlator at Large cM

In this subsection we explicitly compute the large central charge limit cM →∞ of the Galilean
conformal block corresponding to the four-point function in eq. (73). To proceed, we recall
some salient features of GCFT1+1s relevant for the semiclassical large central charge analy-
sis. There are two types of energy-momentum tensors in a GCFT1+1 and the corresponding
Galilean conformal Ward identities [67] look quite different from their relativistic counter-
parts. The finite GCA2 transformations

t → f (t) , x → f ′(t)x + g(t) , (74)

are generated by the Nöether charges [67]

Mn =

∮

d t Tt x tn+1 , Ln =

∮

d t
�

Tt t tn+1 + (n+ 1)Tt x tn x
�

, (75)

where Tµν are the components of the GCFT1+1 energy-momentum tensor. Inverting these
relations, we obtain the components of the energy-momentum tensor as [67]

M≡ Tt x =
∑

n

Mn t−n−2 , L≡ Tt t =
∑

n

h

Ln + (n+ 2)
x
t

Mn

i

t−n−2 , (76)

where Ln and Mn are the usual generators of GCA. Note that unlike the relativistic CFT2s the
two independent components of the energy-momentum tensor L and M have distinct func-
tional forms in a GCFT1+1. This is a reflection of the fact that the GCA2, unlike the relativistic
Virasoro algebra, does not decompose into two identical holomorphic and anti-holomorphic

6We have employed a shorthand notation for describing the coordinates X i = (x i , t i).
7This has to be contrasted with the t-channel x → 1, t → 0 for the BMS3 field theory considered in [67].

We will use the methods developed in [67] to compute the Galilean conformal block utilizing the BMS3/GCA2

correspondence briefly discussed in section 3 which essentially demonstrates the equivalence of the two field
theories under x ↔ t [44].
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copies. The Galilean conformal Ward identities obeyed by these two of energy-momentum
tensors are given by [67,72]:

〈M(x , t)V1(x1, t1) . . . Vn(xn, tn)〉=
n
∑

i=1

�

χi

(t − t i)2
+

1
t − t i

∂x i

�

〈V1(x1, t1) . . . Vn(xn, tn)〉 ,

〈L(x , t)V1(x1, t1) . . . Vn(xn, tn)〉=
n
∑

i=1

�

∆i

(t − t i)2
−

1
t − t i

∂t i
+

2χi(x − x i)
(t − t i)3

+
x − x i

(t − t i)2
∂x i

�

〈V1(x1, t1) . . . Vn(xn, tn)〉 ,

(77)
where Vi are GCFT1+1 primaries, and χi and∆i are the corresponding scaling dimensions. We
wish to analyze the large-cM limit of the following four-point function of twist operators in the
t-channel described by T → 1, X → 0 8




Φne
(X1)Φ−ne

(X2)Φ−ne
(X3)Φne

(X4)
�

=
∑

α




Φne
(X1)Φne

(X4) |α
� 


α|Φ−ne
(X2)Φ−ne

(X3)
�

≡
∑

α

Fα .

(78)
In eq. (78), Fα are the GCA2 conformal blocks corresponding to the t-channel and we have
expanded the the four-point function into a basis of GCFT1+1 primary operators denoted by
the index α. Figure 3 shows this expansion of the four-point function (78) in terms of Galilean
partial waves. In the large central charge limit cM →∞ the blocks Fα are expected to have

Figure 3: Galilean conformal block expansion of a four-point twist correlator in the
t-channel. The choice of channel corresponds to two operators interchanging a GCA2
highest weight representation with the other two. The exchanged representation is
labeled by α which denotes primary operators in the theory.

an exponential structure similar to their relativistic counterparts [26,73]. In the following, we
are going to perform a geometric monodromy analysis9 in the semi-classical limit to obtain a
large central charge expression for the Galilean conformal block Fα. Recall that unlike in the
relativistic CFT1+1s, the functional forms of the two energy-momentum tensor components
in eq. (76) for a GCFT1+1 are not identical and therefore we have to perform a separate
monodromy analysis corresponding to each of them.

8X , T are the usual cross ratios for the GCFT1+1.
9Note that the monodromy analysis can also be formulated using the GCA2 null vectors. The analysis will be a

bit more involved than the relativistic case due to the presence of the so called GCA2 multiplets [67]. Nevertheless
the differential equations obtained via this technique will be the same as in the geometric monodromy method.
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6.1.1 Monodromy of M

In this subsection we will solve the differential equation for the expectation value of the
energy-momentum tensor component M. Subsequently we will utilize the monodromy tech-
nique developed in [67] to obtain a partial expression for the Galilean conformal block in
eq. (78). Using the Ward identities in eq. (77) we obtain for the expectation value of the
energy-momentum tensor M as

M(X i; X )≡




M(X )Φne
(X1)Φ−ne

(X2)Φ−ne
(X3)Φne

(X4)
�




Φne
(X1)Φ−ne

(X2)Φ−ne
(X3)Φne

(X4)
�

=
4
∑

i=1

�

χi

(t − t i)2
+

cM

6
ci

t − t i

�

,

(79)

where the auxiliary parameters are given by

ci =
6

cM
∂x i

log



Φne
(X1)Φ−ne

(X2)Φ−ne
(X3)Φne

(X4)
�

. (80)

The four-point function is not completely fixed by the conformal symmetry, and not all the
auxiliary parameters ci are known. We will place the operators at t1 = 0 , t3 = 1 , t4 =∞ and
leave t2 = T free. Requiring that the expectation value M(X i; X ) vanishes as M(T ; t) ∼ t−4

as t →∞ we obtain the conditions
∑

i

ci = 0 ,
∑

i

� cM

6
ci t i +χi

�

= 0 ,
∑

i

� cM

6
ci t2

i + 2χi t i

�

= 0 . (81)

Using the approximation that χi ≡ χΦ, being the conformal dimension of the so called ’light’
operator Φne

, vanishes when we take the replica limit ne → 1. This allows us to determine
three of the auxiliary functions in terms of the remaining one as

c1 = c2(T − 1) , c3 = −c2T , c4 = 0 . (82)

This leads to the following expression for the energy-momentum tensor expectation value

6
cM

M(T ; t) = c2

�

T − 1
t
+

1
t − T

−
T

t − 1

�

. (83)

The component M of the energy-momentum tensor transforms under a generic Galilean con-
formal transformation x → x ′ , t → t ′ in eq. (74) as [67]

M′(t ′, x ′) = ( f ′)2M(t, x) +
cM

12
S( f , t) , (84)

where S( f , t) is the Schwarzian derivative for the coordinate transformation t → f (t). Re-
quiring the expectation value M(X i; X ) to vanish on the GCFT1+1 plane for the ground state,
this will lead to the condition

1
2

S( f , t) = c2

�

T − 1
t
+

1
t − T

−
T

t − 1

�

. (85)

Eq. (85) is equivalent to the differential equation

0= h′′(t) +
1
2

S( f , t)h(t) = h′′(t) +
6

cM
M(T, t)h(t) , (86)
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with f = h1/h2, h1 and h2 being the two solutions of the above differential equation. We
will solve this equation by the method of variation of parameters up to linear order in the
parameter εα =

6
cM
χα. To zeroth order, setting M(0) = 0 , the solutions are given by

h(0)(t) = 1 , t . (87)

Therefore expanding up to linear order in εα

hi = h(0)i + εα h(1)i , M=M(0) + εαM(1) , (88)

the differential equation to solve up to this order is given by

h(1)′′i (t) = −
6

cM
M(1)(T, t)h(0)i (t) . (89)

After solving eq. (89) we compute the monodromy of the solutions by going around the light
operators at t = 1 , T as described in [67] which leads to the following monodromy matrix:

M =

�

1 2πi c2T (T − 1)
2πi c2(T − 1) 1

�

. (90)

Next we utilize the following monodromy condition for the three point twist correlator



Φne
(x1, t1)Φne

(x4, t4)Vα(X , T )
�

obtained in appendix B,

√

√ I1 − I2

2
= 2πεα , (91)

where I1 = tr M and I2 = tr M2 are invariant under global Galilean conformal transforma-
tions10. Using eq. (91) we can find the remaining auxiliary parameter c2 as

c2 = εα
1

p
T (T − 1)

. (92)

Therefore the conformal block for the four-point function in eq. (78) may be obtained as:

Fα = exp

�

cM

6

∫

c2 dX

�

= exp

�

χα

�

X
p

T (T − 1)

��

F̃(T ) .
(93)

Expression (93) for the Galilean conformal block still has an unknown function F̃(T ). To
determine F̃(T )we need to perform the monodromy analysis for the other energy-momentum
tensorL, which we will do in the next subsection. For the particular four-point function of twist
correlators we consider in this section, we do not need to explore the monodromy for L. The
reason is that, since the conformal dimensions ∆Φ =∆ne

∝ cL , they will vanish as long as we
consider Einstein gravity for which eq. (21) gives cL = 0. Therefore the monodromy problem
for the energy-momentum tensor L becomes trivial and leads to F̃(T ) = 1. Nevertheless, in
the next subsection we will explicitly solve the differential equation for L monodromy and
show that this is indeed the case.

