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Quantum Spin System

Total Hilbert space dimension is dN

Dimension of smallest subsystem (A) is D

Interest is in both A,B big
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Entanglement in Gapped Ground States

A random state of a quantum system has entropy

S pTrA p|ψy xψ|qq „ logD “ N logpdq Hayden, Leung, Winter (2004)

For many body systems: volume scaling of entropy
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Entanglement in Gapped Ground States

A random state of a quantum system has entropy

S pTrA p|ψy xψ|qq „ logD “ N logpdq Hayden, Leung, Winter (2004)

For many body systems: volume scaling of entropy

Ground states of gapped, local Hamiltonians are different!

The area law is the motivation behind variational classes: MPS and PEPS

Hastings: in 1D, these states have an area law behaviour

Arad, Kitaev, Landau, Vazirani: improved version
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Entanglement in Gapped Ground States

In more than 1 dimension, no rigorous results
Is entanglement a meaningful quantity for many body systems?

|Spρq ´ Spσq| ď T logpD ´ 1q ` HptT , 1 ´ T uq (Fannes-Audenaert)

À volume scaling
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Entanglement in Gapped Ground States

In more than 1 dimension, no rigorous results
Is entanglement a meaningful quantity for many body systems?

|Spρq ´ Spσq| ď T logpD ´ 1q ` HptT , 1 ´ T uq (Fannes-Audenaert)

À volume scaling

Take N qubits and ρ pure and

σ “ p1 ´ εqρ` ε

2N ´ 1
p1 ´ ρq ñ |Spρq ´ Spσq| „ εN

In quantum many body theory, important concept of a phase: states in the
same phase have similar properties (not expectation values)
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Gapped Quantum Phase

When are two ground states of gapped Hamiltonians in the same phase?

Definition (X.G. Wen, Hastings et al.)

H0 and H1 local gapped Hamiltonians with ground states |ψ0y , |ψ1y
The states |ψ0y , |ψ1y are in the same phase if there exists a γ ą 0 and
a smooth path of gapped, local Hs interpolating between H0,H1
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Gapped Quantum Phase

When are two ground states of gapped Hamiltonians in the same phase?

Definition (X.G. Wen, Hastings et al.)

H0 and H1 local gapped Hamiltonians with ground states |ψ0y , |ψ1y
The states |ψ0y , |ψ1y are in the same phase if there exists a γ ą 0 and
a smooth path of gapped, local Hs interpolating between H0,H1

(Almost) equivalent intuitive definition:

The states |ψ0y , |ψ1y are in the same phase if there exists a constant
depth local quantum circuit that connects them.

With this intuitive picture in mind:
|ψ0y obeys an area law iff |ψ1y does ñ make this rigorous
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Gapped Quantum Phase
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Quasi-Adiabatic Evolution

Given a gapped path, how can we go from |ψ0y to |ψ1y?
Answer B

Bs |ψpsqy “ iK psq |ψpsqy with

K psq “ ´i

ż

R

F pγtqe iHs t pBsHsq e´iHs tdt

The function F :

is odd

decays super polynomially in t

F̂ pωq “ ´ 1
ω
, |ω| ě 1

exists, classic result in Fourier analysis



Stability of the Area Law Entanglement Rate Conclusion

Quasi-Adiabatic Evolution

The existence of K is an exact version of the adiabatic theorem by Kato.

Hastings proved that K itself is a quasi-local Hamiltonian!

Use Lieb-Robinson bounds

K can be written as
ř

i

ř

rě0 ki prq and }kprq} ď cF prq
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i

ř

rě0 ki prq and }kprq} ď cF prq

Conclusion: K psq is generator we need

1 Brings |ψ0y to |ψ1y in short ’time’ s P r0, 1s
2 K psq is a quasi local Hamiltonian, decays like e´rα with α ă 1
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Quasi-Adiabatic Evolution

The existence of K is an exact version of the adiabatic theorem by Kato.

Hastings proved that K itself is a quasi-local Hamiltonian!

