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Abstract

We propose a theoretical approach to quantitatively account for the role of entan-

glement in the nucleation of polymer melts, which is the unique feature of polymer

differentiated from small molecules. By performing molecular dynamics simulations,

we obtain the nucleation barriers of polymer systems with different entanglement den-

sities, which exhibits an opposite trend compared to the prediction of the classic nucle-

ation theory (CNT). To amend the deficiency of the CNT in polymer crystallization,

we introduce the entanglement free energy to reflect the role of entanglement in poly-

mer nucleation. Specifically, the polymer nucleation not only involves free energies of

monomers inside and on the surface of a nucleus as considered in the CNT, but also

affects the entanglement network around the nucleus. Our theoretical approach pro-

vides a reasonable interpretation for the unsolved nucleation phenomena of polymers

in simulations and experiments.
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1 Introduction

The connectivity of polymer chains is the unique feature that distinguishes polymers from

small molecules,1–5 which is manifested as entanglement in bulk or concentrated solution.

Entanglement is considered as a rheological concept well formulated by the tube model.6–9

However, how the entanglement affects phase transitions like polymer crystallization has

not been well understood yet.10–16 Compared to small molecules, homogeneous nucleation

of polymer crystal usually requires a large undercooling,17 implying that entanglement in-

hibits the nucleation. The nucleation of polymer systems with high entanglement density

like polycarbonate (PC) is completely suppressed under conventional conditions.18,19 It is

not clear whether this nucleation inhibition mainly stems from the entanglement-enhanced

nucleation barrier or constrained chain dynamics. Therefore, the understanding of the role

of entanglement in nucleation is critical for developing polymer crystallization theory, which

is a longstanding challenge in polymer physics.

For decades, how the entanglement affects polymer crystallization has attracted great

attention. Previous experiments revealed that the nucleation rate decreases with increasing

the entanglement density.16,20 Yamazaki et al. proposed an empirical relation between the

nucleation rate J and the entanglement density υe as J ∼ kυe.
21 Computer simulations

demonstrated that the distribution of thickness of lamellar crystal statistically follows the

local entanglement length.22,23 Yet, no quantitatively thermodynamic analysis of the en-

tanglement on nucleation has been reported. Classic nucleation theory (CNT) regards the

nucleation of polymers as the behavior of independent monomers, and subsequent modifi-

cations only consider the chain connectivity in amorphous structure on the fold surface of

nucleus.24 Although the concept of reptation has been introduced into polymer crystalliza-

tion model,1,25 we still lack a nucleation theory incorporating the unique connectivity of

polymer chain explicitly.

In this work, we have performed large-scale molecular dynamics (MD) simulations to

study the role of entanglement in nucleation. Two methods are employed to obtain the
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nucleation barriers of systems with different entanglement densities, i.e., sampling nucleation

events from the MD simulations directly, and theoretical calculation according to the CNT.

Regrettably, the nucleation barriers obtained by these two methods show opposite trends

with increasing the entanglement density. We ascribed this contradiction to the absence of

the entanglement effect in the CNT. To amend this defect of the CNT, we introduce the

entanglement free energy:

Gz = Uz − TSz (1)

Where Uz and Sz are the entanglement energy and entropy, respectively. By incorporating

the effect of Gz into the CNT, we propose a new theoretical approach for the nucleation of

polymers, which reaches a good agreement with the nucleation barriers obtained through

sampling events in MD simulations.

2 Methodology

2.1 Model and simulations

All simulations are performed on open-source code LAMMPS.26 As we focus on the generic

behavior of entangled polymer systems rather than microscopic properties, the widely used

coarse-grained polyvinyl alcohol (CG-PVA) model with a fast crystallization rate is chosen to

study polymer crystallization.27 Parameters of the CG-PVA model in reduced units originate

from experimental data. Namely, the Boltzmann constant kB, the mass of a monomer m,

the length σ, and the time τ are reduced to 1. The bond length is b0 = 0.5σ. The reduced

temperature T = 1 corresponds to a real temperature 550 K, σ = 1 corresponds to 0.52 nm,

and τ = 1 is about 3.5 ps. The bond interaction is approximated by a harmonic potential,

Ubond(r) =
1

2
kbond(r − b0)2 (2)
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where kbond = 2704kBT/σ
2. The angular interaction is represented by a tabulated po-

tential, and the non-bonded interaction is given by Lennard-Jones 9-6 potential,

Unonb = ε

[(σ0

r

)9

−
(σ0

r

)6
]

(3)

where σ0 = 0.89σ, and ε = 1.511kBT . The potential is truncated and shifted to 0 at

the minimum of rc = 1.02σ, which makes the non-bonded potential purely repulsive. The

pressure P = 8 is adopted to compensate for the attractive interaction, through which the

crystallization is accelerated.

