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We study two a priori unrelated constructions: the spectrum of edge modes in a band topological
insulator or superconductor with a physical edge, and the ground state entanglement spectrum in an
extended system where an edge is simulated by an entanglement bipartition. We prove an exact relation
between the ground state entanglement spectrum of such a system and the spectrum edge modes of the
corresponding spectrally flattened Hamiltonian. In particular, we show that gapless edge modes result in

degeneracies of the entanglement spectrum.
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Topological phases of matter, occurring, for example, in
the quantum Hall effect, cannot be distinguished using a
local order parameter. Although they can sometimes be
characterized using, for example, topological ground state
degeneracy or the existence of gapless edge modes, a full
understanding is still lacking. One worthwhile direction is
to use the information-theoretic concept of entanglement
to characterize topological phases, as was shown first in
[1,2], who related the universal subleading term in the
bipartite entanglement entropy (the “topological entangle-
ment entropy’’) to the total quantum dimension in a gapped
anyonic system. Further progress was made in [3], who
related the full spectrum of the reduced density matrix (the
“entanglement spectrum’) to the conformal field theory
(CFT) edge mode spectrum in fractional quantum Hall
states. Here, our goal will be to study topological phases
occurring in free fermion systems, i.e., band topological
insulators and superconductors. In such systems the topo-
logical entanglement entropy can vanish, so one needs a
finer method to discriminate between the phases. We will
adhere to the philosophy of [3] and focus on the entangle-
ment spectrum, which we will show does contain more
information about the various free fermion topological
phases. Specifically, we will show that the entanglement
spectrum of any band insulator or superconductor can be
exactly reconstructed from the edge mode spectrum of the
corresponding spectrally flattened Hamiltonian.

Given a division of a quantum system into two subsys-
tems A and B, such that the total Hilbert space is the tensor
product of the subsystem Hilbert spaces, one defines the
reduced density matrix p, on A by tracing out the degrees
of freedom of B from the pure ground state density matrix
| )| (for fermion Hilbert spaces one actually has to
introduce graded tensor products, but we can safely ignore
this subtlety). The von Neumann entanglement entropy
between A and B relative to the ground state is then defined
by § = —trp, logp,. This entropy is a measure of the
complexity of the ground state, as seen, for example, in
the logarithmic scaling of entanglement entropy at criti-
cality [4], as well as in the study of one dimensional
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gapped systems, where finite entropy matrix product states
are introduced to approximate ground states [5,6].

As motivated by [3], we take the more general approach
of studying the entire spectrum of eigenvalues of the
reduced density matrix (i.e., the eigenvalues of the
Schmidt decomposition of the ground state), in the hope
that the spectrum contains more information than just the
one number S that can be constructed from it. We restrict
our attention to free fermion systems, which, though non-
interacting, include effective Hamiltonians for topological
insulators, such as HgTe in two dimensions [7,8] and BiSb
in three dimensions [9,10], as well as superconductors such
as SrRu, and systems with broken 7" symmetry such as the
integer quantum Hall effect.

There has been a great deal of work done on entangle-
ment in free fermion systems. First of all, entanglement in
a Fermi gas is well understood [4,11]. The generalization
to arbitrary free fermion systems has been studied as well
[12-14], and the problem of computing the entanglement
spectrum has been reduced to diagonalizing a matrix of
Green’s functions. Here we derive this formula in the
formalism of free Majorana fermions and Gaussian states
[15,16]. The advantage of this approach is that it unifies the
treatment of both band topological insulators and super-
conductors in that the effective Hamiltonian, which can
include both hopping and pairing terms, becomes a general
quadratic form in the Majorana fermions. We use this
formula to relate the entanglement spectrum to gapless
edge modes of a sample with boundary. Before we go
into more detail, we make some comments on related
work.

