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Abstract: We analyse the entanglement of the antisymmetric state in dimension d × d
and present two main results. First, we show that the amount of secrecy that can be
extracted from the state is low, more precisely, the distillable key is bounded by O( 1

d ).
Second, we show that the state is highly entangled in the sense that a large number
of ebits are needed in order to create the state: entanglement cost is larger than a con-
stant, independent of d. The second result is shown to imply that the regularised relative
entropy with respect to separable states is also lower bounded by a constant. Finally, we
note that the regularised relative entropy of entanglement is asymptotically continuous
in the state.

Elementary and advanced facts from the representation theory of the unitary group,
including the concept of plethysm, play a central role in the proofs of the main results.

1. Introduction

Entanglement is a quantum phenomenon governing the correlations between two quan-
tum systems. It is both responsible for Einstein’s “spooky action at a distance” [1] as
well as the security of quantum key distribution [2,3]. Quantum key distribution, or
QKD for short, is a procedure to distribute a perfectly secure key among two distant
parties, something that is not possible in classical cryptography without assumptions on
the eavesdropper.

In the early days of quantum information theory, it was quickly realised that the
universal resource for bipartite entanglement is the ebit, that is, the state |ψ〉 := 1√

2
(|00〉+

|11〉) [4]. Ebits are needed for teleportation [5], superdense coding [6] and directly lead
to secret bits [3,7]. It is therefore natural to associate the usefulness of a quantum state
with the amount of ebits that can be extracted from it or the amount of ebits needed to
create the state [8]. Formally, one considers the distillable entanglement

ED(ρ) = lim
ε→0

lim
n→∞ sup

�n∈ LOCC

{m

n
: ‖�n(ρ

⊗n)− ψ⊗m‖1 ≤ ε
}
, (1)
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and the entanglement cost

EC (ρ) = lim
ε→0

lim
n→∞ inf

�n∈ LOCC

{m

n
: ‖�n(ψ

⊗m)− ρ⊗n‖1 ≤ ε
}
, (2)

where the supremum and infimum ranges over all completely positive trace preserving
(CPTP) maps that can be obtained from local operations and classical communication
(LOCC) on the state (this is, operations which can be implemented using a multi-round
protocol where in every round, both parties carry out some local operation, followed
by an exchange of classical information [9]). For ease of notation we write ψ short for
|ψ〉〈ψ |.

An important result relating to these quantities has been the discovery of bound
entanglement, that is of states that need ebits for their creation but from which no ebits
can be extracted asymptotically: EC (ρ) > 0 and ED(ρ) = 0 [10]. A recent surprise
has been the realization that there exist bound entangled states from which secrecy can
be extracted [11], a result that overthrew previous beliefs that secrecy extraction and
entanglement distillation would go hand in hand.

This has motivated research into the amount of key that can be distilled from a
quantum state as an entity in its own right. The distillable key is defined as

K D(ρAB) = lim
ε→0

lim
n→∞ sup

�n LOCC,γm

{m

n
: ‖�n(ρ

⊗n)− γm‖1 ≤ ε
}
, (3)

where γm denotes a quantum state which contains m bits of pure secrecy (see Defini-
tion 4).

A fundamental question at this point is this: Do there exist states which require key
to create them but from which no key can be distilled? Note that a mathematical formu-
lation of this question appears to require the definition of a “key cost” of a state, which
is problematic since the states γm containing m bits of pure key, the private states of
Definition 4, form a heterogenous class of states which are not all equivalent to each
other. Even the weaker form of this question, whether there exist states with EC (ρ) > 0
but K D(ρ) = 0, seems too difficult at the moment, since we have apart from the sep-
arability of ρ no criterion for K D(ρ) = 0. Here we show that in an asymptotic sense
the answer is yes: in the spirit of [12], we show that there exists a family of states with
constant lower bound on their entanglement cost, but arbitrarily small distillable key.
These results have been previously reported in [13].

In order to derive this result, we make use of the theory of entanglement with its many
entanglement measures. The motivation for this is the following. Due to the asymptotic
nature of the definitions it is a difficult task to evaluate the distillable entanglement, the
entanglement cost and the distillable key on specific quantum states. All three quantities
have in common that they measure the amount of entanglement in a quantum state, i.e.
they do not increase under LOCC operations, they vanish on separable states (i.e., states
which can be written as a convex combination of product states, ρ = ∑

i piρ
A
i ⊗ ρB

i ),
and they equal one when evaluated on an ebit. This has led to an axiomatisation of the
quantities that measure entanglement and to the definition of a whole zoo of entangle-
ment measures (cf. [14]). One of the main uses of all the new entanglement measures
is that they are mostly sandwiched between distillable entanglement (or even distillable
key) and entanglement cost and hence form upper and lower bounds for these quantities.
Even though these new entanglement measures often involve complicated minimisations
or asymptotic limits they are sometimes easier to calculate than distillable entanglement,
distillable key and entanglement cost.
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The states for which entanglement measures have been calculated are typically char-
acterised by their symmetry. The most prominent example are so-called Werner states
in dimension d × d, defined by the property

(g ⊗ g)ρ(g† ⊗ g†) = ρ

for all g ∈ U (d), the unitary group. Werner states can be given explicitly as the one
parameter family

ρ = pσd + (1 − p)αd ,

where p ∈ [0, 1]. Here, σd is the state proportional to the projectors onto the symmetric
subspace and αd is the state proportional to the projector onto the antisymmetric sub-
space. In this work we will bound the value of certain entanglement measures for the
totally antisymmetric states αd .

The first entanglement measure we use is the squashed entanglement [15],

Esq(ρAB) = inf
ρAB E :ρAB=TrE ρAB E

1

2
I (A; B|E)ρ, (4)

where I (A; B|E)ρ = H(AE)ρ + H(B E)ρ − H(AB E)ρ − H(E)ρ is the quantum con-
ditional mutual information, with H(X)ρ = H(ρX ) the von Neumann entropy of the
reduced state on X , H(σ ) := − Tr σ log2 σ . We show that squashed entanglement is an
upper bound on the distillable key and hence establish the chain of inequalities

ED ≤ K D ≤ Esq ≤ EC . (5)

A concrete calculation of a bound on the squashed entanglement of the antisymmetric
states will yield our first main result, an upper bound on the distillable key.

Theorem 1.

K D(αd) ≤
{

log2
d+2

d if d is even

1
2 log2

d+3
d−1 if d is odd

}
= O

(
1

d

)
. (6)

In order to find a lower bound on the entanglement cost of the antisymmetric state,
we will use its charaterisation as the regularised entanglement of formation EC = E∞

F .
The entanglement of formation is defined as

EF (ρ) = min
{pi ,|ϕ〉〈ϕ|i }i :ρ=∑i pi |ϕi 〉〈ϕi |

∑
i

pi H
(
TrB |ϕi 〉〈ϕi |

)
, (7)

and its regularisation is given by

E∞
F (ρ) := lim

n→∞
1

n
EF

(
ρ⊗n). (8)

Making heavy use of the symmetry of the antisymmetric state we will relax the mini-
misation in the definition of the entanglement of formation to a linear programme and
obtain the second main result of this paper.

Theorem 2. EC (αd) ≥ log2
4
3 ≈ 0.415.
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It is not difficult to see that the entanglement of formation ofαd equals one and hence that
the truth of the additivity conjecture for entanglement of formation would have implied
EC (αd) = 1. Since Hastings has provided a counterexample [16] to the additivity con-
jecture [17], this consequence is put into doubt and the only evidence for EC (αd) = 1
was Yura’s brute force calculation which proved this statement for d = 3. Our result
can therefore be seen as supporting evidence for EC (αd) = 1, and at least provides a
further example where some weak form of additivity holds. At present the techniques
in this paper are not sufficient to prove EC (αd) = 1, but further development may be
capable of doing so.

