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Recent years have seen remarkable development in open quantum systems effectively described by non-
Hermitian Hamiltonians. A unique feature of non-Hermitian topological systems is the skin effect,
anomalous localization of an extensive number of eigenstates driven by nonreciprocal dissipation. Despite
its significance for non-Hermitian topological phases, the relevance of the skin effect to quantum
entanglement and critical phenomena has remained unclear. Here, we find that the skin effect induces a
nonequilibrium quantum phase transition in the entanglement dynamics. We show that the skin effect gives
rise to a macroscopic flow of particles and suppresses the entanglement propagation and thermalization,
leading to the area law of the entanglement entropy in the nonequilibrium steady state. Moreover, we reveal
an entanglement phase transition induced by the competition between the unitary dynamics and the skin
effect even without disorder or interactions. This entanglement phase transition accompanies non-
equilibrium quantum criticality characterized by a nonunitary conformal field theory whose effective
central charge is extremely sensitive to the boundary conditions. We also demonstrate that it originates
from an exceptional point of the non-Hermitian Hamiltonian and the concomitant scale invariance of the
skin modes localized according to the power law. Furthermore, we show that the skin effect leads to the
purification and the reduction of von Neumann entropy even in Markovian open quantum systems
described by the Lindblad master equation. Our work opens a way to control the entanglement growth and
establishes a fundamental understanding of phase transitions and critical phenomena in open quantum
systems far from thermal equilibrium.
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I. INTRODUCTION

Nonequilibrium quantum dynamics provides a profound
understanding about quantum many-body systems. Closed
quantum systems driven out of equilibrium eventually
reach thermal equilibrium, which validates the foundations
of quantum statistical mechanics [1–4]. Thanks to the
recent advances in quantum simulations and technologies,
such thermalization dynamics was experimentally obser-
ved in ultracold atoms [5–7] and trapped ions [8].
Thermalization arises from the propagation of quantum
correlations and entanglement throughout the whole system
and the consequent entanglement entropy proportional to
the volume of the subsystem [9–11]. Beyond closed
quantum systems, the nonequilibrium dynamics of open
quantum systems has recently been studied extensively.

Researchers have found entanglement phase transitions
induced by quantum measurements [12–25]. There, suffi-
ciently strong quantum measurements prevent thermal-
ization and drive the system into a steady state far from
equilibrium for which the entanglement entropy is only
proportional to the boundary of the subsystem (i.e., the area
law [26]). Such measurement-induced phase transitions
also accompany nonequilibrium critical phenomena unique
to open quantum systems.
As another platform of open systems, the physics effec-

tively described by non-Hermitian Hamiltonians has recently
attracted growing interest [27,28]. In the classical regime,
non-Hermiticity is implemented by controlling gain and loss,
and leads to unique phenomena and functionalities without
Hermitian counterparts, such as power oscillations [29–31],
unidirectional invisibility [32–35], high-performance lasers
[36–40], and enhanced sensitivity [41–43]. In the quantum
regime, effective non-Hermitian Hamiltonians are justi-
fied as conditional dynamics subject to continuous moni-
toring and postselection of the null measurement outcome
[44–48], as well as the Feshbach projection formalism
[49–52]. Non-Hermitian systems have been realized in
several open quantum systems, including atoms [53–55],
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photons [56–59], exciton polaritons [60], electronic spins
[61,62], and superconducting qubits [63]. On the theoretical
side, researchers have studied open quantum dynamics of
non-Hermitian systems [64–72]. Notably, non-Hermitian
systems at critical points support anomalous singularities
called exceptional points [73–75], at which the non-
Hermitian Hamiltonians are no longer diagonalizable.
Phase transitions and critical phenomena due to exceptional
points date back to the Yang-Lee edge singularity [76–79].
Exceptional points are also the key to the real-complex
spectral transition protected by parity-time symmetry [80,81]
and induce new universality classes of phase transitions in
non-Hermitian quantum systems [82–92].
Another unique feature of non-Hermitian systems is

the skin effect [93–95]. This is anomalous localization
of an extensive number of eigenstates driven by reciprocity-
breaking non-Hermiticity, which has no analogs in Hermi-
tian systems. The skin effect plays a central role in the
topological phases of non-Hermitian systems [96–112].
Since the skin effect leads to extreme sensitivity of the bulk
to the boundary conditions, it changes the nature of the
bulk-boundary correspondence [93–95,113–120]. More-
over, the skin effect originates from the topological invari-
ants intrinsic to non-Hermitian systems [111,121,122]. The
skin effect has recently been observed in classical experi-
ments of mechanical metamaterials [123], electrical circuits
[124,125], photonic lattices [126], and active particles
[127], as well as quantum experiments of single photons
[128] and ultracold atoms [129]. In these experiments,
reciprocity-breaking dissipation is introduced by the asym-
metry of the hopping amplitudes. It is also relevant to
Liouvillians for a quantum master equation [130–134]. The
skin effect may open up a way to actively control the phases
of matter.
Despite the significance of the skin effect for non-

Hermitian topological phases, its impact on the genuine
quantum nature has remained unclear. While several
recent works studied the entanglement dynamics in non-
Hermitian quantum systems [66–72], they focused only on
non-Hermitian systems that are subject to reciprocal dis-
sipation and free from the skin effect. On the basis of the
important role of the skin effect in non-Hermitian physics,
it may crucially change the entanglement dynamics in open
quantum systems. Furthermore, the relevance of the skin
effect on quantum phase transitions has also been unclear.
The previous works focused on the Yang-Lee edge singu-
larity [76–79] and its variants [57,67,85–88,91,92], which
do not accompany the skin effect. Although the skin effect
may lead to new universality classes of phase transitions
and critical phenomena far from thermal equilibrium, no
research has hitherto addressed this problem.
In this work, we study the impact of the skin effect on the

entanglement dynamics and nonequilibrium phase transi-
tions in open quantum systems. First, we show that the skin
effect gives rise to a macroscopic flow of particles and

suppresses the entanglement propagation, leading to a
nonequilibrium steady state characterized by the area
law of entanglement entropy. This is contrasted with the
thermal equilibrium states, which exhibit the volume law
of entanglement entropy. Second, we reveal a new type of
entanglement phase transition induced by the skin effect.
It arises from the competition between coherent coupling
and nonreciprocal dissipation; the nonequilibrium steady
state exhibits the volume law for small dissipation but the
area law for large dissipation, between which the entan-
glement entropy grows subextensively (i.e., logarithmically
with respect to the subsystem size). Anomalously, this
nonequilibrium quantum criticality is characterized by a
nonunitary conformal field theory whose effective central
charge is extremely sensitive to the boundary conditions.
We also demonstrate that it originates from an excep-
tional point in the non-Hermitian Hamiltonian and the
concomitant scale invariance of the skin modes localized
according to the power law. In addition to the conditio-
nal dynamics effectively described by non-Hermitian
Hamiltonians, we show that the skin effect leads to the
purification and the reduction of von Neumann entropy
even in Markovian open quantum systems described by
the Lindblad master equation.
From these results, we show that the skin effect is a new

mechanism that triggers entanglement phase transitions
and nonequilibrium critical phenomena in open quantum
systems. The measurement-induced phase transitions typ-
ically rely on spatial or temporal randomness [12–25] while
they can occur in some models with no randomness except
in measurement outcomes [14]. The entanglement phase
transition in this work relies not on any randomness but
on the skin effect. While the Yang-Lee edge singularity
[76–79] originates from an exceptional point, it does not
accompany the skin effect. Furthermore, the boundary-
sensitive effective central charge, which implies a new
universality class, has never been reported in conformal
field theory. Since the skin effect is a universal phenome-
non arising solely from non-Hermitian topology, our
entanglement phase transition can generally appear in a
wide variety of open quantum systems. We hope that these
results will deepen our understanding of quantum phases
far from thermal equilibrium.
The rest of this work is organized as follows. In Sec. II,

we describe general behavior of the entanglement dynamics
in closed and open quantum systems. In Sec. III, we show
the entanglement suppression induced by the skin effect for
a non-Hermitian spinless-fermionic model. In Sec. IV, we
demonstrate the entanglement phase transition and discuss
its nonequilibrium quantum criticality for a non-Hermitian
spinful-fermionic model. In Sec. V, we show that the
skin effect leads to the purification and reduction of von
Neumann entropy in a Liouvillian of the Lindblad master
equation. In Sec. VI, we conclude this work with several
outlooks. In Appendix A, we describe the implementation
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of effective non-Hermitian Hamiltonians in the quantum
trajectory approach. In Appendix B, we describe the
numerical method to effectively simulate the dynamics
of non-Hermitian free fermions. In Appendix C, we provide
additional numerical results for different initial conditions.
In Appendix D, we describe details of the Liouvillian
skin effect.

II. ENTANGLEMENT DYNAMICS AND
NON-HERMITIAN SKIN EFFECT

Before the detailed calculations, we discuss the general
behavior of nonequilibrium dynamics in closed and open
quantum systems. For simplicity, we assume the quasipar-
ticle picture, which is applicable to integrable systems
discussed in this work. Under the time evolution of closed
quantum systems, the quasiparticles coherently move in all
the directions and diffuse throughout the entire system
[Fig. 1(a)]. Such a bidirectional propagation of quasipar-
ticles arises from the conservation of the particle number
and energy. Consequently, quantum correlations develop
throughout the system, leading to extensive entanglement
for the steady state. This means the entanglement entropy
proportional to the subsystem size, i.e., volume law (S ∝ ld

with the subsystem length l and spatial dimensions d) [9].
The volume law of the entanglement entropy lies at the
heart of thermalization and validates quantum statistical
mechanics [1–4].
In open quantum systems, the particle number or energy

is not necessarily conserved because of the coupling to the
external environment. As a direct result of the violation
of the conservation laws, quasiparticles can be amplified
or attenuated. As long as such an external coupling is
reciprocal, quantum correlations propagate uniformly

throughout the system in a manner similar to closed
quantum systems. However, when the external coupling
is nonreciprocal, quasiparticles can be amplified toward
one direction and attenuated toward the other direction
[Fig. 1(b)]. In such a case, the quasiparticles move only in
one direction and accumulate at a boundary for a suffi-
ciently long time, i.e., non-Hermitian skin effect [93–95].
Since the quasiparticles are present only at a boundary,
the quantum correlations extend not over the entire system
but only at the boundary. The entanglement is greatly
suppressed and carried only by the skin modes at the
boundary, leading to the area law of the entanglement
entropy (i.e., S ∝ ld−1). This is a unique consequence of
nonreciprocal dissipation for quantum entanglement
dynamics. We confirm such a suppression of entanglement
for a non-Hermitian spinless-fermionic model (i.e., Hatano-
Nelson model [135]) in Sec. III.
Notably, an extensive number of localized modes are

needed for the entanglement suppression. A possible
known mechanism that gives rise to it is disorder. In the
presence of sufficiently strong disorder, the system is
subject to the Anderson [136,137] or many-body [3]
localization, in which thermalization is prohibited. We
emphasize that the skin effect is a different mechanism
that suppresses the entanglement growth. In fact, the skin
effect does not rely on disorder, and occurs only in open
quantum systems. The skin effect originates solely from
non-Hermitian topology [111,121,122] and hence appears
in a wide variety of open quantum systems.
Even if the skin effect suppresses the quasiparticle

diffusion and the entanglement propagation, it is unclear
whether the skin effect can compete with the unitary
dynamics and give rise to a continuous phase transition.
In fact, in the Hatano-Nelson model and many other non-
Hermitian models, even infinitesimal non-Hermiticity
causes the skin effect and results in no continuous phase
transition. Nevertheless, we show that the skin effect indeed
induces new nonequilibrium phase transitions and critical
phenomena intrinsic to open quantum systems. There, an
entanglement phase transition arises from the competition
between the coherent coupling and the nonreciprocal
dissipation: the system reaches a thermal equilibrium state
exhibiting the volume law for small dissipation while it
reaches a nonequilibrium steady state exhibiting only the
area law for large dissipation, between which the entan-
glement entropy grows subextensively (i.e., S ∝ log l)
with an unconventional nonequilibrium quantum critica-
lity described by a nonunitary conformal field theory.
We demonstrate such an entanglement phase transition
induced by the skin effect by explicitly constructing and
investigating an illustrative example of non-Hermitian
spinful-fermionic models (i.e., symplectic Hatano-Nelson
model [122,138]) in Sec. IV.
As well as the conditional dynamics effectively

described by non-Hermitian Hamiltonians, the skin effect

(a)