In [17], a numerical approach was pursued in the study
of the entanglement spectrum of a topological supercon-
ductor. Specifically, it was shown numerically that one can
meaningfully distinguish between the weak and strong
pairing phases of a two-dimensional p + ip superconduc-
tor by looking at the degeneracies of the entanglement
spectrum. In this Letter we analytically prove a relation
which generalizes this result. Furthermore, in [18], which
appeared shortly after this Letter, a general relation similar
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to ours was derived. Working in the setting of topological
insulators, [18] show that gapless edge modes imply de-
generacies in the entanglement spectrum. However, they
also show that the converse is not true by exhibiting a
specific model of a three-dimensional topological insulator
in which a Zeeman field gaps out the edge modes but does
not effect the degeneracies of the entanglement spectrum,
which are protected by inversion symmetry.

Let us now describe our derivation in more detail. We
prove a relation between two a priori unrelated construc-
tions. The first is the computation of the entanglement
spectrum of the ground state of a band topological insulator
or superconductor with respect to a partition into a large
but finite region A (such as a disc in two dimensions, for
example), and its complement B. For the second, we need
the ““spectral flattening trick” [15], which we use to de-
form the original Hamiltonian H to a new one H' that
retains the same ground state, but has a flat spectrum;
this is always possible for a gapped Hamiltonian. The
deformation keeps the gap open and can be done adiabati-
cally, showing that the two Hamiltonians are in the same
topological phase. We now simulate a physical edge at the
boundary of A by defining H/, to be the restriction of the
spectrally flattened Hamiltonian to region A—that is, we
retain only the couplings within A, and discard the degrees
of freedom in the now decoupled region B. We prove that
the spectrum of this restricted, spectrally flattened,
Hamiltonian H’, and the entanglement spectrum of the
ground state can be reconstructed from each other.

Of particular interest are the low energy modes of H,,
which, because the bulk is gapped, are edge modes local-
ized at the boundary of A. One consequence of our formula
is that zero modes of H' correspond to degeneracies in the
entanglement spectrum. An important point, observed in
[18], is that the edge modes of H, might not be the same as
those obtained from the restriction H, of the original
Hamiltonian to A, without first applying a spectral flat-
tening transformation. Indeed, as was shown in [18], it is
sometimes the case that the edge modes of H, are gapped,
even though there are degeneracies in the entanglement
spectrum (protected by inversion symmetry, for example).
The crux of the issue, thus, is that the edge mode spectrum
can change during the spectral flattening transformation.
However, if there is a symmetry, such as time reversal, that
protects the gapless nature of the edge modes, then all the
Hamiltonians along the spectral flattening deformation
respect this symmetry, and possess gapless edge modes.
In this case, therefore, we can conclude that there are at
least as many corresponding degeneracies in the entangle-
ment spectrum, in a sense made precise below. As [18]
propose, the entanglement spectrum may in fact be a more
robust characterization of a topological phase than the edge
mode spectrum (see also [19]).

To derive the general formula, we consider a free fer-
mion system (i.e. band insulator or superconductor) in an

arbitrary number of dimensions d. We picture a tight
binding model with short range interactions, which could
be either hopping or pairing. To conveniently work with
both, we write each orbital in terms of two Majorana
fermions, so that N physical fermion modes are described
with 2N operators ¢ s j=1,...,2N. The c ; are Hermitian
and satisfy the Majorana commutation relations {c, c;} =
26 . We can write N physical fermion creation and anni-

hilation operators as

a, = %(CZn + ic2n*1) (1)

art = %(CZn - iC2n—1)- ()
The effective Hamiltonian can now be written in terms of
the c¢;:

l-2N

1 z Hjcjcy; 3)
=1

H=

where we interpret j as a collective site and band index.
The matrix H j is real skew-symmetric, and we assume the
Hamiltonian (3) is gapped.

