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Quantum networks are composed of nodes that can send and
receive quantum states by exchanging photons'. Their goal
is to facilitate quantum communication between any nodes,
something that can be used to send secret messages in a
secure way>’, and to communicate more efficiently than in
classical networks*. These goals can be achieved, for instance,
via teleportation®’. Here we show that the design of efficient
quantum-communication protocols in quantum networks
involves intriguing quantum phenomena, depending both on the
way the nodes are connected and on the entanglement between
them. These phenomena can be used to design protocols that
overcome the exponential decrease of signals with the number
of nodes. We relate the problem of establishing maximally
entangled states between nodes to classical percolation in
statistical mechanics®, and demonstrate that phase transitions’
can be used to optimize the operation of quantum networks.

Quantum networks®'*, where different nodes are entangled,
leading to quantum correlations that can be exploited by making
local measurements at each node, will be the basis for the future
of quantum communication. For instance, a set of quantum
repeaters'® can be considered as a simple quantum network
where the goal is to establish quantum communication over long
distances. To optimize the operation of such a network, it is
required to establish efficient protocols of measurements in such
a way that the probability of success in obtaining maximally
entangled states between different nodes is maximized. This
probability may behave very differently as a function of the number
of nodes if we use different protocols: in some cases it may decay
exponentially, something that makes the repeaters useless, whereas
for some protocols it may decay only polynomially, something that
would make them very efficient.

A general network may be characterized by a quantum state, p,
shared by the different nodes. The goal is then, given two nodes A
and B, to find the measurements to be made at the nodes, assisted
with classical communication, such that A and B share a maximally
entangled state, or singlet, with maximal probability. We call this
probability the singlet conversion probability (SCP). This, or other
related quantities such as the localizable entanglement'>¢, can be
used as a figure of merit to characterize the state p and therefore
the performance of the quantum network. Here, we focus on the
SCP because of its operational meaning. These quantities cannot
be determined in general, given that they require the optimization
over all possible measurements in the different nodes, which is a
formidable task even for small networks.
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Figure 1 Quantum networks. a, A general quantum-communication network
consists of an arbitrary number of nodes in a given geometry sharing some quantum
correlations, given by a global state p. b, Here we consider a simplified network
where the nodes are disposed according to a well-defined geometry, for example
the two-dimensional square lattice shown here, where each pair of nodes is
connected by the same pure state | ).

In this work we concentrate on some particular quantum
networks, which, despite their apparent simplicity, contain a very
rich and intriguing behaviour. The simplification comes from two
facts (see Fig.1). First, the nodes are spatially distributed in a
regular way according to some geometry. Second, each pair of nodes
is connected by a pure state, |¢) € C?*® C“. Up to local change of
bases, any of these states can be written as'’

d
|¢>=Zﬁ|ii>, (1)

where A; are the (real) Schmidt coefficients such that A, > A, >
.-+ > A4 > 0. This configuration reminds us of the states underlying
the so-called projected pair-entangled states', and thus we call
these networks pair-entangled pure networks. For these geometries,
we first introduce a series of protocols that are closely related
to classical percolation®, a concept that appears in statistical
mechanics. We then determine the optimal protocols for several
one-dimensional configurations, where some counterintuitive
phenomena occur. We use these phenomena to introduce various
protocols in more complex two-dimensional configurations.
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Table 1 Bond-percolation threshold probabilities for some examples of
two-dimensional lattices.

Lattice Percolation threshold probability
Square 1/2

Triangular 25sin(t/18) ~ 0.3473
Honeycomb 1—2sin(t/18) ~ 0.6527

We show that these new protocols provide a dramatic
improvement over those based on classical percolation, in the sense
that we can obtain perfect quantum communication even though
the classical percolation protocols give rise to an exponential decay
of the success probability with the number of nodes. In fact, we
will argue that there exists an entanglement phase transition in
the quantum networks, which may be exploited to obtain very
efficient protocols. Thus, this work opens a new set of problems
in quantum-information theory, which are related to statistical
physics, but pose completely new challenges in these fields. As
opposed to most of the recent work on entanglement theory,
which has been devoted to using some of the tools developed
so far in quantum-information theory to analyse problems in
statistical mechanics'®?!, the present work takes a step in the
converse direction.