Using the tools developed to prove Theorem 2, we obtain a lower bound to the
regularised relative entropy of entanglement with respect to separable states.

Corollary 3. E∞
R,sep(αd) ≥ log2

√
4
3 ≈ 0.2075.

Here, the relative entropy of entanglement (with respect to separable states) is defined
as

ER,sep(ρ) := min
σ separable

D(ρ||σ),

where D(ρ||σ) := Tr ρ[log ρ− log σ ], and the regularised relative entropy of entangle-
ment is

E∞
R,sep(ρ) = lim

n→∞
1

n
ER,sep(ρ

⊗n), (9)

From the point of view of entanglement theory, this result is interesting for at least three
reasons. First, it shows that the additivity violation of the relative entropy of entanglement
for the antisymmetric state, first observed in [18], is not very strong in the asymptotic
limit. Secondly, the regularised relative entropy of entanglement with respect to separa-
ble states behaves very differently from the relative entropy of entanglement with respect
to PPT states, as the latter takes the value log2

d+2
d on αd [19]. Thirdly, it shows that

the relative entropy of entanglement can sometimes be larger and sometimes be smaller
than the squashed entanglement. Finally, we note that as an entanglement measure, the
relative entropy of entanglement with respect to separable states satisfies [11]

ED ≤ K D ≤ E∞
R,sep ≤ EC ,

and that it is asymptotically continuous, as we show in Proposition 13.
In order to derive both main results of the paper we make use of the symmetry prop-

erties of the antisymmetric state and the associated representation theory of the unitary
group in dimension d [20]. For the lower bound on entanglement cost, we relax the cal-
culation of EF (α

⊗n
d ) in a first step into a semidefinite programme which we reduce in a

second step with the help of representation theory (for the first time using the concept of
a plethysm in quantum information theory) into a linear programme [21]. We then find
a feasible point of the dual for the latter, which results in our lower bound of log2

4
3 for

entanglement cost. On the way we recover Yura’s result for d = 3.
The rest of the paper is organised as follows. In Sect. 2 we introduce the notation

from representation theory that will be used throughout the paper. In Sect. 3 we prove
the upper bound on the squashed entanglement and distillable key. In Sect. 4 we exhibit
the sequence of relaxations that will lead to the lower bound on the entanglement cost. In
Sect. 5 we will derive the lower bound on regularised relative entropy of entanglement
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of the antisymmetric state with respect to separable states. Furthermore, we establish
that it is asymptotically continuous as a function of the state. We will conclude the
paper with remarks and open questions in Sect. 6. The appendices contain details on the
representation-theoretic calculations and the linear programme.

2. Representation Theoretic Preliminaries

Representations of the unitary group U (d) can be taken to be unitary and decompose into
a direct sum of irreducible representations. The latter are classified according to their
highest weight. For each dominant weight λ, i.e. λ = (λ1, . . . , λd) with λi ≥ λi+1 ∈ Z,
there is exactly one irreducible representation Vλ. When λd ≥ 0, we write λ d n if
n := |λ| := ∑

i λi . Such Vλ can be viewed as a subrepresentation of the n-fold diagonal
action of the unitary group on (Cd)⊗n :

T n : g �→ g⊗n,

since by Schur-Weyl duality

T n ∼=
⊕
λd n

Vλ ⊗ Cdim[λ],

where [λ] denotes the Sn-Specht module corresponding to the Young frame λ. In the
following we will often use the interpretation of λ as a Young frame, i.e. as a diagram
of boxes arranged in d rows with λi boxes in row i , and use the corresponding diagram-
matic notation. As a vector space, Vλ can be constructed as the image of the Young
symmetriser, a certain element in the group algebra of Sn , when applied to (Cd)⊗n . The
projector onto Vλ is denoted by Pλ.

Two types of representations are of particular importance. First, the symmetric rep-
resentations with Young diagram λ = (n, 0, . . . , 0) which act on the totally symmetric
subspace Symn(Cd) of (Cd)⊗n . Second, the fundamental representations with Young
diagram λ = (1, 1, . . . , 1, 0, 0, . . . , 0) which act on the totally antisymmetric subspace
∧n(Cd) of (Cd)⊗n . Note that the latter are zero-dimensional for d < n.

The dimension of Vλ is given by Weyl’s dimension formula

dim Vλ =
∏

i< j (λi − λ j − i + j)
∏d−1

k=1 k! (10)

and specializes in the case of a fundamental representation to
(d

n

)
.

The first case of interest to us is n = 2, where

T 2 ∼= V(1,1) ⊕ V(2,0),

or in diagrammatic notation

⊗2 ∼= ⊕ .

It then follows immediately from Schur’s lemma that the U (d)-invariant states on this
space must be of the form

ρ = pσd + (1 − p)αd ,
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where p ∈ [0, 1] and with the totally antisymmetric and totally symmetric states

σd = 2

d(d + 1)
P ,

αd = 2

d(d − 1)
P ,

respectively. Note that we suppress the dependence on d when the dimension is clear
from the context. Later we will compute similar decompositions of more complicated
type.

3. Upper Bound on the Distillable Key

In this section we will first show that squashed entanglement is an upper bound to the
amount of key that one can distill from quantum states. Then we will find an upper bound
on squashed entanglement of the antisymmetric state. Together, this proves Theorem 1.

Recall the definition of squashed entanglement and the definition of the key rate. The
latter contains a maximisation over private states that contain m bits of pure secrecy, the
formal definition of such states follows.

Definition 4 ([11]). A private state containing m bits of secrecy is a state γm of the form

γm = UσAA′ B B′U †

for some unitary U = ∑
i |i i〉〈i i | ⊗ Ui and σAA′ B B′ = �AB ⊗ σA′ B′ , where |�〉 =

1√
2m

∑2m

i=1 |i〉|i〉 is the maximally entangled state of rank 2m . System AB is known as

the key part of the state and system A′ B ′ is known as the shield part.

Lemma 5 ([14]). For all bipartite quantum states ρAB,

K D(ρAB) ≤ Esq(ρAB).

Proof. Let �n be a CPTP map that can be implemented with an LOCC protocol and
that satisfies

‖�n(ρ
⊗n)− γm‖1 ≤ ε,

and assume that the dimension of the A′ B ′ part is at most exponential in n. This last
assumption can be made without loss of generality since the optimal key distillation
protocol can be approximated by a sequence of protocols satisfying this requirement.
In order to see this, note that one can stop the optimal protocol when the extracted bits
are almost perfect and use privacy amplification [22] to make them perfect. The com-
munication needed in order to achieve privacy amplification amounts to the choice of
a function from a set of two-universal hash functions. Classes of such functions of size
exponential in n exist [23]. This shows that privacy amplification needs an amount of
communication that is at most linear in the amount of bits extracted. Therefore, without
loss of generality, the dimension of the shield size can be assumed to grow at most
exponentially in n, say ≤ cn for some c ≥ 1.

Since squashed entanglement is a monotone under LOCC [15] and asymptotically
continuous [24],

Esq(ρ
⊗n) ≥ Esq(�n(ρ

⊗n)) ≥ Esq(γm)− 16c
√
εn log2 d − 4h(2

√
ε).
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Recall from Definition 4 the form of the state γm ≡ γAA′ B B′ . In order to show that
Esq(γm) ≥ m, consider an arbitrary extension γAA′ B B′ E of γAA′ B B′ , which induces an
extension σAA′ B B′ E = (U † ⊗ 1E )γAA′ B B′ E (U ⊗ 1E ) = �AB ⊗ σA′ B′ E of σAA′ B B′ in
Definition 4. Clearly,

H(AA′B B ′E)γ = H(AA′ B B ′E)σ = H(A′ B ′E)σ = H(A′B ′E)σi ,

with σi := Ui ⊗ 1EσA′ B′ EU †
i ⊗ 1E . Since furthermore H(E)γ = H(E)σ = H(E)σi ,

we have that

H(AA′ B B ′|E)γ = H(A′ B ′|E)σi .

