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In this paper, the detailed inseparability criteria of entanglement quantification of correlated two-mode light generated by a three-
level laser with a coherently driven parametric amplifier and coupled to a two-mode vacuum reservoir is thoroughly analyzed.
Using the master equation, we obtain the stochastic differential equation and the correlation properties of the noise forces
associated with the normal ordering. Next, we study the squeezing and the photon entanglement by considering different
inseparability criteria. The various criteria of entanglement used in this paper show that the light generated by the quantum
optical system is entangled and the amount of entanglement is amplified by introducing the parametric amplifier into the laser
cavity and manipulating the linear gain coefficient.

1. Introduction

A three-level cascade laser has a great deal of interest over the
years in connection with its potential as a source of the strong
correlated photons exhibiting various nonclassical properties
[1–6]. One of the possible mechanisms of producing this
strong correlation is linked to atomic coherence that can be
induced by preparing the atoms initially in a coherent super-
position of the up and down levels [7, 8]. In this regard,
three-level lasers can be defined as a two-photon quantum
optical device that produces a strong correlated light with
some nonclassical features such as squeezing and entangle-
ment which are the subject of this paper. It turns out that
the correlation induced by coupling the dipole forbidden
transition, the up and down states of the three-level cascade
atom, results in the generation of a strong continuous vari-
able entanglement [9, 10]. Such atomic correlation is also
called injected atomic coherence which occurs when the
three-level atoms are prepared initially in a coherent super-
position of the up and down states [10].

Quantum entanglement has been considered as the non-
locality aspect of quantum correlations with no classical sim-

ilarity. This wonderful feature was investigated in the seminal
paper of Einstein-Podolsky-Rosen (EPR) [11]. After that, Bell
recognized that entanglement leads to experimentally test-
able deviations of quantum mechanics from classical physics
[12]. Furthermore, with the advent of quantum information
theory, entanglement was known as a resource for many
applications such as quantum cryptography [13], quantum
computation and communication [14], quantum dense cod-
ing [15], quantum teleportation [16], entanglement swap-
ping [17], sensitive measurements [18], and quantum
telecloning [19]. Hence, an interest of understanding entan-
glement creation and quantification has gained the attention
of several authors [20–30].

Moreover, many schemes have been proposed to produce
a strong entangled light from a three-level laser using differ-
ent techniques theoretically [24–34]. Authors have studied
the effect of a parametric amplifier on the quantum proper-
ties of light generated by the three-level laser [26, 28]. Aleba-
chew has found that the parametric amplifier in the laser
cavity increases the degree of entanglement [26]. This work
has been confined to the case in which the steady state anal-
ysis is above the threshold condition. However, the solutions
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to the cavity mode variables cannot be above the threshold
condition of the steady state analysis [10, 30, 32]. Moreover,
the entanglement quantification criteria have been limited to
the Duan et al. criterion.

In this paper, the entanglement of the light produced by a
nondegenerate three-level laser with nondegenerate para-
metric amplifier and coupled to vacuum reservoir is studied
at or below the threshold condition resulting from the steady
state solutions. Various criteria of entanglement quantifica-
tion are used to study the entanglement of the two-mode
light generated by the two-photon optical device in this
paper. Moreover, the importance of the minus quadrature
fluctuation in quantifying the two-mode entanglement is
investigated in comparison with the other criteria. We con-
sider a nondegenerate three-level laser in which the pump
mode emerging from the parametric amplifier does not cou-
ple the up and down levels of the injected atoms. This could
be realized by putting on the right side of the parametric
amplifier a screen which absorbs the pump mode [35]. We
carry out our analysis applying the pertinent master equation
describing the dynamics of the optical device [36]. The solu-
tions are presented for c-number cavity mode variables and
correlation property of noise forces associated with normal
ordering. Using the resulting solutions and steady state con-
sideration, the mean photon number of the cross-correlation
and separate cavity mode, quadrature squeezing, EPR vari-
ables, the smallest eigenvalue of the symplectic matrix, and
Cauchy-Schewarz inequality of the cavity mode variables
are determined.

The paper is organized as follows. In the second section, the
Hamiltonian and the model are presented, the master equation
describing the dynamics of the optical device is derived, and
the solutions of the cavity mode variables are determined. In
the last two sections, applying the solutions of the cavity
mode variables, the quadrature squeezing and entanglement
using various quantification criteria are investigated.

2. Hamiltonian and Master Equation

As it is clearly indicated in Figure 1, the top, intermediate,
and bottom levels of a three-level atom are represented by
jai, jbi, and jci. We assume the transitions between levels jai
and jbi and between levels jbi and jci to be dipole allowed,
with direct transitions between levels jai and jci to be dipole
forbidden. We consider the case for which the two cavity
modes are at resonance with the two transitions jai⟶ jbi
and jbi⟶ jci having transition frequencies ωab and ωbc,
respectively.

