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We determine the reduced density matrix of chiral fermions on the torus, for an arbitrary set
of disjoint intervals and generic torus modulus. We find the resolvent, which yields the modular
Hamiltonian in each spin sector. Together with a local term, it involves an infinite series of bi-local
couplings, even for a single interval. These accumulate near the endpoints, where they become
increasingly redshifted. Remarkably, in the presence of a zero mode, this set of points “condenses”
within the interval at low temperatures, yielding continuous non-locality.

INTRODUCTION

Amongst the predictions stemming from the interplay
between Quantum Field Theory (QFT) and the causal
structure of spacetime, one of the most robust is the cel-
ebrated Unruh effect: an accelerated observer in the vac-
uum measures a thermal bath, with a temperature pro-
portional to its proper acceleration [1–3]. Intimately con-
nected with the thermodynamics of black holes via Hawk-
ing radiation, this lies at the heart of our current under-
standing of the quantum nature of gravity [4]. Therefore,
it is natural to explore its generalisations and investigate
it further.

In recent years, these phenomena have been extended
into the framework of quantum information theory.
There, this temperature is understood as arising from
the entanglement structure of the vacuum. Starting from
a state ρ and some entangling subregion V , one defines
the reduced density matrix ρV by tracing out the com-
plement of V . Then, just as the entanglement entropy
SV = −Tr[ρV log ρV ] generalises the thermal entropy,
the usual Hamiltonian is an instance of the more gen-
eral concept of a modular (or entanglement) Hamiltonian
KV := − log ρV .

Originally introduced within algebraic QFT [5], the
modular Hamiltonian has aroused much interest across a
wide community due its close connection to quantum in-
formation measures. In the context of many body quan-
tum systems, the spectrum of this operator is known as
the “entanglement spectrum” and has been proposed as
a fingerprint of topological order [6–8] and investigated
in lattice models [9–13], as well as tensor networks [14–
16]. In QFT, it is fundamental for the study of rela-
tive entropy [17, 18] and its many applications to energy
and information inequalities [19–21]. In the context of
the AdS/CFT correspondence, it is instrumental in the
program of reconstructing a gravitational bulk from the
holographic data [22–32].
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However, the modular Hamiltonian is known in only
a handful of cases. The result is universal and local for
the vacuum of any QFT reduced to Rindler space [3, 33]
and hence any CFT vacuum on the plane reduced to a
ball [22]. For any CFT2, the same applies for a single
interval, for the vacuum on the cylinder or a thermal
state on the real line [34, 35]. More generically, modular
flows can be non-local, as is the case for multiple inter-
vals in the vacuum of chiral fermions on the plane or the
cylinder [36, 37] and scalars on the plane [38]. The exact
nature of the transit from locality to non-locality how-
ever is not fully understood, and remains an active topic
of research.

In this paper we report progress regarding this prob-
lem, by providing a new entry to this list. We show
that the chiral fermion on the torus (finite temperature
on the circle) is a solvable model that undergoes such
a transition between locality and non-locality. We com-
pute the reduced density matrix by restating the problem
as a singular integral equation, which in turn we solve
via complex analysis methods. The resulting modular
Hamiltonian exhibits a local flow and, also bi-local cou-
plings between a discrete but infinite set of other points
within the subregion. In the low temperature limit, the
sector with a zero mode experiences a “condensation” of
these points, resulting in a continuously non-local flow.

THE RESOLVENT

We start by introducing the resolvent, following [36,
38, 39]. For any spatial region V , the reduced density
matrix ρV is defined as to reproduce expectation val-
ues of local observables supported on V . Now, for free
fermions, Wick’s theorem implies that it is sufficient that
ρV reproduces the equal-time Green’s function

Tr[ρV ψ(x)ψ†(y)] = 〈ψ(x)ψ†(y)〉 =: G(x, y)

for x, y ∈ V . This requirement fixes the modular
Hamiltonian to be a quadratic operator with kernel
KV = − log(G|−1V − 1) [40]. As shown in [36], this can
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be rewritten as

KV = −
∫ ∞
1/2

dξ [RV (ξ) +RV (−ξ)] (1)

in terms of the resolvent

RV (ξ) := (G|V + ξ − 1/2)−1, (2)

where the inverse is understood in the sense of distribu-
tions.