10Note that the condition in eq. (91) is valid in the leading order in the expansion parameter εα. For generic
conformal dimensions χα of the exchanged operator, the linear analysis may fail to capture the full monodromy
of the solution and one needs to go beyond leading order. In appendix B, we have performed the next to leading
order analysis and no further corrections to the conformal block in eq. (93) is found.
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6.1.2 Monodromy of L

To get the full expression of the Galilean conformal block, we will next focus on the monodromy
problem for the energy-momentum tensorL. We start with the expectation value of the energy-
momentum tensor L inside the four-point correlator [67]

L(X i; X )≡




L(X )Φne
(X1)Φ−ne

(X2)Φ−ne
(X3)Φne

(X4)
�




Φne
(X1)Φ−ne

(X2)Φ−ne
(X3)Φne

(X4)
� . (94)

Using the shorthands δi =
cM
6 ∆i and εi =

cM
6 χi , eq. (94) can be rewritten utilizing the Ward

identities in eq. (77) as

6
cM

L(X i; (x , t)) =
4
∑

i=1

�

δi

(t − t i)2
−

1
t − t i

di +
2εi(x − x i)
(t − t i)3

+
x − x i

(t − t i)2
ci

�

, (95)

where the auxiliary parameters ci are defined in eq. (80) and di admit similar definitions [67]:

di =
6

cM
∂t i

log



Φne
(X1)Φ−ne

(X2)Φ−ne
(X3)Φne

(X4)
�

. (96)

The smoothness of the expectation value L(X i , X ) requires L(T, t)→ t−4 as t →∞. Together
with the freedom provided by global Galilean conformal transformations, this fixes all of the
auxiliary parameters di except one. Using the global Galilean conformal symmetry, we will
place the operators at t1 = 0 , t2 = T , t3 = 1 , t4 =∞ and x1 = 0 , x2 = X , x3 = 0 and
x4 = 0. This leads to the following values for three of the auxiliary parameters di in terms of
the remaining one:

d1 = c2X + d2(T − 1)− 2δL ,

d3 = c2(−X )− d2T + 2δL ,

d4 = 0 ,

(97)

where δL = cM∆ne
/6 and εL = cMχne

/6 denote the rescaled scaling dimensions of the twist
operator Φne

. Substituting equations (97) and (80), into eq. (95) we obtain the expectation
value L(X i , (x , t)) as

6
cM

L(X i; (x , t)) =−
c2X + d2(T − 1)− 2δL

t
+

c2X + d2T − 2δL

t − 1
+

c1 x
t2

+
c2(x − X )
(t − T )2

+
c3 x
(t − 1)2

−
d2

t − T
+

2xεL

t3
+
δL

t2
+

δL

(t − 1)2
+

δL

(t − T )2

+
2εL(x − X )
(t − T )3

+
2xεL

(t − 1)3
.

(98)

The transformation of the energy-momentum tensor L under the finite Galilean conformal
transformation in eq. (2), leads to the following differential equation

6
cM

L(X i; (x , t)) =
g ′
�

f ′ f ′′ − 3
�

f ′′
�3�
+ f ′

�

3g ′′ f ′′ − g ′′′ f ′
�

2 ( f ′)3

−
x
�

3
�

f ′′
�2
+ f ′′′

�

f ′
�2 − 4 f ′′′ f ′ f ′′

�

2 ( f ′)3
.

(99)
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As in [67], we now take the following combination of the expectation values

6
cM

L̃(X i; (x , t)) =
6

cM

�

L(X i; (x , t)) + X M′(X i; (x , t))
�

= c2X
�

−
1

(t − T )2
−

1
t
+

1
t − 1

�

−
d2(T − 1)T
(t − 1)t(t − T )

+δL

�

1
t2
+

1
(t − T )2

+
2
t
−

2
t − 1

+
1

(t − 1)2

�

+
2XεL

(T − t)3
.

(100)

Next we choose the ansatz g(t) = f ′(t)Y (t) for the coordinate transformation to reduce the
differential equation in (99) to the following form:

6
cM

L̃= −1
2

Y ′′′ − 2Y ′
6

cM
M− Y

6
cM

M′ . (101)

We can solve the above differential equation using the method described in [67] upto linear
order of εα and δα. The scaling dimensions of the light operator Φne

vanishes when we take
the replica limit ne→ 1. After computing the monodromy by going around the light operators
at t = 1, T , we obtain the auxiliary parameter d2 as

d2 =
(1− 3T )Xεα + 2(T − 1)Tδα

2(T − 1)2T3/2
. (102)

It is easy to check that the following is true from equations (80) and (96):

∂

∂ X
d2 =

∂

∂ T
c2 . (103)

Finally, we obtain the full Galilean conformal block using eq. (96) as

Fα = exp

�

χα

�

X
p

T (T − 1)

��

, (104)

where we have used the fact that for cL = 0, δα vanishes. The complete Galilean conformal
block in eq. (104) exactly matches with the M monodromy result in eq. (93) for F̃(T ) = 1
as anticipated before.

6.1.3 Entanglement negativity in the large-cM limit

In this subsection, we will use the large-cM limit of the t-channel Galilean conformal block
in eq. (104) to compute the entanglement negativity for the bipartite mixed state of two
disjoint intervals in proximity. Note from eq. (14) that, in the replica limit ne→ 1 the scaling
dimension of the twist field Φne

vanishes rendering it to be a light operator in the large-cM
limit. Following [41] we may write down the following operator product expansions in the
GCFT1+1

Φne
(x1, t1)Φ−ne

(x2, t2) =
kne

t
2∆ne
12

exp
�

−2χne

x12

t12

�

1+ . . . , (x1, t1)→ (x2, t2) ,

Φ−ne
(x2, t3)Φ−ne

(x3, t3) =
kne

t
2∆ne
23

exp
�

−2χne

x23

t23

�

Φ2
−ne
+ . . . , (x2, t2)→ (x3, t3) .

(105)

Note from eq. (78) that in the t-channel described by T → 1 , X → 0, the light operators which
fuse together are located at [(x1, t1), (x4, t4)] and [(x2, t2), (x3, t3)], respectively. Therefore

24

https://scipost.org
https://scipost.org/SciPostPhys.12.2.074


SciPost Phys. 12, 074 (2022)

utilizing eq. (105), it is easy to see that the dominant contribution to the four-point twist corre-
lator in eq. (78) in the large-cM limit comes from the GCA2 conformal block corresponding to
the primary field Φ2

±ne
. Although it has the smallest conformal dimension, this twist operator

remains heavy in the replica limit, χne/2 → −
cM
16 (cf. footnote 4). Therefore, as in the usual

relativistic CFT1+1 setting described in [23,25], the partial wave expansion for the four-point
twist correlator in eq. (78) is dominated by the exchange of Φ2

±ne
:

F
χ
(2)
ne
= exp

�

−
cM

8
X

p
T (T − 1)

�

. (106)

Finally, using equations (18), (19) and (78), we obtain the negativity in the large cM -limit to
be

E = log
�

F
χ
(2)
ne

�

≈
cM

8
X

1− T
, (107)

where, we have used the fact that in t−channel T → 1, and neglected the square-root in
the denominator. Note that this expression is in terms of the cross ratio in the t-channel,
X/(1 − T ). In terms of the coordinates (x i , t i) of the endpoints of the two disjoint intervals
under consideration, the cross ratio is given by

X
1− T

=
x13

t13
+

x24

t24
−

x14

t14
−

x23

t23
. (108)

Therefore the entanglement negativity for two disjoint intervals A1 = [(x1, t1), (x2, t2)] and
A2 = [(x3, t3), (x4, t4)] in proximity is given by

E =
cM

8

�

x13

t13
+

x24

t24
−

x14

t14
−

x23

t23

�

. (109)

We may now utilize the Galilean conformal transformations from the GCFT1+1 plane to the
spatially compactified cylinder to obtain the entanglement negativity in the finite-sized system
described by a GCFT1+1 defined on a cylinder with circumference Lφ . The result is

E =
cMπ

8Lφ

�

u13 cot

�

πφ13

Lφ

�

+ u24 cot

�

πφ24

Lφ

�

− u14 cot

�

πφ14

Lφ

�

− u23 cot

�

πφ23

Lφ

��

. (110)

Finally we compute the entanglement negativity for the two disjoint intervals in a thermal
GCFT1+1 living on a cylinder of circumference β , where β is the inverse temperature. We
obtain the following expression for the entanglement negativity

E =
cMπ

8β

�

u13coth
�

πφ13

β

�

+ u24coth
�

πφ24

β

�

− u14coth
�

πφ14

β

�

− u23coth
�

πφ23

β

�

�

. (111)

We will use these expressions for the entanglement negativity of two disjoint intervals in prox-
imity to propose a holographic conjecture to obtain the same from the bulk computations.