In the nondegenerate three-level laser, a pump mode pho-
ton of frequency ω = ωab + ωbc directly interacts with the NLC
to produce the signal-idler photon pairs having the same fre-
quencies as the two cavity modes [25, 35, 36]. The interaction
of three-level atoms with a nondegenerate parametric ampli-
fier can be described by the Hamiltonian [30]:

Ĥ1 = iε â†b̂
†
− âb̂

� �
: ð1Þ

â and b̂ are the annihilation operators for the two cavity
modes. The master equation associated with this Hamilto-
nian has the following form [25, 30]:

d

dt
bρ tð Þ = ε â†b̂

†bρ − bρ â†b̂† − âb̂bρ + bρ âb̂
� �

, ð2Þ

where bρ is the density operator describing the mixed states.
In addition, the interaction of a nondegenerate three-

level cascade atom with two-mode cavity radiation can be
expressed in the interaction picture with the rotating-wave
approximation (RWA) by the Hamiltonian of the form [30]

ĤI = ig aj i bh jâ − â† bj i ah j + bj i ch jb̂ − b̂
†
cj i bh j

h i
, ð3Þ

where g is the coupling constant between the atom and cavity
mode, and it is assumed the same for both transitions. In
this paper, we suppose the state of a single three-level atom
initially in

ψA 0ð Þj i = Ca aj i + Cc cj i, ð4Þ

and hence, the density operator of a single atom is

bρA 0ð Þ = ρ 0ð Þ
aa aj i ah j + ρ 0ð Þ

ac aj i ch j + ρ 0ð Þ
ca cj i ah j + ρ 0ð Þ

cc cj i ch j, ð5Þ

where ρð0Þaa = C∗
aCa, ρ

ð0Þ
cc = C∗

c Cc, ρ
ð0Þ
ac = CaC

∗
c , and ρð0Þca = Cc

C∗
a . Actually, this assumption corresponds to a situation

in which the three-level atom is initially prepared in a
coherent superposition of the up and down levels.

Thus, we apply the linear and adiabatic approximation
schemes in the good cavity limit that the equation of the

|a>

|b>

KN
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�
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Figure 1: Schematic representation of nondegenerate three-level
laser with a nonlinear crystal (NLC) and coupled to a two-mode
vacuum reservoir. Here, ε, considered to be real and constant, is
proportional to the amplitude of the pump mode that drives the
NLC, ra represents the rate at which the atoms are injected into
the cavity, and κ is cavity damping constant, and it is assumed the
same for both transitions.
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density operator evolution for the cavity modes, in the absence
of damping through the coupled mirror, has the form

dbρ tð Þ
dt

=
Aρ

0ð Þ
aa

2
2â†bρ â − ââ†bρ − bρ ââ†
� �

+
Aρ

0ð Þ
cc

2
2b̂bρ b̂† − b̂

†
b̂bρ − bρ b̂†b̂

�h i

+
1

2
Aρ 0ð Þ

ac âb̂bρ − â†bρ b̂† + bρ â†b̂† − b̂bρ â
h i

+
1

2
Aρ 0ð Þ

ca b†â†bρ − â†bρ b̂† + bρ âb̂ − b̂bρ â
h i

,

ð6Þ

where A = 2g2ra/γ
2 is the linear gain coefficient [10].

Next, we consider a system coupled with a two-mode
vacuum reservoir. The density operator which is extracted
from the vacuum reservoir by the partial trace operation is
[10, 28, 30]

dbρ
dt

=
κ

2
2âbρ â† − â†âbρ − bρ â†â
� �

+
κ

2
2b̂bρ b̂† − b̂

†
b̂bρ − bρ b̂†b̂

� �
:

ð7Þ

Finally, using Equations (2), (6), and (7), the master
equation for the system takes the form

dbρ tð Þ
dt

= ε bρ âb̂ − âb̂bρ + â†b̂
†bρ − bρ â†b̂†

h i

+
κ

2
2âbρ â† − â†âbρ − bρ â†â
� �

+
1

2
Aρ 0ð Þ

aa 2â†bρ â − ââ†bρ − bρ ââ†
� �

+
1

2
Aρ 0ð Þ

cc + κ
� �

2b̂bρ b̂† − b̂
†
b̂bρ − bρ b̂†b̂

h i

+
1

2
Aρ 0ð Þ

ac âb̂bρ − â†bρ b̂† + bρ â†b̂† − b̂bρ â
h i

+
1

2
Aρ 0ð Þ

ca b†â†bρ − â†bρ b̂† + bρ âb̂ − b̂bρ â
h i

:

ð8Þ

The above master equation can be used to derive time
variation for the expectation values of various system opera-

tors. The terms proportional to ρð0Þaa and ρð0Þcc describe the gain

of cavity light for mode â and the loss for mode b̂, respec-

tively. The terms proportional to ρð0Þac is related to the corre-
lation of the generated radiation that indicates the existence
of quantum features. These terms are responsible for the
squeezing obtained in the cascade laser system. Furthermore,
the terms proportional to κ describe the cavity mode damp-
ing due to its coupling with a two-mode vacuum reservoir
via a single-port mirror.

On the basis of Equations (A.10) and (A.11), we can write

d

dt
α tð Þ = −

Γ1

2
α tð Þ + Γ3

2
β∗ tð Þ + f α tð Þ, ð9Þ

d

dt
β∗ tð Þ = −

Γ2

2
β∗ tð Þ − Γ4

2
α tð Þ + f ∗β tð Þ, ð10Þ

where f αðtÞ and f ∗βðtÞ are noise forces the properties of which
remain to be determined, αðtÞ and βðtÞ are the c-number
variables corresponding to the cavity mode operators â and

b̂, and

Γ1 = κ − Aρaa 0ð Þ, ð11Þ

Γ2 = κ + Aρcc 0ð Þ, ð12Þ

Γ3 = 2ε − Aρac 0ð Þ, ð13Þ

Γ4 = − 2ε + Aρac 0ð Þð Þ ð14Þ

are the constant coefficients.
We now proceed to determine the properties of the noise

forces. It is obvious that the expectation values of Equations
(9) and (10) are identical to Equations (A.2) and (A.3) pro-
vided that