To obtain the resolvent for a given the propagator G
and the subregion V , we do the convenient redefinition

RV (ξ;x, y) =
δ(x− y)

ξ − 1/2
− FV (ξ;x, y)

(ξ − 1/2)2
, (3)

which translates (2) into a singular integral equation

0 = G(x, y)− FV (ξ;x, y)

− 1

ξ − 1/2

∫
V

dz G(x, z)FV (ξ; z, y). (4)

Provided the global state ρ and the entangling region
V , this equation completely determines FV and thus RV .
Hence, the derivation of the modular Hamiltonian is re-
duced to finding the function FV that solves this equa-
tion.

All previous considerations hold for free fermions on a
generic Riemann surface. The simplest case is the plane
where the solution of (4) is a standard result [41], which
was used by [36] to derive the corresponding modular
Hamiltonian. They found that for multiple intervals, it
consists of a local and a bi-local term. The former can
be written as

K =

∫
V

dxβ(x)T (x) (5)

in terms of the stress tensor T = −iψ∂xψ, where β(x)
is known as the entanglement temperature. On the other
hand, the bi-local term couples the field between differ-
ent intervals and, hence, vanishes in the case of a single
interval.

Let us now proceed to the case of a chiral fermion on
the torus. As is customary, we take the periods to be 1, τ
with =(τ) > 0, such that the nome q := eiπτ is inside the
unit disk. We move to radial coordinates w = eiπz, and
work with the Dedekind eta and Jacobi theta functions
given by

η(q2) := q1/12
∏
k≥1

(1− q2k),

ϑ3(w|q) :=
∑
k∈Z

qk
2

w2k,

ϑ4(w|q) := ϑ3(iw|q),
ϑ2(w|q) := q1/4wϑ3(

√
qw|q), and

ϑ1(w|q) := −iq1/4wϑ3(i
√
qw|q).

Since we are dealing with fermions, the correlator G(u, v)
with u = eiπx and v = eiπy is either periodic (Ramond;
R) or anti-periodic (Neveu-Schwarz; NS) with respect to
either of the two periods of the torus. We shall restrict to
the “thermal” case, with NS periodicity with respect to
τ . Combining this with the requirement to reproduce the
UV correlator GUV(x, y) = [2πi(x−y)]−1 on small scales,
this fully determines the standard Green’s functions [42]

Gν(u, v) =
η3(q2)

iϑ1(uv−1eε|q)
ϑν(uv−1|q)
ϑν(1|q)

. (6)

Here, the superscript

ν = 2, 3 = (R,NS), (NS,NS)

labels the different spin-structures, and we introduced
a regulator ε in order to treat the distribution Gν as a
function. The sign of ε depends on the chirality—without
loss of generality, we choose ε > 0.

In radial coordinates, the integral equation (4) reads

0 = Gν(u, v)− F νV (ξ;u, v)

− 1

ξ − 1/2

1

iπ

∫
A

dw

w
Gν(u,w)F νV (ξ;w, v) (7)

with A := eiπV being the entangling region.
The key strategy of this paper to solving (7) is to refor-

mulate it as a statement about contour integrals. To this
end, we start by listing a set of sufficient properties that
F νV must possess in order to solve this equation. First, it
must have the same periodicities in the w argument as
Gν , such that GνF νV is doubly periodic in w, i.e. well de-
fined on the torus. Since this yields an elliptic function,
its residue along the boundary γ of a fundamental region
(see fig. 1) must vanish:

0 =
1

iπ

∮
γ

dw

w
Gν(u,w)F νV (ξ;w, v). (8)

Our aim is now to rewrite this in the form of (7).
The next property we demand is that F νV have a simple

pole F νV (u, v) ∼ 1/2(uv−1 − 1) at u → v, together with
a branch cut along the entangling region A, which we
specify below. Everywhere else it must be analytic. Note
that, similarly to Gν , we need to introduce a regulator
ε′ > 0 for the pole of F νV —the choice of sign has to be
the same as that for ε to make the argument work.