(b)

FIG. 1. Quasiparticle propagation in closed and open quantum
systems. (a) Closed quantum systems. Quasiparticles propagate
in both directions and diffuse throughout the system, leading to
the volume law of entanglement entropy. (b) Open quantum
systems subject to the skin effect. Nonreciprocal dissipation
makes quasiparticles move toward only one direction, sup-
pressing the entanglement propagation and leading to the area
law of entanglement entropy.
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has a considerable impact also on the open quantum
dynamics described by a master equation. While a
Markovian open quantum system typically exhibits the
thermal equilibrium state with infinite temperature as
the steady state, the skin effect dramatically changes the
properties of the steady state toward far from equilibrium.
We show the purification and suppression of von Neumann
entropy for Markovian open quantum systems described by
the Lindblad master equation in Sec. V.
Entanglement phase transitions can also occur as a

consequence of the competition between the unitary
dynamics and quantum measurements [12–25]. However,
the entanglement phase transition in this work exhibits
properties distinct from the measurement-induced phase
transitions. First, the boundary-sensitive critical behaviors
have never been found in the previous works on the
measurement-induced phase transitions. Additionally, the
measurement-induced phase transitions typically rely on
spatial or temporal randomness and many-body inter-
actions aside from some exceptions [25]. By contrast,
the skin effect induces the entanglement phase transition
even without randomness and interactions, which enables
a deep understanding of the phase transition and critical
behavior in open quantum systems. Furthermore, the
measurement-induced phase transitions manifest them-
selves only in a conditional quantum trajectory postselected
by measurements and disappear in the open quantum
dynamics averaged over multiple quantum trajectories.
On the other hand, the skin effect occurs and yields
purification even in the averaged open quantum dynamics
described by the Markovian master equation.

III. ENTANGLEMENT SUPPRESSION INDUCED
BY THE NON-HERMITIAN SKIN EFFECT

We study the nonequilibrium quantum dynamics
induced by the non-Hermitian skin effect. To this end,
we investigate the Hatano-Nelson model [135] as a
prototypical example that exhibits the skin effect:

Ĥ ¼ −
1

2

X
l

½ðJ þ γÞĉ†lþ1ĉl þ ðJ − γÞĉ†l ĉlþ1�; ð1Þ

where ĉl (ĉ†l ) annihilates (creates) a spinless fermion at
site l, J > 0 denotes the Hermitian hopping amplitude,
and γ ∈ R denotes the asymmetric hopping amplitude as a
source of non-Hermiticity. Here, we assume jγj < J for
simplicity. The asymmetric hopping can be implemented
in the quantum trajectory approach (see Appendix A for
details) [44–48] and has been realized in the recent experi-
ments of single photons [128] and ultracold atoms [129].
Under the periodic boundary conditions, the Bloch

Hamiltonian for the Hatano-Nelson model reads

HðkÞ ¼ −J cos kþ iγ sin k: ð2Þ

Thus, the complex-valued spectrum of HðkÞ winds around
the origin in the complex-energy plane when the momen-
tum k goes around the Brillouin zone ½0; 2πÞ. From this
complex-spectral winding, we introduce a topological
invariant [104,105]:

W ≔ −
I

2π

0

dk
2πi

d
dk

log det HðkÞ: ð3Þ

Since such complex-spectral winding is ill defined in
Hermitian systems, the winding number W is intrinsic
to non-Hermitian systems. As a consequence of the
intrinsic non-Hermitian topology, an extensive number of
boundary modes appear under the open boundary con-
ditions [121,122], i.e., non-Hermitian skin effect [93–95].
While we here focus on the Hatano-Nelson model
in Eq. (1) as a prototypical example, the skin effect
generally occurs and leads to the entanglement suppression
as long as the intrinsic non-Hermitian topology is non-
trivial W ≠ 0.
In the following, we impose the open boundary conditions

and prepare the initial state as the charge density wave state,

jψ0i ¼
�YL=2

l¼1

ĉ†2l

�
jvaci; ð4Þ

where jvaci is the fermionic vacuum state, and the system
length L is assumed to be even. The many-particle wave
function evolves by the non-Hermitian Hamiltonian Ĥ in
Eq. (1) as

jψðtÞi ¼ e−iĤtjψ0i
ke−iĤtjψ0ik

: ð5Þ

Despite non-Hermiticity of the Hamiltonian, the particle
number N ¼ L=2 is conserved under dynamics. Thanks to
the free (i.e., quadratic) nature of the model, its dynamics
can be efficiently calculated (see Appendix B for details).
We show that the skin effect leads to a nonequilibrium
steady state whose entanglement is suppressed, which is to
be contrasted with the thermal equilibrium states in closed
quantum systems. While we here consider Eq. (4) as an
initial state, the entanglement suppression depends only on
the skin effect, and the specific details of the initial state
should be irrelevant.

A. Skin effect

We begin with investigating the time evolution of the
local particle number:

nlðtÞ ≔ hψðtÞjn̂ljψðtÞi: ð6Þ
In Hermitian systems, particles are distributed uniformly
[Fig. 2(a)]. In the presence of non-Hermiticity, by contrast,
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particles accumulate at the right (left) edge of the system for
γ > 0 (γ < 0) [Fig. 2(b)]. Such localization of an extensive
number of particles is impossible in closed quantum
systems and is a clear signature of the non-Hermitian skin
effect.
The skin effect can be understood by the imaginary

gauge transformation [GL(1) gauge transformation;
GLðnÞ is the general linear group of n × n invertible
matrices] [94,119,135]. Let us introduce the new fermionic
operators by

p̂†
l ≔ elθĉ†l ; q̂l ≔ e−lθĉl; ð7Þ

where θ ∈ C plays a role of the complex-valued gauge. The
Hamiltonian in Eq. (1) is rewritten as

Ĥ ¼ −
1

2

XL−1
l¼1

h
e−θðJ þ γÞp̂†

lþ1q̂l þ eθðJ − γÞp̂†
l q̂lþ1

i
: ð8Þ

In particular, when we choose θ so that it will satisfy
e−θðJ þ γÞ ¼ eθðJ − γÞ, i.e.,

θ ¼ 1

2
log

�
J þ γ

J − γ

�
; ð9Þ

the Hamiltonian reduces to

Ĥ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − γ2

p
2

XL−1
l¼1

�
p̂†
lþ1q̂l þ p̂†

l q̂lþ1

�
: ð10Þ

Now that the asymmetric hopping formally disappears, the
Hamiltonian is diagonalized to

Ĥ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − γ2

q X
k

ðcos kÞp̂†
kq̂k ð11Þ

by the Fourier transforms,

p̂k ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Lþ 1

r XL
l¼1

p̂l sinðklÞ; ð12Þ

q̂k ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Lþ 1

r XL
l¼1

q̂l sinðklÞ; ð13Þ

with momentum k ¼ nπ=ðLþ 1Þ (n ¼ 1; 2;…; L). Thus,
the spectrum of Ĥ is entirely real. Non-Hermiticity of Ĥ
originates solely from the nonorthogonality of the quasi-
particles (i.e., p̂k ≠ q̂k). In the presence of the skin effect,
while the spectrum of an infinite non-Hermitian system
coincides with the infinite-size limit of the spectrum of the
corresponding finite system with periodic boundaries, it
does not coincide with the spectrum of the infinite-size
limit of the corresponding finite system with open boun-
daries [122,139]. This extreme sensitivity yields unique
open quantum phenomena, as we show below.
Because of the GL(1) transformation in Eq. (7), the

quasiparticle p̂k is exponentially localized at the right (left)
edge while the quasiparticle q̂k is exponentially localized
at the left (right) edge for Reθ > 0 (Reθ < 0). All the
quasiparticles are localized at the edges, which is the
hallmark of the skin effect unique to non-Hermitian
systems. Thus, the Hamiltonian Ĥ annihilates the quasi-
particles around one edge and creates the quasiparticles
around the other edge under its time evolution. Here, θ−1

characterizes the localization length of the quasiparticles. It
should be noted that the above transformation is possible
only for the open boundary conditions and is unfeasible
so that the periodic boundary conditions can be satisfied.
The quasiparticles form Bloch waves delocalized through-
out the system under the periodic boundary conditions,
where no length scale appears as a consequence of non-
Hermiticity. The emergent length scale θ−1 is unique to the
open boundary conditions.
We also investigate the time evolution of the correlation

matrix,

CijðtÞ ≔ hψðtÞjĉ†i ĉjjψðtÞi; ð14Þ

for i; j ¼ 1; 2;…; L. In the absence of non-Hermiticity, the
quasiparticles propagate in both directions, leading to the
diffusion of particles and quantum information [Fig. 3(a)].
In the presence of non-Hermiticity, on the other hand, the
quasiparticles cease to move, and the correlation propaga-
tion is frozen [Fig. 3(b)]. This is another consequence of the
skin effect. Because of the localization of the quasiparticles,
they move toward the right (left) edge for γ > 0 (γ < 0) at
the beginning of the dynamics. However, once the quasi-
particles accumulate at the edge, they are no longer mobile
because of the Pauli exclusion principle. Under the skin
effect, the system soon reaches a nonequilibrium steady
state in which an extensive number of particles are
localized at an edge. It is noteworthy that the frozen

(a) (b)

0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Time evolution of the local particle number nlðtÞ ≔
hψðtÞjn̂ljψðtÞi in the Hatano-Nelson model with open boundaries
(L ¼ 100, J ¼ 1.0) for (a) γ ¼ 0.0 and (b) γ ¼ 0.8. The initial
state is prepared as the charge density wave state in Eq. (4). In the
presence of non-Hermiticity, particles accumulate at the
boundary, which is a clear signature of the non-Hermitian skin
effect.
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correlation propagation due to the skin effect is different
from the supersonic correlation propagation in non-
Hermitian quantum systems with reciprocal dissipation
[66,67]. This difference also shows a unique role of the
skin effect in open quantum systems.