Use Lieb-Robinson bounds

K can be written as
ř

i

ř

rě0 ki prq and }kprq} ď cF prq

Conclusion: K psq is generator we need

1 Brings |ψ0y to |ψ1y in short ’time’ s P r0, 1s
2 K psq is a quasi local Hamiltonian, decays like e´rα with α ă 1

Michalakis (2012):

Extra condition on spectrum of reduced density matrices (decay): use the
quasi-adiabatic theorem and techniques from Hasting’s proof to find that
entanglement changes „ A logA
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Quasi-Adiabatic Evolution

The existence of K is an exact version of the adiabatic theorem by Kato.

Hastings proved that K itself is a quasi-local Hamiltonian!

Use Lieb-Robinson bounds

K can be written as
ř

i

ř

rě0 ki prq and }kprq} ď cF prq

Conclusion: K psq is generator we need

1 Brings |ψ0y to |ψ1y in short ’time’ s P r0, 1s
2 K psq is a quasi local Hamiltonian, decays like e´rα with α ă 1

Extra assumption (proof in second part talk):

The maximal rate at which a Hamiltonian H acting on system of dimension
D can generate entanglement is ΓpHq À }H} logD independently of
ancillas.
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Stability of the Area Law

Divide a regular 2D lattice in a left and right part with straight cut

dSLp|ψsyq
ds

“ i Tr pK psqr|ψsy xψs | , log ρL b 1R sq

“ i
ÿ

rě0

ÿ

x

ÿ

y

Tr
`

kpx ,yqprqr|ψsy xψsq| , log ρL b 1R s
˘

“ i
ÿ

rě0

ÿ

y

ÿ

xďr

Tr
`

kpx ,yqprqr|ψsqy xψsq| , log ρL b 1R s
˘

.

Hence,
ˇ

ˇ

ˇ

ˇ

dSLp|ψsyq
ds

ˇ

ˇ

ˇ

ˇ

ď
ÿ

rě0

ÿ

y

ÿ

xďr

ˇ

ˇTr
`

kpx ,yqprqr|ψsy xψs | , log ρL b 1R s
˘ˇ

ˇ
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Stability of the Area Law

Divide a regular 2D lattice in a left and right part with straight cut

ˇ

ˇ

ˇ

ˇ

dSLp|ψsyq
ds

ˇ

ˇ

ˇ

ˇ

ď
ÿ

rě0

ÿ

y

ÿ

xďr

ˇ

ˇTr
`

kpx ,yqprqr|ψsy xψs | , log ρL b 1R s
˘ˇ

ˇ

ď
ÿ

rě0

ÿ

y

ÿ

xďr

Γ
`

kpx ,yqprq
˘

ď cAL

ÿ

rě0

r}kprq} log
´

dPprq
¯

log is crucial!

“ cAL

ÿ

r3}kprq} Pprq „ r2 in 2D

Since kprq decays super polynomially, the sum converges in any dimensions
for regular lattices and all partitions.
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Part II: Entanglement Rate
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Entanglement Rate

How fast can a Hamiltonian generate entanglement between two
subsystems?

Interaction HAB between two subsystems: straightforward (Bravyi)

ΓpHq ď c}H} logD

What if we allow for ancillas?

Do we really expect ancillas to have an influence on this rate for a local
Hamiltonian?
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The Swap Operator

Look at unitary gates instead of Hamiltonian evolution

Can the total change of entanglement change by adding ancillas?
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Influence of Ancillas

The swap operator is the worst case scenario

In general, the upper bound changes by factor (Bennett et al. 2003),

logD ñ 2 logD
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Influence of Ancillas

The swap operator is the worst case scenario

In general, the upper bound changes by factor (Bennett et al. 2003),

logD ñ 2 logD

How about the (infinitesimal) rate at which entanglement can be
created?

Kitaev conjectured the analogous bound

Γ :“
ˇ

ˇ

ˇ

ˇ

dSpρAaq
dt

ˇ

ˇ

ˇ

ˇ

ď c}H} logD

this conjecture is the Small Incremental Entangling (SIE)
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History of the Problem

Example were ancillas increase the entanglement rate given by Dür et
al. (2001)

Several authors obtained partial results,

1 Dür, et al. (2001): qubits without ancillas
2 Childs, et al. (2002): Ising and anisotropic Heisenberg interaction
3 Wang, et al. (2002): Self-inverse product Hamiltonians
4 Childs, et al. (2004): Simulation of product Hamiltonians