f α tð Þh i = f β tð Þ
D E

= 0: ð15Þ

Moreover, making use of Equations (9) and (10), one can
verify that

f α t ′
� �

f α tð Þ
D E

= 0, ð16Þ

f β tð Þf β t ′
� �D E

= f ∗α tð Þf β t ′
� �D E

= 0, ð17Þ

f β t ′
� �

f ∗β tð Þ
D E

= f ∗β t ′
� �

f α tð Þ
D E

= 0, ð18Þ

f α t ′
� �

f ∗α tð Þ
D E

= Aρaa 0ð Þδ t − t ′
� �

, ð19Þ

f β t ′
� �

f α tð Þ
D E

= −
Γ4

2
δ t − t ′
� �

:
ð20Þ

The results described by Equations (15)–(20) represent
the correlation properties of the noise forces f αðtÞ and
f βðtÞ associated with the normal ordering. It proves to be

useful to introduce a new parameter which relates the prob-
abilities of the atom to be in the upper and lower levels. We
define the parameter x such that

ρ 0ð Þ
aa =

1 − x

2
, ð21Þ

with −1 < x < 1. For three-level atoms initially in a coherent
superposition of the up and down levels, we find applying
Equation (21) that

ρ 0ð Þ
cc =

1 + x

2
, ð22Þ

and based on the relation jρð0Þac j
2
= ρð0Þaa ρ

ð0Þ
cc , one can find easily

ρ 0ð Þ
ac =

1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
: ð23Þ
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Hence, using Equations (11), (13), (21), (22), and (23)
into Equations (9) and (10) results in

d

dt
α tð Þ = −ξ+α tð Þ − η+β

∗ tð Þ + f α tð Þ, ð24Þ

d

dt
β∗ tð Þ = −ξ−β

∗ tð Þ − η−α tð Þ + f ∗β tð Þ, ð25Þ

where

ξ± =
1

2
κ +

A

2
x ∓ 1½ �

	 

,

η± = −
1

2
2ε ∓

A

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p	 

:

ð26Þ

We realize that Equations (24) and (25) are coupled dif-
ferential equations. In order to solve these differential equa-
tions, we introduce a matrix equation of the form

d

dt
Y tð Þ = −

1

2
RY tð Þ + F tð Þ, ð27Þ

where

Y tð Þ =
α tð Þ
β∗ tð Þ

 !
,

R =
ξ+ −η+

−η− ξ−

 !
,

F tð Þ =
f α tð Þ
f ∗β tð Þ

 !
:

ð28Þ

Following the procedure described in Refs. [10, 36], we
obtain

α tð Þ = A+ tð Þα 0ð Þ + B+ tð Þβ∗ 0ð Þ + F+ tð Þ +W+ tð Þ,
β tð Þ = A− tð Þβ 0ð Þ + B− tð Þα∗ 0ð Þ + F− tð Þ +W− tð Þ,

ð29Þ

where

A± tð Þ = 1

2
1 ± pð Þe−λ−t + 1 ∓ pð Þe−λ+t

h i
,

B± tð Þ = q±
2

e−λ+t − e−λ−t
h i

,

F+ tð Þ = 1

2

ðt

0

1 + pð Þe−λ− t−t ′ð Þ + 1 − pð Þe−λ+ t−t ′ð Þh i
f α t ′
� �

dt ′,

F− tð Þ = 1

2

ðt

0

1 − pð Þe−λ− t−t ′ð Þ + 1 + pð Þe−λ+ t−t ′ð Þh i
f β t ′
� �

dt ′,

W+ tð Þ = q+
2

ðt

0

e−λ+ t−t ′ð Þ − e−λ− t−t ′ð Þh i
f ∗β t ′
� �

dt ′,

W− tð Þ = q−
2

ðt

0

e−λ+ t−t ′ð Þ − e−λ− t−t ′ð Þh i
f ∗α t ′
� �

dt ′,

ð30Þ

with

p =
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ε2 + A2x2

p , ð31Þ

q± =
−4ε ± A

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ε2 + A2x2

p , ð32Þ

λ± =
κ

2
+
1

4
Ax ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ε2 + A2x2

p� �
:

ð33Þ

At steady state, the system and the environment assume
thermal equilibrium with each other. We observe that the
equations of evolution of αðtÞ and βðtÞ do not have well-
behaved solutions for λ− < 0. Hence, we note that the thresh-
old condition for the system under consideration is attained
when λ− = 0. This condition yields by

εmax =
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 + κAx

p
: ð34Þ

This provides the maximum possible value of the ampli-
tude of parametric amplifier. The analysis is therefore con-
fined to the case ε ≤ εmax.

3. Quadrature Fluctuations

The quadrature fluctuations of the two-mode cavity radiation
can be described by two quadrature operators:

ĉ+ = ĉ† + ĉ
� �

, ð35Þ

ĉ− = i ĉ† − ĉ
� �

, ð36Þ

where ĉ is the superposed cavity mode operator and given by

ĉ =
1
ffiffiffi
2

p â + b̂
� �

: ð37Þ

We note that the operators described in Equations (35)
and (36) are Hermitian and noncommuting. Based on this,
the uncertainty relation between the quadrature operators
can be written as

Δc2+Δc
2
− ≥ 1: ð38Þ

Therefore, the two-mode cavity radiation is said to be in a
squeezed state if either Δc2+ < 1 and Δc2− > 1 or Δc2+ > 1 and