B. Current

Next, we investigate the charge current,

IlðtÞ ≔ hψðtÞjÎljψðtÞi; ð15Þ

where Îl is the local current operator between sites l
and lþ 1:

Îl ≔
iJ
2
ðĉ†l ĉlþ1 − ĉ†lþ1ĉlÞ: ð16Þ

While no current flows in closed quantum systems at
thermal equilibrium, the skin effect gives rise to a current in
open quantum systems. Figure 4 shows the behavior of the
total charge current IðtÞ ≔P

L−1
l¼1 IlðtÞ induced by the skin

effect. In the presence of non-Hermiticity, the current takes
a nonzero steady value for sufficiently long time [Fig. 4(a)].
This means that the system reaches a nonequilibrium steady

state accompanying a nonzero current in contrast with the
thermal equilibrium states, where the current should vanish
[i.e., I ¼ oðLÞ] [140]. The current for the steady state
monotonically increases as a function of non-Hermiticity
[Fig. 4(b)]. Furthermore, it grows linearly with respect to
the system length L [Fig. 4(c)] and hence is indeed a
macroscopic quantity. The macroscopic current induced
by the skin effect may be characterized by topological field
theory [111].
To understand how the skin effect gives rise to a

current in more detail, we also study the local distribution
of the current (Fig. 5). Notably, in the presence of non-
Hermiticity, the current arises only in the bulk and vanishes
around the edges [Fig. 5(b)]. On the basis of the local
particle distribution in Fig. 2(b), the current arises only in
the region where the particles are neither dense nor sparse.
This is because particles cannot enter such dense or sparse
regions from the environment because of the Pauli exclu-
sion principle. It is also compatible with the frozen
correlation propagation in Fig. 3(b). Moreover, the con-
tinuity equation of our non-Hermitian system reads

∂

∂t
nl þ ðIl − Il−1Þ ¼ σl; ð17Þ

where σl is the local inflow of particles from the external
environment at site l. In Hermitian systems, σl vanishes
for arbitrary l and t owing to the conservation of the particle
number [Fig. 5(c)]. Under the skin effect, a pair of a
source and sink appears, between which the current flows
[Fig. 5(d)]. It is also notable that the current does not arise
for small non-Hermiticity or a short system length (Fig. 4).
In such a case, the localization length of the many-body
skin modes is comparable with the system length, and
consequently particles cannot enter the system from the
environment.

C. Entanglement dynamics

The non-Hermitian skin effect gives rise to a nonequili-
brium flow not only of particles but also of quantum
information. To show this, we investigate the time evolu-
tion of the entanglement entropy in the Hatano-Nelson

(a) (b)

0

0.02

0.04

0.06

0.08

0.10

FIG. 3. Correlation propagation in the Hatano-Nelson model
with open boundaries (L ¼ 100, J ¼ 1.0) for (a) γ ¼ 0.0 and
(b) γ ¼ 0.8. The absolute values jCl;l0 j of the correlation matrix
are shown as a function of site l and time t with l0 ¼ L=2 ¼ 50.
The initial state is prepared as the charge density wave state in
Eq. (4). In the presence of non-Hermiticity, the correlation
propagation is frozen as a consequence of the non-Hermitian
skin effect.

(a) (b) (c)

FIG. 4. Total charge current IðtÞ ≔P
L−1
l¼1 hψðtÞjÎljψðtÞi in the Hatano-Nelson model with open boundaries (J ¼ 1.0). The initial state

is prepared as the charge density wave state in Eq. (4). (a) Time evolution of the current (L ¼ 100) for γ ¼ 0.0 (black dashed curve),
0.2 (blue curve), 0.4 (green curve), 0.6 (light green curve), 0.8 (orange curve), and 1.0 (red curve). (b) Charge current for the steady state
as a function of non-Hermiticity γ for L ¼ 100. (c) Charge current for the steady state as a function of the system length for γ ¼ 0.8.
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model. We focus on the von Neumann entanglement
entropy SðL; lÞ between the subsystem in ½1; l� and the
rest of the system. Here, we calculate the entanglement
entropy from a single wave function jψðtÞi instead of the
biorthogonal density operator [87,89,91]. In Hermitian
systems, SðL; lÞ grows linearly in time until it saturates
to the extensive entanglement entropy S ∝ l [9,141], which
is consistent with our numerical calculations for γ ¼ 0
[Fig. 6(a)]. In the presence of non-Hermiticity, however, the
growth of the entanglement entropy is greatly suppressed.
The entanglement entropy for the steady state is much
smaller than that for the Hermitian case and monotonically
decreases as a function of non-Hermiticity [Fig. 6(b)].
In the Hermitian case γ ¼ 0, the steady-state entanglement
entropy grows linearly with the system length, i.e., volume
law; in the non-Hermitian case γ ≠ 0, the steady-state
entanglement entropy is independent of the system length,
i.e., area law [Figs. 6(c) and 6(d)].
The suppression of the entanglement entropy originates

from the skin effect. In closed quantum systems, the
quasiparticles diffuse throughout the system and let
the system be a thermal equilibrium state exhibiting the
extensive entanglement entropy. On the other hand, a
macroscopic current from the external environment pushes
the quasiparticles only in one direction and forbids quan-
tum diffusion throughout the system. Consequently, the
quasiparticles are localized only at one edge (i.e., skin
effect) and cannot develop a global quantum correlation,
leading to the area law of the entanglement entropy for the
nonequilibrium steady state.

It should be noted that the area law of the entanglement
entropy can also occur in non-Hermitian systems with
broken parity-time symmetry [70]. In such systems, the
suppression of the entanglement is due to the relaxation
toward a pure state with the largest imaginary part of the
complex-valued energy. By contrast, our non-Hermitian
system hosts the entirely real spectrum under the open
boundary conditions and hence does not rely on parity-
time-symmetry breaking. The non-Hermitian skin effect is
a new mechanism of open quantum systems that hinders the
growth of the quantum correlation and entanglement.

IV. ENTANGLEMENT PHASE TRANSITION
INDUCED BY THE NON-HERMITIAN

SKIN EFFECT

In the Hatano-Nelson model, even infinitesimal non-
Hermiticity induces the skin effect and makes the system
relax to far from equilibrium. To understand the non-
equilibrium quantum criticality induced by the skin effect,
we consider the symplectic generalization of the Hatano-
Nelson model [122,138]:

Ĥ ¼ −
1

2

XL
l¼1

½ĉ†lþ1ðJ þ γσz − iΔσxÞĉl

þ ĉ†l ðJ − γσz þ iΔσxÞĉlþ1�; ð18Þ

(a) (b)

(c) (d)

FIG. 5. Local current distribution in the Hatano-Nelson model
with open boundaries (J ¼ 1.0). The initial state is prepared as
the charge density wave state in Eq. (4). (a),(b) Time evolution
of the local current IlðtÞ ≔ hψðtÞjÎljψðtÞi for (a) γ ¼ 0.0 and
(b) γ ¼ 0.8. (c),(d) Time evolution of the local particle inflow for
(c) γ ¼ 0.0 and (d) γ ¼ 0.8.

(a) (b)

(c) (d)

FIG. 6. Entanglement entropy (EE) of the Hatano-Nelson
model with open boundaries (J ¼ 1.0). The initial state is
prepared as the charge density wave state in Eq. (4). (a) Time
evolution of the entanglement entropy SðL;L=2Þ (L ¼ 100) for
γ ¼ 0.0 (black dashed curve), 0.1 (violet curve), 0.2 (blue curve),
0.4 (green curve), 0.6 (light green curve), 0.8 (orange curve), and
1.0 (red curve). (b) Entanglement entropy SðL; L=2Þ for the
steady state as a function of non-Hermiticity γ (L ¼ 100).
(c) Entanglement entropy SðL; L=2Þ for the steady state as a
function of the system length L. (d) Entanglement entropy SðL; lÞ
(L ¼ 100) for the steady state as a function of the subsystem
length l.
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with Pauli matrices σi’s (i ¼ x, y, z). The fermionic
annihilation operator ĉl ¼ ðĉl;↑ĉl;↓ÞT [creation operator
ĉ†l ¼ ðĉ†l;↑ĉ†l;↓Þ] now includes the spin degree of freedom.
Because of non-Hermiticity γ > 0 (γ < 0), the up-spin
fermions are pushed toward the right (left) while the down-
spin fermions are pushed toward the left (right). In addition,
Δ ∈ R controls the spin-orbit coupling between the up-spin
fermions and down-spin fermions. Owing to the spin-orbit
coupling Δ, the model is free from the skin effect even in
the presence of non-Hermiticity γ as long as jγj < jΔj is
satisfied. Similarly to the original Hatano-Nelson model,
the symplectic Hatano-Nelson model in Eq. (18) can be
implemented in the quantum trajectory approach (see
Appendix A for details). It is notable that non-Hermitian
spin-orbit-coupled fermions have been realized in recent
experiments of ultracold atoms [55], and our model can
also be realized in a similar experiment.
Under the periodic boundary conditions, the Bloch

Hamiltonian of the symplectic Hatano-Nelson model reads

HðkÞ ¼ −J cos kþ ðiγσz þ ΔσxÞ sin k; ð19Þ

whose complex spectrum is obtained as

EðkÞ ¼ −J cos k� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − Δ2

q
sin k: ð20Þ

Therefore, for small non-Hermiticity jγj < jΔj, the spectrum
is entirely real, and no skin effect occurs. For large non-
Hermiticity jγj > jΔj, on the other hand, each band is
characterized by the complex-spectral winding and subject
to the skin effect [122]. There, up-spin fermions and down-
spin fermions are localized at opposite boundaries. This
reciprocal skin effect is ensured by the Z2 topological
invariant ν ∈ f0; 1g unique to non-Hermitian systems [105]:

ð−1Þν ≔ sgn

�
Pf½Hðk ¼ πÞT�
Pf½Hðk ¼ 0ÞT�

× exp

�
−
1

2

Z
k¼π

k¼0

d log det ½HðkÞT�
	


; ð21Þ

with the unitary operator T ≔ σy for the symplectic Hatano-
Nelson model. The presence or absence of the skin effect is
controlled by the competition between non-Hermiticity γ
and spin-orbit coupling Δ, and jγj ¼ jΔj marks a phase
transition point, between which the skin effect occurs or not
(Fig. 7). The reciprocal skin effect generally occurs as long
as theZ2 topological invariant in Eq. (21) is nontrivial. Thus,
while we here consider the symplectic Hatano-Nelson model
in Eq. (18) for illustrative purposes, the Z2 skin effect
and the concomitant entanglement phase transition should
appear in a wide variety of open quantum systems.
It is also notable that the symplectic Hatano-Nelson

model respects reciprocity, which is one of the fundamental
internal symmetry for non-Hermitian systems [105].