If these conditions are met, a simple residue analysis
shows that (8) reduces to

0 = Gν(u, ve−ε
′
)− F νV (ξ;ueε, ve−ε

′
)

− 1

ξ − 1/2

1

iπ

∫
A	

dw

w
Gν(ueε, w)F νV (ξ;w, ve−ε

′
), (9)

where we made the regulators explicit and A	 denotes
a snug path around the cut on A. Note the distinction
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FIG. 1: The coordinate system used in the argument. The
black solid line is the entangling region—here for simplicity
the union of two intervals. The blue line represents the con-
tour of integration γ in (8), which leads to the residues eval-
uated along the green dotted curves.

between (7) and this last equation: whereas the integral
in the former is an ordinary one, the latter involves a
contour integration.

This last integral decomposes into three contributions:
one along A just inside the unit circle, one along A just
outside the unit circle, and contributions from the bound-
ary points αn = eiπan , βn = eiπbn of A as can be seen
from fig. 1. Our final requirements on F νV are that the
residues at ∂A vanish, while F νV has to have a multiplica-
tive branch cut along A. This means that, at every point
along the cut, the ratio of the function just above and
below the cut is a fixed number:

F νV (ue−ε
′′
, v)

F νV (ue+ε′′ , v)
=
ξ + 1/2

ξ − 1/2
=: e2πh. (10)

Then, it is easy to show that such an F νV (ueε
′
, v) in-

deed solves the problem: Eq. (9) becomes exactly (7).
The requirement that the residues on ∂A vanish is equiv-
alent to demanding that the modular flow behaves like
Rindler space in the vicinity of ∂A. This is analogous
to the derivation of the black hole temperature by the
smoothness condition at the event horizon.

In the supplementary material, we explicitly derive F νV
satisfying all of the above assumptions. The general pro-
cedure is as follows:

1. Start with the standard solution for the require-
ment of a multiplicative branch cut (10) on the
cylinder [37].

2. Average over all fundamental domains in the direc-
tion of τ . This yields a quasiperiodic function.

3. Multiply with a slightly modified form of the
Green’s function (6) to turn the quasiperiodicity
into a periodicity and introduce the correct pole.

We are now in position to state one of the main re-
sults of this paper: the resolvent for a finite union of
disjoint intervals on the torus, V = ∪Nn=1(an, bn). The
exact expression lives in the complex plane, but is vastly
simplified along A. Introducing the shorthand notation

λ :=

[ N∏
n=1

αn
βn

]ih
= eπhL, (11)

where L is the total length of V , our result is

F νV (ξ;u, v) =
η3(q2)

iϑ1(uv−1eε′ |q)
ϑν(λuv−1|q)
ϑν(λ|q)

× e−2πh
[

ΩV (u)

ΩV (v)

]ih
(12)

with h defined in (10), and

ΩV (w) := −
N∏
n=1

ϑ1(wα−1n |q)
ϑ1(wβ−1n |q)

. (13)

Some comments are in order. Equation (12) is essen-
tially the product of two factors. The second one is the
complex power of a quotient, which introduces the re-
quired branch cut along A. This function is actually
quasi-periodic, acquiring a factor of λ2 when translated
into the next fundamental domain. The first factor re-
sembles the propagator (6) and introduces the desired
pole, as described above. Additionally, the extra factor
of λ in the argument of ϑν is there to precisely cancel
the quasi-periodicity of the second term. This allows the
product GνF νV to be exactly doubly periodic, making the
total residue vanish and, hence, the argument work.