We now choose a partition of the system into a subsys-
tem A and its complement B. For instance, in two dimen-
sions we could define A and B by partitioning the lattice
into two complementary half-planes. However, for conve-
nience we shall assume A to contain finitely many lattice
sites. Indeed, let A contain m orbitals, described by the
Majoranas cy, ..., ¢y, and let B be described by the
remaining Majoranas ¢5,,+1, - - -, Coy-

Before proceeding, it will be useful to introduce the
concept of a Gaussian state [16]. Intuitively, a Gaussian
state is simply the formalization of what it means for a
(possibly mixed) state to be the ground state of a free
fermion Hamiltonian. Since free fermion Hamiltonians
can be diagonalized, one can think of a Gaussian state of
as a tensor product of independent 2-state system density
matrices in some orthogonal basis. More formally, con-
sider a density matrix p, written as a polynomial of the 2N
Majoranas c; in such a way that each c¢; occurs to the power
0 or 1 in each term. The state defined by p is said to be
Gaussian if, upon replacing the ¢; with anticommuting
Grassman variables 0.7, one obtains an expression p that
can be put in the form

r

P=5N

exp(é eTMe) @)

for some real antisymmetric 2N by 2N matrix M. The
matrix M simply encodes the two point correlators of the
c; in the state p:

M, = Tr(picjcy) &)

for j # k, with M;; = 0. All higher correlators are deter-
mined by Wick’s theorem.
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The states with which we will be dealing are all
Gaussian. First of all, the ground state | ){¢/| of a gapped
Hamiltonian is Gaussian (to see this, simply bring H ;. to
canonical block diagonal form). Furthermore, given any
Gaussian state p of the full system, the reduced density
matrix p, constructed from it by tracing out the degrees of
freedom in B is also Gaussian. Indeed, because the corre-
lators of p, are the same as those of p, and a state is
determined uniquely by the set of all its correlators, we see
that p, is a Gaussian state whose matrix M (4) is simply the
restriction of that of p.

What is the M matrix (4) for the ground state of the
Hamiltonian (3)? We can determine it from the two point
functions of the ground state, obtained from the formula
(15]

Wlejed i) =

The sgn function is defined as follows: for a diagonal
Hermitian matrix D, it replaces all positive eigenvalues
with +1 and all negative eigenvalues with —1. A general
Hermitian matrix, such as iH in (6), can be diagonalized
with a unitary transformation U: iH = UDU™!, and we
define sgn(iH ;) = Usgn(D)U~". Thus, after comparison
to Eq. (5), we see that

M

—sgn(iH ). (6)

= —isgn(iH j;). (7)

Having introduced the necessary formalism, we now
prove an exact relation between the entanglement spectrum
of a general gapped Hamiltonian, and the edge mode
spectrum of the corresponding spectrally flattened one.
Let us first explain the spectral flattening transformation
[15]. Given any gapped Hamiltonian (3) we can construct a
one parameter family of gapped Hamiltonians that inter-
polate between H and

Z H'ycic, (8)

/kl

where the eigenvalues of iH j’.k are all =1. The matrices that
interpolate between Hj; and H }k share a common eigen-
basis; they are all gapped, and leave the ground state
invariant. Also, as a consequence of the gap being open,
all of the Hamiltonians in the family are quasilocal, with
quadratic coupling terms exponentially suppressed by the
distance [15].

Because the spectral flattening transformation leaves the
ground state invariant, the entanglement spectrum, which
depends only on the ground state, is the same for H and H'.
Thus, to prove our relation we will from now on just
assume H is spectrally flat, and omit the extra superscript
in H'. With this assumption, Eq. (7) simplifies to

Equation (9) is the key to proving the correspondence.
Roughly speaking, we will relate its right hand side to the

edge mode spectrum, and its left hand side to the entangle-
ment spectrum. More formally, let A k> and M jk denote the
restrictions of Hj; and M j; to A respectively; thus H j; and
M j; are 2m by 2m antisymmetric matrices, and they are
equal by virtue of (9). The matrix Hj now defines a
physical Hamiltonian on region A:

z H/kC Cg- (10)

] kEA

H, is gapped in the bulk, with spectral gap normalized to 1
in our units, but it also has boundary modes, which could
potentially be gapless. The eigenvalues of iH jk» which
come in pairs =A,, [A,| =1, r=1,..., m, reflect these
boundary modes, in that the corresponding eigenstates are
localized near the boundary whenever A, differs substan-
tially from *1.