Let us start by considering a natural measurement consisting of
all the pairs of nodes locally transforming their states into singlets
with optimal probability p°*. Recall that the SCP for a state (1)
is known to be equal to p°* = min(1,2(1—4,)) (ref. 22). Then,
a perfect quantum channel between the nodes is established with
probability p°*, otherwise no entanglement is left. This problem
is equivalent to a standard bond-percolation situation®, where
one distributes connections among the nodes of a lattice in a
probabilistic way: with probability p an edge connecting a pair of
nodes is established, otherwise the nodes are kept unconnected. We
call this measurement strategy classical entanglement percolation
(CEP). In bond percolation, for each lattice geometry there exists
a percolation threshold probability, py, such that an infinite
connected cluster can be established if and only if p > py, (see
also Table 1). The probability 8(p) that a given node belongs to
an infinite cluster, or percolation probability, is strictly positive for
P > Pw> and zero otherwise (in the limit of an infinite number
of nodes). Then, the probability that two given distant nodes can
be connected by a path is distance independent and is given,
correspondingly, by 6?(p) for p > py,; for p < py, this probability
decays exponentially with the number of nodes, N, separating the
two distant ones.

The threshold probabilities define a minimal amount of
entanglement for the initial state such that CEP is possible. In the
case of one-dimensional chains (see Fig. 2) percolation is possible
if and only if p = 1. Therefore, the SCP decays exponentially
with N unless the states are more entangled than the singlet, in
the sense that p°™ = 1. In a square two-dimensional lattice, the
entanglement threshold derived from percolation arguments (see
Table 1) is p** =2(1—4,) =1/2.

The CEP strategy already shows that the distribution of
entanglement through quantum networks defines a critical
phenomenon. For instance, for two-dimensional lattices and
qubits, there exists a continuous interval for A, such that the
probability of having an infinitely connected entangled path
is unity, whereas for product states, that is when A, =0,
this probability is zero. Because there is no analytic function
fulfilling these requirements, the probability of infinite distance
entanglement must be non-analytic, indicating a sharp transition.

Now, it is natural to wonder whether CEP is optimal for any
geometry and number of nodes, and if not to see whether, at least,
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Figure 2 Quantum repeaters in the one-dimensional chain. The upper diagram

shows the simplest one-repeater configuration, which is generalized below.

The first step of the optimal strategy for the one-repeater configuration and qubits,
where |¢1) = |@2) = +/A]00) 4 /A, | 11), consists of entanglement swapping at
the repeater. The resulting states between nodes A and B are

(A4100) £ A|11)) /+/ A2 + A2 with probability (A2+ A2) /2 and (01) &= 110))/+/2

with probability 4, ,. Collecting all these terms, the average SCP between A and B
is equal to 2(A; A + A3) = 22, = p, which is known to be optimal.

it predicts the correct decay of entanglement in the asymptotic
limit. Next, we show that, for one-dimensional chains, although
CEP is not optimal for some finite N, it gives the right asymptotic
behaviour. Moving to two-dimensional networks, we prove that
CEP is not optimal even in the asymptotic case. Thus, the problem
of entanglement distribution through quantum networks defines a
new type of critical phenomenon, with new threshold values, which
we call entanglement percolation.

The scenario of a one-dimensional chain configuration (see
Fig. 2) consists of two end nodes connected by several repeaters'.
As said, all the bonds are equal to |¢). We start out with the case
of qubits, d =2. A surprising result already appears in the first
non-trivial situation consisting of one repeater. An upper bound
to the SCP in the one-repeater scenario is obtained by putting
nodes A and R, together, which implies that the SCP cannot be
larger than p°. This bound can indeed be achieved by means
of a rather simple protocol involving entanglement swapping®
at the repeater. However, if CEP is applied, the obtained SCP
is simply (p°)?. This proves that CEP is not optimal already
for the one-repeater configuration. We find it rather counter-
intuitive that the intermediate repeater does not decrease the
optimal SCP. This behaviour, however, does not survive in the
asymptotic limit. In this limit the so-called concurrence*, another
measure of entanglement, decreases exponentially with the number
of repeaters, unless the connecting states are maximally entangled
(see the Methods section). The exponential decay of the SCP
automatically follows.

Most of these results can be generalized to higher-dimensional
systems, d > 2. For the one-repeater configuration, the SCP
is again equal to p°. It suffices to map the initial state into
a two-qubit state, without changing the SCP, and then apply
the previous protocol. Moving to the asymptotic limit, an
exponential decay of the SCP with N can be proven in the
scenario where the measurement strategies involve only one-way
communication. First, a measurement is made at the first repeater.
The result is communicated to the second repeater, where a second
measurement is applied. The results of the two measurements are
communicated to the third, and so on until the last repeater, where
the final measurement depends on all the previous results.

