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Abstract: When absorbing boundary conditions are used to evaporate a black hole in

AdS/CFT, we show that there is a phase transition in the location of the quantum Ryu-

Takayanagi surface, at precisely the Page time. The new RT surface lies slightly inside the

event horizon, at an infalling time approximately the scrambling time β/2π logSBH into

the past. We can immediately derive the Page curve, using the Ryu-Takayanagi formula,

and the Hayden-Preskill decoding criterion, using entanglement wedge reconstruction. Be-

cause part of the interior is now encoded in the early Hawking radiation, the decreasing

entanglement entropy of the black hole is exactly consistent with the semiclassical bulk

entanglement of the late-time Hawking modes, despite the absence of a firewall.

By studying the entanglement wedge of highly mixed states, we can understand the

state dependence of the interior reconstructions. A crucial role is played by the existence of

tiny, non-perturbative errors in entanglement wedge reconstruction. Directly after the Page

time, interior operators can only be reconstructed from the Hawking radiation if the initial

state of the black hole is known. As the black hole continues to evaporate, reconstructions

become possible that simultaneously work for a large class of initial states. Using similar

techniques, we generalise Hayden-Preskill to show how the amount of Hawking radiation

required to reconstruct a large diary, thrown into the black hole, depends on both the

energy and the entropy of the diary. Finally we argue that, before the evaporation begins,

a single, state-independent interior reconstruction exists for any code space of microstates

with entropy strictly less than the Bekenstein-Hawking entropy, and show that this is

sufficient state dependence to avoid the AMPSS typical-state firewall paradox.
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1 Introduction

By discovering the AdS/CFT correspondence [1, 2], Maldacena definitively answered the

question of whether information can escape from a black hole. It can.

While there remains debate about whether information is lost during black hole evap-

oration in the real universe [3], in AdS/CFT, the bulk quantum gravity theory in d + 1

spacetime dimensions is dual to an ordinary d-dimensional conformal field theory that

lives on the asymptotic boundary of the bulk spacetime. The unitarity of the boundary

conformal field theory means that information must be preserved.
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However, on its own, boundary unitarity is not sufficient to consider the information

paradox ‘solved’, even in the restricted context of AdS/CFT. We also need to understand

what is wrong with the Hawking calculation [4, 5], which apparently suggests that the

radiation should be completely thermal until the black hole has almost entirely evaporated,1

or at least why the conclusion of information loss is näıve.

Conventional effective field theory suggests that the bulk evaporation should be semi-

classical, in agreement with Hawking’s calculation, so long as the black hole is large com-

pared to the string and Planck scales. In this paper, we will assume that this is indeed the

case. In particular, we assume that, from a semiclassical bulk perspective, the Hawking

radiation continues to be in a thermal state (up to greybody factors) that is purified by

interior modes, even late in the evaporation.

However, as we shall show, this does not mean that no information escapes the black

hole. By assuming the quantum version of the Ryu-Takayanagi formula and entanglement

wedge reconstruction, we will show that, at late times, the interior degrees of freedom are

not microscopically independent of the early Hawking radiation. Instead, a large part of the

interior is encoded in the early Hawking radiation, in exactly the same way that the bulk

in AdS/CFT is microscopically encoded in its asymptotic boundary. This is essentially a

formal realisation of the notion of black hole complementarity [6]. We will precisely identify

the part of the interior that is encoded in the Hawking radiation, and thereby derive all

the expected properties of unitary black hole evaporation.

In particular, we will show that

• Only a non-perturbatively small amount of information escapes the black hole before

the so-called Page time, when the entropy of the Hawking radiation becomes equal to

the Bekenstein-Hawking entropy of the black hole.2 However, the existence of such

non-perturbatively small corrections is crucial in allowing information to later escape.

• A small diary, thrown into the black hole early in the evaporation, can be recon-

structed at the Page time, so long as the state of the black hole is known. A diary

thrown into the black hole after the Page time can be reconstructed after waiting for

the scrambling time β/2π logSBH .
3 These twin results are known as the Hayden-

Preskill decoding criterion and were conjectured based on toy models [8]. We also

derive generalisations of the Hayden-Preskill decoding criterion to large diaries and

partially unknown black hole states, where we continue to find exact agreement with

toy models.

• The microscopic entanglement entropy of the black hole obeys the so-called Page

curve, which was similarly conjectured based on toy models of black hole evapora-

1This is a slight over-simplification. In reality, part of the Hawking radiation will be reflected back into

the black hole, adding ‘greybody factors’ to the radiation that escapes.
2The Page time is commonly called the ‘halfway point’ in the black hole evaporation, although, because of

the thermodynamic irreversibility of the evaporation and the time dependence of the black hole temperature,

it does not occur halfway through the evaporation either by time or by horizon area/entropy [7].
3In this formula, SBH is the Bekenstein-Hawking entropy of the black hole, and β is the black hole

inverse temperature.
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tion [9]. Before the Page time, the entanglement entropy is equal to the entropy of the

Hawking radiation, while, after the Page time, it is equal to the Bekenstein-Hawking

entropy of the black hole. Crucially, the firewall paradox, which we discuss below,

is avoided because the black hole interior is partially encoded in the early Hawking

radiation.

The firewall paradox [10] suggests that the combination of standard quantum field theory

in the bulk, together with global unitarity, is inconsistent with the existence of a smooth

horizon after the Page time. For a smooth horizon with finite energy density to exist,

outgoing modes close to the horizon must be entangled with the interior outgoing modes,

just inside the horizon. As we evolve forwards in time, these outgoing modes become

late-time Hawking radiation.

Furthermore, because the black hole is already close to maximally entangled with the

early Hawking radiation, the late-time Hawking radiation must be entangled with the early

Hawking radiation, to avoid violating unitarity. However, strong sub-additivity means that

a single system cannot be strongly entangled with two different systems at once [11]. We

therefore have a paradox. To resolve the paradox, the authors of [10], known by the

acronym AMPS, suggested that a ‘firewall’, or region of very high energy density, must

form at the horizon at some point at or before the Page time.

The publication of [10] provoked a flood of responses, including [12–17]. Perhaps most

compellingly, in the ER=EPR proposal [18], it was pointed out that the thermofield double

state of a CFT,
∑

i

e−βEi/2 |̄i〉 |i〉 , (1.1)

is also an example of a black hole that is close to maximally entangled with an external

system. Rather than being entangled with the early Hawking radiation, it is entangled with

the second copy of the CFT. Hence, the AMPS paradox should apply and the thermofield

double state should have a firewall at its horizon. However, the thermofield double state is

well-known to be dual to a two-sided Schwarzschild black hole, which has a smooth horizon.

The resolution, in this case, is obvious: the ‘interior modes’ (which are really exte-

rior modes from the perspective of the second asymptotic boundary) are encoded, from a

boundary perspective, in the second copy of the CFT. Hence, there is no contradiction in

the Hawking radiation being entangled with both the interior modes and the second copy

of the CFT; in fact, the first statement directly implies the second. As one of the results

of this paper, we will show that the firewall paradox for one-sided black holes is resolved

in exactly the same way.

To show this, and to show all our other results, we will need to use entanglement

wedge reconstruction. The entanglement wedge reconstruction conjecture was developed

in [19–21] and then established with increasing levels of rigour in [22, 23] and [24]. It has

long been known that bulk operators in AdS/CFT can have multiple, distinct boundary

representations, which are known as ‘reconstructions’. Moreover, there exist reconstruc-

tions of any local bulk operator that act on only part of the boundary. Bulk information

is encoded redundantly on the boundary. This redundancy is best understood in the lan-
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guage of quantum error correction as the statement that bulk operators, acting on the ‘code

space’ of states with a given bulk geometry, are protected against the erasure of certain

boundary subregions [25].

Entanglement wedge reconstruction tells us which part of the bulk is encoded in a given

part of the boundary. A bulk operator can be reconstructed using a given boundary region

B, if, and only if, the bulk operator is contained in a region known as the entanglement

wedge b of the boundary region B.

To define the entanglement wedge of B, we first need to define the Ryu-Takayanagi

surface χB associated to B. This surface was originally defined for static spacetimes as the

bulk surface χB of minimal area A(χB), lying within a static timeslice and homologous to

the boundary region B [26, 27]. However, for general dynamic spacetimes [28], and taking

into account quantum corrections [29, 30], it is the quantum extremal surface, homologous

to B, with the smallest generalised entropy

A(χB)/4GN + Sbulk(χB).

Here, the bulk entropy Sbulk(χB) is the von Neumann entropy of the bulk fields contained

in the entanglement wedge of B, as defined using the candidate surface, and a quantum

extremal surface is defined as a (d−1)-dimensional surface of extremal generalised entropy.4

The Ryu-Takayanagi formula, including quantum corrections, states that entanglement

entropy of the boundary region B is equal to the generalised entropy of the Ryu-Takayanagi

surface.

The entanglement wedge is now simple to define. It is the bulk region, or, more

precisely, the bulk domain of dependence, bounded by the Ryu-Takayanagi surface χB and

the boundary region B.

An inportant breakthrough was made recently by Almheiri [31], who used entangle-

ment wedge reconstruction to understand how the ER=EPR proposal continues to resolve

the firewall paradox for a two-sided black hole, even when the black hole is dynamically

evolving in time. He considered a two-dimensional, two-sided black hole, which has an

approximate ‘boundary’ description as an entangled state in a pair of SYK models, and

imagined extracting Hawking radiation, using absorbing boundary conditions, from one

side of the black hole, and then throwing it into the other side.

When the final state was evolved backwards in time, this time without any interaction

between the two sides, he argued that the Ryu-Takayanagi surface was different from

the Ryu-Takayanagi surface in the initial state. Degrees of freedom had moved from the

entanglement wedge of the ‘evaporating’ side to the entanglement wedge of the ‘growing’

side. Information was ‘escaping in the Hawking radiation’. Moreover, this change in Ryu-

Takayanagi surface meant that the interior modes, with which the Hawking radiation on

4In this paper, we will always use the term quantum extremal surface to refer to any surface that is an

extremum of the generalised entropy. Similarly, classical extremal surface refers to any extremal area surface.

We use Ryu-Takayanagi surface, or quantum Ryu-Takayanagi surface, to refer to the quantum extremal

surface of minimal generalised entropy and classical Ryu-Takayanagi surface to refer to the minimal area

classical extremal surface.
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the ‘evaporating’ side was entangled, were still encoded in the ‘growing’ side. The two-

sided black hole therefore continued to evade the firewall paradox, even as one side of the

black hole shrank and the other grew.

The basic conceptual story of this paper will be similar to [31], and indeed to the

original ER=EPR proposal [18]. However, rather than relying on the toy model of the

thermofield double state, which is well understood but does not actually describe an evap-

orating black hole, we will work directly with one-sided evaporating black holes.

More specifically, in this paper, we consider an evaporating black hole, formed from

collapse, where the Hawking radiation is extracted into an auxiliary reservoir Hrad using

absorbing boundary conditions. By doing so, we will be able to make precise quantitative

statements about where, and when, information is encoded.

Unlike in [31], where only classical Ryu-Takayanagi surfaces were considered, it is cru-

cial, when studying an evaporating black hole, that we look at quantum RT surfaces. Since

we are extracting the Hawking radiation into an auxiliary reservoir Hrad, the microscopic

entanglement entropy of the black hole is simply the entanglement entropy between the

entire boundary Hilbert space HCFT and the reservoir Hrad. The Ryu-Takayanagi formula

states that this entropy is equal to the generalised entropy of the Ryu-Takayanagi surface

χ associated to the entire boundary.

For an evaporating black hole formed from collapse, the only classical extremal surface,

homologous to the entire boundary (i.e. trivial homology), is empty. If entanglement wedge

reconstruction was based on the classical Ryu-Takayanagi surface, the interior of the black

hole would always be encoded in HCFT and no information would ever escape the black

hole.5

The empty surface is also a quantum extremal surface, with generalised entropy equal

to the bulk entanglement entropy Srad between the Hawking radiation and the interior of

the black hole. Since we are assuming that the semiclassical Hawking calculation is valid so

long as the black hole is large compared to the string/Planck scales, this bulk entanglement

entropy will continue to grow, in agreement with semiclassical calculations, even after the

Page time.

However, even early in the evaporation of the black hole, it will turn out that there

also exists a second, non-empty quantum extremal surface, which lies just inside the event

horizon of the black hole. In Eddington-Finkelstein coordinates, the infalling time of this

extremal surface is exactly the scrambling time, to leading order, before the ‘current time’,

when Hawking radiation was most recently extracted into Hrad.

Initially, this quantum extremal surface will not be the Ryu-Takayanagi surface.