MODULAR HAMILTONIAN

Now that we have found the resolvent RνV , we can
go back to (1) to obtain the modular Hamiltonian Kν

V .
First, note that the leading divergence of F νV (u, v) ∼
1/2(uv−1eε

′ − 1) at u→ v can be rewritten as a Cauchy
principle value

1

2

1

uv−1eε′ − 1
=
δ(x− y)

2
+ P 1

2

1

uv−1 − 1
. (14)

For the sake of readability, we shall keep P implicit for
the rest of this paper. Equation (14) implies that the
δ-terms from (3) drop out in (1), yielding

Kν
V =

∫ ∞
1/2

dξ

(ξ − 1/2)2

[
F νV (ξ) + F νV (−ξ)

]
. (15)

In the following, we restrict to purely imaginary modulus
τ = iβ, where β is the inverse temperature – the general
case can be recovered by analytic continuation. Since
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the integrand is oscillatory, the expression (15) has to be
understood in the sense of distributions.

In the supplementary material, we evaluate (15) ana-
lytically for an arbitrary set of intervals. The main steps
are the following:

1. Regularize (15) in a way compatible with its sym-
metries and evaluate it by contour integration.

2. Use the quasiperiodicity of ϑν to isolate the highly
oscillatory contribution of the regulator.

3. Remove the regulator, leading to standard Dirichlet
kernel representations of multiple Dirac deltas.

The final expression for the modular Hamiltonian de-
pends on the spin sector. Let us focus on the results for
a single interval. Both sectors ν = 2, 3 have a local and
a bi-local term. The local term is identical in both cases
and takes the form

Kloc(x, y) = β(x)[i∂x + f(x)]δ(x− y), (16)

with the entanglement temperature

β(x) =
2πβ

2π + β∂x log ΩV (eiπx)
, (17)

where ΩV is as defined in (13) and the function f(x) is
fixed by requiring that Kloc is hermitian. Note that the
expression (16) is equivalent to the more familiar repre-
sentation (5).

The bi-local term represents the central result of this
paper and shows a novel feature: In both sectors, it in-
volves a coupling between an infinite but discrete set of
points, and is given by

K±bi-loc(x, y) =
iπ

L sinhπµ(x, y)

×
∑

k∈Z\{0}

(±1)kδ(x− y + βµ(x, y)− k), (18)

where the sign ± corresponds to ν = 2
3 . Here, we used

the function

µ(x, y) =
1

2πL
log

ΩV (eiπx)

ΩV (eiπy)
, (19)

which will play an important role in the analysis below.
Note that K±bi-loc couples pairs (x, y) which are solu-

tions of

x− y + βµ(x, y)− k = 0, k ∈ Z \ {0}. (20)

Since µ(x, y) is increasing in x and diverges at the end-
points, eq. (20) possesses a unique solution for every k, as
shown in fig. 2. Solutions accumulate near the endpoints.
In the next section, we analyse the above expressions and
discuss their physical meaning. A summary of the results
is presented in table I.

FIG. 2: The function x − y + βµ(x, y) for a single interval
V = (a, b) and fixed y. For finite values of β (black solid line),
equation (20) has an infinite number of solutions (black dots)
in the interval. For large β (blue dashed line), the solutions
distribute densely, whereas for small β (green dotted line),
they all accumulate at the endpoints.

DISCUSSION

As we saw above, the main result of this paper is that,
for arbitrary torus modulus, the modular Hamiltonian
contains a local term, as well as an infinite number of
bi-local contributions, even for a single interval. Let us
now analyse the bi-local terms in more detail: These cou-
ple solutions of (20), which are depicted in fig. 2. The
behaviour of the function µ(x, y) from (19) near the end-
points of the interval is particularly interesting. Since
µ diverges, there is an infinite number of solutions near
these points. Looking at (18), one sees that solutions
close to the boundaries are exponentially damped, re-
sembling a redshift factor associated to a Rindler horizon
located at the endpoints.