Δc2− < 1 such that Δc+Δc− ≥ 1 [35, 37, 38].
Thus, the fluctuations of the quadrature operators can be

expressible as

Δc2± = ĉ2±
� �

− ĉ±h i2: ð39Þ
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It is possible to express the variances of the quadrature
operator Equations (35) and (36), in terms of the c-number
variables associated with the normal ordering and suppos-
ing the cavity modes to be initially in a two-mode vacuum
state, as

Δc2± = 1 + α∗ tð Þα tð Þh i + β∗ tð Þβ tð Þh i
+ α∗ tð Þβ tð Þh i + α tð Þβ∗ tð Þh i

±


α∗ tð Þβ∗ tð Þh i + α tð Þβ tð Þh i

+
1

2
α2 tð Þ
� �

+ α∗2 tð Þ
� �

+ β∗2 tð Þ
� �

+ β2 tð Þ
� �� ��

:

ð40Þ

In view of the fact that the noise force at time t does
not affect the cavity mode variables at earlier times and tak-
ing the cavity modes to be initially in a vacuum state, it is
also possible to verify, at a steady state, that

α2
� �

= β2� �
= α∗βh i = 0, ð41Þ

α∗αh i = A 1 − xð Þ 1 − pð Þ2
16λ+

+
A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
q+ 1 − pð Þ

16λ+

2

4

3

5

+
A 1 − xð Þ 1 + pð Þ2

16λ−

" #
−

A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
q+ 1 + pð Þ

16λ−

2

4

3

5

+
A 1 − xð Þ 1 − p2

� �

4 λ+ + λ−ð Þ +
A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
q+p

4 λ+ + λ−ð Þ

2

4

3

5,

ð42Þ

β∗βh i = A 1 − xð Þq2−
16λ+

+
A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
q− 1 + pð Þ

16λ+

2

4

3

5

+
A 1 − xð Þq2−

16λ−

 �
−

A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
q− 1 − pð Þ

16λ−

2

4

3

5

−
A 1 − xð Þq2−
4 λ+ + λ−ð Þ +

A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
q−p

4 λ+ + λ−ð Þ

2

4

3

5,

ð43Þ

αβh i = A 1 − xð Þq− 1 − pð Þ
8λ+

 �
+

A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
1 − p2 + q−q+
� �

16λ+

2

4

3

5

−
A 1 − xð Þq− 1 + pð Þ

16λ−

 �
+

A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
1 − p2 + q−q+
� �

16λ−

2

4

3

5

+
A 1 − xð Þq−p
4 λ+ + λ−ð Þ +

A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
1 + p2 − q−q+
� �

8 λ+ + λ−ð Þ

2

4

3

5
:

ð44Þ
We realize that hαβi is a real variable so that it can be

set equal with its complex conjugate hα∗β∗i: Now, with

the help of Equation (41) and using the steady state condi-
tion, Equation (40) can be obtained as

Δc2± = 1 + α∗αh i + β∗βh i ± 2 αβh i: ð45Þ

Now, with the aid of Equations (31)–(33) together with
(42)–(44), Equation (45) turns out to be

Δc2± = 1 + A 1 − xð Þ ± A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �� �
± 4ε

h i

� λ+ + λ−ð Þ2 + 4λ+λ−
16λ+λ− λ+ + λ−ð Þ

" #
+
h
A 1 − xð Þ p2 + q2− ∓ 2q−p

� �

− A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
p q+ − q−ð Þ ± p2 − q−q+

� �� �i

� λ+ + λ−ð Þ2 − 4λ+λ−
16λ+λ− λ+ + λ−ð Þ

" #
+
h
A 1 − xð Þ p ∓ q−ð Þ

− A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
+ 4ε

� �
q+ + q−ð Þ

i λ+ − λ−ð Þ
16λ+λ−

 �
:

ð46Þ

Equation (46) represents the variances of the cavity
mode steady state for a nondegenerate three-level laser
whose cavity contains a nondegenerate parametric amplifier
and coupled to a two-mode vacuum reservoir.

We plot the intracavity quadrature variance of the two-
mode light versus x for ε = 0:06 and for different values of
the linear gain coefficient in Figure 2. We easily see from this
figure that the degree of squeezing increases with the linear
gain coefficient. In addition, as the linear gain coefficient
increases, the values of x at which the minimum value of
the quadrature variance occurs tends to zero. We thus realize
that better squeezing can be achieved by preparing the atoms
initially in such a way that slightly more atoms are in the
lower level than in the upper level and by increasing the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

A = 1000

A = 100

A = 10

A = 1

∆
c

2 −

Figure 2: Quadrature variance Δc2− versus x and for κ = 0:5, ε = 0:06,
and different values of the linear gain coefficient A.
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linear gain coefficient. We also see that the degree of squeez-
ing increases with the linear gain coefficient which is in a
complete agreement with previous studies [7, 26, 28].

On the other hand, Figure 3 clearly shows that the pres-
ence of the parametric amplifier increases the intracavity
degree of squeezing for small values of x. Thus, the presence
of the parametric amplifier in the laser cavity leads to better
squeezing. As indicated on these plots, when the parameter
ε increases, the degree of squeezing also increases. Here, the
maximum degree of squeezing for A = 50, κ = 0:5, and ε =
0:2 is found to be 62:7% which occurs at x = 0:13.

We easily see from Figure 4 the intracavity quadrature
variance Δc2− for the two-mode light versus A and x. This fig-
ure indicates that the system under consideration exhibits
two-mode squeezing and the degree of squeezing increases
with the parameter A which represents the linear gain coeffi-
cient. In addition, relatively better squeezing occurs for small

values of x, when ρð0Þaa < ρð0Þcc . This would be related to the

atomic coherence transferred to the emitted photons which
are more significant in this case.