By using the CG-PVA model, a series of polymer melts with different entanglement

densities are generated. Firstly, simulation boxes with different initial side lengths L0 (see

Table S1 in SI) are created. Then, 200 single equilibrated chains with 1000 monomers (N =

1000) are randomly placed into a simulation box. This step is referred to the place shown in

Figure 1. In this way, a non-equilibrium polymer system with an initial entanglement density

is prepared. The initial entanglement density relies on the magnitude of L0. After the place,

the simulation box is gradually compressed to a final side length L = ca. 45 in a time

duration of 2000τ , during which the pressure of the polymer system is adjusted to P = 8.

However, during the compression, there would be some unreasonably local conformations in

the polymer system. To eliminate these unreasonably local conformations, chains are relaxed

for 500τ with both their ends being fixed, which assures that no obvious disentanglement

occurs in the system during the relaxation. With the above procedures being completed,

polymer systems with different entanglement densities are obtained. Note that for the largest

simulation box with an initial side length L0 = 600, as the space is large enough for the

placement of chains, chains are regularly arrayed in the box, and keep wholly separated and

thus unentangled. Naturally, the entanglement density in this case is the lowest we studied

in this work. More details about the entire modeling process are given in S1 of the SI. The

relationship between the density of the initial system before compression (ρplace) and the
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entanglement length in melt systems (〈Ne0〉) is plotted in Figure 1. The Z1-code is used to

identify the primitive path of chains, and measure the entanglement length of melts 〈Ne〉

in the early stage of nucleation.28–31 The average entanglement length 〈Ne0〉 of prepared

polymer systems (t = 0τ) ranges from 267 to 17. 〈Ne0〉 of the equilibrium melt is about

16.4.32

Figure 1: Schematic diagram of the modeling process, and snapshots of polymer systems
with 〈Ne0〉 = 267 and 〈Ne0〉 = 17. Here, place means that randomly picking 200 points
inside the simulation box first, and then laying the pre-prepared equilibrated chains with
their center of mass on these picked points. Especially, for the largest simulation box L0 =
600, 200 points are no longer randomly picked but regularly arrayed.

Next, all melt systems are quenched to T = 0.77 (423.5 K) for isothermal crystallization,

during which the time step is chosen as 0.01 (∼ 35 fs), and the periodic boundary conditions

are applied on all three axes. The crystallization proceeds in the NPT ensemble with the

pressure P = 8 (1 atm), where the pressure and temperature are controlled by the Nos-Hoover

barostat and thermostat with a damp time of 1000 and 100 MD time steps, respectively. The

centrosymmetry parameter (Pcs)
33 and the length of successive trans-trans monomers (Ltt)

34

are applied to identify the crystalline monomers. The nucleation criterion, i.e., Pcs < 1 and

Ltt ≥ 8 is determined according to the distribution analyses of Pcs and Ltt, which is included

in S2 and Figure S2 of the SI.
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It should be noticed that systems with 〈Ne0〉 = 6 ∼ 15 are also built. However, the nucle-

ation of these systems is extremely difficult and takes a long incubation period. In addition,

disentanglement takes place during the incubation, leading to a significant deviation of the

entanglement densities from the initial set values when the nucleation occurs. Therefore,

these systems are not included in the current work.

2.2. Analysis of the nucleation free energy barrier

The nucleation barrier was obtained by using the mean first-passage time (MFPT) method

proposed by Wedekind et al.32 The MFPT method provides a simple and efficient strategy to

analyze MD trajectories of activated processes. By using the MFPT method, the information

of the nucleation process can be directly extracted from the trajectories of MD simulations,

including the nucleation free energy barrier and the critical nucleus size. However, the huge

difference between the time scales of nucleation and growth would affect the analysis results.

To overcome this problem, Nicholson et al. introduced an analysis method based on the

MFPT, and applied it to the simulation of nucleation in n-eicosane successfully.35,36 This

modified MFPT method allows us to extract valuable nucleation kinetic parameters from the

simulation data of the nucleation process. The detailed fitting process can be found in S4

of the SI. Then, we can attempt to understand the evolution trend of the nucleation barrier

with the entanglement density in the framework of the CNT.