Putting all these results together, a unified picture emerges
for the distribution of entanglement in one-dimensional chains:
despite some remarkable effects for finite N, the SCP decreases
exponentially with the number of repeaters whenever the
connecting bonds have less entanglement than a singlet. The CEP
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Figure 3 Example of a quantum network where entanglement percolation and
CEP are not equivalent. Each node is connected by a state consisting of two copies
of the same two-qubit state, | @) = |¢,)®2. The nodes marked in a make the
optimal measurement for the one-repeater configuration on pairs of qubits
belonging to different connections, as shown in the inset. A triangular lattice is then
obtained, where the SCP for each connection is the same as for the two-qubit state
|@2). The remaining nodes carry out CEP on the new lattice.

strategy fails for some finite configurations, but predicts the correct
behaviour in the asymptotic limit.

The situation becomes much richer for two-dimensional
geometries. First, we consider finite two-dimensional lattices.
The non-optimality of CEP can be shown already for the
simplest 2 x 2 square lattice and qubits. Consider the two non-
neighbouring sites in the main diagonal of the square. The SCP
obtained by CEP is 1 — (1 — (p°)?)2. By concatenating the optimal
measurement strategy for the one-repeater configuration, the SCP
is 1 — (1—p°*)2. However none of these strategies exploits the
richness of the two-dimensional configuration. Indeed, we can
design strategies such that a singlet can be established with unit
probability whenever |¢) satisfies 1/2 < A, < 0.6498. Thus, there
are two-dimensional network geometries where, although the
connections are not maximally entangled, the entanglement is still
sufficient to establish a perfect quantum channel.

Let us now see whether the thresholds defined by standard
percolation theory are optimal for asymptotically large networks.
In the next lines, we construct an example that goes beyond
the classical percolation picture, proving that the CEP strategy
is not optimal. The key ingredient for this construction is the
measurement derived above for the one-repeater configuration,
which gave rise to an SCP equal to p°. Our example considers
a honeycomb lattice where each node is connected by two copies
of the same two-qubit state |@) = |¢,)®* (see Fig.3a). If, as
above, the Schmidt coefficients of the two-qubit state are A, > 4,,
the SCP of |g) is given by p™ = 2(1—2?). We choose this
conversion probability smaller than the percolation threshold for
the honeycomb lattice, which gives

A 1+' (n) 0.82
= — sin|{ — ) ~0. .
: 2 18

Therefore, CEP is useless. Now, half of the nodes carry out the
optimal strategy for the one-repeater configuration, mapping the
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honeycomb lattice into a triangular lattice, as shown in Fig. 3. The
SCP for the new bonds is exactly the same as for the state |¢,), that
is 24,. This probability is larger than the percolation threshold for
the triangular lattice, because

T o
w=21- 7+s1n<—) %0.358>231n(—>.
2 18 18

The nodes can now apply CEP to the new lattice and succeed. Thus,
this strategy, which combines entanglement swapping and CEP,
allows us to establish a perfect quantum channel in a network where
CEP fails.

Two comments are relevant at this point. First, although
the previous strategy uses classical percolation concepts, this is
not necessarily the case for the optimal (unknown) strategy,
which may exploit different techniques. Second, our results do
not exclude the possibility that for two-dimensional lattices the
critical amount of entanglement is zero. The bound for the
entanglement phase transition would then be somewhat trivial,
but the implications from a quantum-communication viewpoint
would be very relevant: any amount of entanglement between the
nodes would be sufficient for entanglement percolation.

We have shown that the distribution of entanglement through
quantum networks defines a framework where statistical methods
and concepts, such as classical percolation theory and beyond,
naturally apply. It leads to a novel type of critical phenomenon,
an entanglement phase transition that we call entanglement
percolation. The corresponding critical parameter is the minimal
amount of entanglement necessary to establish a perfect distant
quantum channel with significant (non-exponentially decaying)
probability. Further understanding of optimal entanglement-
percolation strategies is necessary for the future development and
prosperity of quantum networks.