Its generalised entropy will be approximately the Bekenstein-Hawking entropy SBH =

Ahor/4GN of the black hole, which is much larger than the generalised entropy Srad of

the empty surface. However, at the Page time, there will be a phase transition and the

non-empty quantum extremal surface will become the Ryu-Takayanagi surface.

5In this case, we would have to believe either in remnants, or in a complete breakdown of the semiclas-

sical description of the evaporation, as in the firewall proposal. However, remnants are inconsistent with

the spectral density of CFTs and there is no reason within the bulk effective field theory to expect the

semiclassical bulk description to breakdown until the black hole has almost entirely evaporated.

– 5 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
2

From this, one can easily use the Ryu-Takayanagi formula to find the entanglement

entropy S between the CFT and the reservoir. To leading order, it is given by

S = min(Srad, Ahor/4GN ). (1.2)

The entanglement entropy therefore peaks at the Page time (defined by Srad = Ahor/4GN )

before beginning to decrease. It has long been conjectured that the entanglement entropy

of an evaporating black hole is given by this formula, which is known as the Page curve [9].

In particular, a version of the Page curve can be derived if we model the CFT boundary

dynamics by a Haar random unitary acting on a large number of qubits.6 Here we derive

it directly from a bulk calculation.7

On its own, an explanation of the Page curve using the Ryu-Takayanagi formula is

not entirely satisfactory. It does not explain why extracting Hawking radiation into the

reservoir should decrease the entanglement entropy.

In particular, it does not resolve the firewall paradox. If the entanglement entropy S

is to decrease over time, the Hawking radiation that is transferred over from the CFT to

the reservoir must itself be entangled with the reservoir. In the semiclassical bulk picture

of the evaporation, however, it is instead entangled with the interior of the black hole.

Fortunately, we also know about entanglement wedge reconstruction. The newly emit-

ted Hawking radiation is indeed entangled with interior modes, but some of these modes

are now in the entanglement wedge of, and so encoded in, the reservoir Hrad. The same

resolution of the firewall paradox that worked for the thermofield double state also works

for evaporating black holes.

In the thermofield double state, the Hawking radiation is perfectly thermally entangled

with the second CFT. If the late-time Hawking radiation in an evaporating black hole was

perfectly thermally entangled with the reservoir, we would find

dS

dt
= −dSrad

dt
<

1

4GN

dAhor

dt
. (1.3)

This inequality is strict, even at leading order, because generically black hole evaporation

is a strictly thermodynamic-entropy-increasing process. The entanglement structure of the

bulk modes would therefore be inconsistent with the Page curve.

However, unlike in the thermofield double state, the Ryu-Takayanagi surface of an

evaporating black hole does not lie exactly on the event horizon. Instead it lies an O(GN )

radial distance inside the horizon. Some of the interior outgoing modes are still encoded

in the CFT, and so the new radiation is not perfectly entangled with the reservoir Hrad.

In simple cases, one can explicitly calculate the rate of change in the entanglement

entropy S that results from extracting a small amount of new Hawking radiation. It agrees

6This is slightly ahistorical. The Page curve was conjectured well before AdS/CFT was known. However

the conjecture was still based on the assumption that the black hole evaporation could be modelled by a

Haar random unitary.
7We do, of course, need to assume the Ryu-Takayanagi formula and entanglement wedge reconstruction,

which are both fundamentally holographic ideas. The Page curve cannot be found using the semiclassi-

cal bulk description alone, because it results from the build-up of non-perturbatively small effects. See

section 3.3 for more details.
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exactly with the rate of change we found using the Ryu-Takayanagi formula. This is not a

coincidence. In fact, we shall show that this agreement must always exist; it is a necessary

consequence of the Ryu-Takayanagi surface being an extremum of the generalised entropy.

We are also interested in the question of when information about objects thrown into

the black hole reappears in the Hawking radiation. If a small diary had been thrown into

the black hole more than one scrambling time ago, it would now lie in the entanglement

wedge of the reservoir Hrad. It is therefore in principle possible to recover the state of the

diary by looking only at the Hawking radiation in the reservoir. At least from a boundary

perspective, the information contained in the diary has escaped the black hole.

By modelling the boundary dynamics of the CFT as a fast scrambling unitary, Hayden

and Preskill famously conjectured in [8] that the state of a small diary thrown into a black

hole early in the evaporation could be decoded from the Hawking radiation at the Page

time, while the state of a diary thrown in after the Page time could be decoded after

waiting for the scrambling time. Just as for the Page curve, by assuming entanglement

wedge reconstruction, we can derive the Hayden-Preskill decoding criterion from a bulk

description of the evaporation.

So far, we have avoided any discussion of the crucial issue of state dependence. The

idea that there does not exist any single boundary operator that always corresponds to a

given interior bulk operator, and instead different boundary operators must be used for

different states, goes back to Papadodidimas and Raju [32, 33]. As with the ER=EPR

proposal, it was partially inspired as a response to the AMPS firewall paradox. Since then,

there has been considerable work on understanding whether such state dependence exists

and, if so, how it works [34–36].

In particular, great progress has been made in the context of the SYK model, a toy

model of quantum gravity, where it was shown that there exists a complete basis (in fact

an overcomplete basis) of pure black hole microstates, whose interior geometries are well

understood [37]. Interior operators can be reconstructed on the boundary for each individ-

ual microstate, but there is no single reconstruction that works for all the microstates. The

idea that the state dependence of interior operators could be interpreted in the language

of quantum error correction was suggested in [38] and developed in detail in [31].

In many ways, however, the simplest case of interior state dependence is the Hayden-

Preskill decoding criterion. As discussed above, a small diary thrown into a known black

hole state can be reconstructed from the Hawking radiation immediately after the Page

time. However, to do this, we have to know the state of the black hole.

If there was a way of extracting information about the diary from the Hawking radi-

ation that worked for any initial black hole state, then, by linearity, we could also extract

information for highly mixed initial black hole states. But for highly mixed intial states,

the Hawking radiation will look completely thermal until long after the Page time. So it

is clear that the interior operators describing the state of the diary can only be encoded in

the Hawking radiation in a highly state-dependent way.

It was shown in [38] that state dependence can arise as a consequence of entanglement

wedge reconstruction. By using the formalism of approximate operator algebra quantum

error correction, specifically the results of [39–41], one can show that there only exists a

– 7 –
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single state-independent reconstruction on a boundary region B of a given bulk operator

and for a given code space, if the bulk operator is contained in the entanglement wedge

of B for all states, both pure and mixed, with support only in the code space. In contrast,

the existence of state-dependent reconstructions is possible so long as the bulk operator is

contained in the entanglement wedge of B for all pure states.

Suppose, as before, we want to reconstruct a small diary, thrown into the black hole at

an early time, from the Hawking radiation reservoir Hrad. However, rather than knowing

the exact initial state of the black hole, we now only know that the black hole was in some

large code space of possible initial microstates. As a simple example, we can imagine that

we started with a smaller black hole, in a completely unknown state, and then threw in a

large amount of additional energy.

For any pure initial microstate in this code space, the Ryu-Takayanagi surface will

jump to the non-empty quantum extremal surface near the horizon, at the Page time, and

so the entanglement wedge of Hrad will contain the diary. If we knew the initial state of the

black hole, we could reconstruct the diary. On the other hand, for a highly mixed initial

state, the Ryu-Takayanagi surface of the reservoir Hrad will remain empty until much later.

To be able to find a single state-independent reconstruction that works for the entire

code space, we need the interior to be in the entanglement wedge of the reservoir, even for

such highly mixed initial states. We therefore need the entropy Scode of the code subspace

to satisfy

Scode < Srad − SBH . (1.4)

Not only does this agree with a conjecture from [38] based on random unitary toy models,

it is also provides the mechanism by which information is able to escape the black hole.

Regardless of the initial state of the black hole and the state of any diary that was thrown

in, the outgoing Hawking radiation is entangled with interior modes in exactly the same

way. However, because the interior modes are themselves encoded in the reservoir Hrad

in a state-dependent way, the new Hawking radiation still provides information about the

state of the black hole to an observer with access to Hrad.

A similar effect happens before the Page time. At this point, the interior is encoded in

the boundaryHCFT rather than the reservoirHrad. However the encoding is still necessarily

state dependent; if we allow too large a class of initial black hole microstates, the interior

will no longer be contained in the entanglement wedge of HCFT for highly mixed states.

To reconstruct interior operators on the CFT, we need the code subspace of allowed initial

microstates to satisfy

Scode < SBH − Srad. (1.5)

If the black hole has not evaporated at all, the bulk entanglement entropy Srad is zero.

Hence, (1.5) suggests that we can reconstruct the interior for code spaces of microstates

whose entropy is almost as large as, but still strictly less than, the Bekenstein-Hawking

entropy of the black hole. We will say that the interior of an unevaporated black hole is

encoded in HCFT in a minimally state-dependent way.

Most of the explicit state-dependent interior reconstructions that have appeared in the

literature, for example [32, 33, 36, 37], are only intended to work for a single black hole

– 8 –
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microstates, or a code space with O(1) dimension. However, in an appendix, we show that

the Kourkoulou-Maldacena construction for the SYK model [37] can be trivially extended

to work for a set of microstates with entropy almost as large as the Bekenstein-Hawking

entropy. We also show that minimal state dependence is sufficient to avoid the AMPSS

typical-state firewall paradox.

The structure of the paper is as follows. In section 2, we study entanglement wedge

reconstruction in an evaporating black hole that was formed by collapse. By restricting our

attention to a single initial microstate, we avoid the issue of state dependence. We find the

location of the non-empty quantum extremal surface explicitly, in a simplified evaporation

process where the Hawking radiation is extracted from close to the horizon, in section 2.2,

and then use this calculation to explain the Hayden-Preskill decoding criterion and the

Page curve in section 2.3. Finally, we show how one can still derive Hayden-Preskill and

the Page curve, even when non-trivial greybody factors are present, in section 2.4.

In section 3, we consider large code spaces of initial black hole microstates, and show

how the state dependence of interior reconstructions depends on time. We also generalise

the Hayden-Preskill decoding criterion to large diaries in section 3.4. In section 3.5, we

argue that the interior of black holes that have not evaporated at all is encoded in the

boundary with only minimal state dependence.

Finally, section 4 includes a detailed summary of the results of the paper, as well

as discussion on various topics. In particular, we argue in section 4.3 that, from a bulk

perspective, information must escape the black hole through a version of the Horowitz-

Maldacena final state proposal [42]. In appendices, we generalise the calculations from

section 2.2 to finite temperature infalling modes, and show how the Kourkoulou-Maldacena

construction can easily be made minimally state dependent.

After the completion of this manuscript, the author became aware of independent

related work by Almheiri, Engelhardt, Marolf and Maxfield [43], which was published

simultaneously.

2 Entanglement wedge reconstruction in an evaporating black hole

In this section, we study an evaporating black hole formed from collapse. For simplicity, we

assume throughout that the collapsing matter, and hence the entire spacetime, is rotation-

ally symmetric. We show that no information about the black hole escapes in the Hawking

radiation, until the Page time, when the bulk entropy Srad of the Hawking radiation be-

comes equal to the Bekenstein-Hawking entropy SBH of the black hole. After the Page time,

a large part of the interior of the black hole becomes encoded in the early Hawking radiation.

In particular, a diary thrown into the black hole becomes encoded in the Hawking radia-

tion after waiting for the scrambling time. The microscopic entanglement entropy of the

black hole begins to decrease, in accordance with the Page curve, because the new Hawking

radiation is entangled with interior modes that are encoded in the early Hawking radiation.

Our main focus will be on black holes with fixed Schwarzschild radius rs in AdS units

in the limit GN → 0. All such black holes are microcanonically stable: if we evolve the
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system with reflecting boundary conditions, the black hole will quickly reach equilibrium

with the Hawking radiation and remain constant in size (up to small fluctuations).8

To study the evaporation of microcanonically stable black holes, we instead impose

absorbing boundary conditions.9 The outgoing modes are absorbed by the boundary and

so the infalling modes are always in the vacuum state. The Hawking radiation never returns

to the black hole, which gradually evaporates.

The dynamics of the system are now irreversible. Rather than evolving unitarily,

the boundary state |ψ〉 ∈ HCFT will obey a Markovian master equation [47]. However, as

usual with any quantum channel, we can make the evolution unitary by adding an auxiliary

Hilbert space — in this case, a large Markovian reservoir Hrad that stores the outgoing

Hawking radiation once it reaches the boundary. Such a reservoir is sometimes known as

an evaporon [45], although we will not use this term. The information paradox will be

resolved by simply keeping track of which parts of the bulk are in the entanglement wedge

of HCFT and which are in the entanglement wedge of Hrad.