6.2 Holographic entanglement negativity for two disjoint intervals in proximity

In this subsection we will advance a holographic proposal for computing the entanglement
negativity of the bipartite mixed state configuration of two disjoint intervals in proximity in
a holographic GCFT1+1. According to the flat space holography, the GCFT1+1 is dual to a
bulk asymptotically flat spacetime. As before, we consider two disjoint Galilean boosted inter-
vals A1 = [(x1, t1), (x2, t2)] and A2 = [(x3, t3), (x4, t4)] in the ground state of a holographic
GCFT1+1. The subsystem A= A1 ∪ A2 is in a mixed state, and the separation between A1 and
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A2, denoted As, belongs to the complementary subsystem B = Ac . As the flat holographic pro-
posals in equations (55) and (67) for a single and two disjoint intervals turned out to have
exactly the same functional form as their relativistic counterparts in [20, 21], we expect a
similar holographic connection for the present configuration as well.

We will make use of the monodromy computations in the previous subsection 6.1.3 to
justify our proposal. To this end we start with the following expression for the two point twist
correlator in a holographic GCFT1+1 on the plane (cf. eq. (7)):




Φne
(x1, t1)Φ−ne

(x2, t2)
�

∼ exp
�

−2χne

x12

t12

�

, (112)

where we have used eq. (21) and eq. (14) to set ∆ne
= 0. Now we utilize the holographic

dictionary in eqs. (24) and (25), to write eq. (106) as




Φne
(x1, t1)Φ−ne

(x2, t2)Φ−ne
(x3, t3)Φne

(x4, t4)
�

' exp

�

cM

8

�

x13

t13
+

x24

t24
−

x14

t14
−

x23

t23

��

= exp
h cM

16

�

Lextr
13 + Lextr

24 − Lextr
14 − Lextr

23

�

i

,

(113)

where in the second equality we have made use of eq. (45). We now propose, based on
the monodromy computations in section 6.1.3, the following conjecture for the holographic
entanglement negativity of two disjoint intervals in proximity located at the null infinity of the
bulk asymptotically flat spacetime dual to a GCFT1+1:

E = 3
16G

�

Lextr
13 + Lextr

24 − Lextr
14 − Lextr

23

�

=
3

16G

�

Lextr
A1∪As

+ Lextr
As∪A2

− Lextr
A1∪A2∪As

− Lextr
As

�

,
(114)

where cL = 0 and cM =
3
G . Once again we observe that the holographic entanglement neg-

ativity for the mixed state configuration of two disjoint intervals in a holographic GCFT1+1
involves a specific linear combination of the lengths of bulk extremal curves homologous to
the intervals as shown in figure 4. Remarkably our flat holographic conjecture in eq. (114) has
exactly the same structure as its relativistic counterpart in the AdS3/CFT2 scenario obtained
in [23,29]. It is interesting to note that, in the limit of adjacent intervals x23→ ε, where ε is
the UV cut-off (Lextr

As
→ 0 in the bulk), we get back our formula for two adjacent intervals in eq.

(67). This serves as a strong consistency check of our proposal. Now we make use of the flat
version of the HRT formula in eq. (26) to recast our formula for holographic entanglement
negativity in the following instructive form

E = 3
4

�

SA1∪As
+ SAs∪A2

− SA1∪A2∪As
− SAs

�

=
3
4
(I(A1 ∪ As; A2) + I(As; A2)) .

(115)

Therefore we see that our holographic conjecture relates two very different entanglement mea-
sures, namely, entanglement negativity which is the upper bound of distillable entanglement,
and the mutual information which measures entanglement correlation between two subsys-
tems. Again, this particular connection seems unique for the specific configuration of two
disjoint intervals on the boundary field theory. Interestingly, in the limit of adjacent interval
As→ ; we get back the adjacent formula in eq. (68).

In the following, we are going to employ our holographic conjecture to compute the entan-
glement negativities in various configurations described by two disjoint intervals in proximity
in different mixed states of a holographic GCFT1+1. Remarkably our formula reproduces the
universal behaviour of the holographic entanglement negativity at the large central charge
limit of the holographic GCFT1+1.
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Figure 4: Schematics of the holographic construction for the computation of entan-
glement negativity of two disjoint intervals. The entanglement negativity is obtained
via a specific linear combination of the lengths of the bulk extremal curves situated at
the crossings of the null planes descending from the endpoints of the two intervals.

6.2.1 Two disjoint intervals in vacuum

We start with the mixed state configuration of two disjoint intervals A1 = [(x1, t1), (x2, t2)] and
A2 = [(x3, t3), (x4, t4)] in the ground state of a holographic GCFT1+1. The dual bulk geometry
is that of pure Minkowski spacetime. Utilizing eq. (45) for the length of the extremal geodesics
in locally Minkowski geometry, one obtain for the holographic entanglement negativity from
eq. (114) as

E = 3
8G

�

x13

t13
+

x24

t24
−

x14

t14
−

x23

t23

�

=
cM

8

�

l1 + ls
t1 + ts

+
l2 + ls
t2 + ts

−
l1 + l2 + ls
t1 + t2 + ts

−
ls
ts

�

,
(116)

where we have denoted l1 = x1 − x2 , ls = x2 − x3 and l2 = x3 − x4 for the lengths of the
respective intervals (cf. figure 4) and similarly for t1 , t2 and ts. remarkably this matches
exactly with the large central charge behaviour of the entanglement negativity in eq. (109)
obtained using the monodromy method in subsection 6.1.3. Considering the adjacent limit
ls → ε and ts → ε (where ε is the UV cut-off) and taking the leading order terms in ε, we get
back the result for entanglement negativity for adjacent intervals in eq. (69).

6.2.2 Two disjoint intervals at a finite temperature

Next we will consider the mixed state configuration of two disjoint intervals in a thermal
GCFT1+1 living on a cylinder compactified in the timelike direction with circumference β . The
dual spacetime is the locally FSC geometry described in subsection 5.1.3. Substituting eq.
(57) for the length of the extremal curve in FSC geometry in our holographic conjecture in
eq. (114) we obtain for the holographic entanglement negativity of two disjoint intervals at a
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finite temperature

E = 3π
8Gβ

�

u13 coth
�

πφ13

β

�

+ u24 coth
�

πφ24

β

�

− u14 coth
�

πφ14

β

�

− u23 coth
�

πφ23

β

��

=
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8
π
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�
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�
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β

�

+ (t2 + ts) coth
�
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β

�

− (t1 + t2 + ts) coth
�

π(l1 + l2 + ls)
β

�

− ts coth
�

πls
β

�

�

,

(117)
where the lengths of the respective intervals are denoted by l1 = u1 − u2 , ls = u2 − u3 and
l2 = u3−u4, and the times are given by t1 , t2 and ts. Again this matches exactly with the field
theory computations at large central charge limit in eq. (110). We may take the adjacent limit
ls → ε and ts → ε, to show that the leading order expression matches exactly with the result
for two adjacent intervals given in eq. (70).

6.2.3 Two disjoint intervals in a finite-sized system

Finally we turn our attention to the holographic computation of the entanglement negativity
for two disjoint intervals in a finite-sized system obeying periodic boundary conditions de-
scribed by a GCFT1+1 living on a cylinder of circumference Lφ compactified along the spatial
direction. The bulk dual is again asymptotically flat and is described by the global Minkowski
orbifold metric in eq. (28). We now employ the expression for the extremal geodesic length
in such spacetimes from eq. (36) to obtain the following expression for the entanglement
negativity of the mixed state configuration described by two disjoint intervals in a finite-sized
system as

E = 3π
8GLφ

�

u13 cot

�

πφ13

Lφ

�

+ u24 cot

�

πφ24

Lφ

�

− u14 cot

�

πφ14

Lφ

�

− u23 cot

�

πφ23

Lφ

��

=
cM

8
π

Lφ

�

(t1 + ts) cot

�

π(l1 + ls)
Lφ

�

+ (t2 + ts) cot

�

π(l2 + ls)
Lφ

�

− (t1 + t2 + ts) cot

�

π(l1 + l2 + ls)
Lφ

�

− ts cot

�

πls
Lφ

��

.

(118)

Remarkably this again matches exactly with the field theory result in eq. (111) obtained
through large central charge computations in subsection 6.1.3. Again in the adjacent limit
described by ls→ ε and ts→ ε, we get back the adjacent intervals result in eq. (71).

7 Holographic entanglement negativity in flat space TMG

In the previous sections we have computed the holographic entanglement negativity in the
case of Einstein gravity in the bulk for which the dual GCFT1+1 at the boundary had only one
non-vanishing central charge cM . At this point, we recall the fact that the representations of
the GCA2 algebra are labelled by the quantum numbers ∆ and χ. Therefore a vanishing cL
would correspond to ∆ = 0 which describes a spinless massive particle propagating in the
asymptotically flat bulk spacetime.