In fact, the non-Hermitian Hamiltonian in Eq. (18) respects
reciprocity,

T̂Ĥ†T̂−1 ¼ Ĥ; ð22Þ

where T̂ is an antiunitary operator satisfying T̂ĉlT̂
−1 ¼ σyĉl

and T̂zT̂−1 ¼ z� for z ∈ C. In terms of the Bloch
Hamiltonian in Eq. (19), reciprocity is written as

THTðkÞT−1 ¼ Hð−kÞ; TT� ¼ −1; ð23Þ

with the unitary operator T ≔ σy. The Kramers pair
structure between up-spin and down-spin fermions, as well
as the concomitant skin effect, is protected by reciprocity.
Below, we study the nonequilibrium quantum dynamics

of the symplectic Hatano-Nelson model. We choose the
initial state as

jψ0i ¼
�YL=2

l¼1

ĉ†2l−1;↑ĉ
†
2l;↓

�
jvaci; ð24Þ

where the system length L is assumed to be even. We
confirm that the system reaches a many-body steady state
subject to the reciprocal skin effect in Sec. IVA. This
nonequilibrium steady state is characterized by a spin
current in contrast to the thermal equilibrium states, as
we show in Sec. IV B. Furthermore, in Sec. IV C, we
demonstrate that the phase boundary jγj ¼ jΔj marks an
entanglement phase transition, between which the steady
state exhibits the volume law or the area law (Fig. 7).
The critical point jγj ¼ jΔj is characterized by a
conformal field theory that is anomalously sensitive to
the boundary conditions. In Sec. IV D, we also show that

FIG. 7. Phase diagram of the symplectic Hatano-Nelson model.
For jγj < jΔj (blue region), no skin effect occurs, and the
entanglement entropy for the steady state obeys the volume
law. For jγj > jΔj (red region), the reciprocal skin effect occurs,
and the entanglement entropy for the steady state obeys the area
law. The phase boundary jγj ¼ jΔj ≠ 0 (black line) marks critical
points, at which the skin modes exhibit the scale invariance, and
the entanglement entropy for the steady state grows subexten-
sively (i.e., logarithmically with respect to the subsystem length).
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this nonequilibrium quantum criticality originates from the
scale-invariant skin modes decaying according to the power
law. While we here choose Eq. (24) as an initial state, the
universal properties of the entanglement phase transition—
the critical behaviors in Eqs. (31), (38), and (46)—arise
solely from the scale invariance of the skin modes and
should not depend on the specific details of the initial state
(see Appendix C for details).

A. Reciprocal skin effect

We begin with investigating the time evolution of local
particle numbers for each spin (Fig. 8). Below the critical
point (i.e., jγj < jΔj), the particles are distributed almost
uniformly throughout the system. Above the critical point
(i.e., jγj > jΔj), on the other hand, the skin effect indeed
occurs, and the particles are localized at the edges. In
contrast to the original Hatano-Nelson model, up-spin
fermions are localized at the right (left) edge while
down-spin fermions are localized at the left (right) edge
for γ > 0 (γ < 0) [Fig. 8(d)]. Consequently, particles are
uniformly distributed on average. This is a unique feature
of the reciprocity-protected skin effect in the symplectic
Hatano-Nelson model.
We also investigate the correlation propagation in the

symplectic Hatano-Nelson model (Fig. 9). The correlation
matrix now includes the spin degree of freedom:

Cis;js0 ðtÞ ≔ hψðtÞjĉ†i;sĉj;s0 jψðtÞi: ð25Þ

Below the critical point (i.e., jγj < jΔj), the correlation
bidirectionally propagates throughout the system even in
the presence of non-Hermiticity, which is a signature of the
quantum diffusion. Above the critical point (i.e., jγj > jΔj),

the skin effect freezes the correlation propagation in a
similar manner to the original Hatano-Nelson model.
Notably, the quasiparticles cease to propagate even at
the critical point (i.e., jγj ¼ jΔj). The frozen correlation
propagation implies the skin effect even at the critical point.
In Sec. IV D, we indeed demonstrate the skin effect at the
critical point while the critical skin modes are localized
algebraically instead of exponentially.

B. Spin current

We next investigate the time evolution of the current.
Owing to the spin degree of freedom, we consider both the
total charge current,

Îc ≔ Î↑ þ Î↓; ð26Þ

and the total spin current,

Îs ≔ Î↑ − Î↓; ð27Þ

with

Îs ≔
iJ
2

XL−1
l¼1

ðĉ†l;sĉlþ1;s − ĉ†lþ1;sĉl;sÞ ðs ¼ ↑;↓Þ: ð28Þ

While Îs is not conserved in the presence of the spin-orbit
coupling Δ, it gives an intuitive measure for the spin
current. Even in the presence of non-Hermiticity γ, the
charge current IcðtÞ always vanishes as a consequence of
reciprocity [Fig. 10(a)]. On the other hand, the spin current
IsðtÞ exhibits characteristic behavior unique to the sym-
plectic Hatano-Nelson model. Below the critical point

FIG. 8. Time evolution of the local particle number nl;sðtÞ ≔ hψðtÞjn̂l;sjψðtÞi for s ¼ ↑ (top panels) and s ¼ ↓ (bottom panels) in the
symplectic Hatano-Nelson model with open boundaries (L ¼ 100, J ¼ 1.0, Δ ¼ 0.5). The initial state is prepared as Eq. (24). Non-
Hermiticity is chosen to be (a) γ ¼ 0.0, (b) γ ¼ 0.4, (c) γ ¼ 0.5, and (d) γ ¼ 0.8. While no skin effect occurs for jγj < jΔj, the reciprocal
skin effect occurs for jγj > jΔj.
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(i.e., jγj < jΔj), the spin current just oscillates and vanishes
after averaging over time; above the critical point (i.e.,
jγj > jΔj), the skin effect occurs and induces a nonzero spin
current. Similarly to the steady-state charge current in the
original Hatano-Nelson model, the steady-state spin current
grows as we increase non-Hermiticity or the system length
[Figs. 10(c) and 10(d)]. Thus, the system reaches a non-
equilibrium steady state with a nonzero spin current. The
spin current characterizes the nonequilibrium quantum
phases of the symplectic Hatano-Nelson model as an order
parameter. This is contrasted with the thermal equilibrium
states and the nonequilibrium steady states in the original
Hatano-Nelson model, which are respectively characterized
by zero current and nonzero charge currents.

C. Entanglement phase transition

Now, we investigate the entanglement dynamics of
the symplectic Hatano-Nelson model (Fig. 11). In the
Hermitian case γ ¼ 0, the system reaches the thermal
equilibrium state (or the generalized Gibbs state) under
the dynamics, and the entanglement entropy for the steady
state grows linearly with the system length, i.e., volume
law. Even in the presence of non-Hermiticity, the volume
law of the entanglement entropy persists for jγj < jΔj. This
contrasts with the original Hatano-Nelson model, in which
the volume law is violated by infinitesimal non-Hermiticity
(Sec. III C). The robust volume law is consistent with the
quantum diffusion of quasiparticles shown in Fig. 9. As
non-Hermiticity increases, the entanglement entropy for the
steady state gradually decreases and sharply vanishes at
jγj ¼ jΔj. For the larger non-Hermiticity jγj > jΔj, the
entanglement entropy is greatly suppressed and no longer

grows even if we increase the system length L, i.e., the area
law. Similarly to the original Hatano-Nelson model, the
area law of the steady-state entanglement entropy arises
from the skin effect. Here, jγj ¼ jΔj marks a nonequili-
brium phase transition across which the steady-state entan-
glement entropy exhibits the volume law or the area law

FIG. 9. Correlation propagation in the symplectic Hatano-Nelson model with open boundaries (L ¼ 100, J ¼ 1.0;Δ ¼ 0.5). The
absolute values jCl↑;l0↑j ¼ jCl↓;l0↓j (top panels) and jCl↑;l0↓j ¼ jCl↓;l0↑j (bottom panels) of the correlation matrix are shown as a function
of site l and time twith l0 ¼ L=2 ¼ 50. The initial state is prepared as Eq. (24). Non-Hermiticity is chosen to be (a) γ ¼ 0.0, (b) γ ¼ 0.4,
(c) γ ¼ 0.5, and (d) γ ¼ 0.8.

(a) (b)

(c) (d)

FIG. 10. Current in the symplectic Hatano-Nelson model with
open boundaries (J ¼ 1.0, Δ ¼ 0.5). The initial state is prepared
as Eq. (24). Time evolution of the (a) charge current IcðtÞ ≔
hψðtÞjÎcjψðtÞi and (b) spin current IsðtÞ ≔ hψðtÞjÎsjψðtÞi for
L ¼ 100 and γ ¼ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0. (c) Spin current
for the steady state as a function of non-Hermiticity γ for
L ¼ 100. (d) Spin current for the steady state as a function of
the system length L for γ ¼ 0.8.
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(Fig. 7). Around this transition point jγj ¼ jΔj, the density
of the steady-state entanglement entropy exhibits the
critical behavior,

SsðL;L=2Þ
L

∝
�jΔj − jγj

J

�
0.44�0.06

; ð29Þ

for jγj ≤ jΔj [Fig. 11(b)].
Notably, the entanglement phase transition induced

by the skin effect occurs even without randomness. This
contrasts with the phase transitions induced by quantum
measurements, which typically rely on spatial or temporal
randomness [12–25], although some models can exhibit the
phase transitions even without randomness [14]. The skin
effect provides a new mechanism for the entanglement
phase transition and gives rise to a new universality class of
nonequilibrium quantum phase transitions.
To unveil the nonequilibrium quantum criticality, we

further study the entanglement entropy at the transition
point jγj ¼ jΔj. We numerically calculate the steady-state
entanglement entropy as a function of the system parameter
jγ=Jj ¼ jΔ=Jj. According to the conformal field theory
description [9,142], the entanglement entropy SsðL; lÞ
of a one-dimensional quantum critical system with open

boundaries grows logarithmically with respect to the
subsystem length l:

SsðL; lÞ ¼
c
6
log

�
sin

πl
L

�
þ S0; ð30Þ

where c is the central charge that characterizes the relevant
conformal field theory, and S0 is a nonuniversal constant.
Despite non-Hermiticity, the steady-state entanglement
entropy of the symplectic Hatano-Nelson model at the
critical point jγj ¼ jΔj is well fitted by this subextensive
scaling [Fig. 12(a)]. Remarkably, the effective central
charge c is sensitive to the system parameter γ=J ¼ Δ=J
in contrast to unitary conformal field theory for closed
quantum systems [Fig. 12(b)]. It can take large values for
small non-Hermiticity jγ=Jj, in which a crossover between
the unitary and nonunitary critical points should occur. For
larger jγ=Jj, on the other hand, the effective central charge c
exhibits the power-law behavior:

c ∝ jγ=Jj−ð0.66�0.03Þ; ð31Þ
whose critical exponent is close to 2=3. Here, we identify
the effective central charge from the logarithmic scaling of
the entanglement entropy. We note that this is apparently
different from the effective central charge in the context of
nonunitary conformal field theory, which is defined by
subtracting the dimension of the lowest-dimensional oper-
ator from the central charge. Still, the parameter-dependent
effective central charge c implies nonunitary or irrational
conformal field theory that underlies the nonequilibrium
quantum criticality induced by the skin effect. It merits
further study to identify this anomalous type of conformal
field theory.
It should also be noted that a couple of recent works on

random nonunitary quantum dynamics have reported a
similar subextensive growth of the steady-state entangle-
ment entropy with the parameter-dependent effective cen-
tral charge [21,23,68]. For example, in the nonunitary
random dynamics of free fermions in Ref. [68], the
effective central charge obeys c ∝ β−1, where β is the
degree of non-Hermiticity. The different exponents, 2=3 of

(a) (b)

(c) (d)

FIG. 11. Entanglement entropy of the symplectic Hatano-
Nelson model with open boundaries (J ¼ 1.0, Δ ¼ 0.5). The
initial state is prepared as Eq. (24). (a) Time evolution of the
entanglement entropy SðL; L=2Þ (L ¼ 100) for γ ¼ 0.0 (black
dashed curve), 0.2 (blue curve), 0.4, 0.48, 0.5 (green curves), 0.6
(light green curve), and 0.8 (orange curve). (b) Entanglement
entropy density SðL; L=2Þ=L (L ¼ 100) for the steady state as a
function of non-Hermiticity γ. The black dashed curve is the
fitting result SðL; L=2Þ=L ¼ 0.94ðΔ=J − γ=JÞ0.44 around the
critical point γ ¼ Δ. (c) Entanglement entropy SðL; L=2Þ for
the steady state as a function of the system length L for γ ¼ 0.0,
0.2, 0.4, 0.45, 0.48, 0.49, 0.495, 0.5, 0.6, and 0.8. (d) Entangle-
ment entropy SðL; lÞ (L ¼ 100) for the steady state as a function
of the subsystem length l.