We assume that the Ryu-Takayanagi surface, associated to a given boundary region,

is defined to be the quantum extremal surface, i.e. surface of extremal generalised entropy

A

4GN
+ Sbulk, (2.1)

homologous to the boundary region, with the smallest generalised entropy. Here, the

bulk entropy Sbulk is the von Neumann entropy of the bulk fields in any spacelike surface

bounded by the Ryu-Takayanagi surface and the boundary region.10 If the overall bulk

state is pure, this bulk von Neumann entropy is simply entanglement entropy between bulk

fields inside and outside the entanglement wedge.

We will also generally assume that this prescription is equivalent to a maximin pre-

scription,

max
Cauchy

min
χ

[

A(χ)

4GN
+ Sbulk(χ)

]

, (2.2)

where one first finds the surface of (globally) minimal generalised entropy within fixed

Cauchy slices, and then selects the Cauchy slice which (globally) maximises this minimal

generalised entropy.11 When this paper first appeared on arXiv, the equivalence of the

maximin and extremal (HRT) prescriptions had only been formally shown for classical

surfaces (assuming the null energy condition) [21], although it was expected to also be true

for quantum surfaces [29]. It has since been shown for quantum surfaces [48] (assuming the

8This should not be confused with the fact that black holes that are sufficiently small (below the

Hawking-Page transition [44]) in AdS units are thermodynamically unstable, even if their size is fixed

in the semiclassical limit GN → 0.
9For similar use of absorbing boundary conditions to evaporate black holes in AdS/CFT see [31, 45, 46].

10Bulk causality ensures that this bulk entropy is independent of the choice of spacelike surface. Instead

Sbulk is a function of the bulk domain of dependence of the spacelike surface, which itself depends only on

the RT surface and the boundary region.
11As just described, the maximin prescription will not generally pick out a unique surface χ, since we

can generally find maximising Cauchy slices with more than one minimal surface. However, generically, it

should pick out a unique stable surface χ, which continues to be close to a minimal surface under any small

perturbation of the Cauchy slice. This stable surface should be extremal and the quantum RT surface.
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Figure 1. With reflecting boundary conditions, outgoing modes in a surface ending on the bound-

ary at time t1 may become ingoing modes on a surface ending at time t2, but the same degrees of

freedom will always be contained in each surface. The bulk entropy cannot depend on the boundary

time. In contrast, with absorbing boundary conditions, outgoing modes at time t1 may escape the

bulk in the reservoir Hrad by time t2, and so no longer be contained in a surface ending at time t2.

The bulk entropy, and hence the notion of quantum extremality, depends on the boundary time.

quantum focussing conjecture [49]). We shall therefore only use the maximin prescription

to provide intuition about the location of the quantum RT surface; all our actual results

will be found using the extremal surface prescription.

If a classical extremal surface is homologous to any boundary component12 at some

time t, it will also be homologous to the same boundary component at any other time and,

trivially, will still be a classical extremal surface. The classical Ryu-Takayanagi surface

therefore cannot change as a function of the boundary time.13

However, this is only true for a quantum extremal surface when we have reflecting

boundary conditions. The bulk entropy term in the generalised entropy (2.1) depends not

only on local data at the Ryu-Takayanagi surface, but on the state of the bulk fields in

entire bulk region, bounded by the RT surface and the boundary.

As shown in figure 1, with reflecting boundary conditions, the same degrees of freedom

are contained in this region, independent of the boundary time. However, with absorbing

boundary conditions, outgoing modes, which are contained in a spacelike surface that ends

on the boundary at time t1, may escape the boundary and not be contained in a spacelike

surface ending at a later time t2. The bulk entropy, and hence, more importantly, the

gradient of the bulk entropy, may depend on the boundary time. A quantum extremal

surface for the entire boundary at time t1 may no longer be a quantum extremal surface

for the entire boundary at time t2.

To understand how the information paradox is resolved in AdS/CFT, we will need not

only to find the entanglement wedge of the CFT, but also the entanglement wedge of the

reservoir Hrad. This is not a ‘boundary region’ in the usual sense and we therefore need to

be careful about how to define a Ryu-Takayanagi surface and an entanglement wedge for it.

It is a general fact that, if we divide the boundary of a pure holographic state into two

complementary regions, the quantum Ryu-Takayanagi surface will be the same for both

regions, and hence the entanglement wedges of the two regions will also be complementary.

12By this we mean a boundary region B, whose boundary ∂B is empty.
13One might worry that the classical Ryu-Takayanagi surface might not be spacelike separated from the

boundary at some boundary time. However, this cannot happen, assuming the null energy condition [21].
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The same will be true here. The Ryu-Takayanagi surface for Hrad will be the same as the

RT surface for HCFT, and the entanglement wedge of Hrad will contain the outgoing modes

that were extracted into the reservoir, along with the bulk domain of dependence of any

spacelike surface in the black hole interior that is bounded only by the RT surface. All the

bulk degrees of freedom will either be in the entanglement wedge of the CFT, or be in the

entanglement wedge of the reservoir Hrad.

However, because our ‘boundary region’ is not actually holographic, let us take a

moment to see explicitly why this is true. The simplest way to do so is to imagine throwing

the radiation in Hrad into the bulk of an auxiliary holographic CFT, with a parametrically

smaller Newton’s constant G′
N (i.e. a parametrically larger central charge) than the original

CFT. The small gravitational coupling G′
N ensures that there won’t be any significant

backreaction.14 Since the entanglement entropy of this auxiliary CFT must be the same as

the entanglement entropy of Hrad, we will define the RT surface of Hrad to be the RT surface

of this auxiliary CFT, which is, by definition the smallest generalised entropy quantum

extremal surface homologous to the entire boundary of this auxiliary bulk geometry (i.e.

a closed surface with trivial homology). Note that, for a one-sided black hole, the entire

boundary of the original CFT also has trivial homology; the two homology constraints are

the same.

One might worry that the RT surface that we define in this way could depend on

the details of the auxiliary spacetime, in which case it would not be well-defined as an RT

surface for Hrad. However, it is easy to see that the RT surface cannot contain a non-empty

component in the auxiliary geometry, since in the limit G′
N → 0 the area term will always

be dominant and vacuum AdS contains no classical extremal surface.15 It follows that the

only place where a nonemtpy component of the RT surface can exist is in the original black

hole geometry.

The entanglement wedge of the auxiliary CFT is the domain of dependence of any

spacelike surface bounded by the RT surface and the auxiliary boundary. This will therefore

include the entire auxiliary geometry, plus, if the RT surface is non-empty, the domain of

dependence of any spacelike region bounded by the RT surface alone.

The RT surface, and entanglement wedge, of the combination of a boundary region and

a nonholographic system was previously considered in [38]. It was argued there that the RT

surface should be the minimal generalised entropy quantum extremal surface, homologous

to the boundary region, defined with the nonholographic system automatically included as

part of the fields in Sbulk (see for example eq. 4.14 of [38]). This was justified by similar

arguments to those above (see footnote 15 of [38]). In the special case considered here

14To avoid talking about more than one holographic CFT, we could instead avoid backreaction by taking

a large number of copies of the original CFT and throwing a small amount of radiation into each one.
15The quantum extremal surface prescription for the RT surface can be derived from the replica trick [30].

In the limit G′

N → 0, the auxiliary spacetimes will be identical in the replicated and unreplicated geometries

(because of the lack of backreaction). It follows that the derivation from [30] can be used to directly calculate

the entropy of Hrad, without having to worry about the auxiliary geometry we introduced here. After this

paper first appeared on arXiv, these replica trick calculations were done explicitly in [50, 51], where it

was shown that the relevant topologies for the second half of the Page curve involve spacetime wormholes

connecting different replicas.
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where the boundary region is empty and so we only have a nonholographic system, this

rule leads to the same conclusions that we reached above.

We have already argued that the RT surfaces for HCFT and Hrad satisfy the same

(trivial) homology constraint. Moreover, for any given candidate RT surface, the resulting

entanglement wedges for HCFT and Hrad are complementary within a Cauchy slice (of the

original black hole geometry plus the auxiliary geometry). Since the overall state of the

bulk modes is pure, the bulk entropy associated to each entanglement wedge will always

be the same. It follows that a quantum extremal surface with respect to HCFT will also

be a quantum extremal surface with respect to Hrad and vice versa. The Ryu-Takayanagi

surfaces for HCFT and Hrad will therefore be the same.

The simplest quantum extremal surface, for both HCFT and Hrad, is, of course, the

empty surface. The generalised entropy of the empty surface will be equal to the bulk

entanglement entropy Srad between the Hawking radiation and the interior of the black

hole. Recall that we assume that the bulk evaporation is semiclassical, so long as the

black hole is large compared to the string and Planck scales. Hence the bulk entanglement

entropy Srad will continue to grow, in accordance with semiclassical calculations, until the

black hole has almost completely evaporated.

Before the Page time, the empty surface will be the Ryu-Takayanagi surface. This can

easily be seen using the maximin prescription. Since the empty surface lies in every Cauchy

slice, Srad upper bounds the generalised entropy of the Ryu-Takayanagi surface. However,

it is also easy to find a Cauchy slice for which the empty surface has minimal generalised

entropy. We simply choose a Cauchy slice that stays a small, but fixed, radial distance

inside the event horizon of the black hole. Within this Cauchy slice, we cannot choose an

RT surface χ that excludes the interior modes, entangled with the outgoing radiation in

Hrad, without the area A(χ) of this surface satisfying

A(χ)

4GN
> Srad. (2.3)

The surface of minimal generalised entropy within this Cauchy slice is therefore the empty

surface, with generalised entropy Srad.
16

It follows that the RT surface is empty and the interior of the black hole is in the

entanglement wedge of the boundary CFT, and not the entanglement wedge of the Hawking

radiation reservoir. No information has escaped the black hole. The Hawking radiation is

thermally entangled with the interior, which is encoded in the CFT, so the redused density

matrix of the reservoir Hrad will be thermal (with appropriate greybody factors). We can

also see from the Ryu-Takayanagi formula that the entanglement entropy between the CFT

and the reservoir will indeed be the bulk entanglement entropy Srad between the Hawking

radiation and the interior. We have derived the first half of the Page curve.

As an aside, we emphasize that, because the evaporation is thermodynamically irre-

versible, the bulk entanglement entropy Srad is strictly greater than (A0
hor − Ahor)/4GN

16Assuming that the minimal generalised entropy surface is unique, it is sufficient, because of the rota-

tional symmetry of the system, to only consider rotational symmetric candidate surfaces. However, it is not

difficult to verify that the empty surface does indeed have minimal generalised entropy, within this Cauchy

slice, even when we consider surfaces that are not rotationally symmetric.
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Figure 2. Schematic drawings of Cauchy slices through the black hole interior, both before the

Page time (left) and after the Page time (right). The blue lines indicate entanglement between

the interior of the black hole and the reservoir Hrad. Before the Page time, there exist Cauchy

slices where the empty surface is the surface homologous to the boundary with minimal generalised

entropy. It is therefore the Ryu-Takayanagi surface χ. For illustrative purposes, we draw this surface

cutting the entanglement between the interior and the reservoir. After the Page time, however, no

such Cauchy slice exists. Within any Cauchy slice, there will always exist a surface, near the horizon

and homologous to the boundary, with smaller generalised entropy. The Ryu-Takayanagi surface

must become non-empty at the Page time.

where A0
hor is the initial horizon area of the black hole. This means that the Page time,

which we recall is defined by

Srad =
Ahor

4GN
, (2.4)

occurs when the horizon area Ahor > A0
hor/2, despite commonly being called the halfway

point of the evaporation [7].

What happens after the Page time? The empty surface is still extremal, but it is

easy to see from the maximin prescription that it cannot be the Ryu-Takayanagi surface.

In any Cauchy slice, we can construct a surface homologous to the boundary that is (a)

outside the event horizon, and (b) has only slightly greater area than the current horizon

area.17 Since the only source of greater-than-O(1) bulk entropy is the interior modes that

are entangled with radiation that escaped to Hrad, the generalised entropy of this surface

will be less than the generalised entropy of the empty surface.18 The two cases, before and

after the Page time, are shown schematically in figure 2.