Also, since H(AA′E)γ = m + 1
2m

∑
i H(A′E)σi , it follows that

H(AA′|E)γ = m +
1

2m

∑
i

H(A′|E)σi ,

and similarly for H(B B ′E)γ . Altogether this gives

I (AA′; B B ′|E)γ = H(AA′|E)γ + H(B B ′|E)γ − H(AA′ B B ′|E)γ
= 2m +

1

2m

∑
i

I (A′; B ′|E)σi

≥ 2m,

where the non-negativity of the quantum conditional mutual information was used in
the last inequality. This shows that Esq(γm) ≥ m and therefore

Esq(ρ) ≥ m

n
− 16c

√
ε log2 d − 4

n
h(2

√
ε),

with the right-hand side of this inequality converging to K D(ρAB). ��
The following lemma provides an upper bound on the squashed entanglement of the

antisymmetric state.

Lemma 6. For even d we have

Esq(αd) ≤ log2
d + 2

d
.

For odd d,

Esq(αd) ≤ 1

2
log2

d + 3

d − 1
.

Proof. Let Pk be the projector onto the ∧k(Cd) in (Cd)⊗k . Recall that dk :=
dim ∧k(Cd) = (d

k

)
and define ρAB E := Pk

dk
, where HA ∼= HB ∼= Cd correspond to

the first and the second tensor factor and HE ∼= (Cd)⊗k−2 to the last k − 2 factors. It is
clear that the reduced density matrix ρAB := TrE ρAB E equals the totally antisymmetric
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state αd , or conversely, that ρAB E is an extension of αd . For this extension we evaluate
the conditional mutual information:

I (A; B|E)ρ = H(AE)ρ + H(B E)ρ − H(E)ρ − H(AB E)ρ

= log2
d2

k−1

dk−2dk
= log2

k

k − 1

d − k + 2

d − k + 1
.

Minimising this function over different values of k ∈ {2, . . . , d} we find that for even d
the minimum value I (A; B|E)ρ = 2 log2

d+2
d is reached when k = d

2 + 1 and for odd d

the minimum value I (A; B|E)ρ = log2
d+3
d−1 is reached when k = d+1

2 . ��
It is surprising that the bound from Lemma 6 for even dimension coincides with

values of other entanglement measures [19]:

E∞
R,PPT(αd) = ERains(αd) = EN (αd) = log2

d + 2

d
,

where E∞
R,PPT is the regularised relative entropy of entanglement with respect to PPT

states (a PPT state is a state whose partial transpose is a positive semidefinite operator),
ERains is the Rains bound and EN is the logarithmic negativity. In the light of these
results we are tempted to conjecture that Esq(αd) = log2

d+2
d , at least for even d.

With the upper bound on squashed entanglement we not only match the best known
upper bounds on distillable entanglement (for even dimension) but obtain new bounds
even on the distillable key, since Lemma 5 and Lemma 6 prove Theorem 1.

Note also that our bound gives Esq(αd) ≤ 2 log2 e
d−1 = O( 1

d ) which improves over the

bound Esq(αd) = O( log2 d
d ) that was obtained using the monogamy of squashed entan-

glement [25]. Note finally, that the best known lower bound for both ED and K D is given
by 1

d . Up to a constant, the bound that we have obtained for squashed entanglement, dis-
tillable key (and distillable entanglement, but this we knew before) is therefore optimal.
Previously the best known upper bound for distillable key was one half and stems from a
computation of the relative entropy of entanglement with respect to separable states (for
two copies) of Vollbrecht and Werner who showed that ER,sep(α

⊗2
d ) ≤ 1−log2

d−1
d [18]

and hence E∞
R,sep(αd) ≤ 1

2 ER,sep(α
⊗2
d ) = 1

2 + O( 1
d ). The latter is an upper bound on

K D [11].

4. Lower Bound on the Entanglement Cost

The calculation of the entanglement cost using its characterisation as the regularised
entanglement of formation, Eq. (8), seems very daunting in general due to the infi-
nite limit; but in fact, even the computation of entanglement of formation according
to Eq. (7) is a very difficult task. However, for the antisymmetric states αd (and many
copies thereof), the g ⊗ g symmetry (for unitary g) comes to help:

Lemma 7. For all d ≥ 3,

EF (α
⊗n
d ) ≥ − log2 max

|ψ〉An Bn ∈ ⊗n
Trψ2

An ,

where ψAn = TrBn |ψ〉〈ψ |An Bn . Consequently,

EC (αd) ≥ − lim
n→∞

1

n
log2 max

|ψ〉An Bn ∈ ⊗n
Trψ2

An . (11)
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The quantity Trψ2
An is also known as the purity of ψAn ; it equals one for pure states,

and is strictly smaller than one if the state is mixed.

Proof. Recall the definition of entanglement of formation in the case of a ten-
sor product state EF (α

⊗n
d ) = min{pi ,|ψi 〉}:α⊗n

d =∑i pi |ψi 〉〈ψi |
∑

i pi H(ψA,i ) and note

that all states appearing in the ensembles are contained in ⊗n . Thus EF (α
⊗n
d ) ≥

min|ψ〉An Bn ∈ ⊗n H(ψAn ). [This is in fact an equality, as any minimizer |ψ〉An Bn yields

an optimal decomposition
∫ |ψg1...gn 〉〈ψg1...gn |dg1 · · · dgn of α⊗n

d , with |ψg1...gn 〉 =
(g1 ⊗ · · · ⊗ gn)

⊗2|ψ〉An Bn , and dgi the Haar measure on U (d).] The proof follows
by noting that the von Neumann entropy is lower bounded by the quantum collision
entropy (or quantum Rényi entropy of order two) H2(σ ) = − log2 Tr σ 2 and from the
formula EC (ρ) = limn→∞ 1

n EF (ρ
⊗n). ��

Yura [26] has used this bound and shown that the right hand side of (11) equals 1 if d =
3. Together with the observation that the EC (ρ) ≤ EF (ρ) ≤ 2

d(d−1)

∑
i< j H(ψA,i j ) =

1, where |ψi j 〉 = 1√
2
(|i j〉−| j i〉), he has thus calculated the entanglement cost of the anti-

symmetric state in this case. In the following, we will reproduce Yura’s result for d = 3
and furthermore show that the right hand side of (11) is lower bounded log2

4
3 � 0.415

for all d.
In order to do so, we will first employ representation theory of the unitary and sym-

metric group as well as a relaxation in order to reduce the problem to a linear programme.
In a second step, we will put a lower bound on the optimal value of this programme
using linear programming duality.

Lemma 8. We have

max
|ψ〉An Bn ∈ ⊗n

Trψ2
An = max Tr�An Bn A′n B′n (FAn :A′n ⊗ 1Bn B′n ), (12)

where FC :D is the operator that permutes (“flips”) systems C and D, and where the
maximisation on the right hand side is over all states of the form

�An Bn A′n B′n =
∑

yn∈{ , , }n

py1...ynρy1 ⊗ · · · ⊗ ρyn (13)

that are separable across the An Bn : A′n B ′n cut. The pyn form a probability distribution
symmetric under interchange of the variables. pyn vanishes if the number of ’s is odd.
The states ρy are proportional to projectors onto orthogonal subspaces of ⊗2 which
are isomorphic to irreducible representations of U (d) with Young diagrams , and

– see Lemma 14 in Appendix A.