(a) (b)

FIG. 12. Entanglement entropy of the symplectic Hatano-
Nelson model with open boundaries (J ¼ 1.0) at the critical
point (γ ¼ Δ). The initial state is prepared as Eq. (24).
(a) Entanglement entropy SðL; lÞ (L ¼ 100) for the steady state
as a function of the subsystem length l for γ ¼ 0.0, 0.01, 0.02,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. (b) Effective
central charge c as a function of γ ¼ Δ (L ¼ 100).
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our symplectic Hatano-Nelson model and 1 of the nonuni-
tary random dynamics in Ref. [68], signal the different
universality classes of the entanglement phase transition.
Furthermore, as also discussed above, temporal randomness
plays a crucial role in the entanglement phase transitions in
Refs. [21,23,68]. By contrast, the entanglement phase
transition in this work is based not on the randomness
but on the skin effect. As shown below, it arises from the
scale invariance of skin modes, and consequently, the
underlying nonunitary conformal field theory is also anoma-
lously sensitive to the boundary conditions. Our model
provides a new type of nonequilibrium quantum phase
transitions that belongs to a different universality class.

D. Criticality of skin modes

We demonstrate that the nonequilibrium quantum criti-
cality at the phase transition point jγj ¼ jΔj originates from

the scale invariance of the skin modes due to an exceptional
point. To understand this, we first perform an imaginary
gauge transformation in a manner similar to the original
Hatano-Nelson model (Sec. III A). Here, because of the
spin degree of freedom, we consider the following SL(2)
gauge transformation rather than the GL(1) one [138]:

p̂†
l ≔ ĉ†l V

�
elθ 0

0 e−lθ

�
; q̂l ≔

�
e−lθ 0

0 elθ

�
V−1ĉl;

ð32Þ

for θ ∈ C and V ∈ SLð2Þ [SLðnÞ is the special linear group
of n × n matrices with determinant 1]. This transformation
retains reciprocity in Eqs. (22) and (23). With these new
fermion operators p̂†

l and q̂l, the symplectic Hatano-Nelson
model reads

Ĥ ¼ −
1

2

XL
l¼1

�
p̂†
lþ1

�
e−ðlþ1Þθ 0

0 eðlþ1Þθ

�
V−1ðJ þ γσz − iΔσxÞV

�
elθ 0

0 e−lθ

�
q̂l

þ p̂†
l

�
e−lθ 0

0 elθ

�
V−1ðJ − γσz þ iΔσxÞV

�
eðlþ1Þθ 0

0 e−ðlþ1Þθ

�
q̂lþ1

	
: ð33Þ

Away from the critical point jγj ¼ jΔj, the non-Hermitian
matrix J − γσz þ iΔσx can be diagonalized by appropri-
ately choosing V:

V−1ðJ − γσz þ iΔσxÞV

¼
 
J þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − Δ2

p
0

0 J −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − Δ2

p
!
: ð34Þ

Furthermore, let us choose θ such that it satisfies
e−θðJ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − Δ2

p
Þ ¼ eθðJ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − Δ2

p
Þ, i.e.,

θ ¼ 1

2
log

�
J þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − Δ2

p
J −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − Δ2

p �
: ð35Þ

With these choices of V and θ, the Hamiltonian reduces to

Ĥ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − γ2 þ Δ2

p
2

XL−1
l¼1

ðp̂†
lþ1q̂l þ p̂†

l q̂lþ1Þ; ð36Þ

in which the asymmetric hopping vanishes formally. It
can be further diagonalized similarly to Eq. (11). The
imaginary gauge transformation is feasible only under
the open boundary conditions in such a manner that the
boundary conditions are respected. The spectrum does
not show any singular behavior even across the critical
point jγj ¼ jΔj, which contrasts with the emergence of an

exceptional point under the periodic boundary conditions
(see Sec. IV E for details).
If the skin effect occurs, the localization properties of

the skin modes are captured by the quasiparticles p̂l and q̂l.
For Reθ > 0, the up-spin (down-spin) component of p̂l is
exponentially localized at the right (left) edge while the up-
spin (down-spin) component of q̂l is exponentially local-
ized at the left (right) edge. Here, all the quasiparticles are
subject to the skin effect, and no delocalized modes are
present in the bulk. The localization length ξ of the single-
particle skin modes is obtained from Eq. (35) as

ξ ¼ 1

Reθ
¼
�∞ ðjγj < jΔjÞ
1=jθj ðjγj > jΔjÞ: ð37Þ

Thus, no skin effect occurs for jγj < jΔj while the recip-
rocal skin effect occurs for jγj > jΔj, which is consistent
with our numerical calculations in Fig. 8. Notably, around
the critical point jγj ¼ jΔj, the localization length ξ exhibits
the critical behavior:

ξ ≃
Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − Δ2
p ∝ ðjγj − jΔjÞ−1=2: ð38Þ

At the critical point jγj ¼ jΔj, the localization length ξ of
the skin modes diverges, which signals the scale invariance.
Consequently, we find that there emerge skin modes
decaying according to the power law due to an exceptional
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point. At the critical point jγj ¼ jΔj, the above imaginary
gauge transformation is no longer applicable. In fact, the
non-Hermitian matrix J − γσz þ iΔσx is nondiagonalizable
for jγj ¼ jΔj and supports an exceptional point. Instead of
the diagonalization in Eq. (34), the matrix is only trans-
formed into the Jordan normal form:

V−1ðJ − γσz þ iΔσxÞVjjγj¼jΔj ¼
�
J −γ
0 J

�
: ð39Þ

As a result, the Hamiltonian reduces to

Ĥ ¼ −
J
2

XL−1
l¼1

�
p̂†
lþ1

�
1 γ=J

0 1

�
q̂l þ p̂†

l

�
1 −γ=J
0 1

�
q̂lþ1

	
:

ð40Þ

Because of the nondiagonalizability, this defective
Hamiltonian supports scale-invariant skin modes linearly
localized at the boundary. To see this, we study the spatial
distribution of the single-particle wave functions in a
transfer-matrix method (see, for example, Ref. [143]).
Let E ∈ C be a single-particle eigenenergy and jϕi ¼P

l;s ϕl;sjlijsi be the corresponding eigenstate, where l
and s denote the sites and spins, respectively. The single-
particle Schrödinger equation in real space reads

−
J
2

�
1 γ=J

0 1

�
ϕ⃗l−1 −

J
2

�
1 −γ=J
0 1

�
ϕ⃗lþ1 ¼ Eϕ⃗l; ð41Þ

with ϕ⃗l ¼ ðϕl;↑ϕl;↓ÞT . For simplicity, we consider a zero-
energy eigenstate (i.e., E ¼ 0). Then, we have

ϕ⃗lþ1 ¼ −
�
1 γ=J

0 1

�
2

ϕ⃗l−1; ð42Þ

leading to

ϕ⃗2lþ1 ¼ ð−1Þl
�
1 γ=J

0 1

�
2l

ϕ⃗1; ð43Þ

ϕ⃗2lþ2 ¼ ð−1Þl
�
1 γ=J

0 1

�
2l

ϕ⃗2: ð44Þ

As an important property of the Jordan normal form, it is
nilpotent with index 2, i.e.,

��
1 γ=J

0 1

�
− 1

	n
¼ 0; ð45Þ

for n ≥ 2. Consequently, we have

kϕ⃗2lþ1k ¼
����
�
1 2lγ=J

0 1

�
ϕ⃗1

���� ∝
2ljγj
J

kϕ⃗1k; ð46Þ

for sufficiently large l, meaning the linear growth of the
norm kϕlk of the wave function with respect to the site l.
Thus, the skin modes at the critical point are localized
linearly in contrast to the exponentially localized skin
modes off the critical point. The linear localization of
the critical skin modes gets stronger for larger non-
Hermiticity jγj, which is compatible with the decrease of
entanglement entropy as a function of jγj (Fig. 12). We note
that similar power-law decay arises even for E ≠ 0 since the
lth power of the Jordan normal form still appears. It is also
notable that the lth power of a diagonalizable matrix gives
λl with the eigenvalue λ of the matrix. The emergence of the
power law in terms of l, rather than the exponential, is a
unique feature of nondiagonalizable matrices. In general,
the (n − 1)th power-law localization kϕ⃗lk ∝ l−ðn−1Þ (l ≫ 1)
appears if an n × n Jordan matrix is concerned while only
the linear localization appears in the symplectic Hatano-
Nelson model.
The criticality of skin modes is understood also by a

continuum model. To have such a continuum model, let us
focus on a gapless point k ¼ π=2, around which the Bloch
Hamiltonian HðkÞ in Eq. (19) reads

HðkÞ ≃ Jkþ iγσz þ Δσx: ð47Þ

Now, we consider a semi-infinite system with a domain
wall at x ¼ 0. The system is prepared as a vacuum for
x < 0 while the Hamiltonian for x > 0 is

HðxÞ ¼ −iJ∂x þ iγσz þ Δσx: ð48Þ

Let E ∈ R be an eigenenergy and ϕ⃗ðxÞ ∈ C2 be the
corresponding right eigenstate. For x > 0, the Schrödinger
equation reads

ð−iJ∂x þ iγσz þ ΔσxÞϕ⃗ðxÞ ¼ Eϕ⃗ðxÞ; ð49Þ

which is solved as

ϕ⃗ðxÞ¼eiðE−iγσzþΔσxÞx=Jϕ⃗ð0Þ

¼eiEx=J
�
cosh

�
x
ξ

�
þðγσzþ iΔσxÞξ

J
sinh

�
x
ξ

�	
ϕ⃗ð0Þ;

ð50Þ

with ξ ≔ J=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − Δ2

p
[i.e., Eq. (38)]. Thus, away from the

critical point (i.e., jγj ≠ jΔj), the wave function for large x
behaves as

kϕ⃗ðxÞk ≃
(
kϕ⃗ð0Þk ðjγj < jΔjÞ
ex=ξkϕ⃗ð0Þk ðjγj > jΔjÞ;

ð51Þ

which is consistent with the results for the corresponding
lattice model. At the critical point jγj ≠ jΔj, by contrast,
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the relevant length scale ξ diverges, and the wave function
behaves as

kϕ⃗ðxÞk ≃ jγjx
J

kϕ⃗ð0Þk; ð52Þ

which also reproduces the linear localization of the skin
modes [i.e., Eq. (46)].
The scale invariance at the critical point appears also

for thermal phase transitions [144,145] and quantum
phase transitions [146] in equilibrium. At such a critical
point in equilibrium, the correlation length diverges
and the power-law correlation arises. By contrast, the
scale invariance of our non-Hermitian system originates
from the exceptional point and the concomitant scale-
invariant skin modes, which are intrinsic to open quantum
systems. Our results provide a new type of nonequili-
brium quantum criticality that has no analogs in closed
quantum systems.
We note in passing that the phase transition in the

symplectic Hatano-Nelson model is distinct from a dis-
continuous phase transition in Refs. [147,148], which
studied the finite-size scaling of skin modes in the presence
of a symmetry-breaking perturbation. In these previous
works, skin modes are localized exponentially even at
the phase transition point. By contrast, the symplectic
Hatano-Nelson model exhibits a continuous phase transi-
tion that hosts skin modes localized according to the power
law, for which the universal critical exponents such as
Eqs. (31), (38), and (46) are well defined.