METHODS

ONE-DIMENSIONAL CHAINS
We start by showing that the concurrence decays exponentially with the
number of nodes in a one-dimensional chain of qubits when the connecting
states are not maximally entangled. Recall that, given a two-qubit pure state
)= Ziv]- tijij), its concurrence reads C(¢) = 2|det(T)|, where T is the 2 x 2
matrix such that (T);; = t;;.

When considering the repeater configuration, the maximization of the
averaged concurrence turns out to be equal to

Cn =supy _2ldet(p1My, ¢2... My ox11)).
M r

Here M briefly denotes the choice of measurements, whereas ¢ represent the
2 x 2 diagonal matrices given by the Schmidt coefficients of the states |¢x). M,
are also 2 x 2 matrices, corresponding to the pure state |ry) associated with the
measurement result 7y of the k th repeater, that is [r¢) =) i (M);;lij). Note
that the computational bases i and j in the previous expressions are the
Schmidt bases for the states |@x) and |@4) entering the repeater k. Using the
fact that det(AB) = det(A)det(B), the previous maximization gives?®

N
Cy =] [Idet(ppl.
k=1
Note that 2|det(¢x)| =1 if and only if |@) is maximally entangled, which
proves the announced result.

Most of the results derived in the qubit case can be generalized to arbitrary
dimension. Let us first consider the one-repeater configuration. Given a state
|@k), see equation (1), it is always possible to transform this state in a
deterministic way into a two-qubit state of Schmidt coefficients (4;,1— 4;) by
local operations and classical communication. This follows from the
application of majorization theory to the study of local operations and classical
communication transformations between entangled states®®. Note that the SCP
for the two states is the same, p°* = min(1,2(1—2,)).
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In the case of arbitrary N, an exponential decay for the qubit concurrence
can be shown for protocols with one-way communication. Given an arbitrary
chain, we consider the almost identical chain where the first state is replaced by
a two-qubit entangled state. It is relatively easy to prove that the SCP decays
exponentially in the first chain if and only if it does it in the second one. We
start with the simplest one-repeater configuration. The quantity to be
optimized reads

Cr=2|det(g))|sup Y _2|det(M,¢,)], )
M r

where, as above, ¢; (¢;) is the 2 X 2 (d x d) matrix corresponding to

|@1) (]92)), whereas M, is a 2 x d matrix associated with the measurement
outcome r at the repeater. Thus, we recognize in the r.h.s. of equation (2) the
optimal average concurrence we can obtain out of |¢,) by measurements on
one particle that correspond to operators of rank 2. We denote this quantity by
C, the Schmidt coefficients corresponding to |@,) by A} > A, > --- > A; and its
SCP by p°X, as above. For the outcome r, which occurs with probability p,,

i > denotes the Schmidt coefficients corresponding to the resulting
two-qubit state |@, ). With this notation, we have

C=2) p/uini <2y/x(1—x),
r
where
X=2Prl/~£ =< I_Ah
.

and the last inequality follows from the majorization criterion. The optimal
value is obtained for x = p° /2, which is achieved when p, = 1 and saturates
the two previous inequalities. Thus, we obtain the equality

Cy =2[det(¢)]y/p<(2—p°%).

Note that /p°(2 — p°k) < 1, with equality if and only if p° = 1. Note also, and
this is important for what follows, that the optimal strategy depends only on
|¢2), and not on the first two-qubit state, |¢;).

This strategy can be generalized to the case of N repeaters when the
measurements proceed from left to right. We show this generalization for the
case N = 2; the case of arbitrary N will immediately follow. Consider the
measurement step in the second repeater. After receiving the information about
the measurement result in the first repeater, r;, R, has to measure its particles.
For each value of 1, and because A is a qubit, A and R, share a two-qubit pure
state, |¢,, ). Therefore, for each measurement result, R; is back at the previous
one-repeater situation. The optimal measurement strategy in this case was
independent of the entanglement of the first two-qubit state. Thus, up to local
unitary transformations, the measurement to be applied in the second repeater

is independent of 1, and
VP2 —psH

where pﬁk is defined as above for the state |y ). It is straightforward that this
reasoning generalizes to an arbitrary number of repeaters, so

C2=C1

B

N+1

Cn =2|det(o)| ] [/p*@—p).
=2

nature physics | VOL 3 | APRIL 2007 | www.nature.com/naturephysics

Therefore, the average concurrence decreases exponentially with the number of
repeaters unless the connecting pure states have p°* = 1. A non-exponential
decay of the SCP when p°* < 1 would contradict this result.
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