Proof. Note that Trψ2
An = Tr(ψAn ⊗ψA′n )FAn :A′n . Since An = A1 · · · An and likewise

for A′n , we have FAn :A′n = F⊗n
A:A′ and therefore

Trψ2
An = Tr(ψAn Bn ⊗ ψA′n B′n )(F⊗n

A:A′ ⊗ 1Bn B′n ).

Because FA:A′ commutes with g⊗2 for all unitary g, we can replace ψAn Bn ⊗ ψA′n B′n
by the twirled state

�An Bn A′n B′n = T ⊗n
AB A′ B′(ψAn Bn ⊗ ψA′n B′n ),
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where TAB A′ B′ is the twirling (CPTP) map defined by TAB A′ B′(X) = ∫
g dgg⊗4 X (g†)⊗4,

where dg is the Haar measure on U (d) normalised to
∫

dg = 1. By Lemma 14 we have

⊗2 ∼= Sym2( )⊕ ∧2( ) ∼= ( ⊕ )⊕ ,

where , and are irreducible representations of U (d). It is furthermore remarkable
that all irreducible representations have multiplicity at most one for general d. Such a
case is called multiplicity-free and will be one of the main reasons why we can carry
out our computation.

By elementary representation theory we can pull this result to the n-fold systems and
conclude that

�An Bn A′n B′n =
∑

y1,...,yn

py1...ynρy1 ⊗ · · · ⊗ ρyn ,

where the constants pyn are non-negative and sum to one, and yi ∈ { , , } are indi-
ces keeping track in which irreducible representation we are (denoted by their Young
diagram). The states ρy are proportional to the identity on the respective representa-
tion. The probability distribution can furthermore be taken to be invariant under per-
mutation of the labels. Note also that the state |ψAn Bn 〉 ⊗ |ψA′n B′n 〉 is invariant under
FAn Bn :A′n B′n = ⊗n

i=1 FAi :A′
i
⊗FBi :B′

i
, this implies FAn Bn :A′n B′n� = �. We now observe

that FAi :A′
i
⊗ FBi :B′

i
when restricted to the subspace corresponding to and acts as the

identity, and when restricted to acts as minus the identity. In order to see this note that
FA:A′ ⊗ FB:B′ acts trivially on Sym2( ) = Sym2(∧2(Cd)) = ⊕ and flips the sign
on the orthogonal complement ∧2(∧2(Cd))which equals . This shows that sequences
yn with nonzero pyn must have an even number of ’s. In summary,

�An Bn A′n B′n =
∑

yn :# ’s even

py1...ynρy1 ⊗ · · · ⊗ ρyn .

Note further that the state �An Bn A′n B′n is of the form

�An Bn A′n B′n =
∫
μ(α)|α〉〈α|An Bn ⊗ |α〉〈α|A′n B′n dα

for some probability density μ(α) with respect to the Haar measure dα. This state is
therefore separable across the An Bn : A′n B ′n cut. Note also that every separable state
on Sym2( ⊗n) takes this form. ��

We have thus succeeded to transform the maximisation of the purity of the reduced
state over quantum states, which is a quadratic objective function, in Eq. (12) to a linear
optimisation problem over finitely many non-negative real numbers, but with an addi-
tional separability constraint, as given by Eq. (13). Since this requirement of separability
is difficult to handle we will now relax the optimisation problem by only demanding
that the state should have a positive partial transpose (PPT).

Since the PPT constraint, unlike separability, is a semidefinite constraint, we are then
dealing with a semidefinite programme, and that duality theory should be able to give
some information on the maximum value – see a similar line of argument in [19]. As we
will now show, the resulting problem [obtained by relaxing Eq. (13) to PPT states in the
right hand side optimization in Eq. (12)] is indeed a linear programme. In order to do
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so we need to express the PPT condition as a linear constraint in the variables pyn and
the target function as a linear function in them. This is accomplished by the following
lemma.

Lemma 9. max|ψ〉An Bn ∈ ⊗n Trψ2
An ≤ ζn,d , where

ζn,d := max �t ⊗n · �p s.t. �p ≥ 0, �1 · �p = 1, T ⊗n
d �p ≥ 0. (14)

Here, �t = (−1, 1
2 , 0), and the matrix Td is given by

Td =

⎛
⎜⎜⎝

1 1 −1

−2 − 6
d−2 1 2

d−2

1 + 2(d2−d+1)
d(d−1)(d−2) 1 − d+1

d(d−1) 1 − 2d−3
d(d−1)(d−2)

⎞
⎟⎟⎠ .

Proof. The objective function takes the form

Tr�An Bn A′n B′n (FAn :A′n ⊗ 1Bn B′n ) = Tr�An A′n FAn :A′n

=
∑

yn∈{ , , }n

py1...yn Tr(ρ̃y1 ⊗ · · · ⊗ ρ̃yn )FAn :A′n

=
∑

yn∈{ , , }n

py1...yn

n∏
i=1

Tr ρ̃yi FAi :A′
i

=
∑

yn∈{ , , }n

py1...yn

n∏
i=1

tyi

= �t⊗n · �p,
where we defined ρ̃y = TrB B′ ρy and ty = Tr ρ̃y FA:A′ . The calculation of the coeffi-
cients ty , which we arrange in the vector �t := (t , t , t ) can be found in Lemma 16

in Appendix A.
We will now relax the constraints of the optimisation problem. As a first step we

remove the constraint that the number of ’s in a string yn is even. As a second step
we replace the separability constraint by the weaker constraint that the state is PPT. The
partial transposes of ρy with respect to the AB : A′B ′ cut, denoted by ρ�y , are computed
in Appendix A. Since these ρ�y commute with all g ⊗ g ⊗ g ⊗ g, it is natural to first
find the decomposition of the space ∧2(Cd) ⊗ ∧2(Cd) ⊂ (Cd)⊗4 into the spaces of
irreducible representations of U (d) when U (d) acts on ∧2(Cd)⊗ ∧2(Cd) via its action
g ⊗g ⊗g ⊗g on (Cd)⊗4. It turns out that the space has three components of multiplicity
1 each, given by projectors

� = |�〉〈�| for |�〉 = 1√(d
2

)
∑
i< j

|ψi j 〉|ψi j 〉,

Q = 2d

d − 2
(P ⊗ P )

(
(1 −�)AA′ ⊗�B B′

)
(P ⊗ P ),

P = P ⊗ P − Q −�,
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having dimensions 1, d2−1 and
(

d(d−1)
2

)2−d2, respectively; see Lemma 17 in Appendix

A. Here, � denotes the maximally entangled state. Using the symmetries of the states
and these projectors, it is not hard to compute the overlap of all ρ�y with each of the
above (Lemma 18 in Appendix. A). The result is

ρ� = 1(d
2

)� − 2(d + 1)

d(d − 2)
Q̃ +

(
1 +

2(d + 1)

d(d − 2)
− 1(d

2

)
)

P̃,

ρ� = 1(d
2

)� +
1

d
Q̃ +

(
1 − 1

d
− 1(d

2

)
)

P̃,

ρ� = − 1(d
2

)� +
2

d(d − 2)
Q̃ +

(
1 − 2

d(d − 2)
+

1(d
2

)
)

P̃.

Here, we defined Q̃ = Q/(d2 − 1) and P̃ = P/((d(d − 1)/2)2 − d2).