As a next step, let us see how to recover the known
results at very high [35] and low [37] temperatures. We
start with the high temperature limit β → 0. One easily
sees from (17) that the local term goes as the inverse
temperature, β(x) ∼ β, as expected. On the other hand,
as depicted in fig. 2, the bi-local contributions (18) all
approach the endpoints, where they vanish exponentially.

Moving now to the low temperature limit β → ∞,
the entanglement temperature (17) approaches the well
known result for the cylinder [37]

lim
β→∞

β(x) =
2π

∂x log sin(x−a)
sin(b−x)

. (21)

The bi-local contributions however behave remarkably.
As can be understood from fig. 2, as we lower the tem-
perature, the curve gets increasingly steep. Thus, the
solutions to (20) form a partition of the interval which be-
comes denser and denser in the limit β →∞. Now, recall
that the modular Hamiltonian must always be thought
of as a distribution, i.e. as integrated against regular
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test functions. In this limiting procedure, the solutions
to (20) “condense” in the interval, and it can be shown
that the sequence of Dirac deltas in (18) reproduce pre-
cisely the definition of a Riemann integral. Indeed, one
can show that in this sense (18) becomes continuously
non-local

lim
β→∞

K+
bi-loc(x, y) =

iπ

L sinhπµ(x, y)
, (22)

in agreement with [37], whereas limβ→∞K−bi-loc = 0 due
to the oscillating (−1)k.

The previous analysis provides a new insight into the
structure of fermionic entanglement: At any finite tem-
perature, non-locality couples a given point only to an
infinite but discrete set of other points. The charac-
teristic scale needed to resolve this discreteness goes as
1/β. Hence, continuous non-locality emerges strictly in
the limit of zero temperature. We summarize the struc-
ture of the modular Hamiltonian in table I.

TABLE I: Summary of our results for the modular Hamilto-
nian in different spin sectors. The definitions for Kloc and
K±bi-loc are in (16)–(18). The local and non-local terms at low
temperature (β →∞) are given in (21) and (22).

ν β →∞ β finite β → 0

2 local + cont. non-local Kloc +K+
bi-loc βi∂xδ(x− y)

3 local Kloc +K−bi-loc βi∂xδ(x− y)

For multiple intervals, the analysis is very similar, with
the only difference that (20) now possesses one solution
per interval for a given k. In particular, we must also
consider the non-trivial (x 6= y) solutions for k = 0. In
the low temperature limit, these extra terms yield pre-
cisely the well known bi-local terms of [36, 37].

CONCLUSIONS

In this paper we computed the modular Hamiltonian
of chiral fermions in a thermal state on the circle, re-
duced to an arbitrary set of disjoint intervals. The key
strategy was to reformulate the problem as a singular
integral equation, which in turn we solved by complex
analysis methods. We were then able to obtain closed
form expressions because analytic functions on the torus
are highly constrained by the double periodicity.

In summary, our results provide new insights into the
structure of entanglement in QFT. We hope they will aid
the study of non-local correlations in many body quan-
tums systems, black holes and the emergence of space-
time in gauge/gravity duality.

Even though we restricted to NS boundary conditions
in direction of the modulus, an entirely analogous calcu-
lation also works in the R sector, as we shall discuss in
another paper [43].

Interestingly, an alternative approach to the problem
has been developed by Blanco and Pérez-Nadal using
method of images, in a paper to appear soon [44].