Bennett, Harrow, Leung, Smolin: first general bound independent of
ancillas

The last authors found an upper bound of the form

Γ ď Op}H}D4q
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History of the Problem

The last bound is a polynomial in the system’s dimension, further
refinements:

Bravyi (2007): obtained several results,

1 Γ ď Op}H}D2q
2 general case without ancillas: Γ À c}H} logD (tight, c « 2)
3 rewrote the problem to make it tractable (see later)

Lieb, Vershynina (2013): corollary Γ ď Op}H}Dq „ Op}H}dNq
Numerical evidence suggests that Kitaev was right,

Γ ď 2}H} logD „ 2}H}N log d SIE-Conjecture
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Bravyi’s Trick

Suppose DA ě DB , we replace A ñ A b a.

The entanglement rate reads

Γ “ ´i Tr pHAB rρAB , logpρAq b 1B sq
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Bravyi’s Trick

Suppose DA ě DB , we replace A ñ A b a.

The entanglement rate reads

Γ “ ´i Tr pHAB rρAB , logpρAq b 1B sq

Find an ensemble tp1 ´ p, ρ0q, pp, ρABqu such that

p “ 1

D2
B

and p1 ´ pqρ0 ` pρAB “ ρA b 1B

DB

Look at Small Incremental Mixing (SIM)

Λppq “ dS

dt

´

p1 ´ pqρ0 ` pe´iHtρABe
iHt

¯

loooooooooooooooooomoooooooooooooooooon

τptq

ˇ

ˇ

ˇ

ˇ

t“0
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Bravyi’s Trick

We see that for this ensemble

Λppq “ pΓ

If we proof that

Λppq ď c}H}p logp1{pq SIM-Conjecture

we conclude that

Γ ď c}H} logpD2
Bq “ 2c}H} logDB
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Bravyi’s Trick

We now bound Λppq under the restrictions }H} “ 1 and p ă e´2

It suffices to proof that

|Λppq| ď max
X ,Y

}rX , logpY qs}1 ď ´cp log p

with
TrX “ p, TrY “ 1, 0 ď X ď Y

We use variational characterization of the trace norm

}rX , logpY qs}1 ď 2 max
0ďPď1

|Tr pPrX , logpY qsq|
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Proof

1 Use the eigenbasis of Y ,

2

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iăj

log
yi

yj
pXijPji ´ XjiPijq

ˇ

ˇ

ˇ

ˇ

ˇ

2 Order its eigenvalues yik P rpk , pk´1q and the summation

ÿ

iăj

“
´

ř

i1ăj1
` ř

i2,j2
` ř

i2ăj2

¯

`
´

ř

i2ăj2
` ř

i2,j3
` ř

i3ăj3

¯

` . . .

´
´

ř

i2ăj2

¯

´
´

ř

i3ăj3

¯

´ . . . ...`
´

ř

i1,iką2
` ř

i2,iką3
` . . .

¯
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Reordering the Summations

aij “ log
yi

yj
pXijPji ´ XjiPijq
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Cauchy-Schwarz

Last braces has summations over pairs of eigenvalues far from each other:

yj ă pyi ñ
b

yj{yi log

ˆ

yi

yj

˙

ď ´?
p logppq

We use Cauchy-Schwarz and X “ Y 1{2ZY 1{2 with 0 ď Z ď 1,

Summations “ 2

ˇ

ˇ

ˇ

ˇ

˜
ÿ

iăj
log

yi

yj
pXijPji ´ XjiPijq

ˇ

ˇ

ˇ

ˇ

ď
ˆ

˜
ÿ

log
yi

yj

?
yiyjZijZji

˙1{2 ˆ

˜
ÿ

log
yi

yj

?
yiyjPijPji

˙1{2

ď 4
?
p logp1{pq

´

ÿ

yiZijZji

¯1{2 ´

ÿ

yiPijPji

¯1{2

ď 4p logp1{pq
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Restricted Subspaces

First braces: matrices restricted to small subspaces spanned by eigenvectors
with close eigenvalues

First term = 2

ˇ

ˇ

ˇ

ˇ

ˇ

n2
ÿ

i

n2
ÿ

jąi

log
yi

yj
pXijPji ´ XjiPijq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
›

›

›
rX̃ , log Ỹ s

›

›

›

1

ď
›

›

›
rX̃ , log Ỹ {ỹmins

›

›

›

1

ď
›

›

›
log

´

Ỹ {ỹmin

¯›

›

›
}X }1
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Restricted Subspaces