The CNT is a simple and flexible framework to describe nucleation phenomena. Based

on the CNT, the nucleation free energy barrier of a cylindrical nucleus is given as:37,38

∆G∗
CNT = 2σ∗

l σf/ε
2 (4)

where σl and σf are the lateral and fold surface free energy per monomer, respectively.
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ε is the bulk free energy of the formation of a nucleus per monomer:

ε = ∆Hi − T (∆Scon,i + ∆Satom) (5)

where ∆Hi represents the enthalpy change of a monomer, ∆Scon,i and ∆Satom are the local

conformational entropy and atomic entropy changes of a monomer during the nucleation,

respectively. Here we are interested in the variation trend of ∆G∗ with 〈Ne0〉 rather than the

absolute value of ∆G∗. Thus, based on the simulation results, the variation trends of each

term in the right side of Eq. (4) with 〈Ne0〉 are evaluated independently in the following

sections. (See S5-7 in the SI for the calculation details)

3. Results and theory

3.1. Simulation results

The polymer melt systems with different initial entanglement densities show significantly

different nucleation behaviors. Figures 2a and 2b present snapshots of the nucleus formation

and early growth of the systems with 〈Ne0〉 = 267 and 〈Ne0〉 = 17, respectively. Nucleation of

the former system occurs rapidly involving just a few polymer chains. In contrast, nucleation

of the latter system takes a long incubation time involving multiple polymer chains. It is

found that the higher entanglement density is, the slower nucleation rate becomes, which is

consistent with previous experimental and simulation results.21,39,40

The effect of entanglement on the nucleation kinetics is evaluated by calculating the mean

square displacement (MSD) of monomers and the center of mass of a chain. The expressions

for the MSD of monomers and the center of mass of a chain are g1(t) = 〈[ri(t)− ri(0)]2〉,

and g3(t) = 〈[rcm(t)− rcm(0)]2〉, respectively. Here, ri and rcm are the coordinates of the ith

monomer and the center of mass of a chain, respectively. Figure 3a presents the variations

of g1 and g3 with time for all polymer melt systems. The curves of g1(t) for all systems
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Figure 2: Snapshots of the formation and growth of the primary nucleus in systems with (a)
〈Ne0〉 = 267, and (b) 〈Ne0〉 = 17. Only chains involved in the formation of a nucleus are
drawn here. Segments in the amorphous part and the nucleus are marked in different colors
and white, respectively.

overlap almost completely, suggesting that the movement of monomers is not sensitive to

the entanglement density. g3(t) characterizes the movement of a polymer chain, and is found

to be independent of the entanglement density at short time scales, while becomes diverging

at long time scales. Namely, the diffusion of a polymer chain at the nucleus interface during

crystal growth is restricted by the entanglement. In brief, although the diffusion of a polymer

chain scale is indeed influenced by the entanglement, its effect on the diffusion of monomers is

quite limited. Considering the nucleation is a behavior occurring at the monomeric scale, the

diffusion at the polymer chain scale should not be responsible for the significantly different

nucleation rates of systems with different entanglement densities.

To determine whether the long nucleation incubation period is related to the disentan-

glement process, the evolution of 〈Ne〉 for the system with 〈Ne0〉 = 17 during the nucle-

ation is measured. First, the spatial positions of critical nuclei are determined. The three-

dimensional region surrounded by the boundary of each nucleus is defined as the convex

hull. The value of the entanglement length Ne is assigned to each monomer in the corre-

sponding entangled segment. The obtained ensemble average entanglement lengths 〈Ne〉 in
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Figure 3: (a) The MSD of monomers (g1) for all polymer melt systems. The inset is the
MSD of the center of mass of polymer chains (g3) for all systems. (b) The change of average
entanglement length in the whole system, the amorphous region, and the convex hulls during
the crystallization process.

the whole system, the amorphous region, and the convex hulls are shown in Figure 3b. In

this system, most nuclei reach the critical nucleus size and start to grow at 12 ∼ 15 × 105τ .

As can be seen, 〈Ne〉 in the convex hulls keeps almost constant, indicating that no obvious

disentanglement occurs during the nucleation. It is generally considered that the nucleation

rate is determined together by the activation energy for the transport process at the inter-

face between the melt and the nucleus surface (∆E) and the nucleation barrier (∆G∗), i.e.,

J = J0exp[−∆E
RT
− ∆G∗

RT
].41 The above calculations demonstrate clearly that the effect of the

entanglement density on the nucleation rate mainly stems from changing ∆G∗ rather than

∆E.