From our discussion of Gaussian states, on the other
hand, we see that A7[jk is just the M matrix [see Eq. (4)] of
P4, the reduced density matrix obtained from the ground
state |¢)(| by tracing out the degrees of freedom in B.
This means that if one defines p,, as in (4), to be p, with
the Majoranas ¢ i j=1,...,2m, replaced with anticom-
muting Grassman variables ¢, then

5a = exp(Lomi10) = - 0THO 11

pa= 5 xp(507810) = exp( ) an
Since the expression 7 Hf is SO(2m) invariant, we can
rotate to a more convenient basis. In particular, let H¢ be
the canonical block diagonal form of H, consisting of m

blocks of the form
0 A,
( A0 ) (12)

Let M be the SO(2m) matrix that block diagonalizes H
H®=MHM™', and define 0)=3,M;6b,, and c}=

ZkM jkCh-
In terms of the rotated variables, (11) turns into

1 ~
pa = ﬁ exp(2 G’THL'Q’)

_m nexp(iArglzr—l /2r)

= ]‘[(1 +—02, A ) (13)

When we expand out the last expression in (13), each 09
occurs to power 0 or 1, and hence

ml A,
pa = ]j[l(E - TC’Z,,lcg,). (14)

From the product form (14) of p,, we can immediately
read off the entanglement spectrum. Indeed, (14) shows
that the density matrix p, decomposes into m independent
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2 state systems. The rth one, where r=1,..., m, de-
scribed by 1/2 + i(A,/2)ch,_,ch,, has eigenvalues 1/2 =
A,/2. Hence the full entanglement spectrum is described
by the set of 2" Schmidt eigenvalues:

(DGR SR

r=1

Expression (15) lists the entire set of 2" Schmidt eigen-
values comprising the entanglement spectrum of the
ground state with respect to regions A and B in terms of
the eigenvalues *A,. These eigenvalues determine the
edge mode spectrum of the corresponding spectrally flat-
tened Hamiltonian (10). Note that they only differ signifi-
cantly from =1 when the corresponding eigenstate is
localized near the boundary of region A. Also, if A, ~
*+1, which corresponds to a bulk mode, then 1/2 * A,/2
are close to 0 and 1; hence the contribution of such a mode
to the entanglement becomes vanishingly small as A, — 1
(or A, — —1). This just means that only edge modes
contribute significantly to the entanglement. Also, we see
that a zero energy edge mode, corresponding to A, = 0, is
reflected as a nontrivial multiplicity of the entanglement
spectrum (15). Indeed, having k such A, = O results in a
multiplicity of 2* for the Schmidt eigenvalues.

We note the versatility of our Majorana fermion ap-
proach: our results hold not only for topological insulators,
but for topological superconductors as well. Furthermore,
because the entanglement spectrum depends only on the
ground state, our approach gives a way to diagnose topo-
logical order by looking at only the ground state wave
function. Indeed, we have proved that the entanglement
spectrum can be reconstructed from the edge mode spec-
trum of the corresponding spectrally flattened
Hamiltonian. For a generic topological Hamiltonian with
symmetry protected edge modes, we expect that the corre-
sponding spectrally flattened Hamiltonian, being in the
same phase, has the same symmetry protected edge modes.
Thus the entanglement spectrum is as good as the edge
mode spectrum at discriminating between the topological
phases. However, the above statement can fail in special
cases: for example, inversion symmetry can sometimes
allow the spectrally flattened Hamiltonian to have a richer
gapless edge mode structure than that possessed by the
original Hamiltonian [18]. In fact, [18,19] interpret this
discrepancy as a virtue, and argue that the entanglement

spectrum is a more robust measure of topological order
than the edge mode spectrum.

It would be very interesting to generalize this correspon-
dence to interacting systems, as was done, for example, in
[3] for certain fractional quantum Hall states (see also
[20D.
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