E. Criticality for the periodic boundary conditions

To understand the significance of the skin effect, we
also study the entanglement dynamics of the symplectic
Hatano-Nelson model with periodic boundaries. Under the
periodic boundary conditions, the model exhibits a phase
transition also at jγj ¼ jΔj. However, the phase transition
is not characterized by the skin effect but the reality of
the spectrum. In fact, eigenstates are always delocalized
throughout the system because of translation invariance.
Meanwhile, the spectrum EðkÞ in Eq. (20) is entirely real
for jγj ≤ jΔj but no longer real for jγj > jΔj. At the critical
point jγj ¼ jΔj, the Bloch Hamiltonian HðkÞ in Eq. (19) is
not diagonalizable and forms an exceptional point.
Similarly to the open boundary conditions, the time-

averaged spin current vanishes below the critical point
(Fig. 13). Above the critical point, the spectrum is complex,
and the system relaxes to the many-body eigenstate that
possesses the largest imaginary part of the complex
spectrum. This nonequilibrium steady state is characterized
by the nonzero spin current, which is qualitatively similar
to the spin current induced by the skin effect (Fig. 10). It
should be noted that the spin current for the open boundary
conditions is carried by a superposition of many-body skin
modes instead of a single eigenstate. Around the critical

point, the steady-state spin current exhibits the power-law
behavior,

Is ∝ J

�jγj − jΔj
J

�
0.50�0.02

ðjγj ≥ jΔjÞ; ð53Þ

where the critical exponent 0.50� 0.02 is close to 1=2.
This critical exponent may be related to the point-gap
closing and the concomitant emergence of an exceptional
point, where the complex spectrum in Eq. (20) exhibits
the similar critical behavior ImEðkÞ ∝ ðjγj − jΔjÞ1=2 for
jγj ≥ jΔj.
We also study the entanglement dynamics for the

periodic boundary conditions. Qualitatively, it is similar
to the entanglement dynamics for the open boundary
conditions: the entanglement entropy of the nonequilibrium
steady state is extensive below the critical point while it is
suppressed above the critical point [Fig. 14(a)]. However,
the steady state exhibits a distinct critical behavior around
the phase transition point jγj ¼ jΔj. Below the transition
point (i.e., jγj ≤ jΔj), the density of the steady-state
entanglement entropy exhibits the critical behavior
[Fig. 14(b)],

SsðL;L=2Þ
L

∝
�jΔj − jγj

J

�
0.33�0.02

; ð54Þ

whose critical exponent 0.33� 0.02 deviates from that
under the open boundary conditions in Eq. (29). At the
critical point jγj ¼ jΔj, the steady-state entanglement
entropy under the periodic boundary conditions is much
smaller than that under the open boundary conditions.
According to conformal field theory [9,142], the entangle-
ment entropy SsðL; lÞ of a one-dimensional quantum
critical system with periodic boundaries behaves by

SsðL; lÞ ¼
c
3
log

�
sin

πl
L

�
þ S0: ð55Þ

(a) (b)

FIG. 13. Spin current in the symplectic Hatano-Nelson model
with periodic boundaries (L ¼ 100, J ¼ 1.0, Δ ¼ 0.5). The
initial state is prepared as Eq. (24). (a) Time evolution of the
spin current for γ ¼ 0.0 (black dashed curve), 0.2 (blue curve),
0.4, 0.5, 0.6 (green curves), 0.8 (orange curve), and 1.0 (red
curve). (b) Spin current for the steady state as a function of
non-Hermiticity γ. The black dashed curve is the fitting result
Is ¼ 123Jðγ=J − Δ=JÞ0.50 around the critical point γ ¼ Δ.
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We confirm that our numerical results for the steady states
are consistent with this subextensive behavior [Fig. 14(c)].
Remarkably, in contrast to the parameter-dependent central
charge for the open boundary conditions, the effective
central charge does not depend on the system parameter
jγ=Jj ¼ jΔ=Jj and is obtained as the following constant
[Fig. 14(d)]:

c ¼ 2.04� 0.08; ð56Þ

which is compatible with the effective central charge c ¼ 2
of non-Hermitian free fermions [91]. The different behavior
of the effective central charge c means the different

universality classes of the entanglement phase transition.
Moreover, we investigate the Rényi entanglement en-

tropy for the steady state, which is defined as SðnÞs ≔
ðtr log ρ̂nÞ=ð1 − nÞ for the reduced density operator ρ̂ and
coincides with the von Neumann entanglement entropy Ss
for n → 1. According to conformal field theory, the Rényi
entanglement entropy also follows the scaling in Eq. (55),
where the central charge c is replaced by cn ≔
cð1þ 1=nÞ=2 [9,142]. We also confirm this conformal
field theory scaling with respect to the Rényi index n
[Fig. 14(e)]. We note that the parameter dependence of the
effective central charge for small non-Hermiticity γ is due
to a finite-size effect that interpolates between the unitary
and nonunitary critical points.
Importantly, the mechanism of the entanglement phase

transition is different depending on the boundary conditions.
Under the periodic boundary conditions, the entanglement
phase transition originates from the real-complex spectral
transition. At the critical point, the Bloch Hamiltonian is
defective and exhibits an exceptional point. This is similar to
the entanglement phase transition due to parity-time-sym-
metry breaking [70]. In such a case, the effective central
charge is the constant in Eq. (56). Under the open boundary
conditions, on the other hand, the model exhibits no spectral
transitions. While non-Hermiticity is irrelevant to the spec-
trum, it gives rise to a length scale of the skinmodes.Then, the
nonequilibrium quantum criticality is induced by the scale
invariance of the skin modes, as discussed in Sec. IVD. The
effective central charge depends on the system parameter
[i.e., Eq. (31)] in contrast to unitary conformal field theory.
Despite these differences, the critical behavior of the

bulk modes and that of the boundary (i.e., skin) modes may
have a hidden connection with each other. In fact, the skin
effect under the open boundary conditions originates from
the non-Hermitian topological invariant under the periodic
boundary conditions [111,121,122], which can be consid-
ered as the bulk-boundary correspondence of non-
Hermitian topological systems. In this respect, it is of
importance to consider the different critical behaviors of the
bulk and boundary modes in terms of nonunitary conformal
field theory. It is also notable that while the bulk and
boundary modes are clearly separated in the symplectic
Hatano-Nelson model, they can appear simultaneously in
more generic non-Hermitian models.

V. PURIFICATION INDUCED BY THE
LIOUVILLIAN SKIN EFFECT

We have so far considered the conditional dynamics
effectively described by non-Hermitian Hamiltonians.
Notably, the skin effect occurs also in the open quantum
dynamics described by the master equation [149,150],

d
dt

ρ̂ ¼ Lρ̂; ð57Þ

(a)

(d)

(b) (c)

(e)

FIG. 14. Entanglement entropy of the symplectic Hatano-
Nelson model with periodic boundaries (L ¼ 100, J ¼ 1.0).
The initial state is prepared as Eq. (24). (a) Time evolution of
the entanglement entropy SðL; L=2Þ (Δ ¼ 0.5) for γ ¼ 0.0 (black
dashed curve), 0.2 (blue curve), 0.4, 0.5, 0.6 (green curves), 0.8
(orange curve), and 1.0 (red curve). (b) Entanglement entropy
density SðL; L=2Þ=L for the steady state as a function of non-
Hermiticity γ (Δ ¼ 0.5). The black dashed curve is the fitting
result SðL; L=2Þ=L ¼ 0.56ðΔ=J − γ=JÞ0.33 around the critical
point γ ¼ Δ. (c) Entanglement entropy SðL; lÞ for the steady
state at the critical point (γ ¼ Δ) as a function of the subsystem
length l for γ ¼ 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0. (d) Effective
central charge c as a function of γ at the critical point (γ ¼ Δ).
The black dashed line shows c ¼ 2. (e) cn obtained from the
Rényi entanglement entropy SðnÞðL; lÞ for the steady state at the
critical point (γ ¼ Δ ¼ 1.0) as a function of the Rényi index n.
The black dashed curve shows the conformal field theory result
cn ¼ cð1þ 1=nÞ=2 with c ¼ 2.

ENTANGLEMENT PHASE TRANSITION INDUCED … PHYS. REV. X 13, 021007 (2023)

021007-15



where L is a Liouvillian that acts on the density operator ρ̂
(see Appendix A for a relationship between non-Hermitian
Hamiltonians and Liouvillians in the quantum trajectory
approach). Although the Liouvillian L is not an operator
but a superoperator, it is still non-Hermitian. Consequently,
L can exhibit the skin effect in a similar manner to non-
Hermitian Hamiltonians [130–134]. Here, we demonstrate
that the Liouvillian skin effect has a significant influence
on the open quantum dynamics described by the master
equation. In particular, we show that the Liouvillian skin
effect leads to the purification and the reduction of von
Neumann entropy for the steady state.
We consider the following prototypical model that

exhibits the Liouvillian skin effect [131]:

Lρ̂ ≔
XL
l¼1

X
n¼R;L

�
L̂lnρ̂L̂

†
ln −

1

2
fL̂†

lnL̂ln; ρ̂g
�
; ð58Þ

where the jump operators are

L̂lR ≔
ffiffiffiffiffiffiffiffiffiffiffi
J þ γ

2

r
ĉ†lþ1ĉl; ð59Þ

L̂lL ≔
ffiffiffiffiffiffiffiffiffiffiffi
J − γ

2

r
ĉ†l ĉlþ1; ð60Þ

with J > 0 and jγj ≤ J. Similarly to the Hatano-Nelson
model, L̂nR and L̂nL describe the dissipative hopping from
the left to the right and from the right to the left,
respectively. Consequently, in the presence of the asym-
metry of the hopping (i.e., γ ≠ 0), the spectrum and
eigenstates of the Liouvillian dramatically change accord-
ing to the boundary conditions. In particular, the steady
state ρ̂s greatly depends on the boundary conditions. In this
Liouvillian, the total particle number N̂ ¼PL

l¼1 ĉ
†
l ĉl is

conserved. This contrasts with the Liouvillians in
Refs. [130,132,134], in which the total particle number
decreases with time.
For the single-particle case, the steady state for the

periodic boundary conditions is the completely mixed state
(see Appendix D for details),