We now introduce the matrix

T̂d :=

⎛
⎜⎜⎝

2
d(d−1)

2
d(d−1) − 2

d(d−1)

− 2(d+1)
d(d−2)

1
d

2
d(d−2)

1 + 2(d+1)
d(d−2) − 2

d(d−1) 1 − 1
d − 2

d(d−1) 1 − 2
d(d−2) + 2

d(d−1)

⎞
⎟⎟⎠ , (15)

where the rows of the matrix are labelled by�, Q̃ and P̃, and the columns of the matrix
T̂d are labelled by , and , in that order. The PPT constraint on the state � then
turns into the following linear constraints on the probability vector �p :

T̂ ⊗n
d �p ≥ 0. (16)

Without loss of generality, pyn is permutation invariant.
A little later, we will take the limit d → ∞. Observe therefore that some of the

matrix entries of Td tend to zero as d → ∞ and the linear programme would become
trivial under this limit. For the linear programme, however, only the positivity condition
in Eq. (16) plays a role. This condition remains unchanged if we choose a new operator
basis

2

d(d − 1)
�,

1

d
Q̃, P̃,

which transforms T̂d into

Td =

⎛
⎜⎜⎝

1 1 −1

− 2(d+1)
d−2 1 2

d−2

1 + 2(d+1)
d(d−2) − 2

d(d−1) 1 − 1
d − 2

d(d−1) 1 − 2
d(d−2) + 2

d(d−1)

⎞
⎟⎟⎠ .

This concludes the proof of the lemma. ��
As a corollary to Lemma 9 we can already reproduce the result regarding α3:

Corollary 10 (Yura [26]). For all n, EF (α
⊗n
3 ) = n, hence EC (α3) = 1.
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Proof. As mentioned earlier, the case d = 3 is special because the irreducible represen-
tation is zero-dimensional, and hence doesn’t appear in the above linear programme:
pyn = 0 if any yi equals . But then the objective function of the linear programme
(14) is upper bounded by 2−n since that is the largest coefficient tyn , yn ∈ { , }n

and
∑

yn pyn = 1. Thus, by Lemmas 7 and 8, EF (α
⊗n
3 ) ≥ − log2 2−n = n, while the

opposite inequality is trivial. ��
For d ≥ 4 the irreducible representation is present, and for all yn with an even

number of it, the objective function of the linear programme (14) gets a contribution
potentially larger than 2−n . Motivated by the fact that (thanks to the LOCC monotonicity
of EF under twirling) EF (α

⊗n
d ) monotonically decreases with d, we aim to understand

this linear programme for fixed n but asymptotically large d. Note that in the limit
d → ∞, the matrix Td converges to

T∞ =
⎛
⎝

1 1 −1
−2 1 0

1 1 1

⎞
⎠ .

Thus we find that EF (α
⊗n
d ) for fixed n and arbitrary d is lower bounded by − log2 ζn ,

where

ζn := max �t⊗n · �p s.t. �p ≥ 0,

�1 · �p = 1,

T ⊗n∞ �p ≥ 0,

(17)

with the additional constraint that pyn is permutation invariant.
From the linear programme we now eliminate all constraints that involve the first row

of T∞, thereby only increasing the value of the linear programme. Mathematically, we
delete the first row of T∞ and now have(−2 1 0

1 1 1

)
.

We then see that we do not need to consider vectors yn which contain one or more.
Namely, in the expansion of the state� every single occurrence of ρ may be replaced

with 1
3ρ + 2

3ρ , turning a feasible point into a new feasible point, and not changing the

value of the objective function. But then, since the entries of the last column are never
used again in the constraints, we may delete it leaving a truncated matrix and a truncated
vector

T :=
(−2 1

1 1

)
, �t =

(
−1,

1

2

)
.

(Note that we may relax the normalization condition �1 · �p = 1 w.l.o.g. to ≤ 1.)

Corollary 11. For any d and n, EF (α
⊗n
d ) ≥ − log2 ζn, where

ζn = max �t ⊗n · �p = 2−n
∑

yn∈{ , }n

pyn (−2)|yn | s.t. �p ≥ 0,

�1 · �p ≤ 1,

−T ⊗n �p ≤ 0,

(18)
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where pyn only depends on the number |yn| of occurrences of . Note that in this
form the linear programme does not refer to d any more; it reflects the limit d → ∞
completely. ��

Now, all that is left to do is to find an upper bound on ζn , which we obtain by writing
down the dual linear programme [21] and guessing a dual feasible point.

Lemma 12. ζn ≤ ( 3
4 )

n, hence EF (α
⊗n
d ) ≥ n log2

4
3 .

Proof. The dual linear programme to (18) is given by

min z s.t. �q ≥ 0, z�1 − S⊗n �q ≥ �t ⊗n, (19)

where S = T � and � denotes matrix transposition. Its value equals ζn by linear pro-
gramming duality.

In words, a feasible z in the dual linear programme is an upper bound on all the
vector entries of �t ⊗n + S⊗n �q . (Caution: some of these may be negative, and so we are
not talking about the sup-norm of this vector.) By duality, any such z is going to be an
upper bound on ζn [21].

The entries of �q are labelled by strings wn ∈ {�, Q}n , and it is clear from the per-
mutation symmetry of the matrix S⊗n and the vector �t ⊗n that we may assume that qwn

only depends on the number k of Q’s in wn :

δk := q�n−k Qk for k = 0, . . . , n.

Then, also the constraints in the dual linear programme (20), which are labelled by
strings vn ∈ {0, 1}n , depend only on the number m of 0’s: for each string vn = 0m1n−m ,
m = 0, . . . , n, we get an inequality

z ≥ (−1)m 2m−n +
n∑

k=0

δk

min(k,m)∑
�=max(0,k+m−n)

(−2)�
(

m

�

)(
n − m

k − �

)
. (20)

Numerical solutions of the linear programme (20) suggest that in the dual only δ1 is
populated and the δ j with j ≈ n. Here we guess a dual feasible solution motivated by this.
The ansatz is only an approximation to the numerical findings; for some non-negative
β < 1 and γ ,

δk = γβn−k, for k < n,

δn = 0.

Clearly, all δ j are now nonnegative; inserting the above into the dual constraint (20)
yields, for all m, that

z ≥ (−2)m2−n +
n∑

k=0

γβn−k
min(k,m)∑

�=max(0,k+m−n)

(−2)�
(

m

�

)(
n − m

k − �

)
− γ (−2)m,

noticing that the coefficient of the variable δn in Eq. (20) is (−2)m . First we evaluate
the double sum; observe that it involves all pairs of k and � for which the binomial
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coefficients are nonzero. Hence, it is

∑
k,�

γβn−k(−2)�
(

m

�

)(
n − m

k − �

)
=
∑
k,�

γβn−(k−�)−�(−2)�
(

m

�

)(
n − m

k − �

)

= γβn
∑
k,�

(
1

β

)k−� (−2

β

)� (m

�

)(
n − m

k − �

)

= γβn
(

1 +
1

β

)n−m (
1 − 2

β

)m

= γ (β + 1)n−m(β − 2)m .

This simplifies the constraints to

∀m z ≥ (−2)m
(
2−n − γ

)
+ γ (β + 1)n−m(β − 2)m,

so z is the maximum of the right-hand side over all m = 0, . . . , n, and we want to choose
β and γ in an optimal way to minimize this maximum. First of all, the first term can
grow very large due to the occurrence of 2m – so the only reasonable choice is γ = 2−n .
This reduces the constraints to

∀m z ≥ 2−n(1 + β)n(−1)m
(

2 − β

1 + β

)m

,

so choosing β = 1/2, and neglecting the signs, makes the right-hand side (3/4)n .
In conclusion, we obtain a dual feasible solution with this value, yielding an upper

bound ζn ≤ (3/4)n , which gives this as an upper bound on the maximum purity of a
reduced state in n copies of the antisymmetric subspace. ��

Theorem 2 is now a direct consequence of Lemma 12.