During the final stage of this project, related results
were independently reported in [45]. Since their approach
differs significantly from the one presented here, it will
be interesting to explore the connection amongst both
methods further.
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SUPPLEMENTARY MATERIAL

Deriving the resolvent

In this section, we derive the solution (12) F νV to the
singular integral equation (7). Let us start with the func-
tions [37]

ωn(w) :=
sin(π(an − z))
sin(π(bn − z))

=
βn
αn

α2
n − w2

β2
n − w2

, (23)

which provide the correct branch-cut on the cylinder.
Choosing the branch cut of the logarithm along the neg-
ative real line, we see that

N∏
n=1

ωih
n (we−ε

′′
)

ωih
n (weε′′)

= e2πh (24)

for w ∈ A. Note that (23) is not well defined on the torus
since it transforms non-trivially under w → qw. We shall
remedy this by defining

log Ωn(w) :=
∑
k∈Z

[
log(ωn(qkw))− log(ωn(qk))

]
, (25)

where the second term in the brackets is to ensure ab-
solute convergence. We made the logarithms explicit in
order not to break the behaviour (24) at the branch cut.

At first sight, Ω(w) seems doubly-periodic: by con-
struction, ω is periodic with respect to the spatial circle,
and now we sum over all translations along imaginary
time. However, Ω(w) has a non-vanishing residue within
each fundamental region due to the branch-cut, and thus
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cannot be elliptic. Instead, it turns out to be quasi-
periodic, as is seen by putting a cutoff in the sum (25),
and then computing Ω(qw). Then, the series acquires a
prefactor originating in

lim
k→±∞

ωn(qkw) =

[
βn
αn

]∓1
.

This yields the quasi-periodicity

N∏
n=1

Ωih
n (qw) = λ2

N∏
n=1

Ωih
n (w),

where λ is defined in (11). To cancel off the quasi-
periodicity and to introduce the desired pole, we multiply
with a combination of theta functions. We find

F νV (ξ;u, v) =
η3(q2)

iϑ1(uv−1eε′ |q)
ϑν(λuv−1|q)
ϑν(λ|q)

×
N∏
n=1

Ωih
n (ueε

′′
)

Ωih
n (ve−ε′′)

, (26)

where we made our choice of branches in Ωih
n explicit

(our choice is such that the residue evaluation in the
main body of the paper does not cross the branch cut).
Eq. (26) now solves (7).

Finally, let us rewrite this in terms of more familiar
elliptic functions. Note that (24) implies

N∏
n=1

Ωih
n (ueε

′′
)

Ωih
n (ve−ε′′)

= e−2πh
N∏
n=1

Ωih
n (ueε

′′
)

Ωih
n (veε′′)

and, now that the numerator and denominator are on the
same side of the branch cut, we can move the product into
the complex power to find

N∏
n=1

Ωih
n (ueε

′′
)

Ωih
n (ve−ε′′)

= e−2πh
[ N∏
n=1

∏
k∈Z

ωn(qkueε
′′
)

ωn(qkveε′′)

]ih
for u, v ∈ A. After some algebra and an application of the
Jacobi triple product [46], this simplifies the solution (26)
to (12) with ΩV from (13).

Deriving the modular Hamiltonian

In this section, we provide the mains steps to evaluate
the integral expression (15) for the modular Hamiltoni-
ans. We restrict to purely imaginary τ = iβ—the general
case can be restored by analytic continuation. Let us first
change the variable of integration from ξ to

Λ := λ2 = e2πLh =

[
ξ + 1/2

ξ − 1/2

]L
,

such that (15) turns into

Kν
V =

1

L

∫ ∞
0

dΛ

Λ

η3(q2)

iϑ1(uv−1|q)
ϑν(
√

Λuv−1|q)
ϑν(
√

Λ|q)
Λiµ,

where we use the shorthand notation

µ :=
1

2πL
log

ΩV (u)

ΩV (v)
.

To evaluate the above integral, note the following two
facts:

• The integrand is oscillatory for Λ→ 0,∞.

• Since we merged the two occurences of F νV (±ξ)
in (15) into a single integral, integration has to be
done symmetrically with respect to ξ → −ξ, i.e.,
Λ→ Λ−1.