In this section we will incorporate the effects of a non-zero cL , and hence a non-zero ∆,
in the bulk in order to see the agreement with the field theory results in [55] more closely.
We expect that a non-vanishing ∆ would introduce a spin for the massive particle. In this
context we modify the bulk picture by introducing Topologically Massive Gravity (TMG) [59,
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60, 63–66] which contains a gravitational Chern-Simons (CS) term. This Chern-Simons term
arises due to a gravitational anomaly present in the relativistic CFT2 whose İnönü-Wigner
contraction leads to the GCFT1+1s considered in the present article. From the perspective of the
bulk, the dual operation to this parametric contraction on the boundary corresponds to taking
the flat limit of the bulk AdS3 geometry. Therefore the flat-holographic connection between
TMG in asymptotically flat spacetimes and GCFT1+1s with non-vanishing cL and cM comes
from two equivalent parametric contractions of each sector in the original TMG-AdS3/CFT2
correspondence [59,60,64–66].

We start by briefly reviewing the salient features of TMG in AdS3 spacetimes. The action
of TMG in AdS3 is the sum of the usual Einstein-Hilbert term, the cosmological constant term
and a gravitational Chern-Simons term [59,66] 11:

STMG = SEH +
1
µ
SCS

=
1

16πG

∫

d3 x
p

−g

�

R+
2
`2
+

1
2µ
εαβγ

�

Γρασ∂βΓ
σ
γρ +

2
3
ΓρασΓ

σ
βηΓ

η
γρ

�

�

,
(119)

where µ has mass dimension one and describes the coupling of the CS-term, and ` is the
AdS3 radius. In the limit µ → ∞ one recovers Einstein gravity. The asymptotic symmetry
analysis of TMG in AdS3 shows that the algebra of the modes of the asymptotic Killing vectors
is isomorphic to two copies of Virasoro algebra with left and right moving central charges
[59,66]:

c+TMG =
3`
2G
(1+

1
µ`
) , c−TMG =

3`
2G
(1−

1
µ`
) . (120)

Now we will go to asymptotically flat spacetime by taking the flat limit `→∞ leading to the
flat space TMG. Remarkably the asymptotic symmetry group analysis at null infinity leads to
the Galilean conformal algebra, with both central charges non-vanishing [45,48,59,60]:

cL =
3
µG

, cM =
3
G

. (121)

Alternatively, these central charges can be obtained from AdS3 by taking İnönü-Wigner con-
traction [59]: cL = c+TMG − c−TMG, cM = (c+TMG + c−TMG)/`. From eq. (121) it is easy to see that in
the limit µ→∞ we get back Einstein gravity in asymptotically flat spacetime.

7.1 Extrapolating the holographic dictionary

In [66], the authors computed the holographic entanglement entropy for a CFT2 with gravi-
tational anomaly using the theory of topologically massive gravity in AdS3. It was found that
the difference in the left and right moving central charges of the anomalous CFT2 gives rise
to a non-trivial spin of the twist operators in the replica manifold, which in the context of
AdS3/CFT2, corresponds to a massive spinning particle of mass m= χ and spin s =∆ moving
in the bulk geometry of TMG-AdS3. As easily seen from the action in eq. (119), the Chern-
Simons term is unaffected by the flat limit `→∞ and therefore the above discussion remains
valid in the flat-holographic scenario as well [60]. The action of such a particle was found to
be [60,66]:

Sflat-TMG =

∫

C
ds
�

χ
Ç

ηµνẊµẊ ν +∆ (ñ.∇n)
�

+ Sconstraints , (122)

where ñ and n are unit space-like and time-like vectors respectively, both normal at the tra-
jectory of the particle Xµ, and Sconstraints is an action imposing these constraints through Lan-
grange multipliers [60, 66]. In eq. (122) C denotes the worldline of the particle. The action

11This should be contrasted with the Chern-Simons gauge theory of 3d gravity put forward by Witten [61].
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Figure 5: The topological Chern-Simons term in the TMG action introduces a normal
frame defined by two auxiliary normal vectors n and ñ at each point on the worldline
of a massive spinning particle. Figure modified from [66].

(122) introduces two new vectors in the the 3-dimensional bulk, while the constraint action
Sconstraints imposes five constraints, leading to a single new degree of freedom. This sets up a
normal frame to each point in the bulk as shown in fig. 5, and particle worldlines get broad-
ened in the shape of ribbons [66]. The equations of motion reveal that this is not a true
degree of freedom in the sense that the variations of the new vectors n and ñ along the world-
line Xµ does not affect the action (122) [60, 66]. It is also interesting to note that straight
lines governed by Ẍµ = 0 in locally Minkowski spacetimes are still solutions of the equations
of motion in the TMG background [60]. It is important to note that our holographic construc-
tions for computing the entanglement negativity in terms of bulk geodesics rely heavily on the
straight-line nature of the geodesics. To proceed, we note that in order to compute the entan-
glement entropy from the bulk perspective in a AdS/CFT setting, one considers the notion of
the generalized gravitational entropy [17]. The computation of generalized gravitational en-
tropy involves a replication of the dual gravitational geometry in the replica index n followed
by a quotienting through the replica symmetry Zn. In the quotient spacetime of the replicated
geometry, there are conical defects along the entangling surfaces, namely at the endpoints of
the boundary interval. We now propose, following [60,66] that the two-point function of the
twist fields inserted at the endpoints of the interval on the boundary of the quotient geome-
try is given by the exponential of the on-shell action of a massive spinning particle with mass
mn = χn and spin sn =∆n. For such a particle propagating along an extremal worldline in the
bulk geometry from a point x i with a normal vector ni to a point x f with normal vector n f ,
the two-point twist correlator has the form:




Φne
(∂1A)Φ−ne

(∂2A)
�

= e−χne SEH
on-shell−∆ne SCS

on-shell , (123)

where
SEH

on-shell =
Ç

ηµνẊµẊ ν = Lextr(x i , x f ) , (124)
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and SCS
on-shell is the topological Chern-Simons contribution to the on-shell action. As described

before, the effect of this topological action is to broaden the worldline in the shape of a ribbon
as the vectors n and ñ in eq. (122) define a normal frame to the curve C. In eq. (123) the
Chern-Simons contribution to the on-shell action in eq. (122) is given by the twist in the
ribbon-shaped worldline as the particle moves along it [59,60,66]:

SCS
on-shell =

∫

C
ds (ñ.∇n) = cosh−1(−ni . n f ) . (125)

Equation (125) essentially computes the boost ∆η required to drag the orthonormal frame
generated by the vectors (Ẋ , ni , n f ) from the point x i to x f .

In the following subsection we will perform the computations of the spinning two-point
correlators for different bulk geometries in flat space-TMG using the modified holographic
dictionary in eqs. (123) to (125). With this generalized expression for the two point twist-
correlator in eq. (123) all our previous analysis in section 5 will simply follow and lead to
modified formulae for the holographic entanglement negativity in GCFT1+1 dual to bulk ge-
ometries governed by TMG 12.

7.2 Two-point correlator of twist fields with spin

We start with TMG in a pure Minkowski spacetime. A schematics of the bulk geometry corre-
sponding a single interval A= [(x1, t1), (x2, t2)] in the boundary GCFT1+1 is shown in fig. 6.
We have two bulk normal vectors n∂i erected at each of the bulk points yi (i = 1, 2) descending
from the endpoints (ui ,φi)13 of the interval on the boundary, which were chosen in [60] to be
pointed along the directions of the corresponding null rays γi:

γ̇1 = ∂r

�

�

�

γ1

= ∂t + cosφ1 ∂x + sinφ1 ∂y , γ̇2 = ∂r

�

�

�

γ2

= ∂t + cosφ2 ∂x + sinφ2 ∂y . (126)

Since these two vectors are null, the authors in [60] introduced two timelike vectors:

n1 =
1
ε
γ̇1 −

ε

2
1

γ̇1.γ̇2
γ̇2 , n2 =

1
ε
γ̇2 −

ε

2
1

γ̇1.γ̇2
γ̇1 . (127)

With these definitions we obtain from eq. (125) in the ε→ 0 limit

SCS
on-shell =∆η12 = cosh−1(−

γ̇1.γ̇2

ε2
) =

�

�

�

�

log
�

−
2γ̇1.γ̇2

ε2

�

�

�

�

�

= 2 log
�

2
ε

sin
φ12

2

�

. (128)

In eq. (128) the boost ∆η12 may be interpreted as the difference in the twist of the two end-
points of the ribbon-like geometries induced by the topological term in eq. (125). Therefore
the two-point spinning twist correlator in eq. (123) in the case of pure Minkowski spacetime
dual to a GCFT1+1 in its ground state is given by




Φne
(∂1A)Φ−ne

(∂2A)
�

=
�

2
ε

sin
φ12

2

�−2∆ne

exp

�

−χne

u12

tan φ12
2

�

, (129)

where we have used eq. (23) for the extremal geodesic length and ∂iA= (ui ,φi) denotes the
entangling surfaces, namely, the endpoints of the interval at the boundary.

12All these results may be recast in the factorised Wilson line prescription in the Chern-Simons formulation of
3d gravity developed in [66].