By applying the modified mean first-passage time (MFPT) method35 (See S4, Figure

S3, and Table S2 of the SI for calculation details) to 50 MD trajectories of each polymer

system, we can obtain the nucleation free energy barrier (∆G∗) and critical nucleus size

(n∗), and plot them in Figures 4a and 4b. With the increase of 〈Ne0〉, both ∆G∗ and n∗

decrease, and the downtrends slow down as 〈Ne0〉 > 64 . ∆G∗ and n∗ show an approximately

linear relationship, which is in agreement with the CNT if the bulk free energy density ε for

different systems is the same. As shown in Figure S4 of the SI, an almost linear relationship

9



between ∆G∗ and 1/〈Ne0〉 (number density of entanglement) is found, which is consistent

with the previous experimental study.21

Figure 4: (a) The nucleation free energy barrier ∆G∗, and (b) the critical nucleus size n∗ as a
function of the entanglement length 〈Ne0〉. The solid blue and open-black symbols represent
the systems in and out of equilibrium, respectively.

According to Eq. (4), to verify whether the CNT can account for the nucleation barrier

presented in Figure 4a, we need to figure out how the lateral surface free energy per monomer

σl, the fold surface free energy per monomer σf , and the bulk free energy of the formation

of a nucleus per monomer ε vary with the entanglement length 〈Ne0〉. Our first concern

here is ε. Specifically, the enthalpy change per monomer ∆Hi = ∆H/Nc keeps constant for

polymer systems with different 〈Ne0〉, and is estimated to be −0.77kBT , where ∆H is the

total enthalpy loss, and Nc is the number of monomers in the nucleus. The conformational

entropy change ∆Scon is calculated from the end-to-end distance distribution of the chains42

(see S5 and Figure S5 of the SI for the calculation details). As shown in Figure 5a, ∆Scon

decreases slightly due to the relaxation of the systems and the increased chain stiffness caused

by quenching. ∆Scon,i = ∆Scon/Nt with Nt being the total number of monomers 2 × 105

is rather small and thus can be negligible during the nucleation. The atomic entropy Satom

describes the periodic symmetry property of the system, and can be used to characterize the

configurational entropy of a nucleus. Based on the quadratic term in the expansion of the

excess entropy of liquid, the configurational entropic difference ∆Satom of a monomer between
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the target system and the ideal gas can be calculated.43–45 Figure 5b suggests that ∆Satom

hardly changes with the entanglement density. It should be pointed out that the obtained

data is a relative value owing to the used Dirac broadening function and local averaging (see

S6 and Figure S6 in the SI for details). Furthermore, a prefactor β1 is required for numerical

corrections. Hereto, we can conclude that ε does not vary with the entanglement density,

and thus is not be responsible for the decreasing ∆G∗ with the increase of 〈Ne0〉.

Figure 5: Variations of (a) the conformational entropy of polymer chains, and (b) the atomic
entropy of polymer systems with different entanglement densities during nucleation. (c) The
distributions of the free energy of the amorphous structures (tails, loops, and ties). (d) The
fold surface free energy density of a nucleus as a function of the entanglement length. All
data points are obtained by averaging the calculation results of 10 MD trajectories of each
system.

As to the lateral surface free energy σl, it is mainly determined by the interaction potential

difference between a nucleus and its surrounding amorphous. Thus, σl should be dependent
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on the lattice structure and the amorphous density, and is irrelevant to the entangled state

of the polymer systems. In other words, σl can be considered as a constant independent of

〈Ne0〉. σf is determined by the entropy loss in the amorphous region during the nucleation

rather than by the potential difference.24 After extracting nuclei from the polymer systems,

the free energy of the amorphous structures (tails/loops/ties) on the fold surface is calculated

according to the theory of Muthukumar46 (see S7 of the SI for details). Figure 5c shows

the distributions of the free energy of amorphous structures (Gtails,loops,ties). The free energy

of loops Gloops is higher than those of tails Gtails and ties Gties, which can be attributed

to the lower conformational entropy of loops. Figure S7 shows that the formation of loops

prevails over that of tails and ties, giving rise to an increase of σf with the increasing 〈Ne0〉

shown in Figure 5d. The above analyses show clearly that in the framework of the CNT,

the nucleation free energy barrier rises as the entanglement length increases. Obviously, this

prediction does not agree with our simulation results. Actually, the failure of the CNT in

describing the nucleation of polymer systems is not surprising since it does not take into

account the unique connectivity of polymer chains, and the accompanying effects such as

the entanglement.