ρ̂s ¼
1

L
; ð61Þ

while the steady state for the open boundary conditions is
the skin modes,

ρ̂s ¼
1

Z

XL
l¼1

rljlihlj; ð62Þ

with r ≔ ðJ þ γÞ=ðJ − γÞ, jli ≔ ĉ†l jvaci, and the normali-
zation constant,

Z ≔
XL
l¼1

rL ¼ rðrL − 1Þ
r − 1

: ð63Þ

We note in passing that the steady state in Eq. (62) is
formally equivalent to the Gibbs state Z−1PL

l¼1 e
−βEl jlihlj

with the linear potential βEl ≔ −l log r. While the effective
temperature is infinite in the absence of the asymmetric
hopping (i.e., γ ¼ 0), it decreases as the asymmetric
hopping jγj increases and reaches zero for the completely
asymmetric hopping γ ¼ �J.
We demonstrate that the skin effect has a considerable

influence on the open quantum dynamics even in the
Markovian regime. In particular, the skin effect can purify
mixed states. Let us prepare an initial state as the com-
pletely mixed state ρ̂0 ∝ 1 and consider the dynamics
described by the Liouvillian in Eq. (58). As shown in
Fig. 15(a), the initially low purity monotonically increases
with time. The purity for the steady state increases with the
larger asymmetry jγj, leading to a pure state for the
completely asymmetric hopping γ ¼ �J [Fig. 15(b)].
The steady-state purity is analytically obtained from
Eq. (62) as

Ps ≔ tr ρ̂2s ¼
r − 1

rþ 1

rL þ 1

rL − 1
≃
γ

J
; ð64Þ

(a) (b)

(c) (d)

FIG. 15. Purification induced by the Liouvillian skin effect
(L ¼ 50, J ¼ 1.0). The initial state is prepared as the completely
mixed state ρ̂0 ¼ 1=L with the purity P0 ¼ 1=L and the von
Neumann entropy S0 ¼ log L. (a) Time evolution of the purity
for γ ¼ 0.0 (black dashed curve), γ ¼ 0.2 (blue curve), γ ¼ 0.4
(green curve), γ ¼ 0.6 (light green curve), γ ¼ 0.8 (orange
curve), and γ ¼ 1.0 (red curve). (b) Steady-state purity as a
function of γ (red curve), consistent with the analytical result
Ps ≃ γ=J (black dashed curve). (c) Time evolution of the von
Neumann entropy. (d) Steady-state von Neumann entropy as a
function of γ (red curve), consistent with the analytical result
Ss ≃ ðJþ γ=2γÞ logðJþ γ=2γÞ− ðJ− γ=2γÞ logðJ− γ=2γÞ (black
dashed curve).
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for γ > 0 and L → ∞. This analytical formula is consistent
with the numerical results.
We also calculate the time evolution of the von Neumann

entropy S ≔ −trρ̂s log ρ̂s, as shown in Fig. 15(c). While
the reciprocal dynamics realizes the maximal entropy, the
asymmetry of the dissipative hopping lowers the entropy.
The entropy Ss for the steady state monotonically decreases
as a function of jγj, reaching zero for the completely
asymmetric case γ ¼ �J [Fig. 15(d)]. Here, Ss is also
analytically obtained as

Ss ≔ −trρ̂s log ρ̂s

¼ log Z −
log r
r − 1

LrLþ1

Z
þ log r
r − 1

≃
�
J þ γ

2γ

�
log

�
J þ γ

2γ

�
−
�
J − γ

2γ

�
log

�
J − γ

2γ

�
;

ð65Þ

for γ > 0 and L → ∞. Notably, while the steady-state
entropy Ss subextensively increases with respect to the
system length L (i.e., Ss ¼ logL) in the absence of the skin
effect, Ss is independent of L (i.e., area law) in the presence
of the skin effect. This is similar to the entanglement
suppression of the open quantum dynamics effectively
described by a non-Hermitian Hamiltonian that is discussed
in the previous sections.
The purification and suppression of the von Neumann

entropy are induced by the Liouvillian skin effect. Under
the periodic boundary conditions, no skin effect occurs, and
the steady state is the completely mixed state in Eq. (61).
Consequently, no purification occurs, and the steady state is
characterized by the maximal entropy.
It is also notable that purification can arise from quantum

measurements [12–25]. However, such measurement-
induced purification occurs only in the conditional dynam-
ics of a particular quantum trajectory. This conditional
nature of the open quantum dynamics is a key to the
measurement-induced phase transitions. By contrast, we
here demonstrate that the skin effect leads to the purifica-
tion even in the Markovian master equation characterized
by a Liouvillian, which describes the open quantum
dynamics averaged over multiple quantum trajectories.
This also shows a significant role of the skin effect in
the open quantum dynamics.

VI. DISCUSSION

The entanglement dynamics provides the foundations of
quantum statistical physics. However, the nature of entan-
glement in open quantum systems has remained elusive in
contrast to closed quantum systems. In this work, we show
that the skin effect, a universal feature intrinsic to non-
Hermitian systems, has a significant impact on the entan-
glement dynamics in open quantum systems. We show that

the skin effect suppresses the entanglement growth and
even induces an entanglement phase transition. This is
different from the known mechanism that triggers the
entanglement phase transition such as quantum measure-
ments [12–25]. While we consider the prototypical models
for illustrative purposes, the skin effect originates solely
from non-Hermitian topology, and hence our entanglement
phase transition should generally arise in a wide range of
open quantum systems. On the basis of the recent exper-
imental observations of the skin effect in open quantum
systems [128,129], as well as the realization of non-
Hermitian spin-orbit-coupled fermions [55], our results
should be observed in a similar experimental setup.
We show that our entanglement phase transition accom-

panies anomalous nonequilibrium quantum criticality that
is described by the boundary-sensitive effective central
charges [cf. the difference between Figs. 12(b) and 14(d)].
These anomalous critical behaviors imply a new univer-
sality class of phase transitions in open quantum systems.
It merits further study to derive the nonunitary conformal
field theory that describes the nonequilibrium quantum
criticality induced by the skin effect. The different critical
behaviors in the bulk and boundaries may be unified into
the same field theory. In this respect, it is worth noting
that the skin effect can be considered as a quantum
anomaly of a topological field theory intrinsic to non-
Hermitian systems [111].
Furthermore, we demonstrate that our entanglement

phase transition is induced by the criticality of skin modes
that decay according to the power law. Notably, while the
conventional Bloch band theory cannot describe the skin
modes, recent works developed a non-Bloch band theory
that correctly characterizes the skin modes [94,119,122].
However, the non-Bloch band theory only predicts the
exponentially localized skin modes and cannot describe the
critical skin modes discovered in this work. It is significant
to generally develop a modified band theory that captures
the phase transitions and critical phenomena induced by
the non-Hermitian skin effect. Additionally, the skin effect
leads to the slowdown of relaxation processes [131]. The
critical skin effect should yield the logarithmic correction
of the relaxation time.
We also show that the skin effect plays an important role

in the open quantum dynamics described by the master
equation. In particular, the skin effect changes the proper-
ties of the nonequilibrium steady state and increases the
purity and decreases the von Neumann entropy. These
findings may lead to potential applications of the skin effect
in quantum information science. They also imply that the
skin effect has a considerable impact in a wide range of
open classical and quantum dynamics. In this research
direction, it is worth studying the role of the skin effect,
for example, in quantum circuits. We note in passing that
recent works have found signatures of non-Hermitian
topology in monitored quantum circuits [151,152].
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Moreover, it is meaningful to explore the relevance of the
skin effect in classical stochastic processes such as the
asymmetric simple exclusion process [153].
Another remarkable mechanism that prohibits the quan-

tum diffusion is disorder. In closed quantum systems,
sufficiently strong disorder drives the systems into the
Anderson [136,137] or many-body [3] localization, result-
ing in the absence of thermalization. While the skin effect
also accompanies an extensive number of localized
eigenmodes similarly to the disorder-induced localization,
we emphasize that it does not rely on disorder and thus
gives a different mechanism that hinders the entanglement
propagation and thermalization. Meanwhile, it is intriguing
to consider the open quantum dynamics in the presence of
disorder. In fact, non-Hermiticity changes the universality
classes of localization transitions [135,138,154–161].
The interplay of disorder and dissipation should further
enrich phase transitions and critical phenomena in open
quantum systems.
While we focus on one-dimensional systems in this

work, it is also worthwhile to study non-Hermitian systems
in higher dimensions. Different types of skin effects appear
in higher dimensions, such as the chiral magnetic skin
effect [111,162–164], higher-order skin effect [165,166],
and defect-induced skin effect [167–169]. These higher-
dimensional skin effects may give rise to further different
universality classes of phase transitions and critical phe-
nomena in open quantum systems. It is also of interest to
study the entanglement dynamics of non-Hermitian inter-
acting systems. Several recent works have shown that
the interplay of non-Hermiticity and many-body inter-
actions leads to new quantum phases [170–177].
Similarly to the many-body localized phases due to dis-
order [178–180], many-body skin modes may exhibit the
logarithmic violation of the area law for the entanglement
growth.
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APPENDIX A: EFFECTIVE NON-HERMITIAN
HAMILTONIANS

The non-Hermitian Hamiltonians in Eqs. (1) and (18)
can be realized in the quantum trajectory approach [44–48].
Let us consider a Markovian open quantum system,

which is generally described by the Lindblad master
equation [149,150]:

d
dt

ρ̂ ¼ −i½Ĥ; ρ̂� þ
X
n

�
L̂nρ̂L̂

†
n −

1

2
fL̂†

nL̂n; ρ̂g
�
; ðA1Þ

where ρ̂ is the density operator, Ĥ is the Hamiltonian that
describes the coherent dynamics, and L̂n’s are the jump
operators that describe the coupling to the external envi-
ronment. This master equation can be written as

d
dt

ρ̂ ¼ −iðĤeff ρ̂ − ρ̂Ĥ†
effÞ þ

X
n

L̂nρ̂L̂
†
n; ðA2Þ

with the effective non-Hermitian Hamiltonian:

Ĥeff ≔ Ĥ −
i
2

X
n

L̂†
nL̂n: ðA3Þ

The last term
P

n L̂nρ̂L̂
†
n specifies each quantum trajectory

subject to stochastic loss events. Here, L̂n

ffiffiffiffiffi
dt

p
can be

considered to be a measurement operator for a signal n in
the time interval ½t; tþ dt�, and 1 − iĤeffdt can be consid-
ered to be a measurement operator for no signals. Under
continuous monitoring and postselection of the null meas-
urement outcome, the quantum jumps are no longer
relevant, and the dissipative dynamics is described by
the effective non-Hermitian Hamiltonian Ĥeff .
To obtain the Hatano-Nelson model in Eq. (1), we

choose the Hamiltonian Ĥ and the jump operators L̂l’s
(l ¼ 1; 2;…; L) to be [104]

Ĥ ¼ −
J
2

XL
l¼1

ðĉ†lþ1ĉl þ ĉ†l ĉlþ1Þ; ðA4Þ

L̂l ¼
ffiffiffiffiffi
jγj

p
½ĉl þ i sgn ðγÞĉlþ1�: ðA5Þ

Although the effective Hamiltonian Ĥeff differs from Eq. (1)
by the background constant loss −ijγjN̂ ¼ −ijγjPL

l¼1 ĉ
†
l ĉl,

it only describes the total decay of the system and does not
contribute to the dynamics of the wave function. Similarly, to
obtain the symplectic Hatano-Nelson model in Eq. (18), we
choose Ĥ and L̂l’s (l ¼ 1; 2;…; L) to be