17In fact the area of the ‘classical maximin surface’ that we find in section 2.1 gives an upper bound on

this area.
18One might worry that late-time Hawking radiation, which has yet to reach the boundary could provide a

source of greater-than-O(1) bulk entropy. However, because the Cauchy slice must be achronal, the infalling

time of any surface in the Cauchy slice cannot be later than the boundary infalling time. Hence, the bulk

entropy of any surface in the exterior will be at most O(1) (once it has been regulated using a cut-off).
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We therefore conclude that the quantum Ryu-Takayanagi surface must become non-

empty at the Page time. In fact, we will show that there exists a non-empty quantum

extremal surface even before the Page time. At the Page time, there is a phase transition,

and the non-empty quantum extremal surface becomes the Ryu-Takayanagi surface. The

main focus of this section will be on identifying the location of, and the consequences of

the location of, this non-empty quantum extremal surface.

2.1 The classical ‘maximin surface’

We begin with a warm-up. Since the bulk entropy term Sbulk(χ) is subleading compared

to the area term A(χ)/4GN in the formula for the generalised entropy, we shall initially

ignore the local variation in the bulk entropy and instead attempt to simply find a ‘classical

maximin surface’ χc.
19

Obviously, for an evaporating black hole formed from collapse, the true classical max-

imin surface would be empty. We could fix this issue by temporarily assuming that the

original black hole was two-sided, with one side allowed to evaporate. However, that would

be taking this calculation too seriously. The actual surface that we find will very clearly

not make sense as an actual Ryu-Takayanagi surface of any kind (it won’t be extremal for

example); however, it will turn out to correctly identify the approximate location of the

quantum extremal surface, which we shall find in the later parts of this section. We shall

therefore simply ignore the question of how the black hole formed entirely, and assume that

it has been evaporating forever.

Because of the assumed rotational symmetry, the classical maximin surface (and the

eventual quantum extremal surface) should be rotationally symmetric. We therefore only

need to consider rotationally symmetric Cauchy slices.

We also know that the area of an infalling lightcone in an evaporating black hole is

montonically decreasing. Hence, given any Cauchy slice, we can increase

min
χ

A(χ)

4GN
(2.5)

by pushing the Cauchy slice backwards and outwards along infalling lightrays. The max-

imising Cauchy slice is therefore simply the past lightcone of the boundary.

In Eddington-Finkelstein coordinates, the metric of a static black hole is

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2, (2.6)

where the co-ordinate v labels the initial Schwarzschild time of an infalling lightray and,

for an uncharged AdS-Schwarzschild black hole,

f(r) = 1 +
r2

l2
− 16πGNM

(d− 1)Ωd−1rd−2
. (2.7)

Since our arguments should also be valid for charged black holes (at least when all the

particles involved in the Hawking radiation are neutral) and BTZ black holes, we will

avoid using (2.7) directly.

19We specify classical maximin surface here, because, unlike the actual quantum extremal surface, this

surface will not be extremal, by either the classical or quantum definition.
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In the semiclassical limit, the evaporation process is very slow. Over any fixed range

of infalling times, the metric will approach the metric of a static black hole of some fixed

mass M . We can therefore approximate the metric of an evaporating black hole by a static

black hole with a mass M , and hence Schwarzschild radius rs (defined by f(rs) = 0), that

is slowly varying with infalling time v; this is known as an ingoing Vaidya metric.20

The radius rl.c.(v) of an outgoing lightcone satisfies

drl.c.
dv

=
f(r)

2
≈ 2π

β
(r − rs), (2.8)

where the approximation is valid in the near-horizon region and the inverse temperature

β = 4π/f ′(rs). If r
′ = rl.c. − rs, we have

dr′l.c.
dv

=
drl.c.
dv

− drs
dv

≈ 2π

β
r′l.c. −

drs
dv

, (2.9)

At leading order in the semiclassical limit, we can assume that the inverse temperature β

and the evaporation rate drs/dv are constant.

Integrating (2.9), we find

rl.c. = rs + C e
2π
β
v
+

β

2π

drs
dv

, (2.10)

for some arbitrary constant C. If C > 0, the lightcone will eventually escape the black

hole, even if its radius is initially decreasing. In contrast, if C < 0, the outgoing lightcone

will eventually fall into the singularity.

The causal, or event, horizon of the black hole is defined as the boundary of the causal

past of future asymptotic infinity. In this case, up to subleading corrections from the time

dependence of drs/dv and β, it is the outgoing lightcone (2.9) with C = 0.21 Its radius

rhor is therefore given by

rhor = rs +
β

2π

drs
dv

. (2.11)

Since drs/dv < 0, this is inside the timelike apparent horizon rs.
22

If we instead choose C = rs, we have

rl.c. = rs + rs e
2π
β
v
+

β

2π

drs
dv

= rhor + rs e
2π
β
v
, (2.12)

and the lightray escapes the near horizon region at v = O(β).

20An ingoing Vaidya metric is only a simple approximation of the actual semiclassical metric of an

evaporating black hole; for example, at large radii compared to the Schwarzschild radius, the metric instead

resembles an outgoing Vaidya metric. For a detailed calculation of the metric of an evaporating black hole

in flat space see [52]. In the limit GN → 0, the only deviation of this metric from the static metric that

will be relevant for our calculations is the infalling-time dependence of the black hole mass.
21We are assuming here that nothing to radical happens (such as the black hole becoming a white hole)

when the black hole has almost entirely evaporated and the semiclassical description breaks down.
22For our purposes, the apparent horizon is the radius at which the area of an outgoing lightcone is locally

constant.
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The radius rl.c., and hence the area Ωd−1r
d−1, of the past lightcone reaches a minimum

and begins increasing when it reaches the apparent horizon rs. This occurs at

v = − β

2π
log

rs
β |drs/dv|

+O(β). (2.13)

For small AdS-Schwarzschild black holes,23 the only relevant lengthscale is the

Schwarzschild radius rs.
24 Hence, it is easy to see using dimensional analysis and the

fact that drs/dv = O(GN ) that

v = − β

2π
logSBH +O(β). (2.14)

We have therefore found that the classical maximin surface lies on the classical apparent

horizon, one scrambling time into the past.25

This is very hopeful: the Hayden-Preskill decoding criterion says that a small diary,

thrown into the black hole after the Page time, should be reconstructable from the Hawking

radiation after waiting for the scrambling time. Our calculation suggests that this is because

the entanglement wedge of the Hawking radiation reservoir Hrad now contains the diary.

However, there are two major problems with this classical maximin surface χc as

a candidate Ryu-Takayanagi surface. Firstly, the surface χc is not a classical extremal

surface. It has extremal area with respect to deformations that stay on the past lightcone,

but it certainly does not have extremal area if we allow deformations that move the surface

away from the lightcone. It therefore cannot be the Ryu-Takayanagi surface according to

the HRT extremal surface prescription, even though the HRT and maximin prescriptions

are supposed to be equivalent [21].

Secondly, if the surface χc was actually the Ryu-Takayanagi surface, the entanglement

wedge of the boundary CFT would not contain the causal future of the boundary. This

would be highly problematic because the forward time evolution of the CFT is determinis-

tic, and so the future boundary, although not the past boundary, is in the boundary domain

of dependence. The entanglement wedge of the CFT would not contain its causal wedge.

Both problems have the same cause and will have the same solution. The cause is that

the evaporating black hole spacetime violates the null energy condition. The null energy

23For large AdS black holes, there is no clear distinction between radiation that is inside the so-called

‘zone’ near the horizon and radiation that has escaped to the boundary. As a result, a large AdS black hole

does not have a well-defined evaporation rate, even with absorbing boundary conditions; it depends on the

details of the evaporation process.
24In small, near-extremal Reissner-Nordström black holes, the inverse temperature β is parametrically

large compared to the Schwarzschild radius rs. The approximation in (2.8) is therefore only valid when

r − rs ≪ r2s/β. At larger radii, we have dr/dv = O(1/f(r)) = O(r2s/(r − rs)
2) and so an outgoing lightray

escapes the black hole in an O(β) time. Hence, (2.13) becomes

v = − β

2π
log

r2s
β2 |drs/dv|

+O(β).

25In addition to the O(β) corrections, if the Schwarzschild radius rs is parametrically small in AdS units,

we also need to add the infalling time π lAdS for the outgoing lightcone to get from the black hole to the

boundary, after it has escaped the near horizon region.
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condition is needed to prove that the classical maximin surface is the same as the classical

extremal surface [21]. It is also needed to prove that the classical entanglement wedge

contains the causal wedge [21].

2.2 The quantum extremal surface

The problem of quantum effects leading to spacetimes that violate the null energy condition

was the original reason for the conjecture that the Ryu-Takayanagi surface should be a

quantum extremal surface, rather than a classical extremal surface [29]. So, we should

definitely be hopeful that all these problems will go away, once we fully include the effects

of the bulk entropy term.

Indeed, heuristically, it is easy to see that the bulk entropy term can push the Ryu-

Takayanagi surface away from the past lightcone. If the RT surface was exactly on the

past lightcone, no outgoing modes would be included in the entanglement wedge of the

CFT. Since the entropy of the outgoing modes is divergent, moving the RT surface a small

distance inside the lightcone should increase the bulk entropy by a formally infinite amount.

This strongly suggests that the quantum RT surface, in the maximin prescription, will be

stabilised a small radial distance away from the past lightcone, creating an actual quantum

extremal surface.

Unfortunately, actually calculating the bulk entropy is complicated by the presence

of non-trivial greybody factors. Because the black hole spacetime is curved, outgoing

modes close to the black hole do not necessarily escape to infinity. Instead, there is a non-

trivial scattering process. The curved spacetime wave equation can be rewritten as a flat

space wave equation with a potential barrier. This potential barrier lies an O(rs) distance

away from the black hole horizon and is higher for modes with large angular momentum,

causing the Hawking radiation to be dominated by modes with O(1) angular momentum.

The region inside the potential barrier is known as the zone.

Within the zone, the Hawking radiation is truly black body radiation at the black

hole temperature.26 However, the probability of a Hawking mode escaping depends on

its angular momentum and, importantly, on its Schwarzschild energy. This probability is

known as a greybody factor.

Outgoing modes in the entanglement wedge of the CFT are entangled both with modes

further in towards the black hole, and with outgoing modes further out — outside of the

past lightcone. The non-trivial greybody factors mean that the outgoing modes outside the

past lightcone are related to later ingoing modes, which are also in the entanglement wedge

of the CFT. This dramatically complicates any explicit calculation of the bulk entropy.

As a simple solution to this problem, we shall therefore temporarily assume that the

Hawking radiation is extracted from deep inside the zone, close to the horizon, before the

26A more precise statement is that each angular momentum mode looks like two-dimensional black

body radiation. For higher-dimensional black bodies, only angular momentum modes with |J | . Tr are

significantly excited, and only modes with |J | ≪ Tr look like two-dimensional thermal radiation. In

contrast, sufficiently close to the horizon, Rindler modes with |J | ≫ Trs = O(1) will be excited.
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mixing of ingoing and outgoing modes occurs.27 (We will reintroduce the greybody factors

in section 2.4.) This obviously involves changing the dynamics of the system compared to

our original procedure for extracting the Hawking radiation. In particular, the boundary

Master equation, and its purification using the reservoir Hrad, will now involve recon-

structions of operators deep in the bulk, which will be highly non-local from a boundary

perspective.

We emphasize, however, that there is nothing fundamentally unphysical about this.

The outgoing modes will still be extracted at a distance from the horizon (and hence an

energy scale) that is fixed in AdS units as GN → 0; the distance simply needs to be small

compared to the Schwarzschild radius rs. We are therefore still well within the domain of

validity of the bulk effective field theory.

It is important to note that the closer to the horizon we extract the Hawking radi-

ation, the larger the number of angular momentum modes that are excited.28 Similarly,

increasingly massive fields will be excited very close to the horizon. This can be seen from

the explicit form of the potential barrier in tortoise coordinates [54].

We will assume that we extract some fixed finite number of angular momentum modes

for each field, and that these fields are extracted sufficiently close to the horizon that

their mass and angular momentum can be safely ignored. In effect, we are changing the

dynamics of the theory such that all greybody factors are either zero or one, depending on

the angular momentum. We will also assume that all the light fields are free.

Close to the horizon, the spacetime can be approximated by R
1,1 × Sd−1 where the

radius of the sphere Sd−1 is the Schwarschild radius rs. Each angular momentum mode acts

as an independent free field in an effective two-dimensional theory, with a Kaluza-Klein

mass m2
KK = L2/r2s , which can be ignored at the lengthscales of interest.

