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Abstract

We model the quantum dynamics of two, three, or four quantum dots (QDs) in proximity to a

plasmonic system such as a metal nanoparticle or an array of metal nanoparticles. For all systems,

an initial state with only one QD in its excited state evolves spontaneously into a state with

entanglement between all pairs of QDs. The entanglement arises from the couplings of the QDs to

the dissipiative, plasmonic environment. Moreover, we predict that similarly entangled states can

be generated in systems with appropriate geometries, starting in their ground states, by exciting

the entire system with a single, ultrafast laser pulse. By using a series of repeated pulses, the

system can also be prepared in an entangled state at an arbitrary time.

PACS numbers: 03.67.Bg,42.50.Dv,42.50.Md,73.20.Mf,78.67.Bf
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I. INTRODUCTION

Plasmonic nanostructures provide the potential for extremely strong light-matter inter-

actions because of their ability to concentrate optical fields to nanometer-scale dimensions.1

Such strong interactions could enable the manipulation of quantum states in materials that

interact with the confined fields.2–4 However, plasmon resonances are necessarily associated

with strong dissipation, raising the question of whether quantum effects are compatible with

such rapid loss of energy and coherence.

On the other hand, it has been realized that controlled interactions between quantum ob-

jects and a dissipative environment can lead to the production of stable entangled states.5–7

Several theoretical studies applied this concept of dissipation-induced entanglement to prob-

lems of quantum dots (QDs) interacting with plasmonic systems.8–13 These studies show that

effective interactions between pairs of two-level QDs, mediated by dissipative plasmon res-

onances in metal nanoparticles or waveguides,14 can produce entanglement between QDs,

analogous to previous proposals to entangle interacting atoms through common coupling to

a lossy cavity.15 The QDs’ entanglement arises spontaneously due to common coupling to the

plasmonic nanostructures, without requiring postselective measurements or “engineering” of

the dissipative environment. Since entanglement is a uniquely quantum property that is at

the heart of quantum information and computation, this illustrates in principle the potential

for true “quantum plasmonics.”16 Such QD-plasmonic systems are also of relevance because

they represent nanoscale structures that do not require atom traps or cryogenic temperatures

to operate and can be integrated with other nanophotonic components.

Despite their potential for displaying quantum plasmonics effects, previous predictions of

plasmon-induced entanglement in QDs have been limited to systems of only two QDs, and

one of the QDs was required to be initially prepared in its excited state. For systems of two

QDs, this can, in principle, be done using single-photon pulses,17 but scaling these schemes

up to larger numbers of QDs would require the ability to individually access and control the

state of each QD.

In this paper, we propose a system where control over the interaction between objects

to be entangled (QDs) and the dissipative environment (plasmonic system) is determined

by the nanoscale geometry of the system, and the only external input required is a single,

ultrafast laser pulse. Moreover, we show that the method can be scaled to multiple QDs,
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and thus has the potential to serve as a key resource for quantum information processing at

the nanoscale.18,19

II. THEORETICAL METHODS

Our treatment, detailed in the Supplemental Material,20 generalizes our work on one QD

interacting with a plasmonic system.21 The underlying system basis states are |qND
, ..., q1〉 |s〉,

where qi ∈ { 0, 1 } indexes the exciton in QD i; i ranges from 1 to ND (the number of QDs)

and s indexes plasmon energy levels. Lowering and raising operator pairs for the QDs and

plasmon are (σ̂i, σ̂
†
i ), and (b̂, b̂†), respectively. The dipole operators are µ̂i = di(σ̂i + σ̂†

i ), and

µ̂s = ds(b̂+ b̂†), where di, and ds denote transition dipole moments of the QDs and plasmon,

respectively. The density matrix, ρ̂(t), satisfies:

dρ̂

dt
= − i

~
[Ĥ, ρ̂] + L(ρ̂), (1)

in which Ĥ is the Hamiltonian for the driven coupled system and L(ρ̂) is a Lindblad super-

operator providing dephasing and dissipation. More explicitly,

Ĥ =
∑
i

Ĥi + Ĥs + Ĥd +
∑
i

Ĥs,i, (2)

where Ĥi = ~ωiσ̂
†
i σ̂i are uncoupled exciton Hamiltonian operators, Ĥs = ~ωsb̂

†b̂ is the

uncoupled plasmon Hamiltonian, and Ĥd = −E(t)µ̂ is coupling to an applied electric field,

E(t). Each QD couples with the plasmon via Ĥs,i = −~gi(σ̂†
i b̂+ σ̂ib̂

†). We assume that the

distance between QDs is large compared to the separation between QDs and neighboring

metal nanoparticles, so that direct through-space coupling among QDs can be neglected. We

neglect retardation, which means that our treatment is limited to systems with dimensions

small compared to the optical wavelengths. The Supplemental Material/citeSM discusses

the level structure of Ĥ − Ĥd, which provides additional insight into the nature of the

problem.