Ĥ ¼ −
1

2

XL
l¼1

½ĉ†lþ1ðJ − iΔσxÞĉl þ ĉ†l ðJþ iΔσxÞĉlþ1�; ðA6Þ

L̂l;↑ ¼
ffiffiffiffiffi
jγj

p
½ĉl þ i sgn ðγÞĉlþ1�; ðA7Þ

L̂l;↓ ¼
ffiffiffiffiffi
jγj

p
½ĉl − i sgn ðγÞĉlþ1�: ðA8Þ

As described above, the open quantum dynamics char-
acterized by the non-Hermitian Hamiltonian is conditional,
and the success probability of having the desirable non-
Hermitian Hamiltonian can be low at long time. This is
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different from the quantum master equation, which
describes the open quantum dynamics of the mixed states
averaged over many quantum trajectories and hence is
free from the postselection. However, in certain cases, this
difficulty can be circumvented, and the effective non-
Hermitian Hamiltonian is well realized with a reasonable
probability (see, for example, Ref. [85]). In this respect, it is
also notable that a similar experimental difficulty should
arise also in the measurement-induced phase transitions.
In fact, only a quantum trajectory conditioned on a set of
measurement outcomes can exhibit an entanglement phase
transition, while the mixed quantum state averaged over
many quantum trajectories should not exhibit such a phase
transition. Still, a different way to realize the measurement-
induced phase transitions without the postselection of a
certain set of measurement outcomes has recently been
proposed [24]. Finally, while we here focus on the quantum
trajectory approach, it should be noted that the effective
non-Hermitian Hamiltonians can be justified also by the
Feshbach projection formalism [49–52].

APPENDIX B: NUMERICAL METHOD
FOR THE DYNAMICS OF NON-HERMITIAN

FREE FERMIONS

We describe a numerical method to investigate the
dynamics of non-Hermitian free (i.e., quadratic) fermions.
An initial state jψ0i evolves by the non-Hermitian
Hamiltonian Ĥ as Eq. (5). The denominator ke−iĤtjψ0ik
describes the normalization of the evolved state due to the
conditional nature of the non-Hermitian Hamiltonian. This
time evolution is equivalently described by the nonlinear
Schrödinger equation [65]:

i
d
dt

jψi ¼ ðĤ − hψ jĤjψiÞjψi: ðB1Þ

Despite non-Hermiticity of the Hamiltonian, the total
particle number is conserved under the dynamics when
the initial state is an eigenstate of the particle number
operator (i.e., N̂jψ0i ¼ Njψ0i). This is a consequence of
U(1) symmetry ½Ĥ; N̂� ¼ 0.
We first consider a spinless-fermionic system such as

the Hatano-Nelson model. We prepare an initial state as a
Gaussian state with a fixed particle number N. As an
advantage of the quadratic Hamiltonian, the evolved state
remains to be a Gaussian state through the time evolution in
Eq. (5). Thus, the state can always be represented as

jψðtÞi ¼
YN
n¼1

�XL
l¼1

UlnðtÞĉ†l
�
jvaci; ðB2Þ

where jvaci is the fermionic vacuum and U is the L × N
isometry satisfying

U†U ¼ 1: ðB3Þ

In this representation, the matrix U ¼ UðtÞ contains all
information about the quantum dynamics. In particular,
the L × L correlation matrix,

CijðtÞ ≔ hψðtÞjĉ†i ĉjjψðtÞi; ðB4Þ

is obtained as

CðtÞ ¼ ½UðtÞU†ðtÞ�T: ðB5Þ

From the correlation matrix, the local particle number in
Eq. (6) reads

nlðtÞ ¼ CllðtÞ; ðB6Þ

and the local charge current in Eq. (15) reads

IlðtÞ ¼ J Im½Clþ1;lðtÞ�: ðB7Þ

To calculate the entanglement entropy S between the
subsystem ½x1; x2� and the rest of the system, we diago-
nalize the ðx2−x1þ1Þ×ðx2−x1þ1Þ submatrix ½C�x2i;j¼x1
and obtain its eigenvalues λn’s (n ¼ 1; 2;…; x2 − x1 þ 1).
Then, the von Neumann entanglement entropy is given as

S ¼ −
Xx2−x1þ1

i¼1

½λi log λi þ ð1 − λiÞ log ð1 − λiÞ�; ðB8Þ

and the Rényi entanglement entropy is

SðnÞ ¼ 1

1 − n

Xx2−x1þ1

i¼1

log ½λni þ ð1 − λiÞn�; ðB9Þ

with the Rényi index n. Here, we calculate the entangle-
ment entropy from a single wave function instead of the
biorthogonal density operator constructed from both right
and left eigenstates [87,91].
The time evolution of U ¼ UðtÞ is efficiently calculated

as follows. After the time interval Δt, the state evolves as

jψðtþ ΔtÞi ∝ e−iĤΔtjψðtÞi

¼
YN
n¼1

�XL
l¼1

½e−ihΔtU�lnðtÞĉ†l
�
jvaci; ðB10Þ

where h is the L × L single-particle Hamiltonian (i.e.,
Ĥ ¼PL

i;j¼1 ĉ
†
i hijĉj). To restore the normalization condi-

tion hψðtÞjψðtÞi ¼ 1, we perform the QR decomposition,

e−ihΔtU ¼ QR; ðB11Þ
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where Q is an L × N matrix satisfying Q†Q ¼ 1 and R is
an upper triangular matrix. The L × N matrix Uðtþ ΔtÞ is
obtained as

Uðtþ ΔtÞ ¼ Q: ðB12Þ

In our numerical calculations, we choose Δt ¼ 0.05 for
J ¼ 1.0. This numerical method is applicable even in the
presence of spatial or temporal disorder. A similar numeri-
cal method was used to investigate the open quantum
dynamics of monitored free fermions [17,23].
The dynamics of a spinful system including the sym-

plectic Hatano-Nelson model in Eq. (18) can also be
calculated in a similar manner. In the spinful case, the
state is represented as

jψðtÞi ¼
YN
n¼1

�XL
l¼1

X
s¼↑;↓

UlsnðtÞĉ†ls
�
jvaci; ðB13Þ

where s describes the spin degree of freedom, and the
isometry U is now the 2L × N matrix satisfying U†U ¼ 1.
From U, the 2L × 2L correlation matrix C is obtained as

Cis;js0 ðtÞ ≔ hψðtÞjĉ†isĉjs0 jψðtÞi
¼ ½UðtÞU†ðtÞ�js0;is: ðB14Þ

APPENDIX C: DIFFERENT INITIAL
CONDITIONS

We provide additional numerical results on the critical
behavior in the symplectic Hatano-Nelson model for
different initial conditions. We prepare the initial state as
the fully polarized state,

jψ0i ¼
�YL

l¼1

ĉ†l;↑

�
jvaci; ðC1Þ

and obtain the effective central charge from the logarithmic
scaling of the steady-state entanglement entropy for both
open and periodic boundary conditions (Fig. 16). The
obtained effective central charges are consistent with those
for the different initial state in Eq. (24). We also prepare the
initial state as

jψ0i ¼
�YL=4

l¼1

ĉ†4l−3;↑ĉ
†
4l−3;↓

�
jvaci; ðC2Þ

which has the different particle number. Under the
open boundary conditions, the effective central charges
behave differently for jγj ≪ J, in which the universal
behavior should not be expected because of a significant

crossover between the unitary and nonunitary critical
points. For jγj ≃ J, on the other hand, the power-law
scaling c ∝ γ−2=3 in Eq. (31) appears. Under the periodic
boundary conditions, the effective central charge is
obtained as c ≃ 2 and hence consistent with those for
the different initial conditions.

APPENDIX D: DIAGONALIZATION
OF LIOUVILLIANS

We exactly solve the Liouvillian described by Eqs. (58),
(59), and (60) in the single-particle Hilbert space [131].
First, for the periodic boundary conditions, we have

Ljlihlj ¼ 1

2
½ðJ þ γÞjlþ 1ihlþ 1j

þ ðJ − γÞjl − 1ihl − 1j� − Jjlihlj; ðD1Þ

for l ¼ 1; 2;…; L. Here, jli ≔ ĉ†l jvaci is the single-particle
state at site l, and we have j0i ¼ jLi and jLþ 1i ¼ j1i
owing to the periodic boundary conditions. Notably,
Eq. (D1) is formulated in the subspace spanned solely
by the diagonal states fj1ih1j; j2ih2j;…; jLihLjg. The
matrix representation of L in this subspace coincides with
the single-particle matrix of the Hatano-Nelson model in
Eq. (1) with periodic boundaries. Therefore, the eigenval-
ues of L are

1

2
½ðJ þ γÞe−ik þ ðJ − γÞeik� − J

¼ Jðcos k − 1Þ − iγ sin k; ðD2Þ

and the corresponding eigenstates are the plane waves,

1

L

XL
l¼1

eikljlihlj; ðD3Þ

(a) (b)

FIG. 16. Effective central charge c of the symplectic Hatano-
Nelson model (L ¼ 100, J ¼ 1.0) at the critical point (γ ¼ Δ)
under the (a) open boundary conditions and (b) periodic boun-
dary conditions. For each γ ¼ Δ, the effective central charge c is
obtained from the logarithmic scaling of the steady-state entan-
glement entropy for the initial states in Eq. (24) (red dots),
Eq. (C1) (blue dots), and Eq. (C2) (green dots). The black dashed
lines are (a) c ∝ γ−2=3 and (b) c ¼ 2.
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with k ∈ f0; 2π=L; 4π=L;…; 2πðL − 1Þ=Lg. Thus, the
steady state, which is the zero mode of L, is given as
the plane wave with zero momentum k ¼ 0:

ρ̂s ¼
1

L

XL
l¼1

jlihlj: ðD4Þ

The other eigenstates superposed by off-diagonal states do
not contribute to the steady state [131].
For the open boundary conditions, on the other hand, the

Liouvillian exhibits the skin effect in a similar manner to
the Hatano-Nelson model. We still have Eq. (D1) for the
bulk l ¼ 2; 3;…; L − 1. At the boundaries, we have

Lj1ih1j ¼ J þ γ

2
j2ih2j − J þ γ

2
j1ih1j; ðD5Þ

LjLihLj ¼ J − γ

2
jL − 1ihL − 1j − J − γ

2
jLihLj: ðD6Þ

Because of the different boundary conditions, the steady
state of L is now given as

ρ̂s ∝
XL
l¼1

rljlihlj; ðD7Þ

with r ≔ ðJ þ γÞ=ðJ − γÞ.
It is also notable that the relaxation process speeds up for

the larger asymmetry γ. The relaxation time τ subject to the
Liouvillian skin effect is given as

τ ≃
L
ξΔ

; ðD8Þ

where ξ is the localization length of the skin mode,
and Δ is the Liouvillian gap [131]. From ξ ¼ 1=log r
and Δ ¼ J −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − γ2

p
for Eq. (58), we have

τ ≃
L

J −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − γ2

p log
J þ γ

J − γ
: ðD9Þ

This is a decreasing function of 0 ≤ γ ≤ J and consistent
with the numerical results in Fig. 15.
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