Let the number of two-dimensional bosonic modes Nb and fermionic modes Nf . The

(1 + 1)-dimensional Stefan-Boltzman law [55] states that the rate of energy loss from the

black hole is given by
dM

dv
=
cevap π

12β2
, (2.15)

where cevap = Nb +Nf/2.
29 The first law of black hole thermodynamics says that βdM =

dAhor/4GN . Hence
dAhor

dv
=
cevap πGN

3β
, (2.16)

27By doing so, we are effectively reducing the problem to a calculation in the two-dimensional effective

theory that governs the near horizon region [53]. For this reason, our results in this section will be identical

(once constants are fixed appropriately) to those found in an explicit two-dimensional model in [43].
28Another way of saying this is that modes with larger angular momentum are reflected back into the

black hole at a smaller, but still finite, distance from the horizon.
29Of course, since Hawking radiation is stochastic, this is only the average rate of energy loss. However,

so long as we consider timescales that are large compared to the thermal time β, the average energy change

should be large compared to the fluctuations in the energy change, which can therefore be safely ignored.

In our case, the relevent timescale is the scrambling time, which is indeed very large compared to the

thermal time β in the semiclassical limit. We can also suppress the fluctuations by taking the limit where

cevap is large.
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and
drs
dv

=
cevap πGN

3β (d− 1) rd−2
s Ωd−1

. (2.17)

Substituting (2.17) into (2.13) and dropping O(β) terms, we find that the classical maximin

surface for this spacetime occurs at30

vc = − β

2π
log

SBH
cevap

+O(β). (2.18)

To calculate the quantum extremal surface, we also need to calculate how the bulk

entanglement entropy depends on the location of the extremal surface.31 Since we are

assuming that all the relevant fields are free and effectively massless at the lengthscales of

interest, the ingoing and outgoing modes are decoupled. The total bulk entropy is therefore

simply the sum of the bulk entropies of the ingoing and outgoing modes.

The infalling modes are in the vacuum state with respect to the infalling time v.

Moreover, if we assume (correctly) that the quantum extremal surface is close to the

classical maximin surface, the entanglement wedge of the boundary CFT will contain

infalling modes spread over approximately the scrambling time, which diverges as GN → 0.

Since the entanglement entropy of the vacuum state grows only logarithmically with

system size, we can treat the entanglement entropy of the infalling modes as approximately

independent of the location of the extremal surface, so long as the cut-off at the extremal

surface is fixed in units of infalling time v. By this, we really mean that the cut-off is

equal to ε∂/∂v for some constant ε.

What about the outgoing modes? The only relevant modes are the modes that are

extracted into the reservoir Hrad. At sufficiently short lengthscales, the entropy of these

modes will be given by the Minkowski vacuum formula [57, 58]

S =
cevap
6

log

(

rlc(v)− r√
ε1ε2

)

, (2.19)

30As noted in Footnote 24, for near-extremal black holes, (2.13) becomes

vc = − β

2π
log

r2s
β2 |drs/dv|

+O(β).

Hence, substituting (2.17), we find that

vc = − β

2π
log∆SBH +O(β),

where ∆SBH = SBH − S0
BH = O(rsSBH/β) with S0

BH the entropy of an extremal black hole with the

same charge. The location we find for the non-empty extremal surface is therefore consistent the similar

calculations, for two-sided black holes in JT gravity, done in [43]. The O(β) corrections are also the same

in both calculations [56].
31Since the entanglement entropy of gravitons is not well understood, we shall assume here that no

graviton modes are extracted into the reservoir Hrad. One would hope that, if we did understand the

entanglement entropy of gravitons, we would find that they would contribute to the location of the quantum

extremal surface in a similar way to other bulk modes.
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Figure 3. The bulk entropy of the region, shown in blue, between the Ryu-Takayanagi surface

and the boundary can be decomposed into the entropy of the ingoing and outgoing modes. The

ingoing modes are in the infalling vacuum, and the bulk region includes ingoing modes spread over

approximately the scrambling time, which diverges in the semiclassical limit. This means that the

gradient, in units of infalling time, of the entropy of the infalling modes tends to zero. In contrast, as

the RT surface approaches the past lightcone of the boundary, there will be a negative logarithmic

divergence in the (renormalised) entropy of the outgoing modes. This divergence should stabilise

the location of the quantum extremal surface a small distance away from the outgoing lightcone.

where rlc is the radius of the outgoing lightcone and ε1 and ε2 are the cut-offs at the

quantum extremal surface and the outgoing lightcone respectively, in units of the radius r.32

The cut-offs ε1 and ε2 are crucial to the calculation and so we take some time to discuss

them in detail. The cut-off ε1 at the quantum extremal surface is unphysical. Since the

bulk entropy would otherwise be formally divergent, we need to cut-off the bulk degrees

of freedom at some fixed proper lengthscale. The lengthscale chosen is arbitrary; in the

calculation of physical quantities, such as entanglement entropies in the boundary CFT,

the cut-off dependence should be cancelled by the scale dependence of the couplings in the

effective gravitational theory due to renormalisation.33

Of course, the cut-off ε1 is not itself a proper lengthscale. Since the radius r is a null

coordinate, the proper length of the cut-off ε1 is zero. The proper cut-off εprop is instead

determined by the inner product of the cut-off ε1 with the cut-off at the extremal surface

32Here we are implicitly using the fact that the radius r, like any smooth, non-singular coordinate, is an

approximate affine coordinate along ingoing lightrays at sufficiently small distance scales.
33Of course, even boundary entanglement entropies are not actually well defined because of UV-

divergences in the boundary theory (which correspond to IR-divergences in the bulk theory). However

the mutual information between two boundary regions, for example, is a well defined regulator-independent

finite quantity.
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on the ingoing modes. Specifically

εprop =

√

g

(

ε1
∂

∂r
, εin

∂

∂v

)

, (2.20)

where g is the metric and εin is the cut-off on the ingoing modes in units of v.

When we claimed that the entropy of the ingoing modes was approximately constant,

we implicitly assumed that the cut-off εin was constant. Since, to leading order, the metric

is given by

ds2 = 2dvdr, (2.21)

everywhere in the near horizon region, this means that the cut-off ε1 should also be con-

stant, so that the proper cut-off εprop is constant in AdS units.

The physical status of the lightcone cut-off ε2 is very different. The lightcone cut-off

ε2 is related to the cut-off ε0 on the Schwarzschild frequency of the modes that we extract

into the reservoir Hrad. Unlike the cut-off at the extremal surface, this is a physical cut-off

that depends on the dynamics that we use to extract outgoing modes into Hrad.

However the cut-off ε2 is blueshifted as the outgoing modes evolve back in time. If we

parallel transport the cut-off ε2∂/∂r backwards along the past lightcone, we find that

0 = ∇v

(

ε2
∂

∂r

)

, (2.22)

= [∂vε2 + Γrvr ε2]
∂

∂r
, (2.23)

=

[

∂vε2 −
2π

β
ε2

]

∂

∂r
, (2.24)

where we approximated the metric by its leading order (static) approximation (2.6) and

used the fact that, in the near horizon region, f ′(r) ≈ f ′(rs) = 4π/β. We therefore find

that the cut-off ε2 is related to the (constant) cut-off ε0 on the Schwarzschild energy of the

extracted modes by

ε2 ∝ e
2π
β
v
ε0. (2.25)

We emphasize that the infalling-time dependence of this cut-off is purely a product of

the coordinate system that we are using. In section 2.4, we do a more general calculation,

which includes greybody factors, in Kruskal-Szekeres-like coordinates, where there is no

blueshifting, and so the cut-off at the lightcone would be constant.34 The calculations

done here are rederived as a special case, without any reference to exponentially small

cut-offs. For the moment, however, we shall continue to use Eddington-Finkelstein coor-

dinates, which have a more natural physical interpretation. For pedagogical purposes, in

appendix A, we also give an example of a simple Rindler space calculation that illustrates

the importance of taking into account the coordinate dependence of cut-offs.

34In many ways, the nicest coordinates to use for the problem are the outgoing Kruskal coordinate U

together with the infalling time v. However, the author is too lazy to rewrite all the calculations in these

coordinates. See [59].
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Figure 4. The quantum Ryu-Takayanagi surface χq, the classical maximin surface χc, and the

entanglement wedges Erad and ECFT of the reservoir and CFT, in Eddington-Finkelstein coordinates

(left) and in a Penrose diagram (right). In the interests of simplicity, the Penrose diagram does

not include the post-evaporation region, which would be in the top right. The classical maximin

surfaces lies at the intersection of the past lightcone (dashed) with the apparent horizon rs (dotted),

which is outside the event horizon. The quantum RT surface, in contrast, lies slightly inside the

event horizon. Much of the interior is in the entanglement wedge Erad of the reservoir (green),

although part of the interior still lies in the entanglement wedge ECFT of the CFT (blue). As the

black hole continues to evaporate, the RT surface moves forward in infalling time along a spacelike

trajectory, following the red arrow. On timescales that are small compared to the evaporation time,

it remains a fixed radial distance inside the event horizon.

If we drop terms that are independent of position, it follows from (2.19) that the bulk

entropy is given by

Sbulk =
cevap
6

log (rlc(v)− r)− cevapπv

6β
+ . . . (2.26)

Because of the rotational symmetry, it is sufficient to show that the surface is extremal

under perturbations that preserve the symmetry. Varying the infalling time v, while holding

the radius r fixed, we find,

0 =
∂Sbulk
∂v

∣

∣

∣

∣

r

+
1

4GN

∂A

∂v

∣

∣

∣

∣

r

, (2.27)

=
∂Sbulk
∂v

, (2.28)

=
drlc/dv

6(rlc − r)
− π

6β
, (2.29)

rlc − r =
β

π

drlc
dv

(2.30)

= 2(rlc − rs). (2.31)
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In the last equality, we used (2.8). Varying the radius r, at fixed infalling time v, we find,

0 =
∂Sbulk
∂r

∣

∣

∣

∣

v

+
1

4GN

∂A

∂r

∣

∣

∣

∣

v

, (2.32)

= − cevap
6(rlc − r)

+
(d− 1)Ωd−1r

d−2
s

4GN
, (2.33)

rlc − r =
2GNcevap

3(d− 1)Ωd−1r
d−2
s

, (2.34)

=
2β

π

drs
dv

= 4(rs − rhor), (2.35)

where in the last equality we have used (2.17). The quantum extremal surface therefore

lies at

v = vc +
β

2π
log 3 = − β

2π
log

SBH
cevap

+O(β), (2.36)

where vc is the infalling time of the classical maximin surface found in (2.18), and

r = rs −
β

π

∂rs
∂v

= rhor − (rs − rhor). (2.37)

The extremal surface is twice as far inside the apparent horizon as the event horizon because

the entropy of the Hawking radiation produced by the black hole is twice the Bekenstein-

Hawking entropy lost by the black hole, which can be easily seen by noting that the energy

E and entropy S of black body radiation in two spacetime dimensions are related by

E =
1

2
TS. (2.38)

The location of the quantum extremal surface is shown in figure 4, together with the

classical maximin surface and the two entanglement wedges.

It is important to note that the entanglement wedge of HCFT is bounded by the

past lightcone, rather than by the boundary of anti-de Sitter space. This is because the

boundary conditions are not deterministic when evolving backwards into the past, without

access to Hrad. The region outside the past lightcone is therefore not in the bulk domain

of dependence of a spacelike surface connecting the RT surface to the boundary.

The causal wedge is the intersection of the causal past and future of the boundary

domain of dependence. Since the boundary time evolution is irreversible, only the future of

the boundary is in its domain of dependence. The causal wedge is therefore the intersection

of the exterior of the black hole with the future of an infalling lightcone from the boundary.

The entanglement wedge contains the causal wedge, as expected.

Of course, we can simply evolve the system back in time using standard reflective

boundary conditions; on the boundary, this corresponds to using the ordinary, uncoupled

Hamiltonian for the CFT. For this spacetime, both the future and past of the boundary are

in its domain of dependence and so the entire exterior of the black hole will be in the causal

wedge. One might worry that the entanglement wedge will not contain the causal wedge.

Specifically, in our original spacetime, a signal could easily travel backwards in time

from the entanglement wedge of Hrad to the boundary. If this was still possible under an
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Figure 5. Because the absorbing boundary conditions are only deterministic when evolving for-

wards in time, the domain of dependence of the boundary is the future boundary. The entanglement

wedge ECFT of the CFT (light blue) contains the causal wedge CCFT (dark blue). When time is

reversed using standard reflective boundary conditions, the entanglement wedge still contains the

causal wedge because the backreaction on the geometry creates a white hole.

evolution where the two systems Hrad and HCFT were uncoupled, then we would have a

serious problem.

However this fails to take into account the backreaction on the spacetime geometry

that happens when we change the dynamics.35 It is easy to see that the geometry of the

spacetime must change when we change the boundary conditions. Without the Hawk-

ing radiation from Hrad, the black hole cannot grow indefinitely as we evolve the state

backwards into the past; it does not have the energy to do so.