3.2. The entanglement free energy theory

During the nucleation, the freedom of an amorphous segment gets reduced due to its trans-

formation into a crystal stem. Considering that the constraint imposed by the crystal stem is

similar to the entanglement, the crystal stem can be regarded as an additional entanglement

point.47 The entanglement state of the amorphous segments is changed by the formation

of crystal stems, which might play an important role in the nucleation and cause a vari-

ation of the nucleation barrier with the entanglement density. To capture the underlying

physics of the nucleation in polymer systems, we propose a theoretical approach in which

the entanglement free energy (Gz) is introduced to quantify the effect of entanglement on

nucleation. Gz originates from the redistribution of the entanglement length caused by the
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slip of entanglement points, and can be expressed as Gz = Uz−TSz. Here, the entanglement

energy (Uz) describes the repulsive interactions between entanglement points, and the en-

tanglement entropy (Sz) reflects the entanglement density and its spatial distribution, which

compensates the attractive interactions between two adjacent entanglement points.

The slip-link model predicts that systems with entanglement densities below and above

the equilibrium value have the same free energy.47–50 Clearly, it cannot explain the increased

nucleation barrier as the entanglement density rises. Inspired by the slip-link model and also

the local-knots model,51,52 we use the harmonic oscillator model to describe the motion of

entanglement points. In the harmonic oscillator model, adjacent entanglement points in a

polymer chain are considered to interact repulsively, and the repulsive strength is determined

by the distance between the adjacent entanglement points (entanglement length Ne). Under

the thermal fluctuations, entanglement points keep sliding along the chain, and the global

entanglement network changes dynamically. Note that this change induced by thermal fluc-

tuations is slight when the observation period is short or the entanglement state is stable.

In these cases, an entanglement point just oscillates nearby its original position. Similar to

the slip-link model, a polymer chain can be considered as a series of untangled segments

connected by small springs (i.e., entanglement points).

Lets suppose that the entanglement points are uniformly distributed in a polymer chain,

and each entanglement point can be treated as an independent harmonic oscillator to describe

its local slip. Then, the one-dimensional motion of an entanglement point is controlled by a

harmonic potential:

Uz =
1

2
ks∆x

2 (6)

where Uz is the entanglement energy, which is the energy of each entanglement point. ∆x is

the slip distance of an entanglement point under thermal fluctuations, which is in the units

of a coarse-grained bead. ∆x = Ne in the limit case that two adjacent entanglement points

overlap. Polymer chains with N monomers in each chain are involved in the entanglement

overlapping, during which the freedom of monomers decreases. We take monomer number N
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as the scale parameter and the energy penalty for the overlapping is assumed to be γNkBT

with γ being a constant. Here, NkBT can be considered as the reduced unit. Then, the

stiffness coefficient of the oscillator can be deduced as ks = 2γNkBT/N
2
e . Obviously, ks is a

variable relying on the chain length N and the entanglement length Ne. Thus, we have:

Uz =
1

2
ks∆x

2 β2=γ∆x2−−−−−→ β2NkBT/N
2
e (7)

Here, β2 = γ∆x2 is the prefactor. During the nucleation, the entanglement network is

considered to be stable, and its evolution occurs at a small spatial scale. It implies that the

value of ∆x is small and keeps nearly constant. Then, β2 can be approximately treated as

a constant for polymer systems with different Ne. Most importantly, Eq. (7) predicts the

relationship between the entanglement energy and the entanglement length, i.e., Uz ∼ 1/N2
e .

A higher Uz with smaller Ne implies that a more untangled state is preferred (Ne increases).

Note that a dramatic variation in Uz does not originate from the vibration of the harmonic

oscillator itself (∆x), but a sharp change in Ne induced by the formation of crystal stem.