13(ui ,φi) are the cylindrical coordinates related to the planar coordinates (x i , t i) via eq. (5).
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Figure 6: Bulk setup for computing two-point correlator of twist fields with non-
zero spin. There are boundary normal vectors n∂i on each of the black points on
the asymptotic boundary. The black points are on the null curves descending from

these boundary points and they are equipped with normal vectors ni ∝ ∂r

�

�

�

γi

. Figure

modified from [60].

Next we proceed to compute the boost in the case of non-rotating FSC geometry. In that
case the bulk null vectors in eq. (126) become (cf. eq. (29))

γ̇1 =
β

2π
cosh

�

2πφ1

β

�

∂t +
β

2π
sinh

�

2πφ1

β

�

∂x −
β

2π
∂y ,

γ̇2 =
β

2π
cosh

�

2πφ2

β

�

∂t +
β

2π
sinh

�

2πφ2

β

�

∂x −
β

2π
∂y .

(130)

Therefore using eqs. (125) and (128) we obtain

∆ηFSC
12 = 2 log

�

β

πε
sinh

πφ12

β

�

. (131)

Similar computations in the case of TMG in global Minkowski orbifold geometries yields

∆ηGM
12 = 2 log

�

Lφ
πε

sin
πφ12

Lφ

�

. (132)

In the following subsections we will utilize equations (128), (131) and (132) for the twists
in the ribbon to compute the topological CS contribution to the holographic entanglement
negativity for different sub-interval geometries in a holographic GCFT1+1.

7.3 Holographic entanglement negativity for a single interval

In this subsection we will generalize the proposals (44) and (55) for computing entanglement
negativity of various bipartite pure and mixed state configurations described by a single inter-
val in a GCFT1+1 to incorporate the non-vanishing cL effects. To this end, we first consider the
pure state configurations described by a single interval A = [(x1, t1), (x2, t2)] in the ground
state of a GCFT1+1 at zero temperature. To proceed, we replace eq. (44) for the two-point
function of twist operators by the corresponding expression with non-zero spin in eq. (129).
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Now, using the modified holographic dictionary in equations (123), (124) and (125) we write
the two-point function of the composite twist operators Φ2

ne
inserted at the endpoints of the

single interval A= [(x1, t1), (x2, t2)] as:
¬

Φ2
ne
(x1, t1)Φ

2
−ne
(x2, t2)

¶

= exp
�

−2χne/2 Lextr
12 − 2∆ne/2∆η12

�

, (133)

where Lextr
12 is the length of the extremal ribbon-shaped curve anchored on the entangling

surfaces, and ∆η12 denotes the difference in the twist at the endpoints of the ribbon. Now
the entanglement negativity for the pure state configuration described by the single interval
in the GCFT1+1 vacuum may be obtained from eq. (42) as

E = 3
8G

�

Lextr
12 +

1
µ
∆η12

�

, (134)

where we have used equations (14) and (121) and subsequently took the replica limit. In the
following, we will make use of the holographic formula in eq. (134) to compute the holo-
graphic entanglement negativity for the bipartite pure state configurations described by a sin-
gle interval in the vacuum state of a holographic GCFT1+1 as well as for a GCFT1+1 describing
a system of finite size. Later, we will consider the mixed state configuration of a single interval
at a finite temperature which involves an analysis of a particular four-point twist correlator in
the large central charge limit in the spirit of subsection 5.1.3.

7.3.1 Single interval at zero temperature

We start with the simplest pure state configuration of a single interval in the vacuum state of
a holographic GCFT1+1 at zero temperature for which the dual bulk geometry corresponds to
the pure Minkowski spacetime. Utilizing the transformations (5), the CS-contribution to the
two-point function in eq. (128) may be written in the planner coordinates as:

∆η12 = 2 log
� t12

ε

�

. (135)

We now substitute equations (23) and (135) in eq. (134) to obtain the holographic entangle-
ment negativity as

E =
cL

4
log

� t12

ε

�

+
cM

4
x12

t12
, (136)

where we have used eq. (121) for the central charges of the holographic GCFT1+1. Remarkably,
we have reproduced the universal part of the complete result obtained in [55] via replica
technique.

7.3.2 Single interval in a finite-sized system

Next we move on to the computation of the holographic entanglement negativity for the bipar-
tite pure state configuration of a single interval in a GCFT1+1 describing a finite-sized system
endowed with periodic boundary conditions. The corresponding bulk geometry is described
by the global Minkowski orbifold with metric (28). Using the expression for the corresponding
length of the extremal curve in eq. (36), and the twist in eq. (132), we obain the holographic
entanglement entropy from eq. (134) as

E =
cL

4
log

�

Lφ
πε

sin

�

πφ12

Lφ

��

+
cM

4
πu12

Lφ
cot

�

πφ12

Lφ

�

. (137)

This matches exactly with the universal part of the complete field theory result in [55].
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7.3.3 Single interval at a finite temperature

Finally we focus on the mixed state configuration of a single interval at a finite tempera-
ture. The field theory is described by a thermal GCFT1+1 on a cylinder compactified along
the timelike direction with circumference β . As described in subsection 5.1.3, the definition
of the holographic entanglement negativity for this configuration involves two auxiliary inter-
vals B1 and B2 sandwiching the single interval A. This leads to a four-point twist correlator
which admits a large central charge factorization of the form (52). For a thermal GCFT1+1
with unequal non-vanishing central charges (120), the dual gravitational theory is described
by topologically massive gravity in FSC geometries. For such GCFT1+1s, using the modified
flat-holographic dictionary in eq. (123), the four-point twist correlator in eq. (52) has the
large-central charge structure:

¬

Φne
(x1, t1)Φ

2
−ne
(x2, t2)Φ

2
ne
(x3, t3)Φ−ne

(x4, t4)
¶

= exp
�

−χne
Lextr

14 −χne/2

�

2Lextr
23 + Lextr

12 + Lextr
34 − Lextr

13 − Lextr
24

�

−∆ne
∆η14 −∆ne/2

�

2∆η23 +∆η12 +∆η34 −∆η13 −∆η24

��

,

(138)

where Lextr
i j are the lengths of the extremal ribbon-shaped curves anchored on various subsys-

tems constituted by the single interval A and the auxiliary intervals B1, B2, and ηi j are the
corresponding twists in the ribbons. Taking the replica limit ne → 1 followed by the bipartite
limit B1 ∪ B2→ Ac , and utilizing the definitions of the central charges in eq. (120), we obtain
the following modified formula for computing the holographic entanglement negativity for the
bipartite mixed state configuration of a single interval in a thermal GCFT1+1 with both central
charges non-vanishing:

E = lim
B→Ac

3
16G

�

2LA+LB1
+LB2

−LA∪B1
−LA∪B2

�

, (139)

where we have defined

LX = Lextr
X +

1
µ
∆ηX , (140)

where X is the specific subsystem under consideration. We now compute the holographic
entanglement negativity for a single interval located at the asymptotic null infinity of the ge-
ometry described by TMG in FSC. The holographic computations are identical to those in
subsection (5.1.3) for the extremal geodesic lengths Lextr

i j and the remaining contribution to
the holographic entanglement negativity comes from the Chern-Simons term as

ECS =
cL

4

�

log
�

β

πε
sinh

�

πφ12

β

��

−
πφ12

β

�

. (141)

Together with the Einstein gravity result eq. (58), the total holographic negativity becomes

E =
cL

4

�

log
�

β

πε
sinh

�

πφ12

β

��

−
πφ12

β

�

+
cM

4

�

πu12

β
coth

�

πφ12

β

�

−
πu12

β

�

. (142)

The above expression for the holographic entanglement negativity exactly matches with the
universal part of the complete field theory result obtained in [55] using the replica technique.
We may also rewrite eq. (142) in the instructive form eq. (59).

7.4 Holographic entanglement negativity for adjacent intervals

Next we turn our attention to the bipartite mixed state configuration of two adjacent intervals
in a GCFT1+1 with unequal non-vanishing central charges. The holographic entanglement
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negativity for the case of Einstein gravity in the bulk was discussed in subsection 5.2. In this
subsection we utilize the modified dictionary in eq. (123) to advance a holographic proposal
for computing the entanglement negativity for the mixed state configuration of two adjacent
intervals living at the null infinity of the geometries described by flat space TMG. From equa-
tions (139) and (140), it is easy to see that the expression for the holographic negativity in
such scenarios is simply obtained by replacing Lextr

X by LX , for each subsystem X . Therefore
our proposal for the entanglement negativity for two disjoint intervals reads (cf. eq. (67)):

E = 3
16G

�

LA1
+LA1

−LA1∪A2

�

, (143)

with LX given in eq. (140).

7.4.1 Adjacent intervals at zero temperature

We start with the bipartite mixed state configuration of two adjacent intervals in the vacuum
state of the boundary GCFT1+1. To compute the holographic entanglement negativity, we use
eq. (128) in our modified holographic entanglement negativity formula eq. (143) to obtain
to topological contribution to the entanglement negativity as

ECS =
3

16G
1
µ

�

∆ηA1
+∆ηA2

−∆ηA1∪A2

�

=
cL

8
log

�

t12 t23

ε(t12 + t23)

�

,
(144)

where ε is identified as the UV cut-off. The expression for the total holographic entanglement
negativity, after including the Einstein gravity result eq. (69), becomes

E =
cL

8
log

�

t12 t23

ε(t12 + t23)

�

+
cM

8

�

x12

t12
+

x23

t23
−

x13

t13

�

, (145)

which matches exactly with the universal part of the field theory result in [55].