4. Entanglement Quantification

Here, we study the degree of entanglement of the two-mode
cavity light produced by a nondegenerate three-level cascade
laser whose cavity contains a parametric amplifier. A pair of
particles is taken to be entangled in quantum theory, if its
states cannot be expressed as a product of the states of its
individual constituents. The preparation and manipulation
of these entangled states that have nonclassical and nonlocal
properties lead to a better understanding of the basic quan-
tum principles [39–41]. If the density operator for the com-
bined state cannot be described as a combination of the
product of density operators of the constituents,

bρ ≠〠
j

P jbρ
1ð Þ
j ⊗ bρ 2ð Þ

j , ð47Þ

in which P j ≥ 0 and∑jP j = 1 is set to ensure normalization of

the combined density of state.

4.1. Duan-Giedke-Cirac-Zoller (DGCZ) Criterion. To study
the entanglement of the quantum optical system, we consider
the entanglement criterion set by Duan et al. [23]. Based on
this criterion, a quantum state of the system is entangled if
the sum of the variances of the two EPR-type operators û
and v̂ satisfies the condition [11]:

Δu2 + Δv2 < 2, ð48Þ

where

û = x̂a − x̂b,

v̂ = p̂a + p̂b,
ð49Þ

in which x̂a = ð1/
ffiffiffi
2

p
Þðâ† + âÞ, x̂b = ð1/

ffiffiffi
2

p
Þðb̂† + b̂Þ and p̂a =

ði/
ffiffiffi
2

p
Þðâ† − âÞ, p̂b = ði/

ffiffiffi
2

p
Þðb̂† − b̂Þ are the quadrature opera-

tors for modes â and b̂. The sum of the variances of û and v̂ is
easily found to be

Δu2 + Δv2 = 2 1 + α∗αh i + β∗βh i − 2 αβh i½ �: ð50Þ

Comparing Equation (50) with Equation (45), we can
obtain easily

Δu2 + Δv2 = 2Δc2−, ð51Þ

where Δc2− is given in Equation (45). We see from this result
that the degree of entanglement is directly proportional to
the degree of squeezing of the two-mode light [7, 33, 34,
42]. In other words, the squeezing can be used to quantify
and detect two-mode continuous variable entanglement. In
this case, squeezing of the two-mode cavity light is used sim-
ilar to the entanglement criterion proposed by Duan et al.
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Figure 3: Quadrature variance Δc2− versus x for κ = 0:5, A = 50, and
different values of ε.
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It is also clearly indicated in Figure 5 that the cavity radi-
ation is entangled for all considered parameters. It can be
observed that the degree of entanglement increases by
decreasing the values of the initial preparation of atoms.
The maximum possible degree of entanglement in this case
is found 73% for A = 1000 and x = 0:04. The introduction
of the parametric amplifier is observed to improve the degree
of entanglement for the minimum atomic coherence at
which no entanglement was observed to occur in the earlier
works [10].

Furthermore, it can be observed in Figure 6 that the degree
entanglement of the cavity radiation is significantly enhanced
with the linear gain coefficient. However, increasing more the
linear gain coefficient does not lead to a significant change to

the maximum achievable degree of entanglement. A closer
observation of this figure shows that the degree of entangle-
ment at smaller values of the initial preparation of atoms is
the same and solely attributed to the parametric amplifier
inserted to the cavity. Moreover, stronger entangled light
requires nearly an equal number of atoms at the top and bot-
tom levels for larger values of the linear gain coefficient. On
the other hand, the entanglement at the maximum initial
preparation of atoms is smaller for a larger linear gain coeffi-
cient. This encourages the idea that the effect of the paramet-
ric amplifier is more prominent for smaller values of the
linear gain coefficient and more number of atoms initially
at the up level.

Furthermore, Figure 7 shows the degree of entanglement
of the cavity radiation versus the linear gain coefficient A and
the initial preparation of atoms x for κ = 0:5 and ε = 0:06. As
we see from the figure, the degree of entanglement increases
with the linear gain coefficient and for small values of x.

4.2. Logarithmic Negativity. Another criterion to study
entanglement is the logarithmic negativity which is used for
two-mode continuous variables based on the negativity of
the partial transposition [29–31, 43]. The negative partial
transpose must be parallel with respect to entanglement
monotone in order to obtain the degree of entanglement.
The logarithmic negativity is combined with negative partial
transpose in another case where V represents the smallest
eigenvalue of the symplectic matrix [29]:

V =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 4 det Γð Þ

p

2

s

, ð52Þ

where the invariant and covariance matrices are, respectively,
denoted as

σ = det Σ1 + det Σ2 − 2 det Σ12, ð53Þ
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Figure 5: Duan et al. criterion Δu2 + Δv2 versus x for κ = 0:5, ε =
0:06, and different values of A.
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Γ =
Σ1 Σ12

ΣT
12 Σ2

 !
, ð54Þ

in which Σ1 and Σ2 are the covariance matrices describing
each mode separately while Σ12 are the intermodal corre-
lations. The elements of the matrix on Equation (54) are
given by

Γij =
1

2
X̂iX̂ j + X̂ jX̂i

� �
− X̂i

� �
X̂ j

� �
, ð55Þ

in which i, j = 1, 2, 3, 4. The quadrature operators are defined

as X̂1 = â + â†, X̂2 = iðâ† − âÞ, X̂3 = b̂ + b̂
†
, and X̂4 = iðb̂† − b̂Þ.