We employ an extension of L(ρ̂) that was previously used,21 parameterized by QD pop-

ulation (or spontaneous emission) and environmental dephasing decay constants, γpi and

γdi, and plasmon decay constant γs. We consider time scales on the order of the inverse

of these decay rates, so that there are no correlated fluctuations in the QD states, and the

use of the Lindblad formalism is justified. Although environmental dephasing is explicitly
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included for the QDs, it is not necessary to do so for the plasmon because the dephasing

that arises from its decay, and that is encoded in the corresponding term in L(ρ̂), is much

larger in magnitude. As in Ref. 21, the rotating wave approximation is applied. We use

an efficient solver, based on sparse matrix-matrix multiplication algorithms along with both

Runge-Kutta and exponential time integration schemes.22,23

The base parameter choices for the model outlined above are similar to those originally

used in our single plasmonic-QD system study21 and correspond to a gold nanoparticle

system interacting with QDs in a polymer matrix. Specifically, for all i, ~ωi = ~ωs = 2.05

eV; µi = 13 D, µs = 4000 D; ~γpi = 190 neV, ~γdi = 2 meV, ~γs = 0.15 eV. We assume the

system is embedded in a dielectric medium of εmed = 2.25, typical of a polymer.

Electrodynamic simulations give a realistic estimate for the plasmon-QD coupling factor

of ~gi ≈ 10 meV for a system of two ellipsoidal gold nanoparticles, each of length 30 nm

and width 20 nm, and with a 6 nm gap between them and a QD centered in the gap.21

Larger coupling factors could be obtained for silver nanoparticles as compared to gold,24 for

particles with larger aspect ratios or different shapes, or for smaller gaps. While such systems

will exhibit different resonance frequency, linewidth, and dipole moments of the plasmon

resonances, we keep those and all other parameters constant in the present calculations in

order to isolate the effect of changing only the coupling constants. Calculations have been

performed for coupling constants ~gi from 5 meV to 45 meV.

III. RESULTS

A. Entanglement in the dark

We begin by exploring a situation similar in spirit to that reported in Refs.8,10: one of

the quantum dots (labeled “QD1”) is initially in its excited state, all others are initially in

their ground states, and there is no applied electromagnetic field. Unlike the previous re-

sults, however, we also consider systems with more than two QDs coupled to the plasmonic

system. We quantify the degree of entanglement as a function of time using Wootters’

concurrence.20,25 Results are presented in Figs. 1(b)− (d). For the two-QD case, as pre-

viously reported,8–10 the concurrence reaches a value of 0.45 as the system evolves. The

emergence of entanglement can be understood by considering the symmetric and antisym-

4



metric QD states,

|S〉 =
1√
2

(|q2 = 1, q1 = 0〉+ |q2 = 0, q1 = 1〉) (3)

and

|A〉 =
1√
2

(|q2 = 1, q1 = 0〉 − |q2 = 0, q1 = 1〉) , (4)

and their associated expectation values, or populations, PS(t) and PA(t), also displayed as

a function of time in Fig. 1(b). The initial state, with only QD1 excited, corresponds to PS

= PA = 0.5. The symmetric state, analogous to a bright singlet state, decays more rapidly

than the antisymmetric state,9 analogous to a dark triplet state. After a certain time, the

population of the antisymmetric state is much larger than the population of the symmetric

state, and the entanglement reaches a maximum. The results shown in Fig. 1 correspond to

~gi = 30 meV. However, we find that entanglement, with a maximum concurrence of 0.2, can

occur even for ~gi = 10 meV.20 In practice the QDs may not have exactly the same energy,

which could diminish the entanglement effects. However, the Supplemental Material20 also

shows that, for QDs with transition energies varying within the 2 meV dephasing width, the

entanglement effects remain.

In the cases of three and four QDs, bipartite concurrence can occur between QDs that

are not initially excited, i.e., the concurrence between QD2 and QD3, denoted 2:3, in the

three-QD case (Fig. 1 (c)) and the 4:3, 4:2, 3:2 concurrences of the four-QD case (Fig. 1

(d)). Both the three-QD and four-QD cases show degeneracies in the bipartite concurrence,

as the system is completely symmetric except for the one initially excited QD. All bipartite

concurrences that include the initially excited QD (QD1) have a much larger peak than do

the bipartite concurrences that exclude the initially excited QD.