The change of the entanglement state of the amorphous segments in nucleation is accom-

panied by a variation in Uz. However, the crystal stem is considered to be fixed (∆x = 0),

and does not contribute to the variation in Uz. The formation of a crystal stem also keeps

the adjacent entanglement points away. Namely, the constraints brought by the crystal stem

do not affect the original entanglement network, but can restrict its evolution. Consider the

case where a crystal stem forms at the midpoint of the amorphous segment of the length Ne

during the time interval [t1, t2]. As a result, two new amorphous segments of the length Ne/2

form. Since the nucleation takes place at the time scale much smaller than the reputation

time, the assumption that ∆x = 1 during the nucleation process is reasonable. Therefore,

the entanglement energy change due to the formation of a crystal stem can be given as:

∆Uz = Uz,t2 − Uz,t1 = β26NkBT/N
2
e (8)
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Here, Uz,t1 = β22NkBT/N
2
e is the entanglement energy of the amorphous segments between

two adjacent entanglement points at the time t1 with Ne(t = t1) = Ne. When a crystal stem

at the time t2, Uz,t2 = β28NkBT/N
2
e with Ne(t = t2) = Ne/2.

Next, lets turn our attention to the entanglement entropy Sz. The concept of Sz comes

from the excess entropy. By expanding the configurational entropy of simple liquids with

the many-body correlation function, the second term only involving the correlation function

is usually called the two-body excess entropy, which makes a nearly 90% contribution to the

configurational entropy.43,53 Polymer chains are divided into multiple untangled segments

by the entanglement points. The length of these untangled segments is the entanglement

length Ne. The distribution of Ne is ever-changing due to the slip of entanglement points.

Essentially, Ne is a reflection of the interaction between two adjacent entanglement points,

i.e., a special two-body interaction. This two-body interaction can be well described by

the excess entropy, and the magnitude of excess entropy is a function of the number of

entanglement points.

The original excess entropy is the configurational entropy, which incorporates the interac-

tions between any two particles in the system. Considering our focus here is to describe the

two-body interactions between entanglement points, the probability density of the entangle-

ment length Ne rather than the radial distribution of entanglement points in the expression

of the original excess entropy (f(r) in Eq. S8.1) is used to calculate Sz. For the sake of sim-

plicity, the calculations are carried out in the spherical coordinate system, which is referred

to as the Z-space in this work. As shown in Figure 6, an untangled segment of the length Ne

between two adjacent entanglement points along a chain in the real space is projected as a

point with a distance r = Ne from the origin in the Z-space. Here, the angular coordinates

of the points are ignored. The Ne calculated by the Z1 code is taken as an integer value, so

r in the Z-space takes discrete values like 1, 2, ..., N . In this way, the probability density

function of Ne in the real space is converted into that of the distance r in the Z-space, g(r).

For an ideally untangled system consisting of Nchain chains of the length N , r = N . That
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is, there are Nchain points with r = N in the Z-space. Thus, we should have g0(r = N) = 1.

g(r) would be different for a given entangled system. Then, Sz is defined as the entropic

difference of points in the Z-space projected by the given entangled systems and the ideally

untangled system (see S8 of SI for the detailed derivation process):

Sz = β3kB

∫ N

1

[g(r)lng(r)− g0(r)lng0(r)− g(r) + g0(r)]r2dr (9)

where r is the distance of a point from the origin in the Z-space, and β3 is a constant

dependent on the system size and chain length. Since the density of points in the Z-space

is independent of the shell volume, the probability density function rather than the radial

distribution function is used here. In this way, the normalization of the integral volume

is not necessary. Moreover, an additional point is added to each r in the Z-space to fill

the singularity in the integral function. The influence of the additional points is negligible

for sufficiently long segments as the probability density function of the additional points

g(r) = 1/N is small.

Figure 6: Schematic illustration of the projection of two adjacent entanglement points in the
real space into the Z-space. Ne is the entanglement length between two adjacent entangle-
ment points.

Evolutions of Sz of systems at the beginning and the ending of nucleation with the

entanglement density are plotted in Figure 7a. Sz = 0 for untangled systems, and Sz > 0 for

entangled systems. Again, consider the case where a portion of an amorphous segment of
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Figure 7: (a) Sz of the whole systems at the beginning and the ending of nucleation. (b) The
variations in Sz of the whole system during the nucleation with the entanglement density.

the length Ne turns into a crystal stem during the time interval [t1, t2]. Then, the variation

of Sz of this segment due to the formation of the crystal stem is:

∆Sz = β3kB

∫ Ne

1

[gt2(r)lngt2(r)− gt1(r)lngt1(r)− gt2(r) + gt1(r)]r
2dr (10)

where gt1(r) and gt2(r) are the probability density functions of points in the Z-space at t = t1

and t2, respectively. Generally, the length of a crystal stem in the primary nucleus is much

smaller than Ne. Assuming that the nucleation occurs at the midpoint of the segment and

the crystal stem is treated as an additional entanglement point, the segment can be divided

into two subsegments of the length ca. Ne/2 at the time t2. In the Z-space, there is a point

at r = Ne and two points at r = Ne/2. A virtual point is added at each r in r = [1, Ne]

to compensate singularities. Then, the total number of points in the Z-space at t = t1 and

t = t2 is Ne + 1 and Ne + 2, respectively. Therefore, the probability density function in

Z-space can be given as:

gt1(r) =



2

Ne + 1
, r = Ne,

1

Ne + 1
, r 6= Ne.

(11)
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gt2(r) =



3

Ne + 2
, r = Ne/2,

1

Ne + 2
, r 6= Ne/2.

(12)

Here, r ranges from 1 to N . For a sufficiently long amorphous segment with Ne � 1, the

denominators in Eqs. (11) and (12) can be approximated as Ne. Substituting Eq. (11) and

Eq. (12) into Eq. (10), we get:

∆Sz = β3kBNe

[
1

2
(lnNe + 1) +

3

4
ln3− 2ln2

]
≈ β3kBNe

(
1

2
lnNe − 0.0623

)
(13)

The detailed derivation of Eq. (13) can be found in S9 of the SI. Eq. (13) suggests that

the entanglement entropy gained from the formation of a crystal stem is approximately

proportional to Ne, which is consistent with our simulation results shown in Figure 7b.

Combining Eqs. (8) and (13), we obtain the change in the entanglement free energy

change during nucleation:

∆Gz = µ(∆Uz − T∆Sz) ≈ µkBT

[
β2

6N

N2
e

− β3Ne

(
1

2
lnNe − 0.0623

)]
(14)

where µ is the number of crystal stems inside a nucleus. Then, the total change in the free

energy for the formation of a nucleus with µ stems of the length ls is given as:

∆G = ∆GCNT + ∆Gz = −µlsε+
√
µlsσl + 2µσf + ∆Gz (15)

Minimizing ∆G with respect to µ and ls, the free energy barrier for the nucleation is:

∆G∗ = 2σ2
l Λ/ε

2 (16)
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where

Λ = σf +
1

2
kBT

[
β2

6N

N2
e

− β3Ne

(
1

2
lnNe − 0.0623

)]
(17)

Note that the nucleation barrier given by Eq. (16) has the same mathematical form

as that given by the CNT (Eq. (4)). Λ consists of two parts, σf in Eq. (17) inherits

from the CNT. The second term is the correction contributing from the entanglement free

energy, characterizing the disturbance on the entanglement network around the nucleus by

the nucleation. Since the entanglement state of each system when nucleation occurs is similar

to the initial entanglement, the entanglement length Ne is approximate to its initial value

〈Ne0〉. With the already obtained σf (Figure 5d), ε and Ne ≈ 〈Ne0〉, the validity of Eq. (16)

can be verified. As shown in Figure 8a, the fitted values of ∆G∗ agree well with these obtained

by the MFPT method (Figure 4a). The used parameters in the fittings are β1 = 4.28×10−4,

β2 = 0.356 and β3 = 0.0027, respectively. β1 is the prefactor of atomic entropy in the bulk

free energy term ε. Note that the difference in the magnitude of β2 and β3 is due to the

magnitudes of 6N/N2
e and β3Ne

(
1
2
lnNe − 0.0623

)
are 1 and 100, respectively. The energy

and the entropy contributions are of the same order.

Figure 8: (a) Comparison of the nucleation free energy barriers calculated by sampling (open
black squares) and fitted with Eq. (16) (orange circles). (b) The ratio of the entanglement
induced nucleation free energy barrier to the total one, ∆G∗

z/∆G
∗ as a function of the

entanglement length.