Now, we can extend the covariance matrix in terms of the
c-number variables associated with the normal ordering noting
that hαβi = hα∗β∗i turns out to have the following form:

Γ =

Λ 0 X 0

0 Λ 0 −X

X 0 Δ 0

0 −X 0 Δ

0

BBBBB@

1

CCCCCA
, ð56Þ

where Λ = 2hα∗αi + 1, χ = 2hαβi, and Δ = 2hβ∗βi + 1 are c
-number variables associated with the normal ordering. The
logarithmic negativity for a two-mode state is defined as [29]

EN =max 0,−log2V½ �: ð57Þ

The entanglement is achieved when EN is positive
within the region of the lowest eigenvalue of covariance matrix
V < 1.

Next, using Equations (54) and (56), one can readily
show that

det Σ1 = 2 α∗αh i + 1½ �2, ð58Þ

det Σ2 = 2 β∗βh i + 1Þ½ �2, ð59Þ

det ΣT
12 = det Σ12 = −4 αβh i2: ð60Þ

The determinant of the matrix in Equation (56) is
found as

det Γ = ΛΔ − χ2
� �2

, ð61Þ

which, using Equations (58)–(60), reduces to the following
form:

det Γ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Σ1 det Σ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ΣT

12 det Σ12

q �2
: ð62Þ

As it can be observed in Figure 8, the degree of entan-
glement increases for smaller values of the initial prepara-
tion of atoms but decreases for larger values. It can also be
seen that larger values of the linear gain coefficient pro-
duce a strong entangled light in this figure. The maximum

achievable degree of entangled light in this case is 96%, and it
occurs for A = 1000 in x = 0:0202. This criterion also predicts
the absence of entanglement for x = 1 no matter how we
manipulate the rate of atomic injection in the absence of para-
metric amplifier as shown in Figure 8.

It is not difficult to see from Figure 9 that the parametric
amplifier produces a significant change to the entanglement
for a very small value of the linear gain coefficient regardless
of how atoms are initially prepared. Exactly the same feature
of the DGCZ criterion is observed in this figure except on the
maximum achievable degree of entanglement.

Furthermore, it is clearly shown in Figure 10 that for the
smaller rate of atomic injection, the maximum possible
degree of entanglement prefers nearly an equal number of
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Figure 8: The smallest eigenvalueV of the two-mode cavity radiation
versus the linear gain coefficient A and initial preparation of atoms
x for κ = 0:5 and ε = 0:06.
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atoms initially prepared in the up and down levels. However,
for the larger rate of atomic injection, a robust entangled light
is produced when atoms are initially prepared nearly closer to
the maximum atomic coherence. For example, this criterion
predicts 96% of entanglement for A = 1000 and x = 0:0202.

On the other hand, Figure 11 compares the logarithmic
negativity and quadrature fluctuation criteria in quantifying
the entanglement. Even though the same pattern is observed
in both cases, the logarithmic negativity criterion predicts a
robust entangled light compared with the actually achievable
degree in the DGCZ criterion. The degree of entanglement
increases with the rate at which atoms are injected into the
cavity, and it is found to be larger near the maximum atomic
coherence in both cases. It is also worth noting that these
approaches ascertain the entanglement when x = 1, which cor-
responds to the atoms initially prepared to be in the bottom
level, which is solely attributed to the parametric amplifier.

4.3. Photon Antibunching. A photon antibunching phenom-
enon happens when the statistics of photons is scattered by
passing time. It corresponds to fewer photon pairs detecting
closer together in time. The correlation of scattered photons
is studied via the second-order correlation function of
photodetection with respect to time [10, 26, 30, 35, 36, 43].
Based on a photodetection experiment, for a coherent state,

gð2ÞðτÞ = 1 represents the highly correlated state [35, 36, 43].
In this state, the probability of joint detection coincides with
the probabilities of independent detection [43].

On the other hand, gð2ÞðτÞ = 0 when the time delay
approaches infinity, τ⟶∞, which means the joint proba-
bility of detecting the second photon decreases with time

delay [35, 36, 43]. Thus, the situation gð2ÞðτÞ < gð2Þð0Þ is
identified as photon bunching which means two photons
tend to be detected simultaneously or after a short time delay

[43]. If gð2ÞðτÞ > gð2Þð0Þ, the joint probability of detecting the

second photon increases with time delay which is known

as photon antibunching [35, 36, 43]. Here, gð2ÞðτÞ⟶ 1 for

τ⟶∞ and gð2Þð0Þ < 1 implies the increased probability
of detecting a second photon after a finite time delay, τ. This
contradiction is the result of the quantum nature of light.
Thus, photon antibunching is one of the methods to describe
the entanglement. A field is said to be entangled if the

inequality gð2ÞðτÞ > gð2Þð0Þ is satisfied [36, 43]. For the coher-
ent state, gð2ÞðτÞ = 1 represents a classical state. However, for

a nonclassical state, we have gð2ÞðτÞ < 1which corresponds to
the photon antibunching phenomenon occurrence. When

gð2Þð0Þ < 1 and gð2ÞðτÞ > gð2Þð0Þ, implying the presence of
entanglement [43]. Unfortunately, it has been verified that

gð2Þð0Þ > 1 for a nondegenerate three-level cascade laser
while it is exhibiting the entanglement in some condition
[4, 10, 26, 30, 35].