B. Entanglement with optical pulses

So far, we have imagined that exactly one of the QDs could somehow be initially prepared

in its excited state, and allowed the system to evolve from that initial state in order to

generate entanglement. A more experimentally relevant situation would involve the entire

plasmon-QD system starting in its ground state and being exposed to a short laser pulse.

To simulate this situation, we take E(t) = G(t)E0 cos(ω0t). The carrier frequency, ω0, is

taken to be on resonance with the QD transitions and the plasmon resonance: ~ω0 = 2.05
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FIG. 1: (a) Diagram of a plasmonic-two-QD system composed of three metal nanoparticles (the

plasmonic system, labeled ‘SP’) with QDs (labeled ‘QD1’ and ‘QD2’) in the interparticle gaps.

Bipartite concurrence of two (b), three (c), and four (d) QD systems where one of the QDs (QD1)

is initially excited, with ~gi = 30 meV in all cases. i:j refers to the concurrence between QDi and

QDj. Part (b) also shows the population of the symmetric state |S〉, PS , and of the antisymmetric

state |A〉, PA.

eV. The pulse envelope function, G(t) is taken to be a Gaussian function with full-width

at half-maximum of 20 fs, and E0 is adjusted to achieve the desired fluence. Figure 2(a)

displays the maximum concurrence that results in this case, as a function of pulse fluence

(i.e., time integral of
√
εmedcε0E

2(t)) and plasmon-QD coupling constant for one of the QDs

(g1 = g2 + ∆g) relative to the other (~g1 = 30 meV). Significant parameter regions exist

where the concurrence is comparable to that obtained in the dark case of Fig. 1. We should

note that laser fluences up to 1000 nJ/cm2 are both experimentally accessible and reasonable

in the sense that they should not lead to sample degradation.

High concurrence occurs only when there is an asymmetry in the couplings of the QDs to

the plasmonic system. This asymmetry could be achieved in practice by fabricating a system
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FIG. 2: Maximum concurrence when a plasmon-two-QD system initially in its ground state is

exposed to a 20-fs laser pulse. (a) Concurrence as a function of laser-pulse fluence and plasmon-

QD coupling coefficient for one of the QDs (g1 = g2 + ∆g) relative to the other (~g2 = 30 meV).

(b) Concurrence as a function of time, for coupling coefficients ~g1 = 15 meV (∆g = −15 meV)

and ~g2 = 30 meV, and laser-pulse fluence 81 nJ/cm2, that produce the largest concurrence. The

populations of QD1 and QD2 are also plotted.

where the two QDs are at different distances from the metal nanoparticles. The asymmetry

can allow one QD to be significantly more excited than the other QD by the end of the

laser pulse. As a result the laser pulse then creates a QD state similar to the |q2 = 0, q1 = 1〉

state that was the starting point of the dark case and that, as we have seen, led to a rise in

concurrence. The largest concurrence for the pulsed two-QD system, ≈ 0.35, is obtained for

~g1 = 15 meV and ~g2 = 30 meV. The dynamics of the concurrence and QD populations

for this case are shown in Fig. 2(b). One might expect that this combination of coupling
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coefficients would lead to larger initial population for QD2, since it is more strongly coupled

to the plasmonic system. However, the population of QD2 spikes and decays rapidly as the

incident laser pulse passes through the system, while the population of QD1 rises and decays

more slowly. The result is that there is eventually larger population for QD1 than QD2.

This somewhat counterintuitive result, which appears to be quite general, is a consequence

of the Purcell effect:21 while the QD with the larger coupling coefficient experiences a larger

local field, leading to a fast initial rise in its excited-state population, its emission rate is

also increased (to γpi + 4g2i /γs ≈ 4g2i /γs), leading to rapid depopulation. The QD with the

smaller coupling coefficient undergoes a delayed but more sustained partial Rabi oscillation,

leading to its larger initial population.