The ratio of the entanglement induced nucleation free energy barrier to the total one,
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∆G∗
z/∆G

∗ can quantify the effect of the entanglement on the nucleation. As shown in Figure

8b, ∆G∗
z/∆G

∗ ≈ 0.5 for the equilibrium system, revealing that the entanglement makes a

considerable impact on the nucleation. ∆G∗
z/∆G

∗ increases rapidly when 〈Ne0〉 is smaller

than the equilibrium value (ca. 17). This implies that the increased nucleation barrier is

mainly caused by the denser entanglement. Indeed, our simulations show that the nucleation

hardly takes place for systems with 〈Ne0〉 = 6 ∼ 15. For systems with 〈Ne0〉 being larger

than the equilibrium value, ∆G∗
z/∆G

∗ decreases gradually with the increasing 〈Ne0〉 due to

the significantly increased entanglement entropy ∆Sz. For systems with low entanglement

densities, the formation of crystal stems increases constraints and drives the entanglement

density close to the equilibrium value, which contributes a negative ∆G∗
z and consequently

reduces the nucleation barrier predicted by the CNT.

The introduction of the entanglement free energy Gz not only establishes a quantita-

tive model to explain the entanglement effect in polymer crystallization experiments, but

also provides a solution for the discrepancies in polymer crystallization. The difficulty in

crystallization of highly entangled polymers like PC,18,19 the enhanced nucleation in cyclic

polymers54,55 and disentangled systems with reduced entanglement density56–58 can be quan-

titatively correlated with Gz via Ne. The discrepancies in the memory effect of crystalliza-

tion22,23,59–62 and flow-induced crystallization of polymer63–70 might also be solved with Gz,

where no theoretical consensus has been reached yet. In both cases, crystallization is ac-

companied by a higher initial Gz and a greater increase in Sz, which makes the nucleation

barrier lower than that of the equilibrium melt. In addition, the different interceptions of the

polymer crystallization and melting lines measured in experiment71 may be partly caused

by the different evolutionary pathways of the entanglement topology network during crys-

tallization and melting, which makes the entanglement free energy change asymmetrical.

Experimental and simulation efforts are encouraged to verify the quantitative correlation

between entanglement and observations in polymer crystallization.

The entanglement free energy theory gives the theoretical expressions for entanglement
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in crystallization, which supplements the effect of the entanglement network in nucleation

and diverts our attention from the chain conformation effect to the free energy of the entan-

glement network. Based on the entanglement free energy theory, the entanglement network

has an intrinsic free energy Gz independent of polymer conformation and structural config-

uration. The nucleation process brings additional topological entanglement points for the

original entanglement network, which modifies Gz that lives in the entanglement network.

Therefore, during the nucleation process, not only the free energy of monomers inside a

crystal nucleus is changed, but also the free energy of the neighboring entanglement network

around the crystal nucleus is affected. Considering the chain connectivity, nucleation is no

longer a local behavior among monomers, but a collaborative behavior between the nucleus

and the entanglement network.

The concept of entanglement free energy proposed in this work builds a bridge between

the entanglement network and the nucleation behavior of non-equilibrium entangled polymer

systems. There are still several aspects to be improved in the future: (1) Strictly, Uz ∼ 1/N2
e

is still a phenomenological theory. An analytical solution from the strict initio derivation at

the molecular scale will be a serious challenge. (2) An improved expression for the entan-

glement entropy. The method to measure the two-body interactions between entanglement

points remains to be perfected. One possible way is to calculate the entropy by counting the

probability of microscopic entanglement states directly. (3) Verification of the entanglement

free energy theory by experiments. Although the predictions by our theoretical approach

can fit the simulation results well, a direct experimental evidence for the verification of our

new theoretical approach is still necessary.

4. Conclusions

In conclusion, we have performed a series of MD simulations of polymer melts with differ-

ent entanglement densities, and obtained the nucleation free energy barrier by using the
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modified MFPT method. A monotonic increase of the nucleation free energy barrier with

the increasing entanglement density is observed, which is opposite to the prediction of the

CNT. Then, we propose a new theoretical approach to take into account the unique chain

connectivity of polymers. Specifically, we introduce the entanglement free energy to reflect

the role of entanglement in polymer nucleation. It is suggested that polymer nucleation not

only involves free energies of monomers inside and on the surface of a nucleus as considered

in the CNT, but also affects the entanglement network around the nucleus. The calculated

values of the nucleation free energy barrier based on our theoretical approach match well

with those obtained from the simulations. Our study here provides new insights on how the

intrinsic entanglement in polymer melts affects the nucleation behavior.

Associated content

Supporting Information

The system preparation, crystallite identification criterion, nucleation rate, the introduc-

tion of MFPT method and data fitting process, the conformational entropy calculation,

the atomic entropy calculation, the fold surface free energy calculation, and the derivation

process of entanglement entropy expression.
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