We continue:

First term “ log
ỹmax

ỹmin
Tr X̃

ď 2 logp1{pq
n2
ÿ

i

Xii

The first line in the decomposition is bounded by 4p logp1{pq, the last
contribution is bounded by p logp1{pq

We obtain the final bound

Λppq ď 9p logp1{pq ñ Γ ď 18}H} logD
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Quantum Skew Divergence

The quantum relative entropy

Spρ||σq “ Tr ρplog ρ´ log σq

has the well known problem of divergence if supppρq Ł supppσq
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Quantum Skew Divergence

The quantum relative entropy

Spρ||σq “ Tr ρplog ρ´ log σq

has the well known problem of divergence if supppρq Ł supppσq

One solution is:

SDαpρ||σq “ 1

´ logα
Spρ||αρ` p1 ´ αqσq



Stability of the Area Law Entanglement Rate Conclusion

Quantum Skew Divergence

Is the Quantum Skew Divergence SDα useful?

Closed formula, linear and operator monotonous, jointly convex,
contractivity, . . .

0 ď SDα ď 1 and SDα “ 1 iff ρ K σ, SDα “ 0 iff ρ “ σ

SDαpρ||σq ď }ρ´ σ}1{2
Continuity in first and second argument

Special case σ2 “ σ and σ1 “ e itHσe´itH :

|SDαpρ||σ1q ´ SDαpρ||σ2q| ď 1 ´ α

´α logα
t}H}
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Holevo Chi

Consider an ensemble of states E “ tpp, ρq, p1 ´ p, σqu.

The Holevo-Chi quantity is given by

χ “ Sppρ` p1 ´ pqσq ´ pSpρq ´ p1 ´ pqSpσq
“ ´p log pSDppρ||σq ´ p1 ´ pq logp1 ´ pqSD1´ppσ||ρq
ď hptp, 1 ´ puq}ρ´ σ}1{2

Improvement of both χ ď hptp, 1 ´ puq and χ ď }ρ´ σ}1{2.



Stability of the Area Law Entanglement Rate Conclusion

Small Incremental Mixing

Remember the small incremental mixing from Bravyi’s trick:

Λppq “ dS

dt

´

p1 ´ pqρ1 ` pe´iHtρ2e
iHt

¯

looooooooooooooooomooooooooooooooooon

τt

“ dχpEq
dt

We obtain
Spτptqq ´ Spτp0qq “ χpEptqq ´ χpEp0qq

ď t}H}
by rewriting χ and using continuity of SDα

The factor hptp, 1 ´ puq is missing.
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Differential Skew Divergence

Improve the continuity inequality to give us the correct bound

We need to look at Differential Skew Divergence

DSDαpρ||σq “ d

dp´ logpαqqSpρ||αρ` p1 ´ αqσq

“ ´α d

dα
Spρ||αρ` p1 ´ αqσq
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Differential Skew Divergence

Improve the continuity inequality to give us the correct bound

We need to look at Differential Skew Divergence

DSDαpρ||σq “ d

dp´ logpαqqSpρ||αρ` p1 ´ αqσq

“ ´α d

dα
Spρ||αρ` p1 ´ αqσq

Same nice properties as Skew Divergence itself, similar proofs, stronger
bounds.

Relation is given by averaging procedure:

SDαpρ||σq “ 1

´ logα

ż ´ logα

0

DSDαpρ||σqdp´ logαq
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Conclusion

We considered the rate at which entanglement can be generated by a
Hamiltonian HAB in the most general case with ancillas.

We used Bravyi’s trick to rewrite the problem

Two different methods to proof the upper bound: direct calculation
and quantum skew divergence

ˇ

ˇ

ˇ

ˇ

dSpρAaq
dt

ˇ

ˇ

ˇ

ˇ

ď c}H} logD

The log and quasi-adiabatic evolution gives the stability of the area law

Area law is property of phase: suffices to find one state in each phase
(fixed point, string net models, . . . )

Details in Arxiv:1304.5931 and Arxiv:1304.5935

THANK YOU
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