An extensive optimization such as the one we carried out for the plasmon-two-QD system

is computationally challenging for larger systems. We therefore selectively examine portions

of the parameter space in the three-QD case. Figure 3 depicts promising results. They are

similar in spirit to the optimal two-QD result, with only one QD having a coupling different

from that of the other two: ~g1 = 30 meV, and ~g2 = ~g3 = 35 meV. Fig. 3 depicts the time

evolution of the populations of the three QDs and of the bipartite concurrences. Having one

QD less strongly coupled to the plasmonic system than the others allows the populations to

grow and decay at different rates, so that an initial state is created with larger population

in the excited state of QD1 than of QD2 or QD3. Oscillations are seen in the population of

QD1 over the duration of the laser pulse, and rapid decay of the populations of QD2 and

QD3 are seen due to their larger Purcell factors. Significant but smaller concurrences are

found in other pulsed two-QD and three-QD systems with much smaller coupling constants,

gi, and somewhat larger fluences.20 Initial studies of analagous pulsed four-QD systems also

indicate that such systems can be driven into entangled states, although to a lesser degree, for

comparable parameters, than the two-QD and three-QD cases. In general, a more thorough

investigation of the parameter space, varying other parameters such as the dephasing and

decay rates, could lead to larger concurrences.

In all cases, large concurrence is achieved for only a brief period after the laser pulse

has excited the system, before the population of the entangled state decays. However,

entanglement can be restored to the system by applying a repeated series of pulses, as

shown for a plasmon-three-QD system in Figure 4. Each incoming pulse initially destroys

the entanglement and reduces concurrence to zero, because both |A〉 and |S〉 are excited.
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FIG. 3: Results for a plasmon-three-QD system with laser-pulse fluence of 500 nJ/cm2, and coupling

coefficients ~g1 = 30 meV and ~g2 = ~g3 = 35 meV. (a) Excited-state populations for the three

QDs. (b) Bipartite concurrences.

However, |S〉 decays quickly, and concurrence rapidly grows back to its peak value. For

the concurrence between the pairs of inequivalent QDs, this peak value is somewhat smaller

than the maximum value reached for a single pulse, but the peak concurrence between the

two equivalent QDs is much larger than the single-pulse case. Continuous-wave excitation

of the entire system does not induce a high degree of entanglement, because it ontinually

excites both the |A〉 and |S〉 states; to be entangled, the population of |A〉 needs to be large

while the population of |S〉 is small.

Fabricating coupled plasmon-QD systems is a significant challenge. Our scheme re-

9



FIG. 4: Concurrences for a plasmon-three-QD system with a repeating 500 nJ/cm2 pulse. Coupling

coefficients are ~g1 = 30 meV, ~g2 = ~g3 = 35 meV. The dotted vertical lines represent the times

associated with the maxima of the pulses.

quires the ability to assemble metal nanoparticles and QDs with nanometer-scale control

over each interparticle separation. Nonetheless, rapid improvements in nanofabrication 26

and chemically-driven nanoparticle assembly27–30 may make it feasible in the near future.

DNA self-assembly methods have recently been used, for example, to fabricate colloidal gold

nanoparticles with numerous QDs surounding them,31 and strong plasmon-emitter coupling

has been experimentally demonstrated in other systems.32

Once a system is fabricated, there is the challenge of demonstrating entanglement. It has

recently been proposed that nanoparticle plasmons could be entangled by excitation with

entangled photons, and the plasmonic entanglement read out through the characteristics of

the radiated far field.33 It may be possible to use a similar scheme in our case: plasmons

would be entangled through their coupling to entangled QDs, serving as a interface between

the QD states and the radiated field.
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IV. CONCLUDING REMARKS

In summary, we propose a scheme involving exposure to a single or repeated optical pulse,

that makes it possible to create and maintain entanglement between all pairs of QDs when

two, three, or four closely spaced QDs are coupled to a common plasmonic nanostructure.

This contrasts with previous schemes based on plasmonic waveguides, which can entangle

spatially separated dots, but which are limited to two QDs. Moreover, in our scheme, the

entire system begins in its ground state and is excited by a common laser pulse or series of

pulses. Tuning the degree of coupling between each QD and the plasmonic nanostructure

enables generation of an excited state that evolves spontaneously, driven by dissipation of

the plasmons, towards an entangled state. Entanglement is achieved without the need for

the QDs to be individually addressable, and without the need for controlled quantum gates.

There are a number of considerations for increasing the magnitudes of the concurrences.