Instead, the discontinuity in the outgoing modes will create a shell of high energy

density at the past lightcone; the energy of this shell will be proportional to the number

of modes cevap that were extracted. As the shell evolves back into the past, it will be

blueshifted, creating large backreaction on the geometry once it is a distance O(cevapGN )

from the black hole. This will create a white hole with Schwarzschild radius O(cevapGN )

larger than the original black hole. The Ryu-Takayanagi surface will now lie slightly inside

the bifurcation horizon of the new spacetime and the entanglement wedge of the CFT will

continue to contain the causal wedge.

2.3 Hayden-Preskill and the Page curve

In this subsection, we show how the Ryu-Takayanagi surface, calculated in section 2.2,

explains properties of black hole evaporation, such as the Hayden-Preskill decoding criterion

and the Page curve, that have been conjectured based on simple toy models of black hole

evaporation.

35See [31] for discussion of essentially the same effect in terms of the dynamics of the boundary particle

in (1 + 1)-dimensional gravity.
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Figure 6. If a diary was thrown into the black hole more than the scrambling time into the past

(left), it will now lie in the entanglement wedge of the reservoir Hrad and can in principle be decoded

using only the Hawking radiation. A diary thrown into the black hole more recently (right) remains

in the entanglement wedge of, and encoded in, the CFT.

We start with the Hayden-Preskill decoding criterion [8]. This says that, if an unknown,

small, light diary is thrown into a black hole, whose state is known, at an early stage in

its evaporation, the diary can be decoded from the Hawking radiation almost immediately

after the Page time. If the small diary is instead thrown into the black hole after the Page

time, it can be decoded from the Hawking radiation after waiting for the scrambling time.

This indeed exactly what we see from entanglement wedge reconstruction. After the

Page time, the quantum extremal surface lies near the black hole horizon at an infalling time

v = − β

2π
log

SBH
cevap

+O(β). (2.39)

Assuming cevap = O(1), this is exactly one scrambling time, plus subleading corrections,

before the current time. A diary thrown into the black hole before this time lies in

the entanglement wedge of, and can be decoded from, the reservoir Hrad containing the

Hawking radiation. Anything thrown in after this time lies in the entanglement wedge of

the CFT. This is shown in figure 6.

Of course, if we actually throw a diary into the black hole, it will have non-zero energy

and will therefore backreact on the geometry. So long as the energy of the diary is O(1),

the backreaction will only change the horizon area by an O(GN ) amount. However, the

evaporation of the black hole changes the horizon area by an O(GN ) amount over one

thermal time β. Hence it is reasonable to expect that the backreaction will only affect the

delay until the diary can be reconstruction from the Hawking radiation by a subleading

O(β) amount. When we study the reconstruction of large diaries in section 3.4, we will see

that this is indeed the case.

In addition to the well-known scrambling time delay in recovering information thrown

into a black hole, (2.39) has a small logarithmic correction based on the rate cevap at

which Hawking radiation is extracted from the black hole. While we postpone any formal
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calculation to future work, it is easy to see heuristically that this is consistent with the

boundary dynamics of the theory.

In a fast scrambling system, the number of degrees of freedom that a ‘simple’ initial

perturbation influences grows exponentially with time. This is sometimes described as

an ‘epidemic’ where each ‘infected’ qubit infects an O(1) number of other qubits in each

timestep (which in our case corresponds to an O(β) timescale). After the time given

in (2.39), a O(1/cevap) fraction of the degrees of freedom will be infected. However, the

number of degrees of freedom extracted per timestep is O(cevap). So it is reasonable to

expect that an observer with access to the extracted Hawking radiation should be able to

detect the perturbation, and hence decode the diary, after the time given in (2.39).

We emphasize that the state of the diary being encoded in the early Hawking radiation

does not mean that the diary has been magically extracted out of the interior of the black

hole and into the reservoir Hrad. It is ‘still’ in the interior. There exists a single spacetime

that describes the evaporating black hole (which is semiclassical everywhere except for

regions of high curvature). In this spacetime, the diary falls into the black hole and keeps

falling until it approaches the singularity and the semiclassical spacetime breaks down. It

cannot ‘no longer’ have this worldline — that’s not how spacetime works. Spacetime does

not change over time; it describes changes over time.

Instead, the encoding of the diary in the Hawking radiation should be understood in

terms of the usual story of holography. An object sitting in the middle of the bulk is not

‘actually’ at the boundary; it is in the middle of the bulk. In the effective field theory that

describes the bulk, it is an independent degree of freedom from all the fields at asymptotic

infinity.

Nonetheless, by manipulating the fields at asymptotic infinity in a sufficiently compli-

cated way, we can make the bulk effective field theory breakdown and thereby manipulate

the object in the middle. Microscopically, the fields at asymptotic infinity contain all the

degrees of freedom of the theory.

We should therefore not be too surprised that, at a microscopic level, the diary in the

interior is not an independent degree of freedom from the radiation in the reservoir, and

hence, with sufficiently complicated manipulations of the reservoir, one can, in principle,

manipulate the diary.36

We have understood the Hayden-Preskill decoding criterion by analysing the entan-

glement wedge, HCFT or Hrad, that particular ingoing modes are in. The Page curve, and

a resolution of the firewall paradox, will follow from analysing the entanglement wedge of

outgoing modes.

We first note that, since we know the location of the Ryu-Takayanagi surface, it is

easy to find the entanglement entropy between the Hawking radiation reservoir Hrad and

the conformal field theory HCFT (and hence the black hole) using the Ryu-Takayanagi

formula. After the Page time, the entanglement entropy is given to leading order by the

Bekenstein-Hawking entropy Ahor/4GN of the black hole, plus a subleading correction

36This is not to say that there aren’t serious conceptual questions that remain to be understood about the

relationship between the microscopic boundary theory and the effective bulk theory; it is just that they are

fundamentally they same conceptual problems that always exist in holography, even without any black holes.
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Figure 7. The next Hawking modes to escape the black hole and be extracted into Hrad will be

entangled with interior modes that are mostly in the entanglement wedge of the reservoir Hrad. This

causes the entanglement between the black hole and the reservoir to decrease as the new radiation

is extracted, in accordance with the Page curve. (Left: Eddington-Finkelstein coordinates; right: a

Penrose diagram.)

from the bulk entropy term. Since we have already calculated the entanglement entropy

before the Page time, at the start of this section, we have therefore successfully derived

the entire Page curve.

However, on its own, this is somewhat unsatisfying. It does not explain why moving

outgoing Hawking modes, which we naively thought were unentangled with the earlier

radiation, from the CFT to the reservoir Hrad should somehow decrease the entanglement

between the two. It does not explain how the AMPS firewall paradox [10] is avoided.

Fortunately, in addition to the Ryu-Takayanagi formula, we also know about entangle-

ment wedge reconstruction. Again, we start with heuristic arguments and then progress to

more precise statements. Consider a Hawking mode that escapes the black hole slightly into

the future. As shown in figure 7, we can heuristically think of this mode as being entangled

with a partner mode behind the horizon. The partner modes will be in the entanglement

wedge of Hrad. Hence moving this Hawking quanta from HCFT to Hrad will decrease the

entanglement between the two. The same ER=EPR resolution [18] to the firewall paradox

that worked for the two-sided black hole also works for a one-sided evaporating black hole.

Of course, this is only an approximate heuristic picture. For free fields, Rindler modes,

with a given Rindler frequency, outside and inside the horizon are indeed perfectly entangled

with one another. However such modes are completely delocalised within the exterior and

interior respectively. Localised modes outside the horizon will not be perfectly entangled

with their reflection inside the horizon, unless the modes have support in only a very

narrow range of Rindler frequencies, and hence are delocalised across a large region in

Rindler units.

In this case, since part of the interior is in the entanglement wedge of the CFT, we can-

not find modes, with support in only a narrow range of Rindler frequencies, whose reflection

inside the horizon will be entirely in the entanglement wedge of Hrad. We should therefore

expect that the thermal outgoing radiation will be mostly entangled with the reservoir Hrad,
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Figure 8. Hawking modes that will escape the black hole only an O(β) time into the future are

entangled with interior modes that are almost entirely in the entanglement wedge of the CFT. This is

very different from a simple random unitary toy model, but is consistent with toy models where the

thermodynamic entropy (i.e. number of qubits) increases over time. (Left: Eddington-Finkelstein

coordinates; right: Penrose diagram.)

but also be somewhat entangled with the CFT. Moving the Hawking quanta from HCFT

to Hrad will decrease the entanglement entropy, but by less than the entropy of the Hawk-

ing quanta themselves. This agrees with the Page curve, since the total thermodynamic

entropy of the CFT and reservoir is increasing over time and hence

1

4GN

dAhor

dv
> −dSrad

dv
, (2.40)

even at leading order. We will do a formal calculation that finds perfect agreement between

the bulk entanglement structure and the Page curve below.

Interestingly, and somewhat counterintuitively, Hawking quanta that escape at a time

only O(β) into the future will be almost perfectly entangled with interior modes that lie

almost entirely in the entanglement wedge of HCFT, as shown in figure 8. (In this case,

by making the outgoing Hawking mode escape sufficiently far, although still an O(β) time,

into the future, we can indeed consider outgoing wavepackets with support in only a narrow

range of Rindler frequencies, but with ‘mirror’ interior modes that are entirely within the

entanglement wedge of HCFT.) They will therefore be almost completely unentangled with

the reservoir Hrad.

This is in sharp contrast with the most näıve random unitary toy models of black hole

evaporation. If our model consists of a single random unitary acting on the initial black

hole state and then qubits being released one by one as Hawking radiation, we find that any

single qubit of Hawking radiation is almost perfectly entangled with any set of more than

half the qubits. Hence, if we collect Hawking radiation until after the Page time, throw

away qubits of Hawking radiation for a while, and then finally collect one more qubit of

Hawking radiation, we still find that the additional qubit of Hawking radiation is almost

perfectly entangled with the early Hawking radiation that we collected.
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Figure 9. A simple toy model of black hole evaporation that takes into account the increase in

thermodynamic entropy as the black holes evaporates. At each timestep, two qubits escape the

black hole as Hawking radiation, but then a random isometry is applied to the black hole that

increases the number of qubits by one. The total number of qubits (corresponding to the total

thermodynamic entropy) therefore increases by one qubit at each timestep. Even if we collect the

radiation qubits until long after the Page time, qubits that are radiated only a few timesteps into

the future will be completely unentangled with the radiation that we have collected.

However such a model does not take into account the fact that the total combined ther-

modynamic entropy of the black hole and Hawking radiation, which corresponds in the toy

model to the total number of qubits, is strictly increasing over time as the black hole evap-

orates. A more sophisticated toy model, which does take into account this thermodynamic

entropy increase, involves a series of nested random isometries, as shown in figure 9 [38].

At each step, qubits are extracted into the Hawking radiation, but then a random

isometry is applied to the black hole so that the number of black hole qubits decreases by

less than the number of Hawking radiation qubits increases. It can easily be seen using

Page’s theorem [60] that an additional qubit of Hawking radiation will be almost totally

uncorrelated with the early Hawking radiation, so long as a large, but O(1), number of

qubits are thrown away in between.37

If the infalling modes are in a thermal state at a temperature equal to the temperature

of the black hole, there will be no increase in thermodynamic entropy. We study finite-

temperature infalling modes in appendix B, where we indeed find that, if the temperature

of the infalling modes is equal to the black hole temperature, the Hawking radiation will

be completely unentangled with any CFT degrees of freedom, even when it escapes far into

the future. We also find, in several separate cases such as thermal infalling modes and pure

infalling modes with constant energy density, that information stops escaping the black

hole and the Hawking radiation becomes completely thermal at exactly the moment when

this becomes consistent with unitarity.

37We call the early radiation Hilbert space HE , and the black hole Hilbert space, when we stop collecting

radiation, HBH . There is then a random isometry V : HBH → HT ⊗ HQ ⊗ HZ , where HT contains the

thrown away radiation, HQ is the final collected qubit and HZ contains the remaining black hole qubits.

When we stop collecting the Hawking radiation, the state |ψ〉 ∈ HBH ⊗ HE will be close to maximally

entangled. Since we are after the Page time, |HE | ≫ |HBH | and so |ψ〉 only has support in a subspace

H̃E ⊆ HE with |H̃E | = |HBH |. However, since |H̃E ⊗HQ| ≪ |HT ⊗HZ |, the reduced density matrix of the

state V |ψ〉 on HE ⊗HQ will be very close to maximally mixed. There will be essentially no entanglement,

or even correlation, between the early radiation and the final collected qubit.