5. Regularised Relative Entropy of Entanglement

Here we show that the constant lower bound on the entanglement cost of the antisymmet-
ric state that we have calculated above implies a constant lower bound on the regularised
relative entropy of entanglement with respect to separable states [Eq. (9)],

E∞
R,sep(αd) ≥ log2

√
4

3
� 0.2075 , (21)

as stated in Corollary 3.

Proof of Corollary 3. We want to prove the lower bound (21) of Corollary 3. Since αd
is invariant under g ⊗ g (for unitary g), the minimisation in the relative entropy can be
taken over states obeying the same symmetry condition, i.e.

ER,sep(α
⊗n
d ) = min D(α⊗n

d ||σ),
where σ is separable and σ = ∑

yn∈{0,1}n pynρy1 ⊗ · · · ⊗ ρyn for ρ0 = αd and ρ1 = σd .
The relative entropy evaluates in this case to

Tr α⊗n
d log2 α

⊗n
d − Tr α⊗n

d log2 p00···0α⊗n
d = − log2 p00···0.
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In summary, ER,sep(α
⊗n
d ) = − log2 max

σ
Tr σ P⊗n , where the maximum is over states σ

separable across An : Bn . Furthermore,

max
σ separable

across An :Bn

Tr σ P⊗n = max|α〉∈An , |β〉∈Bn
〈α|〈β|P⊗n |α〉|β〉

= max
|α〉∈An , |β〉∈Bn , |ψ〉∈ ⊗n

∣∣〈α|〈β|ψ〉∣∣2

= max
|ψ〉∈ ⊗n

∥∥TrBn |ψ〉〈ψ |∥∥∞,

where the first equality is by convexity, the second by choosing |ψ〉 as the projection
of |α〉|β〉 into ⊗n , and the third by the Schmidt decomposition. The expression in the
last line is upper bounded by the square root of the maximum purity, which we showed

above to be smaller or equal to (3/4)n . Hence, ER,sep(α
⊗n
d ) ≥ n log2

√
4
3 , and we get

the constant lower bound of log2

√
4
3 ≈ 0.2075 for E∞

R,sep(αd). ��

In contrast, the calculation of [19] gave E∞
R,PPT(αd) = log2

d+2
d . This shows, in par-

ticular, that E∞
R,PPT differs from E∞

R,sep on Werner states. We conclude that squashed
entanglement can be much smaller than the regularised relative entropy of entanglement
with respect to separable states; the opposite separation was known thanks to the “flower
states” of [27].

We close this section by showing the asymptotic continuity of the regularised relative
entropy of entanglement.

Proposition 13 ([14]). The regularised relative entropy of entanglement E∞
R,sep is

asymptotically continuous, i.e. there is a function δ(ε) with δ(ε) → 0 for ε → 0
such that for all ||ρ − σ ||1 ≤ ε,

|E∞
R,sep(ρ)− E∞

R,sep(σ )| ≤ δ(ε) log d,

where d is the dimension of the system supporting ρ and σ . In fact the proof shows that
δ(ε) can be taken as 2(ε + h(ε)), where h denotes the binary entropy function. The same
statement is true for the regularised relative entropy of entanglement with respect to
PPT states, E∞

R,PPT.

Proof. Let ‖ρ−σ‖1 = ε > 0, where ρ and σ are d-dimensional states. According to Al-
icki and Fannes [24], there are states γ , ρ̃ and σ̃ with γ = (1−ε)ρ + ερ̃ = (1−ε)σ + εσ̃ .
If we succeed to prove asymptotic continuity on mixtures, i.e.

|E∞
R,sep(ρ)− E∞

R,sep(γ )| ≤ δ(ε)

2
log d, (22)

then continuity for ρ and σ follows by use of the triangle inequality:

|E∞
R,sep(ρ)− E∞

R,sep(σ )| ≤ |E∞
R,sep(ρ)− E∞

R,sep(γ )| + |E∞
R,sep(γ )− E∞

R,sep(σ )|
≤ δ(ε) log d.
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The main step in the proof of the estimate (22) is the following inequality for an ensemble
{pi , τi },

∑
i

pi ER,sep(τi )− ER,sep

(∑
i

piτi

)
≤ H

(∑
i

piτi

)
−
∑

i

pi H(τi )

≤ H

(∑
i

pi |i〉〈i |
)
, (23)

where |i〉 denotes an orthonormal basis. Inequality (23) has first been proven for the
relative entropy with respect to the set of separable states [28] (see also [29]) and then
been extended to hold for any convex set that includes the maximally mixed state [30].
Here, it implies the following estimate:

ER,sep(γ
⊗N ) ≥

∑
k

εk(1 − ε)N−k
(

N

k

)
ER,sep(ρ

⊗(N−k) ⊗ ρ̃⊗k)− Nh(ε),

where h(ε) is the Shannon entropy of the distribution (ε, 1 − ε). We will now replace
all ρ̃’s on the RHS by ρ’s. This is done in two steps: i) remove the states of the form ρ̃

on the RHS, since the partial trace operations is an LOCC operation the RHS can only
decrease, ii) append the states ρ and apply the inequality

ER,sep(ρ
⊗N ) ≤ ER,sep(ρ

⊗(N−k)) + k ER,sep(ρ),

which holds by subadditivity of ER,sep. This gives

ER,sep(γ
⊗N ) ≥

∑
k

εk(1 − ε)N−k
(

N

k

)
ER,sep(ρ

⊗(N−k) ⊗ ρ̃⊗k)− Nh(ε)

i)≥
∑

k

εk(1 − ε)N−k
(

N

k

)
ER,sep(ρ

⊗(N−k))− Nh(ε)

i i)≥
∑

k

εk(1 − ε)N−k
(

N

k

)
(ER,sep(ρ

⊗N )− k ER,sep(ρ))− Nh(ε)

= ER,sep(ρ
⊗N )−

∑
k

kεk(1 − ε)N−k
(

N

k

)
ER,sep(ρ)− Nh(ε)

= ER,sep(ρ
⊗N )− NεER,sep(ρ)− Nh(ε)

≥ ER,sep(ρ
⊗N )− N (ε log d + h(ε))

≥ ER,sep(ρ
⊗N )− N (ε + h(ε)) log d.

The last equality sign is the evaluation of the mean value of the binomial distribution.
Since the above calculation holds for all N , this shows

E∞
R,sep(γ ) ≥ E∞

R,sep(ρ)− δ(ε)

2
log d

for δ(ε) := 2(ε + h(ε)). Conversely, the convexity of E∞
R,sep [31] implies

E∞
R,sep(γ ) ≤ (1 − ε)E∞

R,sep(ρ) + εE∞
R,sep(ρ̃) ≤ E∞

R,sep(ρ) + ε log d.

This concludes the proof of the estimate (22) and the proposition. The exact same
reasoning applies to E∞

R,PPT. ��
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A vital ingredient in the proof was inequality (23), which bounds the strength of
the convexity of the relative entropy. Prior to this work, the same inequality has been
used in [32] to prove that the relative entropy of entanglement cannot be locked. As
both entanglement of purification and formation are lockable, a simple translation of
inequality (23) to these measures is not possible. Other ways to verify that entangle-
ment cost under LOCC and LOq (local operations with a sublinear amount of quantum
communication) are asymptotically continuous will have to be found.

6. Conclusion

We have shown a way of – in principle – calculating the Rényi-2 entropic version of
the entanglement of cost of the d × d-antisymmetric state via convex optimisation and
more specifically, semidefinite programming. Using a linear programming relaxation
we showed a constant lower bound, independent of d. Tighter relaxations are possible,
in principle capable of obtaining the exact value of the maximum purity of the reduced
state over all |ψ〉 ∈ ⊗n : in addition to the PPT condition of the state between AB and
A′B ′, we should impose that the state is shareable (or extendible) to more parties [33–
37]. At the same time, we could show that the squashed entanglement of these states is
asymptotically small, implying that also their distillable key is asymptotically small.