First, in general, it appears that larger magnitude QD-plasmon couplings, gi are advanta-

geous; here, we have restricted consideration to coupling strengths that may be achievable

in practice. As noted above, engineering a system with one QD more weakly coupled to

the plasmon than the others can be effective, i.e., if that QD is labeled “1”, then g1 < g2,

g3, etc. For the concurrences to be maintained for appreciable lengths of time beyond the

pulse, the dephasing rates should be small in comparison to the Purcell decay rates, γdi

< 4g2i /γs. Future work will involve more extensive parameter searches to discover optimal

conditions for the cases with three or more QDs coupled to a plasmonic system, as well as

consideration of more sophisticated pulse shapes and sequences. Finally, we should note that

the present paper focused on achieving bipartite concurrences among systems with two and

more QDs. Future work will also be devoted to exploration of the possibility of generating

maximally entangled multi-qubit states, including what are termed GHZ and W states for

three qubits.19,34,35

Acknowledgments

This work was performed, in part, at the Center for Nanoscale Materials, a U.S. De-

partment of Energy, Office of Science, Office of Basic Energy Sciences User Facility under

Contract No. DE-AC02-06CH11357. NFS thanks the Department of Defense for a National

11



Security Science and Engineering Faculty Fellowship.

1 M. Pelton and G. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013).

2 Z. R. Lin, G. P. Guo, T. Tu, H. O. Li, C. L. Zou, J. X. Chen, Y. H. Lu, X. F. Ren, and G. C.

Guo, Phys. Rev. B 82, 241401 (2010).

3 G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, Phys. Rev. B 84, 045310 (2011).

4 D. E. Chang, V. Vuletic, and M. D. Lukin, Nat. Photonics 8, 685 (2014).

5 J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 77, 4728 (1996).

6 Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowleer, A. S. Sorensen, D. Leibfried, and D. J.

Wineland, Nature 504, 415 (2013).

7 H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S.

Polzik, Phys. Rev. Lett. 107, 080503 (2011).

8 A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J.

Garcia-Vidal, Phys. Rev. Lett. 106, 020501 (2011).

9 D. Martin-Cano, A. Gonzalez-Tudela, L. Martin-Moreno, F. J. Garcia-Vidal, C. Tejedor, and

E. Moreno, Phys. Rev. B 84, 235306 (2011).

10 Y. He and K.-D. Zhu, Nanoscale Res. Lett. 7, 95 (2012).

11 Y. He and K.-D. Zhu, Quant. Info. Comp. 13, 0324 (2013).

12 C. Gonzalez-Ballestero, F. J. Garcia-Vidal, and E. Moreno, New J. Phys. 15, 073015 (2013).

13 C. Lee, New J. Phys. 15, 083017 (2013).

14 R. D. Artuso and G. W. Bryant, Phys. Rev. B 87, 125423 (2013).

15 S. Nicolosi, A. Napoli, A. Messina, and F. Petruccione, Phys. Rev. A 70, 022511 (2004).

16 M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, Nature Physics

9, 329 (2013).

17 C. Gonzalez-Ballestero, E. Moreno, and F. J. Garcia-Vidal, Phys. Rev. A 89, 042328 (2014).

18 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge

University Press, Cambridge, 2000).

19 R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

20 See Supplemental Material at [URL will be inserted by the publisher] for more detail.

21 R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, Phys. Rev. B 88, 075411 (2013).

12



22 M. Min and P. Fischer, J. Sci. Compt. 57, 582 (2013).

23 K. Uga, M. Min, T. Lee, and P. Fischer, Computers & Mathematics with Applications 65, 239

(2013).

24 X. Wu, S. K. Gray, and M. Pelton, Opt. Express 18, 23633 (2010).

25 W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

26 X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J.

Ahn, N. Park, et al., Nat. Comm. 4, 2361 (2013).

27 P. Kuhler, E. M. Roller, R. Schreiber, T. Liedl, T. Lohmuller, and J. Freidmann, Nano Lett.

14, 2914 (2014).

28 V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. Keyser,

Nat. Comm. 5, 3448 (2014).

29 M. Geiselmann, R. Marty, J. Renger, F. J. Garcia de Abajo, and R. Quidant, Nano Lett. 14,

1520 (2014).

30 D. Nepal, L. F. Drummy, S. Biswas, K. Park, and R. A. Vaia, ACS Nano 7, 9064 (2013).

31 D. Sun, Y. Tian, Y. Zhang, Z. Xu, M. Y. Sfeir, M. Cotlet, and O. Gang, ACS Nano 9, 5657

(2015).

32 G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and

M. H. Mikkelsen, Nature Photonics 8, 835 (2014).

33 N. Thakkar, C. Cherqui, and D. J. Masiello, ACS Photonics 2, 157 (2015).

34 W. Dur, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).

35 L. S. Bishop, L. Tornberg, D. Price, E. Ginossar, A. Nunnenkamp, A. A. Houck, J. M. Gambetta,

J. Koch, G. Johansson, S. M. Girvin, et al., New J. Physics 11, 073040 (2009).

13