4.4. Hillery-Zubairy (HZ) Criterion. According to this crite-
rion introduced by Hillery-Zubairy, for two modes of the

electromagnetic field with â and b̂ annihilation operators,
the composite state is said to be entangled if condition

âb̂
D E���

��� >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂ah i n̂bh i

p
, ð63Þ

is satisfied [37]. In this relation, n̂a and n̂b are the pertinent
photon numbers corresponding to the involved modes. On
the other hand, neglecting the interatomic interaction, the
equal time photon number correlation for the two-mode
cavity light can be expressed in terms of second-order cor-
relation function in terms of c-number variables as [26]:

g 2ð Þ 0ð Þ = 1 +
αβh i2

α∗αh i β∗βh i
: ð64Þ
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By considering the Hillery and Zubairy criterion, we
can rewrite the above equation in the following form:

g 2ð Þ 0ð Þ > 2: ð65Þ

It has been shown that the Hillery-Zubairy criterion is
another equivalent entanglement criterion with Cauchy-
Schwarz inequality when the interatomic interaction is
neglected [30].

4.5. Violation of Cauchy-Schwarz Inequality (VCSI).We may
also use the second-order correlation function to determine
the entanglement of a two-mode cavity radiation [43]. A sys-
tem of two-mode cavity radiation is said to be entangled if it
violates the Cauchy-Schwarz inequality in the form

â†2â2
� �

b̂
†2
b̂
2

D E
≥ â†b̂

†
âb̂

D E2
: ð66Þ

In this relation, it is possible to study the nonclassical
photon number correlation at equal time using the following
parameter [30]:

Cab =
â†b̂

†
âb̂

D E���
���
2

â†2â2
� �

b̂
†2
b̂
2

D E : ð67Þ

Since the operators are already put in the normal order,
the photon number correlation can be expressed, in terms
of the c-number zero mean Gaussian variables α and β at
steady state, as [30, 35]

α∗αβ∗βh i = α∗αh i β∗βh i + αβh i2, ð68Þ

α∗2α2
� �

= 2 α∗αh i2, ð69Þ

β∗2β2� �
= 2 β∗βh i2: ð70Þ

Now, applying Equations (68)–(70), we find that

Cab =
1

4
1 +

αβh i2
α∗αh i β∗βh i

" #2
: ð71Þ

It can be verified with the help of Equation (64) that

Cab =
1

4
g 2ð Þ 0ð Þ
h i2

: ð72Þ

Using Equation (65), Equation (72) can be rewritten in
the following form:

Cab > 1: ð73Þ

Therefore, we plot Cab versus the initial preparation of
atoms and linear gain coefficient to study whether the cavity
mode light is entangled or not. We also relate this approach
with the minus quadrature variance to observe the variation
of the approaches in quantifying the entanglement.

It is clearly shown in Figure 12 that the photon number
correlation, Cab, is greater than 1 for all considered values.
This indicates that the nondegenerate three-level cascade laser
with parametric amplifier is a source of entangled light,
according to the Cauchy-Schwarz inequality and HZ criteria.
It is also observed that the criterion does not include the case
for which entanglement is weak when the procedure following
from the logarithmic negativity and DGCZ criteria is applied.

Moreover, it can be observed in Figure 13 that Cab

increases with the decreasing rate of atomic injection. The
same situation has been reported in terms of second-order
correlation function for the case of the three-level laser that
the degree of entanglement in this entanglement quantifica-
tion approach is not necessarily directly proportional to the
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Figure 12: The steady state photon number correlation function
Cab of the two-mode cavity radiation versus the initial preparation
of atoms x and amplitude of parametric amplifier ε for A = 100,
κ = 0:5, and ε = 0:06.
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extent to which this criterion is satisfied [30]. It is possible to
realize that the Cauchy-Stewart inequality criterion can be
important in predicting the presence of entanglement espe-
cially when the atomic coherence is close to maximum.

It is not difficult to observe in Figure 14 that Cab

increases with decreasing the rate of atomic injection and
the amplitude of the parametric amplifier. It is also possible
to realize from this approach that the effect of the parametric
amplifier for larger values of the linear gain coefficient is
insignificant. Therefore, the Cauchy-Schwarz inequality cri-

terion is encouraging entanglement quantification when the
rate of atomic injection is larger and more photons are avail-
able in the cavity.

The plots in Figure 15 show the minus quadrature fluctu-
ation, photon number correlation, and their relation in quan-
tifying the entanglement. In actual sense, entanglement does
not occur when atoms are initially prepared at the up and
down levels. The observed degree of entanglement in this fig-
ure resulted from the parametric amplifier. It is found that
further increment of the initial atomic preparation leads to
larger value photon number correlation which does not nec-
essary mean generation of a strong entangled light. It is inev-
itable that this situation does not account for the effect of
larger values of the linear gain coefficient. We learned from
the minus quadrature fluctuation that the initial preparation
of atoms above the desired value decreases the entanglement.
As one can see from the figure, the increment in the linear
gain coefficient compensates for the suppressed degree of
entanglement in ways of initially preparing atoms. This con-
dition is not observed on the photon number correlation
function. In general, the same pattern is observed by the
two approaches when atoms are initially prepared equally
or nearly equally at the top and bottom levels and for the con-
siderable rate of atomic injection.