We believe that our result is the strongest indication so far that “quantum bound
key” exists: states with positive key cost to create them (a notion not yet defined in the
literature, and a little tricky to formalize cleanly), while their distillable key is zero. At
least we show that the states have asymptotically vanishing distillable key (it cannot be
zero, as a lower bound of 1

d on ED is known); on the other hand, their entanglement cost
does not vanish.

The technique to obtain the lower bound on EC (αd) is yet another demonstration of
the power of symmetry in entanglement theory; but to our knowledge, with this work
we provide first application of plethysms in this field. Unfortunately, we could not prove
the conjectured EC (αd) = 1 as our PPT relaxation cannot give anything better than
≈ 0.45 as computer solutions of the linear programme up to n = 12 show (see App. B).
It remains to be investigated whether further constraints, for instance of shareability, can
improve the lower bound to 1, or whether EC (αd) < 1 holds. The latter would provide
the first explicit counterexample to additivity.

In comparison to the large gap observed between the entanglement of formation and
distillable key [38], our work exhibits three advantages. Firstly, our example is construc-
tive, secondly, we show that the distillable key can be made arbitrarily small and thirdly,
we consider the entanglement cost, which is the right measure to compare with the distil-
lable key, and which can be strictly smaller than the entanglement of formation [16]. The
distinction between entanglement cost and entanglement of formation is crucial here, as
it was for the discovery of bound entanglement [39], since the asymptotic measure of
distillable key has to be compared to an asymptotic measure of preparing the state. A
further result in [38] shows that the one-way distillable key is generically small, even if
entanglement of formation is large. In our work, in contrast, the one-way distillable key
of the antisymmetric state αd vanishes for all d ≥ 3.

Our results can readily be generalised to the multiparty entanglement of the state pro-
portional to the antisymmetric projector onto several parties. The multiparty squashed
entanglement and distillable key [40] exhibit a behaviour similar to the two-party case.
Due to the difficulty of classifying multiparty entanglement, it is not clear which mul-
tiparty generalisation of entanglement cost to use. Any such generalisation, however,
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should be larger than entanglement cost of the two-party state, to which our lower bound
applies.
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Appendix A. Representation Theory

Here we review certain facts of the representation theory of U (d), the unitary group
in dimension d, particularly related to plethysms. For the basic concepts we refer the
reader to textbooks such as [20]. The concatenation of two representations is a called a
plethysm. In our case, we consider a representation Vμ of U (d) and concatenate it with
a representation Vλ of U (dim Vμ) to yield the U (d)-representation

Vλ(Vμ) : g �→ Vλ(Vμ(g)).

Lemma 14. Let d ≥ 3. The following two plethysms of U (d) decompose into irreducible
representations of U (d) as follows:

Sym2(∧2) ∼= ⊕ ,

∧2(∧2) ∼= .

The dimensions are given by

dim Sym2(∧2) = d(d − 1)(d2 − d + 2)

8
,

dim = d(d − 1)(d − 2)(d − 3)

24
,

dim = (d + 1)d2(d − 1)

12
,

dim ∧2(∧2) = dim = (d + 1)d(d − 1)(d − 2)

8
.

Note that dim = 0 for d = 3.

Proof. We will compute the decomposition of the representations by a decomposition
of the corresponding characters. The character of an irreducible representation of U (�)
with highest weight λ is given by

sλ(z1, . . . , z�) =
∑

T

zT (1) · · · zT (�), (A1)

where the sum extends over all semi-standard Young tableaux of shape λ with numbers
1, . . . , �, that is, over all fillings of the boxes of the Young diagram λ with the numbers
1, . . . , � such that they strictly decrease downwards and decrease weakly to the right.
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The characters of Sym2 and ∧2 as representations of U (�) are

sSym2(z1, . . . , z�) =
∑
i≤ j

zi z j ,

s∧2(z1, . . . , z�) =
∑
i< j

zi z j .

Reducing the U (�) representation, where � = d(d−1)
2 to a representation of U (d) via its

action on ∧2 corresponds to making the replacement zi �→ xk xl , where 1 ≤ k < l ≤ d.
Hence

sSym2(∧2)(x1, . . . , xd) = sSym2(x1x2, . . . , xd−1xd) =
∑

k<l,m<n,(kl)≤(mn)

xk xl xm xn .

The summation can be rewritten as k < l,m < n, k < m, l ≤ n or k < l,m < n, k <
m, l > n or k < l,m < n, k = m, l ≤ n which can be condensed to k < l,m < n, k ≤
m, l ≤ n or k < m < n < l, and which results in the decomposition

sSym2(∧2)(x1, . . . , xd) = s (x1, . . . , xd) + s (x1, . . . , xd)

by use of Eq. (A1). The second character takes the form

s∧2(∧2)(x1, . . . , xd) = s∧2(x1x2, . . . , xd−1xd) =
∑

k<l,m<n,(kl)<(mn)

xk xl xm xn .

The summation can be rewritten as k < l,m < n, k < m or k < l,m < n, k = m, l < n
which is equivalent to k < l, k < m < n or k = m, k < l < n. Relabeling in the sec-
ond clause m ↔ l, we can combine both clauses to k ≤ l, k < m < n. Hence, we
obtain s∧2(∧2)(x1, . . . , xd) = ∑

k≤l,k<m<n xk xl xm xn = s (x1, . . . , xd), where the lat-
ter equation follows from Eq. (A1). The lemma follows since the decomposition of the
characters is unique and in one-to-one relation with the decomposition of the representa-
tions themselves. The dimensions are computed with help of Weyl’s dimension formula,
Eq. (10). ��
Lemma 15. Let d ≥ 3. The projectors onto the subspaces , and embedded into
Sym2(∧2) and ∧2(∧2), both embedded into AB A′ B ′ as in Lemma 14 are given by

P = 1

24

∑
π∈S4

sign (π)π, (A2)

P = 1

48
(e − (12)) (e − (34)) (e + (13)) (e + (24)) (e − (12)) (e − (34)) , (A3)

P = 1

4
(e − (12)) (e − (34))− P − P , (A4)

where the order of the systems is AB A′ B ′.



Entanglement of the Antisymmetric State 417

Proof. All three representations are subrepresentations of g �→ g⊗4 which decomposes,
according to Schur-Weyl duality, into irreducible representations in the following way
(for d = 3, does not appear):

⊕ 3 ⊕ 2 ⊕ 3 ⊕ .

The isotypical subspaces can be constructed with help of Young projectors which are
proportional to the formula (for λ being one of the five irreducible representations)

Qλ =
∑

T

QT ,

where the sum goes overall all standard tableaux of shape λ with numbers 1, . . . , 4, and
where

QT =
⎛
⎝ ∑
π∈C(T )

sign (π)π

⎞
⎠
⎛
⎝ ∑
π∈R(T )

π

⎞
⎠

is proportional to the projector onto one copy of an irreducible representation with high-
est weight λ. From this we can readily verify the above formula for . For we make

the guess T =
1 3
2 4 and are lucky: since the corresponding space is antisymmetric

when we exchange 1 and 2 and also when we exchange 3 and 4 it is contained in (∧2)⊗2.
The projector onto follows from observing that the projector onto (∧2)⊗2 is given by
1
4 (e − (12)) (e − (34)) and that all three, , and , have to add to this space. ��

We define the corresponding quantum states by

ρ = 24

d(d − 1)(d − 2)(d − 3)
P , (A5)

ρ = 12

(d + 1)d2(d − 1)
P , (A6)

ρ = 8

(d + 1)d(d − 1)(d − 2)
P . (A7)

Lemma 16.