This requires that we introduce a symmetric regula-
tor rε(Λ) = rε(Λ

−1) to tame the integral, allowing us to
evaluate it via standard complex analysis methods. We
choose

rε(Λ) :=
(1 + ε)2

(Λ + ε)(Λ−1 + ε)
(27)

to otain

Kν
V = lim

ε↘0

1

L

∫ ∞
0

dΛ
(1 + ε)(1 + ε−1)

(Λ + ε)(Λ + ε−1)

× η3(q2)

iϑ1(uv−1|q)
ϑν(
√

Λuv−1|q)
ϑν(
√

Λ|q)
Λiµ. (28)

The integral (28) can now be evaluated using contour
integration. To this end, consider the integral

Iνε :=
1

L

∮
γ

dΛ
(1 + ε)(1 + ε−1)

(Λ + ε)(Λ + ε−1)

× η3(q2)

iϑ1(uv−1|q)
ϑν(
√

Λuv−1|q)
ϑν(
√

Λ|q)
Λiµ, (29)

where the contour γ is as depicted in fig. 3.
The circular contributions vanish due to the falloff of

the regulator. Choosing the branch cut of Λiµ along the
positive real axis, we see that two remaining horizontal
contributions yields two almost identical terms, differing
differ only by a global prefactor of −e−2πµ. We thus find

lim
ε↘0

Iνε = (1− e−2πµ)Kν
V . (30)

By Cauchy’s theorem, Iνε can also be expressed as a sum
over residues, yielding a series expression for Kν

V . We
shall do this explicitly for ν = 3 and briefly mention the
differences for ν = 2, 4 at the end.

The poles of the integrand are of two types (see fig. 3):
Two come from the regulator (27), located at Λ → −ε
and Λ → −ε−1. The other (infinitely many) poles come
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FIG. 3: Contour for the integral (29). The integral along
the blue solid line is equal to the sum of all residues at Λ →
−q2k+1 (black dots) and at Λ → −ε±1 (black crosses). The
contour avoids the branch cut along the positive real axis
(green dashed line).

from the poles of the ‘propagator-like’ term. As can be
seen from either the Laurent expansion of this term (see
section below) or directly from the Jacobi triple product,
we have the leading divergences

η3(q2)

iϑ1(uv−1|q)
ϑ3(
√

Λuv−1|q)
ϑ3(
√

Λ|q)
∼ − (q−1uv−1)−2k−1

Λ + q2k+1

at Λ → −q2k+1 for k ∈ Z. Keeping in mind that the
negative sign of poles always has to be written as e+iπ

due to our choice of branch cut, this yields

K3
V =

2πi

L

1

eπµ − e−πµ
lim
ε↘0

[
η3(q2)

iϑ1(uv−1|q)

×
(
ϑ4(
√
εuv−1|q)

ϑ4(
√
ε|q)

εiµ − (ε→ ε−1)

)
+
∑
k∈Z

(uv−1q−iµ)−2k−1

(q2k+1 − ε)(q−2k−1 − ε)

]
. (31)

Let us have a look at the series in the last line: Using
the Laurent expansions below, this can be rewritten as

η3(q2)

iϑ1(uv−1q−iµ|q)
ϑ4(
√
εuv−1q−iµ|q)
ϑ4(
√
ε|q)

− (ε→ ε−1).

We choose the cutoff to be ε = q2m with very large
m ∈ Z to avoid the poles at q2k+1, so that we only deal
with simple poles. Then, putting everything together
into (31) and using the quasiperiodicities of ϑ4, one finds

K3
V (x, y) = lim

m→∞
P (x, y) sin

(
2mπ(x− y + βµ)

)

with

P (x, y) =
2π

L sinhπµ(x, y)

[
η3(q2)

iϑ1(uv−1|q)
ϑ4(uv−1|q)
ϑ4(1|q)

− η3(q2)

iϑ1(uv−1q−iµ|q)
ϑ4(uv−1q−iµ|q)

ϑ4(1|q)

]
.