5. Conclusion

In this paper, different inseparability criteria have been used
to quantify the entanglement of the two-mode cavity radia-
tion of a nondegenerate three-level cascade laser whose cavity
contains a nondegenerate parametric amplifier and coupled
to a vacuum reservoir. The up and down levels of the three-
level atoms are coupled by the initially prepared atoms in a
coherent superposition. The degree of entanglement studied
by logarithmic negativity and DGCZ criteria is greatly
enhanced by increasing the rate of atomic injection when
the atomic coherence is closer to its maximum value. In both
cases, the weak entangled light is generated when all atoms
are initially prepared in the lower energy state and a large
number of atoms are constantly injected into the cavity
regardless of the amplitude of the parametric amplifier. On
the other hand, the important effect of the parametric ampli-
fier occurs in both of these approaches for smaller values of
the linear coefficient. In this situation, the two-mode light is
found to be entangled even for the minimum and maximum
atomic coherence which, respectively, corresponds to the
absence and availability of more photons in the cavity.

Moreover, in DGCZ and logarithmic negativity criteria,
increasing the linear gain coefficient compensates for the
degraded degree of entanglement in ways of preparing the
three-level atoms initially. Even though the Cauchy-Schwarz
inequality detects the entanglement of the cavity radiation,
it does not account for the effect of a large rate of atomic
injection when the initial preparation of atoms is equal or
close to the maximum atomic coherence. In this regard, the
minus quadrature fluctuation and Cauchy-Schwarz inequal-
ity exhibit the same pattern of entanglement quantification
for a considerable rate of atomic injection. On the other
hand, the inequality does not include the case for which the
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entangled light is weak when the procedure following from
the logarithmic negativity and DGCZ criteria is applied. In
contrast, the Cauchy-Schwarz inequality is found to be an
encouraging approach specially when the rate of atomic injec-
tion is larger and more photons are available in the cavity.

In general, we found that the appeared behaviors of a
nondegenerate three-level laser with and without a nonde-
generate parametric amplifier are the same for the very large
value of the linear gain coefficient (rate of atomic injection)
except the detection of entanglement in the absence and pres-
ence of photons in the cavity.

Appendix

Stochastic Differential Equations

We now seek to obtain the stochastic differential equations
associated with the normal ordering for the cavity mode var-
iables. For this purpose, by making use of Equation (8) and
the fact that

d

dt
Â
� �

= Tr
dbρ tð Þ
dt

Â

	 

, ðA:1Þ

the time evolution of the expectation value of the cavity mode
variables applying the cyclic property of the trace operation
and taking into account the bosonic commutation relation
is found to be

d

dt
âh i = −

Γ1

2
âh i + Γ3

2
b̂
†

D E
, ðA:2Þ

d

dt
b̂
D E

= −
Γ2

2
b̂
D E

+
−Γ4

2
â†
� �

, ðA:3Þ

d

dt
â2
� �

= −Γ1 â2
� �

+ Γ3 b̂
†
â

D E
, ðA:4Þ

d

dt
b̂
2

D E
= −Γ2 b̂

2
D E

+ Γ4 â†b̂
D E

, ðA:5Þ

d

dt
â†â
� �

= −Γ1 â†â
� �

+
Γ3

2
â†b̂

†
D E

+ âb̂
D Eh i

+ Aρaa 0ð Þ,
ðA:6Þ

d

dt
b̂
†
b̂

D E
= −Γ2 b̂

†
b̂

D E
+
Γ4

2
b̂
†
â†

D E
+ âb̂
D Eh i

, ðA:7Þ

d

dt
â†b̂
D E

= −
1

2
Γ1 + Γ2ð Þ â†b̂

D E
+
Γ4

2
â†2
� �

+
Γ3

2
b̂
†2

D E
,

ðA:8Þ

d

dt
âb̂
D E

= −
1

2
Γ1 + Γ2ð Þ âb̂

D E
+
Γ4

2
â†â
� �

+
Γ3

2
b̂
†
b̂

D E
+
Γ4

2
:

ðA:9Þ

We note that the operators in the above equations are in
the normal order. The c-number equations corresponding to
Equations (A.2)–(A.9) are

d

dt
α tð Þh i = −

Γ1

2
α tð Þh i + Γ3

2
β∗ tð Þh i, ðA:10Þ

d

dt
β tð Þh i = −

Γ2

2
β tð Þh i + −Γ4

2
α∗ tð Þh i, ðA:11Þ

d

dt
α2 tð Þ
� �

= −Γ1 α2 tð Þ
� �

+ Γ3 β∗ tð Þα tð Þh i, ðA:12Þ

d

dt
β2 tð Þ
� �

= −Γ2 β2 tð Þ
� �

+ Γ4 α∗ tð Þβ tð Þh i, ðA:13Þ

d

dt
α∗ tð Þα tð Þh i = −Γ1 α∗ tð Þα tð Þh i + Γ3

2
α∗ tð Þβ∗ tð Þh i½

+ α tð Þβ tð Þh i� + Aρaa 0ð Þ,
ðA:14Þ

d

dt
β∗ tð Þβ tð Þh i = −Γ2 β∗ tð Þβ tð Þh i + Γ4

2
β∗ tð Þα∗ tð Þh i½

+ α tð Þβ tð Þh i�,
ðA:15Þ

d

dt
α∗ tð Þβ tð Þh i = −

1

2
Γ1 + Γ2ð Þ α∗ tð Þβ tð Þh i

+
Γ4

2
α∗2 tð Þ
� �

+
Γ3

2
β∗2 tð Þ
� �

,

ðA:16Þ

d

dt
α tð Þβ tð Þh i = −

1

2
Γ1 + Γ2ð Þ α tð Þβ tð Þh i + Γ4

2
α∗ tð Þα tð Þh i

+
Γ3

2
β∗ tð Þβ tð Þh i + Γ4

2
:

ðA:17Þ
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