�t := (t , t , t ) = (−1,
1

2
, 0),

where ty = Tr ρ̃y FA:A′ and ρ̃y = TrB B′ ρy . Equivalently, we can write

ρ̃ = α, (A8)

ρ̃ = 1

4
α +

3

4
σ, (A9)

ρ̃ = 1

2
α +

1

2
σ, (A10)

where σ and α are proportional to the projectors onto the symmetric and antisymmetric
subspace, respectively.
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Proof. Since all three states commute with the action of g ⊗ g (g ∈ U (d)) they are
Werner states and thus of the form pα + (1− p)σ for 0 ≤ p ≤ 1. Note that the pi satisfy
the equation 1 − 2pi = Tr ρ̃i FAA′ = Tr ρi (FAA′ ⊗ 1B B′).

We will now verify the claim state by state: The state ρ̃ is the partial trace over a

totally antisymmetric state and thus totally antisymmetric itself, hence p = 1 and thus

t = −1.

The state ρ is the normalisation of the projector

P = 1

24

(
2e − 2(12)− 2(34) + (13) + (14) + (23) + (24) + 2(12)(34) + 2(13)(24)

+ 2(14)(23)− (123)− (132)− (124)− (142)− (134)− (143)− (234)−(243)

+ (1234) + (1243) + (1342) + (1432)− 2(1324)− 2(1423)
)
.

Multiplying it from the right with the flip operator results in

P (FAA′ ⊗ 1B B′) = P (13)

= 1

24

(
2(13)− 2(132)− 2(142) + e + (134) + (123) + (13)(24) + 2(1432) + 2(24)

+ 2(1234)− (23)− (12)− (1324)− (1342)− (14)− (34)− (1423)

− (1243) + (14)(23) + (243) + (142) + (12)(34)− 2(124)− 2(234)
)
.

We now take the trace of this equation and find, since the trace of a cycle equals d,
t = Tr ρ FAA′ ⊗ 1B B′ = 1

2 or p = 1
4 .

Finally, t is proportional to

Tr P (FAA′ ⊗ 1B B′) =
(

d(d − 1)

2

)2

Tr(αAB ⊗ αA′ B′)(FAA′ ⊗ 1B B′)

− Tr P FAA′ ⊗ 1B B′ − Tr P FAA′ ⊗ 1B B′

=
(

d(d − 1)

2

)2 d

d2 − (−1)
d(d − 1)(d − 2)(d − 3)

24

− 1

2

(d + 1)d2(d − 1)

12
= 0.

This implies p = 1
2 and concludes the proof. ��

Next we derive some formulas regarding the partial transposes of the states ρy ,
y ∈ { , , } with respect to the AB : A′ B ′ cut. Due to the partial transpose we have
to deal with decomposing tensor products that involve dual representations. In order
to be able to continue to use the Young frame notation (rather than the highest weight
notation) in this situation, we use SU (d) rather than U (d). The action of SU (d) on
∧d(Cd) is namely trivial and allows us therefore to add full columns and convert nega-
tive weights into positive ones. For the spaces, this difference is immaterial and therefore
of no concern to us.
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Lemma 17. The decomposition of the representation ⊗ of SU (d) is given by

⊗ ∼= d

{
⊕ d-1

{
⊕ d-2

{
,

where denotes the representation dual to . These irreducible representations have

dimensions 1, d2 − 1 and
(

d(d−1)
2

)2 − d2, respectively, and their projections are

� = 2d

d − 1
(P ⊗ P )

(
�AA′ ⊗�B B′

)
(P ⊗ P )

= |�〉〈�|, for |�〉 = 1√(d
2

)
∑
i< j

|ψi j 〉|ψi j 〉,

Q = 2d

d − 2
(P ⊗ P )

(
(1 −�)AA′ ⊗�B B′

)
(P ⊗ P ),

P = P ⊗ P − Q −�.

Proof. The abstract decomposition follows from ∼= d-2

{
and from the Littlewood-

Richardson rule that governs the decomposition of tensor products of irreducible repre-
sentations of SU (d) (see e.g. [41]). The dimensions follow from Weyl’s formula.

For the explicit form of the projectors, we only need to guess the invariant one-dimen-
sional subspace, and one other invariant operator, which are our � and Q – since they
are orthogonal to each other and have the correct trace, they must be projectors. The
third one is then their complement with respect to P ⊗ P . ��
Lemma 18. For � and Q as in Lemma 17,

Tr ρ�� = 2

d(d − 1)
, Tr ρ� � = 2

d(d − 1)
, Tr ρ� � = − 2

d(d − 1)
,

and

Tr ρ�Q = − 2(d + 1)

d(d − 2)
, Tr ρ� Q = 1

d
, Tr ρ� Q = − 2

d(d − 2)
.

(Then the expectations of P are determined by Tr ρ�y P = 1 − Tr ρ�y � − Tr ρ�y Q.)

Proof. For the expectations of �, note that

Tr ρ�y � = 2d

d − 1
Tr ρ�y (�AA′ ⊗�B B′)

= 2d

d − 1

1

d2 Tr ρy(FAA′ ⊗ FB B′)

since �� = 1
d F . From the symmetries of the irreducible representations we know that

Tr ρ (FAA′ ⊗ FB B′) = Tr ρ (FAA′ ⊗ FB B′) = 1 and Tr ρ (FAA′ ⊗ FB B′) = −1.
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For Q, we proceed similarly:

Tr ρ�y Q = 2d

d − 2
Tr ρ�y

(
(1 −�)AA′ ⊗�B B′

)

= 2d

d − 2
Tr ρy

((
1 − 1

d
FAA′

)
⊗ 1

d
FB B′

)

= 2

d − 2
Tr ρ̃y FB B′ − 2

d(d − 2)
Tr ρy(FAA′ ⊗ FB B′),

where we have used the partial traces ρ̃y = TrAA′ ρy from Lemma 16. The same lemma
and the symmetries of the ρy already used above yield the claimed values. ��

Appendix B. The Linear Programme

Here we record some observations on the linear programming relaxation studied in
Sect. 4.

The cases of n = 1, 2, 4, . . . , 12. For n = 1 the linear programme is nearly trivial, and
indeed it can be seen almost immediately that the optimal solution is p = 0, p = 1,

giving a value of 1/2 for the objective function.

For n = 2, the objective function is given by

�t ⊗2 =
[

1, −1

2
, −1

2
,

1

4

]
,

while the constraint matrix is

T ⊗2 =
⎡
⎢⎣

1 1 1 1
−2 1 −2 1
−2 −2 1 1

4 −2 −2 1

⎤
⎥⎦ .

From this it becomes clear by inspection of the LP that the optimal vector has the form
�p = [x, 0, 0, 1 − x]�, leaving as the only nontrivial constraint, apart from 0 ≤ x ≤ 1,
that −2x + (1 − x) ≥ 0. Consequently, the optimal solution is x = 1/3, yielding a
maximum value of 1/2 of the objective function. I.e., our method cannot give anything
better than EC (αd) ≥ 0.5 For n = 4, one can confirm (using a computer) that the
optimal value is 1/4; for n = 6 it is 1/7, and for n = 8, n = 10 and n = 12, one
finds optimal values 5

66 ≈ 0.075757, 12
283 ≈ 0.0424023 and 26

1119 ≈ 0.023235. The latter
shows that the best lower bound obtainable with the present method cannot be better
than EC (αd) ≥ 1

12 log2
1119

26 ≈ 0.452.
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