As already stated above, this limit must be understood
in the sense of distributions.

We see that K3
V contains essentially two factors: the

term involving the sine function is highly oscillatory for
m→∞, except at solutions of

x− y + βµ(x, y) = k ∈ Z. (32)

As a distribution, it vanishes when integrated against
any regular test function. However, the remaining factor
P (x, y) is not regular since it has poles, and thus we must
examine its behaviour in their vicinity, which will lead to
finite contributions. These poles coincide precisely with
the solutions to (32), which are of two kinds: the trivial
solution x = y will lead to a local term, while the other
solutions x 6= y will give bi-local contributions. Let us
start with the latter.

Close to these solutions, a straightforward calculation
shows that

P (x, y) ∼ iπ

L sinhπµ(x, y)

1

sin(π[x− y + βµ(x, y)])
.

Combined with the oscillatory term, we recognize the
Dirichlet kernel [47] representation of the anti-periodic
Dirac delta

lim
m→∞

sin 2mπz

sinπz
=
∑
k∈Z

(−1)kδ(z − k), (33)

yielding the final expression for the modular Hamiltonian
for x 6= y,

iπ

L sinhπµ

∑
k∈Z

(−1)kδ(x− y + βµ(x, y)− k). (34)

Now we turn to the solution x = y, which is special as
it leads to a second order pole in P . Similarly to before,
in the vicinity of that solution, P (x, y) takes the form

− iβ

L

1

x− y
1

sin(π[x− y + βµ(x, y)])
,

which together with the oscillatory term leads to

− iβ

L

δ(x− y + βµ(x, y))

x− y
. (35)

Note that we did not need to consider the terms with
k 6= 0 as in (33) since we only deal with the solution
x = y. As a last step, we use the methods from [36] to
rewrite the singular fraction (35) as

β

L

[i∂x + f(x)]δ(x− y)

1 + β(∂xµ)(y, y)
, (36)
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where f(x) is fixed by hermiticity.

Now we focus on the case of a single interval. Again we
begin by considering on the bi-local terms. Since µ(x, y)
is monotonically increasing with respect to x in the inter-
val, eq. (32) has a unique solution for each k ∈ Z. In par-
ticular, note that for k = 0, the solution is x = y. Since
we already consider this contribution separately in (36),
we can explicitly exclude it from the series (34). The fi-
nal expression for the modular Hamiltonian for a single
interval is then given by the sum of (16) and (18).

An analogous calculation holds for ν = 2, with one
small adjustment: Since the poles of the Laurent expan-
sion are instead located at −q2k, we obtain the periodic
version of the Dirichlet kernel in (33). The rest of the
calculation is identical.

LAURENT EXPANSION

To better understand the location and behaviour of the
poles of the “propagator-like” terms in (12), we derived
their Laurent expansions. The coefficients may be com-
puted as contour integrals which vastly simplify due to
the quasi-periodicities of the theta functions. In the fun-
damental domain |q|1/2 < |w| < |q|−1/2, the result then
takes the form of Lambert series

η3(q2)

iϑ1(w|q)
ϑ3(λw|q)
ϑ3(λ|q)

=
1

w − w−1

+
∑
k≥1
k odd

[
wkqk

λ−2 + qk
− w−kqk

λ2 + qk

]
,

η3(q2)

iϑ1(w|q)
ϑ4(λw|q)
ϑ4(λ|q)

=
1

w − w−1

−
∑
k≥1
k odd

[
wkqk

λ−2 − qk
− w−kqk

λ2 − qk

]
,

η3(q2)

iϑ1(w|q)
ϑ2(λw|q)
ϑ2(λ|q)

=
1

2

w + w−1

w − w−1
+

1

2

λ2 − 1

λ2 + 1

+
∑
k≥2
k even

[
wkqk

λ−2 + qk
− w−kqk

λ2 + qk

]
.
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