– 30 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
2

Having described heuristically how entanglement wedge reconstruction allows us to

avoid the firewall paradox, let us now do a more formal calculation of the change in en-

tanglement entropy from extracting bulk Hawking modes. In fact, we shall prove that this

change in entanglement entropy will necessarily always agree with the Ryu-Takayanagi

formula. However, we first start by calculating it explicitly.

We want to calculate the change in entanglement entropy from outgoing modes, over

some small time range δv, being transferred from HCFT to Hrad. We need the time δv to be

small, because otherwise the Ryu-Takayanagi surface, and hence the entanglement wedges,

of HCFT and Hrad will depend on whether the transferred modes are included in HCFT or

Hrad. By making δv very small, we ensure that all bulk modes (other than the transferred

ones) are encoded in one of the two Hilbert spaces, even if the transferred modes themselves

are not counted as part of either Hilbert space. One can then calculate the change in

entanglement over longer time periods by integrating these infinitesimal changes.

Outgoing modes that are between the Ryu-Takayanagi surface and the past lightcone

of the boundary are encoded in the CFT, while all other outgoing modes are encoded in

the reservoir Hrad.
38 As discussed at the beginning of this section, since the overall state

of the outgoing modes is pure, we will find the same change in entanglement entropy if we

look at the change in the entropy of the outgoing modes in HCFT, or the entropy of the

outgoing modes in Hrad. However, since the modes in the CFT consist of a single interval,

the change in their entropy is more natural to calculate.

From (2.8), it is easy to see that extracting the Hawking radiation for an additional

time δv will move the radius rlc of the outgoing lightcone by

δrlc(v) = −2πδv

β
(rlc(v)− rhor(v)). (2.41)

Assuming we keep the cut-off on the extracted outgoing modes constant, extracting the

additional Hawking radiation will change the cut-off ε2 in units of r by

δε2 = −2πδv

β
ε2. (2.42)

To derive this equation, we note that the cut-off ε2 only depends on the difference between

the infalling time at which the radiation is extracted and the infalling time of the quantum

extremal surface. Hence, extracting radiation for an additional time δv has the same effect

on ε2 as moving the extremal surface backward in infalling time by δv; (2.42) is therefore

an immediate consequence of (2.25).

38We are ignoring the fact that entanglement wedge reconstruction is only approximate here. Since the

separation between the outgoing lightcone and the extremal surface grows linearly in the limit of large cevap,

the effect of the reconstruction errors should become small in this limit. Furthermore, it is reasonable to

hope that the effect of errors in the reconstruction of bulk modes on each side will cancel and so we will

still find the correct answer even at small cevap. As we shall see, it seems that this is indeed the case.
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Using (2.19), we find that

δS =
cevap
6

δrlc
rlc − r

− cevap
12

δε2
ε2

(2.43)

= −cevap π δv (rlc(v)− rhor(v))

3 (rlc − r)
+
cevap π δv

6
(2.44)

= −cevapπδv
12β

=
1

4GN

dAhor

dv
δv, (2.45)

where in the second equality we used (2.41) and (2.42), in the third equality we used (2.31)

and (2.35) and in the last equality we used (2.16). The change in entanglement entropy

exactly agrees with the change in entanglement entropy that one finds using the Ryu-

Takayanagi formula.

At first glance, these two methods of calculating the change in entanglement entropy

appear very different, despite the perfect quantitative agreement between them. In the

Ryu-Takayanagi formula, the change comes from the change in the horizon area of the

black hole, with its somewhat mysterious association with entropy, while, in (2.43), the

change occurs because outgoing bulk modes are entanglemed with other outgoing bulk

modes in the entanglement wedge of Hrad.

However, it is not a coincidence that they give the same answer. The Ryu-Takayanagi

formula is really calculating the change in the generalised entropy A/4GN + Sbulk of the

Ryu-Takayanagi surface, not just the change in the area; it is just that, in this case, the

bulk entropy happens to stay approximately constant (because of the approximate time

translation invariance of the evaporation process). The bulk entropy calculation can also

be thought of as a change in generalised entropy; just one in which the RT surface for

which the generalised entropy is evaluated, and therefore the area term, stay fixed.

In the Ryu-Takayanagi formula calculation, the change in entropy is given by the

difference between the new generalised entropy for the new Ryu-Takayanagi surface and

the old generalised entropy for the old Ryu-Takayanagi surface. In the bulk entanglement

calculation, the change in entropy is the difference between the new generalised entropy

and the old generalised entropy, when both are evaluated using the old Ryu-Takayanagi

surface. However, by definition, the generalised entropy is constant at leading order if we

perturb the Ryu-Takayanagi surface. Since we need δv to be infinitessimally small to do

the bulk entanglement calculation, the two calculations will always give the same answer.

Because the Ryu-Takayanagi surface is a quantum extremal surface, there can never be

a firewall paradox. The bulk entanglement structure will always be consistent with the

Ryu-Takayanagi formula.

2.4 Greybody factors

As we discussed in section 2.2, there is nothing genuinely unphysical about evaporating a

black hole in AdS/CFT by extracting black-body Hawking radiation from well inside the

zone. However, if we eventually want to understand four dimensional black holes in flat

space that evaporate naturally (without an external super-observer extracting Hawking
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radiation from near the horizon), it is important to understand what happens when there

are non-trivial greybody factors.

Although we will not be able to explicitly calculate the location of the quantum ex-

tremal surface when greybody factors are present, it turns out that we will still be able to

derive both the Hayden-Preskill decoding criterion and the Page curve.39

We first recall our argument, from the very beginning of this section, that the maximin

prescription implies that the Ryu-Takayanagi surface must become non-empty at the Page

time, even when the greybody factors are non-trivial. After this time, assuming that the

quantum maximin prescription is valid, there must exist a non-empty quantum extremal

surface.40 We shall show that this is indeed the case

What can we say about the location of this quantum extremal surface? We know that

the entanglement wedge must contain the causal wedge [29], so the extremal surface must

lie in the interior of the black hole.41 However we also know that there does not exist a

classical extremal surface anywhere in this spacetime. This means that, at the non-empty

quantum extremal surface, the gradient of the bulk entropy term must be O(1/GN ) (at least

in Eddington-Finkelstein coordinates where the gradient of the area is O(1) everywhere).

Since the bulk entropy itself is O(1), the only way that this can happen is if the

extremal surface is very close in Eddington-Finkelstein coordinates to a point where the

bulk entropy diverges. The extremal surface must therefore approach the past lightcone

of the boundary, which is always outside the event horizon and only approaches the event

horizon at infalling times that are far into the past.42 In Eddington-Finkelstein coordinates,

the quantum extremal surface must therefore both approach the event horizon, with respect

to the radius r, and diverge into the infinite past, with respect to the infalling time v, in

the limit GN → 0. Again, we shall explicitly verify that this is the case.

It is helpful at this point to switch from Eddington-Finkelstein coordinates to lightlike,

Kruskal-Szekeres-like coordinates. At radii close to the event horizon, and over infalling

timescales that are small compared to the evaporation time, the metric of the evaporating

39Since the entanglement entropy of gravitons is not understood, we shall still assume that no graviton

modes are extracted using the absorbing boundary conditions and hence that their entanglement entropy

can be ignored. Of course, in flat space, gravitons will always contribute to the Hawking radiation, so

understanding their entanglement entropy precisely is an important task for future work. However, since

the relevant graviton modes simply become ordinary light scalar fields in a (1+1)-dimensional reduction of

the evaporation, as do all the other bosonic modes that contribute to the evaporation, it seems reasonable

to expect that their contributions to the bulk entropy will be qualitatively the same as any other mode.
40In fact, since we continue to assume rotational symmetry, this argument would not actually require

the full power of the assumption of quantum maximin. Instead, we can restrict our maximisation and

minimisation to rotational symmetric Cauchy slices and surfaces χ respectively, thereby avoiding most

of the subtleties that would be involved in defining the quantum maximin prescription and showing its

equivalence to the quantum extremal surface prescription.
41We shall prove explicitly, later in this section, that the quantum extremal surface that we find is indeed

inside the event horizon of the black hole.
42Technically, the bulk entropy will also diverge near the future lightcone. However there cannot be a

quantum extremal surface near the future lightcone, because, at the future lightcone, the bulk entropy will

only diverge as function of the infalling time v, while dA = (d− 1) rd−2
s Ωd−1dr.
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black hole in Eddington-Finkelstein coordinates is given by

ds2 = −4π

β
(r − rs(v))dv

2 + 2dv dr + r2dΩ2
d−1, (2.46)

where we can assume that the inverse temperature β and the evaporation rate drs/dv are

constant at leading order. Substituting the Kruskal-like coordinates,

V =
β

2π
exp(2πv/β), (2.47)

and

U = (rhor(v)− r) exp(−2πv/β), (2.48)

where rhor = rs + β(drs/dv)/2π as in (2.11), we find

ds2 = −2dUdV + r2(U, V )dΩ2
d−1. (2.49)

Note that the definition (2.48) is only intended to be valid in the near horizon region

where outgoing lightrays escape exponentially in Eddington-Finkelstein coordinates. More

generally, the coordinate U should be defined in the exterior region by

U ∝ − exp(−2πu/β), (2.50)

where u is the boundary time at which an outgoing lightray reaches the boundary, and then

the metric should be analytically extended to the interior where U > 0. This will ensure

that the coordinates U, V are exactly lightlike everywhere. However, we are only interested

in the near horizon region where the definition (2.48) and the metric (2.49) are valid.43

Note that V > 0 everywhere; the infinite past with respect to infalling time v corresponds

to the limit V → 0+. Also note that the past lightcone of the current boundary time (i.e.

v = 0) is at Ul.c. = −O(rs).
44

Our basic strategy will be to show that ∂Sbulk/∂U should approach a well-defined O(1)

limit as V → 0, whereas
1

4GN

∂A

∂U
= O

(

V

GN

)

.

We will also find that, in the same limit, ∂Sbulk/∂V = O(1/V ), while

1

4GN

∂A

∂V
= O

(

1

GN

)

+O

(

1

V

)

.

We will therefore be able to argue that the quantum extremal surface must be at some

fixed U that is independent of GN and at V = O(GN ), which corresponds to an infalling

time exactly one scrambling time (plus subleading corrections) into the past.

43Even within the near horizon region, our conventions for U and V differ from the more standard

conventions for Kruskal coordinates in AdS space by constant factors [54]. However, within the near

horizon region, our convention will be somewhat more convenient.
44As discussed in section 2.1, for near-extremal black holes, we actually have Ul.c = −O(r2s/β). Also,

recall that we are assuming for convenience that the past lightcone escapes the near-horizon region at

v = 0. Hence for parametrically small AdS-schwarzschild black holes, the current boundary time is really

v = πlAdS + O(β). These subtleties will be unimportant for our purposes; the key point is that Ul.c. is

independent of GN .
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As with the Eddington-Finkelstein coordinates r, v, the metric (2.49) is approximately

constant in the near horizon region in terms of the coordinates U, V . We can therefore

consistently cut-off ingoing modes at the quantum extremal surface with a constant cut-off

in units of V , and outgoing modes with a constant cut-off in units of U . Since

∂V

∂v
= exp(2πv/β), (2.51)

and
∂U

∂r
= exp(−2πv/β), (2.52)

have non-trivial infalling-time dependence, the gradient of the entropy of either the ingoing

or outgoing modes alone will depend on the set of cut-offs that we use. In particular, in

section 2.2, when the cut-offs were constant in Eddington-Finkelstein coordinates, there

was an increase in bulk entropy, when moving the RT surface forwards in infalling time

along an outgoing lightcone, that came from outgoing bulk modes . With constant cut-offs

in Kruskal-like coordinates, the same increase in bulk entropy exists, but it comes from the

infalling modes. The gradient of the total bulk entropy is the same in both cases.

An advantage of using constant cut-offs in units of U and V is that outgoing modes

are not blueshifted, with respect to U , as we evolve them backwards in time. The outgoing

modes that are contained in the entanglement wedge of HCFT will be determined only by

U , and we don’t have to worry about blueshifting the cut-off at the outgoing lightcone.

If the cut-off at the quantum extremal surface is also constant in units of U , the entropy

of the outgoing modes in the entanglement wedge of the CFT will be independent of V .

To calculate ∂Sbulk/∂V we therefore only need to worry about the ingoing modes near the

quantum extremal surface.

In section 2.2, the infalling modes were in the vacuum state with respect to the infalling

time v. We therefore argued that, so long as the cut-off was constant in units of v, the

gradient of the entropy of the infalling modes would tend to zero as the quantum extremal

surface diverged into the infinite past in the semiclassical limit.