7.4.2 Adjacent intervals at a finite temperature

We next compute the holographic entanglement negativity for the bipartite mixed state config-
uration of two adjacent intervals in a finite temperature GCFT1+1. Here, the boundary theory
is defined on an infinite cylinder compactified in the timelike direction leading to a finite tem-
perature GCFT1+1 and the dual gravitational theory is decribed by TMG in FSC geometry. The
Chern-Simons contribution to the holographic entanglement negativity, using eq. (143) and
eq. (131), is given by

ECS =
cL

8
log





β

πε

sinh
�

πφ12
β

�

sinh
�

πφ23
β

�

sinh
�

π(φ12+φ23)
β

�



 . (146)

The total holographic entanglement negativity after including the Einstein gravity result eq.
(70) becomes

E =
cL

8
log





β

πε

sinh
�

πφ12
β

�

sinh
�

πφ23
β

�

sinh
�

π(φ12+φ23)
β

�



+
cM

8

�

πu12

β
coth

�

πφ12

β

�

+
πu23

β
coth

�

πφ23

β

�

−
πu13

β
coth

�

πφ13

β

�

�

.

(147)

Eq. (147) correctly reproduces the universal part of the result obtained in [55] using field
theoretic methods.
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7.4.3 Adjacent intervals in a finite-sized system

Finally, we focus on the computation of the holographic entanglement negativity for a bipartite
mixed state configuration of two adjacent intervals in a GCFT1+1 describing a system with finite
size. The boundary theory is described by a GCFT1+1 on an infinite cylinder compactified in the
spatial direction with circumference Lφ . The Chern-Simons contribution to the holographic
entanglement negativity is obtained using eq. (132) and eq. (143) as

ECS =
cL

8
log





β

πε

sin
�

πφ12
Lφ

�

sin
�

πφ23
Lφ

�

sin
�

π(φ12+φ23)
Lφ

�



 . (148)

The expression for the total holographic entanglement negativity after including the Einstein
gravity result eq. (70) becomes

E =
cL

8
log





Lφ
πε

sin
�

πφ12
Lφ

�

sin
�

πφ23
Lφ

�

sin
�

π(φ12+φ23)
Lφ

�



+
cM

8

�

πu12

Lφ
cot

�

πφ12

Lφ

�

+
πu23

Lφ
cot

�

πφ23

Lφ

�

−
πu13

Lφ
cot

�

πφ13

Lφ

��

.

(149)

This matches exactly with the universal part of the complete field theory result obtained in [55]
using replica technique.

7.5 Two disjoint intervals in proximity

Finally in this subsection, we compute the holographic entanglement negativity for the bipar-
tite mixed state configuration of two disjoint intervals in a GCFT1+1 with both central charges
non-vanishing. The entanglement negativity for such configurations involves a four-point func-
tion of twist operators with non-zero spin. Therefore to obtain the entanglement negativity via
field theoretic methods, we need a semi-classical monodromy analysis of the four-point twist
correlator when both the central charges cL and cM are non-zero. Note from eq. (121) that
cL ∝ cM when the coupling of the gravitational Chern-Simons term in the bulk dual theory
remains finite. Therefore, the previous analysis in subsection 6.1 for a large cM remains valid
and we may obtain a closed form expression of the complete conformal block in the large
central charge limit 14. In the following, we obtain the large central charge expression for
the entanglement negativity for two disjoint intervals in a GCFT1+1 with both central charges
non-vanishing. Subsequently we propose a bulk construction of the holographic entanglement
negativity in the dual asymptotically flat geometries incorporating the anomalous effects of the
topologically massive gravity.

7.5.1 Large central charge negativity and the holographic proposal

In this subsection, we obtain the complete expression for the t-channel Galilean conformal
block in the large central large limit for the case where both the central charges of the GCFT1+1
are non-zero. Using eqs. (96) and (102), we arrive at the following expression

Fα =
�

1+
p

T

1−
p

T

�−∆α
exp

�

χα

�

X
p

T (T − 1)

��

. (150)

14Note that, even if both the central charges cL and cM are large, the ratio cM
cL
= µ remains finite and therefore

the dual anomalous gravitational theory is well defined. Interestingly, in the case of Einstein gravity in the bulk as
considered in subsection 6.1, the corresponding limit µ→∞ of the TMG action in eq. (119) is reminiscent of the
central charge cL being zero as seen from eq. (121).
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To obtain the dominant contribution to the four-point function in eq. (78), we note that the
twist operator Φ2

ne
remains heavy in the replica limit, χne/2 → −

cM
16 , ∆ne/2 → −

cL
16 (cf. foot-

note 4). Therefore, the partial wave expansion for the four-point twist correlator is dominated
by the exchange of Φ2

ne
:

F
∆
(2)
ne ,χ(2)ne

=

�

1+
p

T
p

1− T

�cL/4

exp

�

−
cM

8
X

p
T (T − 1)

�

. (151)

Finally, using equations (18), (19) and (78), we obtain the entanglement negativity for two
disjoint intervals in proximity (T → 1) in the large central charge limit to be

E ' log
�

F
∆
(2)
ne ,χ(2)ne

�

≈
cL

8
log

�

1
1− T

�

+
cM

8
X

1− T
. (152)

The t-channel cross ratios appearing in the above equation may be expressed in terms of the
coordinates (x i , t i) of the endpoints of the two disjoint intervals in question as

1− T =
t14 t23

t13 t24
,

X
1− T

=
x13

t13
+

x24

t24
−

x14

t14
−

x23

t23
. (153)

Therefore the complete expression for the entanglement negativity for two disjoint intervals
A1 = [(x1, t1), (x2, t2)] and A2 = [(x3, t3), (x4, t4)] in proximity is given by

E =
cL

8
log

�

t13 t24

t14 t23

�

+
cM

8

�

x13

t13
+

x24

t24
−

x14

t14
−

x23

t23

�

. (154)

We may obtain the large central charge behaviours of the entanglement negativity for a
GCFT1+1 describing a finite-sized system as well as a thermal GCFT1+1 by performing suit-
able conformal maps from the GCFT1+1 plane to the spatially and temporally compactified
cylinders respectively, as described before in subsection 6.1.3.

Having described the large central charge behaviour of the entanglement negativity for two
disjoint intervals, we now proceed to give a holographic description of such configurations.
Utilizing the expression for the two point twist correlator from eq. (7) and eq. (152), the
four-point twist correlator appearing in the definition of the entanglement negativity for the
two disjoint intervals, have the following large central charge behaviour

¬

Φne
(x1, t1)Φ−ne

(x2, t2)Φ−ne
(x3, t3)Φne

(x4, t4)
¶

= exp
h cM

16

�

L13 +L24 −L14 −L23

�

i

, (155)

where L is defined in eq. (114), and we have utilized the relation cM
cL
= µ. Therefore, for

two disjoint intervals A1 and A2 living at the null infinity of the geometries described by TMG
in asymptotically flat spacetimes, we propose the following holographic construction for the
entanglement negativity

E = 3
16G

�

LA1∪As
+LAs∪A2

−LA1∪A2∪As
−LAs

�

, (156)

which tantamounts to replacing Lextr by L for the Einstein gravity counterpart in eq. (114),
where as before As describes another subsystem sandwiched between the two disjoint subsys-
tems in question. In the following, we will apply the above prescription to different bipartite
mixed state configurations involving two disjoint intervals in a GCFT1+1 and find agreement
with the large central charge results obtained above. Interestingly, all these results may be
checked against the İnönü-Wigner contractions of the corresponding CFT2 results in [29]. This
serves as another consistency check of our holographic proposal.
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7.5.2 Two disjoint intervals at zero temperature

We start with bipartite mixed state configuration of two disjoint intervals in proximity
A1 = (x1, t1) and A2 = (x2, t2) in the ground state of a holographic GCFT1+1 which is dual to
TMG in pure Minkowski spacetime. Using eq. (128) and eq. (23), the holographic entangle-
ment negativity proposal in eq. (156) reproduces the large central charge result in eq. (154).

For comparison, we reproduce the corresponding expression in the context of AdS3/CFT2
from [29]:

E = c
8

log

�

z13z24

z14z23

�

+
c̄
8

log

�

z̄13z̄24

z̄14z̄23

�

, (157)

where we have allowed for unequal central charges c and c̄ for the left and right moving
sectors, respectively. Now following eq. (1) we take the İnönü-Wigner contractions [40–42]

z = t + εx , z̄ = t − εx , (158)

to obtain, up to first order in ε,

E = (c + c̄)
8

log

�

t13 t24

t14 t23

�

+
ε(c − c̄)

8

�

x13

t13
+

x24

t24
−

x14

t14
−

x23

t23

�

. (159)

Using eq. (11), we see that the GCFT1+1 result in eq. (154) is exactly reproduced. This serves
as a strong consistency check of our proposal.

7.5.3 Two disjoint intervals at a finite temperature

Next, we consider the bipartite mixed state configuration of two disjoint interval in a finite
temperature GCFT1+1. The boundary theory is living on a cylinder compactified in the timelike
direction with circumference β and the dual bulk theory is described by global FSC geometry.
Using eq. (39) and eq. (132) in the holographic entanglement negativity formula in eq. (156)
gives

E =
cL

8
log
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�

πφ13
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�

πφ24
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�

πφ14
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�
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β
coth
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−
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coth
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β

�

−
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β
coth

�

πφ23

β

�

�

.

(160)

It is easily verified that the above expression matches perfectly with the large central charge
results obtained in subsection 7.5.1.

7.5.4 Two disjoint intervals in a finite-sized systems

Finally, we consider the bipartite mixed state configuration described by two disjoint intervals
in the proximity in a finite-sized system. Using eq. (132) and eq. (36) we get the holographic
entanglement negativity from eq. (156) as

E =
cL

8
log
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�
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�
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�

πφ24
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�
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+
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�

πφ13

Lφ

�

+
πu24

Lφ
cot

�
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−
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πφ14
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−
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�

πφ23

Lφ

��

.

(161)

This may also be seen to match with the large central charge results in 7.5.1.
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8 Summary and conclusions

To summarize, we have established a holographic construction to obtain the entanglement
negativity for bipartite states in GCFT1+1s dual to bulk (2+1)-dimensional asymptotically flat
Einstein gravity and topologically massive gravity (TMG). For the former the bulk asymptotic
symmetry analysis leads to dual GCFT1+1s with central charges cL = 0, cM 6= 0. In this con-
text, we have obtained the holographic entanglement negativity for various bipartite pure and
mixed states in a GCFT1+1 utilizing our construction. These include the pure state of a sin-
gle interval dual to a bulk (2+ 1)-dimensional Minkowski spacetime and that in a finite-sized
system dual to a bulk global Minkowski orbifold. The corresponding mixed state of a single
interval at a finite temperature is dual to a bulk non rotating flat space cosmology described
by a null orbifold. Subsequently, the holographic entanglement negativity for the mixed state
configuration of two adjacent intervals in a GCFT1+1 was computed utilizing our construction.
Our results for these bipartite states exactly reproduce the corresponding replica technique
results in the large central charge limit.

Following the above computations, we used the geometric monodromy method [67] in the
BMS3 field theory to find the large central charge behaviour of the entanglement negativity
for the mixed state configuration of two disjoint intervals in the GCFT1+1. Utilizing the M
and L monodromy for each of the two distinct components of the energy-momentum tensor
leads to second and third-order differential equations for the four-point twist correlator. Solv-
ing these equations, it was possible to obtain the dominant conformal block for the four-point
twist correlator in the t-channel describing the intervals in proximity with each other. This
leads us to the entanglement negativity for the mixed state configuration under consideration
for zero and finite temperature and also finite-sized system described by a GCFT1+1 at its large
central charge limit. Subsequently we advance a construction to compute the holographic en-
tanglement negativity for this mixed state configuration in zero and finite temperature and
also finite-sized system described by a GCFT1+1 dual to appropriate bulk gravitational con-
figurations. Interestingly our results exactly match with the corresponding replica technique
results in the large central charge limit obtained through the geometric monodromy analysis
described above. This constitutes a strong consistency check of our holographic construction
for the mixed state configuration in question and may also be extended to the other configu-
rations discussed here in a straightforward fashion. Furthermore we demonstrate that in the
limit of the two disjoint intervals being adjacent we retrieve the corresponding holographic en-
tanglement negativity for two adjacent intervals which further demonstrates the consistency
of our holographic construction.

Subsequently we have extended our construction to obtain the holographic entanglement
negativity for the bipartite states described earlier, in a GCFT1+1 with non zero cL dual to a bulk
flat space topologically massive gravity. This describes massive particles with spin propagating
in the bulk and also renders both the scaling dimensions for the twist fields to be non zero. Our
results for the adjacent and the single intervals match exactly with the corresponding replica
technique results in the dual GCFT1+1 with both the central charges being non zero. For the
mixed state configuration of two disjoint intervals we have extended the monodromy analy-
sis discussed above to the case with a non-zero cL and subsequently proposed a holographic
construction to compute the entanglement negativity for such configurations. Interestingly the
results for the holographic entanglement negativity obtained through our construction is iden-
tical to the İnönü-Wigner limit for the corresponding replica techniques results for a relativistic
CFT1+1 which constitutes a consistency check.

It is well known that flat space chiral gravity is a limit of the flat space topologically massive
gravity for which the Newton constant G is taken to be infinity and such that the product
of G with the coupling constant µ of the topological term in the action is held fixed. The
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corresponding dual GCFT1+1 in this case has the other central charge cL 6= 0 and the GCA
is identical to the chiral part of a (relativistic) Virasoro algebra. In appendix A utilizing our
proposal, we have computed the holographic entanglement negativity for the bipartite pure
and mixed state configurations described by single, adjacent, and disjoint intervals in the dual
GCFT1+1 mentioned above and the results are similar to those obtained earlier for a generic
TMG.

In appendix appendix B we have provided various details of the monodromy analysis per-
formed in subsection 6.1.1. The leading order geometric monodromy method utilized to com-
pute the four-point twist correlator associated with the entanglement negativity for two dis-
joint intervals relies on the exchanged operator being light in the large central charge limit.
For generic conformal dimensions of the exchanged operator, the monodromy analysis re-
quires further investigation as the truncation of various quantities up to linear order in the
exchanged dimension remains questionable. We have extended the analysis to higher orders
in the parameter εα and obtained the next to leading order monodromy condition for the three
point function. Interestingly, a similar analysis of the four-point twist correlator exactly repro-
duces the conformal block obtained through the linear analysis. Consequently, we anticipate
that the approximate linear solution has the same monodromy properties as the full solution.
An İnönü-Wigner contraction of the corresponding relativistic twist correlator in appendix C
also hints towards the same. We emphasize that the exact large central charge behavior of
the conformal block for the four-point function in question requires a more careful, perhaps
non-perturbative, analysis which we leave as a future work.

We would like to emphasize here that our construction described in this work addresses
the significant issue of the characterization of mixed state entanglement for a class of dual
GCFT1+1 in flat space holography. Furthermore it has been shown in the literature that the
GCFT1+1 dual to a bulk flat space chiral gravity is related to a conformal quantum mechanics
(CFT1). This is an extremely interesting open avenue to explore in the future as described
by the progress in the corresponding AdS2/CFT1 correspondence. We hope to return to these
exciting issues in the near future.
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A Holographic entanglement negativity in flat chiral gravity

In this appendix, we will discuss a special case of flat-space TMG, namely the conformal Chern-
Simons gravity (also called flat space chiral gravity) [74]. The dual boundary theory is de-
scribed by GCA2 with central charges cL = 24k, cM = 0, where k is the Chern-Simons level.
The action for conformal Chern-Simons gravity is given by

SCSG =
k

4π

∫

d3 x
p

−g

�

εαβγΓρασ

�

∂βΓ
σ
γρ +

2
3
ΓσβηΓ

η
γρ

�

�

, (162)

with G→∞, keeping µG = 1
8k fixed (cf. eq. (119)).

Note that in this case the two-point correlator in (123) only gets a contribution from the
Chern-Simon term. In this context, we are looking at a massless spinning particle in the bulk.
All the previous analysis in flat-space TMG will now follow with cM = 0 and holographic
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entanglement negativity formula for a single interval A becomes

E = lim
B→Ac

3kµ
2

�

2XA+XB1
+XB2

−XA∪B1
−XA∪B2

�

, (163)

where we have defined

X = 1
µ
∆η . (164)

Therefore, using eqs. (128) and (163), the holographic entanglement negativity for a single
interval in the ground state of a chiral GCFT1+1 is obtained as

E = 3
8G

XA =
cL

4
log

� t12

ε

�

. (165)

Similarly, we may compute the holographic entanglement negativity for a single interval
A = [(x1, t1), (x2, t2)] at a finite temperature or for finite-sized systems using eq. (131) and
eq. (132). The results match exactly with those in the flat-space TMG case as well as the field
theory results in [55] with cM = 0 which strongly substantiates our holographic proposals.

Next, we modify our holographic entanglement negativity proposal for two adjacent inter-
vals A1 = [(x1, t1), (x2, t2)] and A= [(x2, t2), (x3, t3)] at the boundary of a manifold accom-
modating flat chiral gravity:

E =
3kµ

2

�

XA1
+XA1

−XA1∪A2

�

. (166)

Using eq. (128) for the spinning contribution in pure Minkowski spacetime, eq. (166) yields
the following expression for the holograpic entanglement negativity for two disjoint intervals
in the chiral GCFT1+1 vacuum:

ECS =
3k
2

�

∆ηA1
+∆ηA2

−∆ηA1∪A2

�

=
cL

8
log

�

t12 t23

ε(t12 + t23)

�

,
(167)

which matches exactly with the cM = 0 version of the dual field theory result in [55]. Simi-
larly, we can obtain the holographic entanglement negativity for adjacent intervals at a finite
temperature and for finite-sized systems in the present scenario using eq. (131) and eq. (132).

Finally, for two disjoint intervals A= [(x1, t1), (x2, t2)] and B = [(x3, t3), (x4, t4)] in prox-
imity in the chiral GCFT1+1 with cM = 0, we write

E = 3k
2

�

X13 +X24 −X14 −X23

�

, (168)

with X given in eq. (164). Using eq. (128) and eq. (168), we obtain the holographic entan-
glement negativity in the ground state to be

E =
cL

8
log

�

t13 t24

t14 t23

�

. (169)

Similarly, we can obtain negativity for two disjoint intervals at a finite temperature and for
finite-sized systems using eq. (131) and eq. (132). Once again the results match with the
flat-space TMG results with cM = 0 as well as the corresponding İnönü-Wigner limits of the
relativistic field theory results [29].
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B Next to leading order monodromy

In this appendix, we will perform the geometric monodromy analysis in the next to leading
order in the re-scaled conformal dimension εα =

6
cM
χα of the exchange operator. In particular

we will focus only on the monodromy problem associated with the expectation value of the
component M of the energy-momentum tensor in the following. To this end we begin with
the differential equation eq. (86) and expand its solutions up to second order in εα as follows

hi = h(0)i + εα h(1)i + ε
2
α h(2)i , M=M(0) + εαM(1) . (170)

To proceed, we recall that the solutions to the first order differential equation in eq. (89) was
solved utilizing the method of variation of parameters as

h(1)i (u) = fi,1(u)h
(0)
1 (u) + fi,2(u)h

(0)
2 (u) , (171)

where the functions fi, j(u)may be obtained through the Wronskian of the differential equation
as described in [67]. Subsequently, encircling a path enclosing the light operator at t = T the
solutions of eq. (86) transform as

h(1)1 (u)→ h(0)1 (u) +

�∮

f ′1,2(u)

�

h(0)2 (u) ,

h(1)2 (u)→
�∮

f ′2,1(u)

�

h(0)1 (u) + h(0)2 (u) . (172)

Specializing to the three point function15



Φne
(x1, t1)Φne

(x4, t4)Vα(X , T )
�

, we note that the
expectation value of the energy-momentum tensor is given by

6
cM

M(1)(T ; t) =
T

t(t − T )2
εα . (173)

From eqs. (172) and (173) we obtain the monodromy matrix up to first order as

M (1) =

�

1 2iTπεα
2iπεα

T 1

�

, (174)

which leads to the monodromy condition in eq. (91).
In the next to leading order, the differential equation reads

h(2)′′i (t) = −
6

cM
M(1)(T ; t)h(1)i (t) . (175)

Once again, we solve eq. (175) by variation of parameters as

h(2)i (u) = Ji,1(u)h
(1)
1 (u) + Ji,2(u)h

(1)
2 (u)

= (Ji,1 f1,1 + Ji,2 f2,1)h
(0)
1 (u) + (Ji,1 f1,2 + Ji,2 f2,2)h

(0)
2 (u) ,

(176)

where

J ′i,1(u) =
Wi,1

W
, J ′i,2(u) =

Wi,2

W
, (177)

and the Wronskians are given as

Wi,1(u) =

�

�

�

�

�

0 −6
cM

M (1)h(1)i

h(1)2 h′(1)2

�

�

�

�

�

, W (u) =

�

�

�

�

�

h(1)1 h′(1)1

h(1)2 h′(1)2

�

�

�

�

�

, Wi,2(u) =

�

�

�

�

�

h(1)1 h′(1)1

0 −6
cM

M (1)h(1)i

�

�

�

�

�

.

15Note that the same three-point function appears in the partial wave expansion in eq. (78) and hence provides
us with the necessary monodromy condition.
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Upon going around the light operator at t = T in a circle the solutions to eq. (175) transform
as

h(2)1 (u)→
�

f1,1(u) +

�∮

J ′1,2

�

f2,1(u)

�

h(0)1 (u) +

�

f1,2(u) +

�∮

J ′1,2

�

f2,2(u)

�

h(0)2 (u) ,

h(2)2 (u)→
��∮

J ′2,1

�

f1,1(u) + f2,1(u)

�

h(0)1 (u) +

��∮

J ′2,1

�

f1,2(u) + f2,2(u)

�

h(0)2 (u) . (178)

Computing the contour integrals and substituting, we may read off the monodromy matrix in
the next to leading order as

M (2) =

�

4π2ε2
α 0

0 −4π2ε2
α

�

, (179)

and the monodromy condition becomes

I1 − I2

2
= −16π4ε4

α , (180)

where I1 = tr M and I2 = tr M2 are invariant under global Galilean conformal transformations.
Next we solve the differential equation eq. (175) for the four-point function eq. (78) uti-

lizing the method outlined above. Note that for the four-point function the expectation value
of the energy-momentum tensor is given in eq. (83). After solving eq. (175) we compute
the monodromy of the solutions by going around the light operators at t = 1 , T as described
in [67] and retraced above. This leads to the following monodromy matrix

M (2) =

�

4π2(T − 1)2Tc2
2 0

0 −4π2(T − 1)2Tc2
2

�

. (181)

Utilizing the monodromy condition eq. (180) in the next to leading order, we may obtain the
auxiliary parameter c2 as

c2 = εα
1

p
T (T − 1)

. (182)

Hence the conformal block for the four-point function in eq. (78) may be obtained as:

Fα = exp

�

cM

6

∫

c2 dX

�

= exp

�

χα

�

X
p

T (T − 1)

��

F̃(T ) .
(183)

Remarkably, this is exactly the same conformal block eq. (93) obtained in subsection 6.1.1
confining ourselves to first order in the parameter εα. The above analysis may be extended to
higher orders in εα in a similar manner.

The analysis in this appendix hints towards the fact that the monodromy method works
at each order in the expansion parameter. We may interpret this as follows: the approximate
solution to the differential equation eq. (86) worked out in subsection 6.1.1 is able to pick
up the same monodromy while circling around the light operators, as would the complete
solution.

C İnönü-Wigner contraction

In this appendix we will further analyze the large central charge behavior of the four-point
twist correlator in eq. (73) relevant to the entanglement negativity for two disjoint intervals in
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proximity in a GCFT1+1. In particular, we will show that the proximity limit of the dominant
conformal block in eq. (151) may be obtained by performing the İnönü-Wigner contractions
[40–42] of the corresponding relativistic result obtained in the context of AdS3/C F T2 in [23].
Note that the parametric contractions given in eq. (158) may alternatively be written in terms
of the coordinates describing the relativistic C F T1+1 as

z→ t + εx , z̄→ t − εx . (184)

The central charges of the GCA2 are related to those of the parent relativistic theory as

cL = c + c̄ , cM = ε(c − c̄) . (185)

Next, we recall that the four-point twist correlator associated with the mixed state configu-
ration of two disjoint intervals in proximity in a relativistic C F T1+1 is given by the following
expression in the large central charge limit [23,25,29]:

lim
ne→1




Tne
(z1)T̄ne

(z2)T̄ne
(z3)Tne

(z4)
�

= (1− x)−c/4 , (186)

where x = z12z34
z13z24

is the C F T1+1 cross ratio. If we allow for unequal central charges for the left
and right moving sectors the above expression has the natural generalization

lim
ne→1




Tne
(z1)T̄ne

(z2)T̄ne
(z3)Tne

(z4)
�

= (1− x)−c/8(1− x̄)−c̄/8 . (187)

Utilizing eq. (184), we now write the C F T1+1 cross ratios in terms of those in the GC F T1+1
as

x → T
�

1+ ε
X
T

�

, x̄ → T
�

1− ε
X
T

�

. (188)

Now performing the İnönü-Wigner contraction of the cross ratios as given in eq. (188), we
obtain for the corresponding correlator in the GCFT1+1 as

lim
ne→1




Φne
(x1, t1)Φ−ne

(x2, t2)Φ−ne
(x3, t3)Φne

(x4, t4)
�

→
�

1− T
�

1+ ε X
T

�

�−c/8�
1− T

�

1− ε X
T

�

�−c̄/8
.

(189)

where the cross-ratios X and X/T are defined as

T =
t12 t34

t13 t24
,

X
T
=

x12

t12
+

x34

t34
−

x13

t13
−

x24

t24
. (190)

Expanding upto linear order in ε and using eq. (185), the above expression reduces to

lim
ne→1




Φne
(x1, t1)Φ−ne

(x2, t2)Φ−ne
(x3, t3)Φne

(x4, t4)
�

≈
�

1
1− T

�cL/4

exp
�

−
cM

8
X

T − 1

�

. (191)

Remarkably, this expression matches exactly with that obtained through the geometric mon-
odromy method in eq. (152). This provides further support towards the validity of the mon-
odromy analysis up to leading order in the exchanged dimension.
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