When there are non-trivial greybody factors, with part of the Hawking radiation being

reflected back into the black hole, the infalling modes will instead be in a mixed state that

is invariant with respect to translations in infalling time. The mixed-state infalling modes

will be purified by outgoing modes that escaped the black hole into the reservoir, as well

as modes deep in the interior of the black hole. As shown in figure 10, these modes are all

in the entanglement wedge of Hrad.

In the semiclassical limit, when the extremal surface diverges into the infinite past,

there will be no entanglement between ingoing modes near the quantum extremal surface

and outgoing modes in the entanglement wedge of the CFT. We therefore find

2πV

β

∂Sbulk
∂V

∣

∣

∣

∣

U

=
∂Sbulk
∂v

∣

∣

∣

∣

U

=
cevapπ

6β
− dSin

dv
, (2.53)

where dSin/dv ≥ 0 is the constant entropy per unit infalling time of the infalling modes

assuming a constant cut-off in units of the infalling time v. dSin/dv can in principle be

calculated from a numerical approximation of the reflection coefficients for modes escaping
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Figure 10. In the left figure, infalling modes near the quantum extremal surface are in a infalling-

time-translation invariant mixed state. These mixed state modes (black) are purified by modes

deep in the interior, together with modes that escaped into the reservoir (both red). Both of these

are in the entanglement wedge of the reservoir Hrad. In the right figure, outgoing modes near the

quantum extremal surface (black) are entangled with outgoing modes in the interior, but also with

outgoing modes that recently escaped into the reservoir and late-time infalling modes that were

reflected back into the black hole (all in red). The first two are in the entanglement wedge of Hrad,

while the last is in the entanglement wedge of the CFT. The bulk entropy of the modes in the

entanglement wedge of the CFT depends on U no longer depends on U in the same simple way

that it did when no greybody factors were present in section 2.2.

the near-horizon zone. (See, for example, similar calculations in [61].) The additional term

cevapπ/6β shows up because the cut-off at the extremal surface should be constant in units

of V , rather than constant in units of v, if we want to ignore the outgoing modes. Since

∂

∂V

∣

∣

∣

∣

U

= e−2πv/β ∂

∂v

∣

∣

∣

∣

U

, (2.54)

and the logarithmic divergence (cevap/12) log(1/ε) with respect to the cut-off length ε is

universal,45 we can immediately obtain (2.53).

Formally, there are infinitely many angular momentum modes and so cevap is infinite.

However, modes with large angular momentum are almost entirely reflected back into the

black hole. The ingoing modes are in a thermal state at the same inverse temperature β

as the black hole. They therefore satisfy [57, 58]

dSin
dv

=
cevapπ

6β
. (2.55)

It follows that only the finite number of low angular momentum modes, which actually

partially escape the black hole, contribute to (2.53). So long as we include the same modes

in calculating dSin/dv that we use in calculating cevap, (2.53) should be independent of the

choice of any sufficient large angular momentum cut-off on the modes we consider.

45Recall that ε is the cut-off on only the ingoing modes, at only one end of an interval.
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From (2.47) and (2.48), we have

r = rhor(v)−
2π

β
UV, (2.56)

and hence
∂r

∂V

∣

∣

∣

∣

U

=
β

2πV

drs
dv

− 2πU

β
. (2.57)

It follows that

1

4GN

∂A

∂V

∣

∣

∣

∣

U

=
(d− 1)rd−2

s Ωd−1

4GN

∂r

∂V

∣

∣

∣

∣

U

, (2.58)

=
β2

2πV

dM

dv
− π(d− 1) rd−2

s Ωd−1 U

2βGN
. (2.59)

In the second equality we used (2.57) and the first law of black hole thermodynamics

βdM = dAhor/4GN . The quantum extremal surface must therefore satisfy

0 =
1

4GN

∂A

∂V

∣

∣

∣

∣

U

+
∂Sbulk
∂V

∣

∣

∣

∣

U

, (2.60)

rhor − r =
2π

β
UV =

2GN β

π (d− 1) rd−2
s Ωd−1

[

β
dM

dv
+
cevapπ

6β
− dSin

dv

]

, (2.61)

where we used (2.53) and (2.59).

It can be shown, as follows, that the right hand side of (2.61) must be non-negative,

and so the extremal surface is inside the event horizon of the black hole. Suppose that the

infalling modes were in a thermal state at inverse temperature β′. We would then have

dM

dv
=
dM

dv
=
cevapπ

12
(
1

β′2
− 1

β2
), (2.62)

and [57, 58]
dSin
dv

=
cevapπ

6β′
. (2.63)

The right hand side of (2.61) would then be given by

GN β
2 cevap

6 (d− 1) rd−2
s Ωd−1

(

1

β
− 1

β′

)2

≥ 0, (2.64)

which is non-negative at any inverse temperature β′.46 Since thermal states have maximal

entropy for any fixed energy flux, the right hand side of (2.61) must therefore be non-

negative for any state of the infalling modes, thermal or otherwise. The quantum extremal

surface is always inside the event horizon.

So far we have only demanded that the surface be extremal if we vary V at constant

U . The quantum extremal surface should also be extremal when we vary U at constant V .

From (2.56), we have
1

4GN

∂A

∂U

∣

∣

∣

∣

V

= −(d− 1) rd−2
s Ωd−1 V

4GN
. (2.65)

46For detailed calculations of quantum extremal surfaces for finite temperature infalling modes, see ap-

pendix B.
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What about the variation of the bulk entropy term? By varying U , we change the outgoing

modes that are included in the entanglement wedge of the CFT. These outgoing modes are

entangled with the other outgoing modes, both inside the quantum extremal surface and

outside the past lightcone of the boundary.

In section 2.2, all the outgoing modes that were not in the entanglement wedge of the

CFT were in the entanglement wedge of the reservoir. We therefore found

∂Sbulk
∂U

∣

∣

∣

∣

V

=
cevap

6(U − Ul.c)
, (2.66)

where Ul.c. < 0 labels the past lightcone of the boundary.47

When greybody factors are present, this will no longer be the case, as shown in fig-

ure 10. Outgoing modes outside the past lightcone will be partially reflected back into the

black hole, and end up as ingoing modes, which are in the entanglement wedge of the CFT.

The functional form of ∂Sbulk/∂U will therefore be much more complicated.

However, in the semiclassical limit where the extremal surface diverges into the infinite

past, there will still be no entanglement between outgoing modes in the entanglement

wedge of the CFT and ingoing modes near the extremal surface. The gradient ∂Sbulk/∂U

will therefore be independent of V , so long as V is sufficiently small. Indeed, this follows

directly from the fact that ∂Sbulk/∂V is independent of U , by the symmetry of mixed

partial derivatives. We conclude that ∂Sbulk/∂U has a well-defined limit as V → 0, which

is some (presumably complicated) function of U .

If the surface is extremal, we must have

0 =
1

4GN

∂A

∂U

∣

∣

∣

∣

V

+
∂Sbulk
∂U

∣

∣

∣

∣

V

, (2.67)

∂Sbulk
∂U

∣

∣

∣

∣

V

=
(d− 1) rd−2

s Ωd−1 V

4GN
, (2.68)

U
∂Sbulk
∂U

∣

∣

∣

∣

V

=
β

2π

[

β
dM

dv
+
cevapπ

6β
− dSin

dv

]

, (2.69)

where in the first equality we used (2.65) and in the last equality we used (2.61). The right

hand side of (2.69) is constant over timescales that are small compared to the evaporation

time, while the left hand side is a function of U .

If a non-empty quantum extremal surface is to exist in the near horizon region for

any sufficiently small GN , as we expect from the maximin prescription, there must exist a

solution U0 to (2.69). Importantly, since (2.69) does not depend on GN , this solution must

be independent of GN .

In the simple example from section 2.2 where there are no greybody factors, dM/dv is

given in (2.15), dSin/dv = 0 and ∂Sbulk/∂U is given in (2.66). Hence

U0 = −Ul.c./3, (2.70)

in agreement with our calculations in Eddington-Finkelstein coordinates.

47Of course, our actual calculations in section 2.2 were in Eddington-Finkelstein coordinates, but were

equivalent to (2.66). With constant cut-offs in Kruskal-like coordinates, the outgoing bulk entropy Sout =

(cevap/6) log((U − Ul.c)/
√
ε1ε2) where the cut-offs ε1 and ε2 are both constant in units of U .
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What about when greybody factors are present? In this case, it turns out that we

can still calculate ∂Sbulk/∂U in the limit U → ∞, and this is sufficient to argue that a

solution U0 must exist. For this argument it is simplest to use the Rindler-like coordinates,

uL = −(β/2π) log(U/rs) for U > 0 and uR = −(β/2π) log(|U |/rs) for U < 0.48 Up to

a GN -independent shift, uR is the time at which an outgoing lightray would reach the

boundary, while uL is its ‘mirror’ coordinate inside the event horizon.

The outgoing modes are near the horizon are in the thermofield double state with

respect to these Rindler coordinates. A key point will be that the thermofield double state

only has significant correlation between the left and right region when uR = uL ± O(β).

If the RT surface is at (URT , V RT ), the interior outgoing modes are in the entanglement

wedge for uL > uRTL = −(β/2π) log(URT /rs).

What about the exterior outgoing modes? For uR/β ≫ 0, they are completely in

the entanglement wedge, since they haven’t had time to escape. For uR/β ≪ 0, the

situation is more complicated. In this case, the outgoing near-horizon modes are encoded

in a combination of the Hawking radiation that has escaped into Hrad, and the reflected

ingoing modes at an infalling time v = uR + O(β). For uR ≫ vRT = (β/2π) log(V RT /rs),

the reflected modes are in the entanglement wedge, but the escaped Hawking radiation is

not. For uR ≪ vRT , neither is in the entanglement wedge. Finally, since we are assuming

that (2.61) holds, we note that uRTL ≫ vRT .

In summary, for uL, uR ≪ vRT , none of the interior or exterior outgoing modes are

in the entanglement wedge. For uRTL ≫ uL, uR ≫ vRT , the interior modes are not in the

entanglement wedge and only the reflected part of the exterior modes is in the entanglement

wedge. For 0 ≫ uL, uR ≫ uRTL , the interior modes and the reflected part of the exterior

modes are in the entanglement wedge. Finally for uL, uR ≫ 0, all the modes are in the

entanglement wedge.

Since the thermofield double state has a local entanglement structure, as discussed

above, then we can ignore any effects that come from the finite size of each of these

regions, in the semiclassical limit GN → 0. Instead there are only three contributions

to the gradient of the bulk entropy as a function of uRTL . The first is that increasing uRTL
increases the range of uL, uR for which only the reflected part of the interior modes is in the

entanglement wedge. This gives a contribution equal to the entropy density dSin/dv of the

reflected modes. The second is that increasing uRTL decreases the range of uL, uR for which

both the interior modes and the reflected part of the exterior modes are in the wedge. Since

the tripartite state of interior modes, reflected exterior modes and escaped exterior modes

is pure, this gives a contribution equal to −dSrad/dv. Finally, we need the cut-off to be

constant in units of U , we means the cut-off length must exponentially grow as a function

of uL. This gives a contribution to the gradient of −πcevap/6β. We therefore find that

U
∂Sbulk
∂U

= − β

2π

∂Sbulk
∂uL

=
β

2π

[

dSrad
dv

− dSin
dv

+
πcevap
6β

]

. (2.71)

48The factors of rs are included only to make the logarithms dimensionless.
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To build some intuition for this formula, note that, in the limit U → ∞ and radius r given

in (2.61),

∂Sbulk
∂v

∣

∣

∣

∣

r

= −2πU

β

∂Sbulk
∂U

∣

∣

∣

∣

V

+
2πV

β

∂Sbulk
∂V

∣

∣

∣

∣

U

= −dSrad
dv

. (2.72)

This is in exact agreement with our heuristic picture from way back in figure 2 of Bell pairs,

entangled between the interior and the Hawking radiation, that are evenly distributed

along the wormhole.

So long as the black hole is evaporating and hence dM/dv < 0, it follows from (2.71)

that the left hand side of (2.69) should be larger at large U than the right hand side, which

is independent of U .49 Meanwhile, at the horizon, the left hand side is zero, while the right

hand side is positive, as shown in (2.64). Hence, assuming that the derivative ∂Sbulk/∂U

is a continuous function of the location of the rotationally symmetric surface, then by the

intermediate value theorem there must indeed exist a solution U0 to (2.69), as we expected

from the maximin arguments.50

Since we know a solution U0 must exist, we can substitute it into (2.61) and find that

V =
GN β

2

π2 U0 (d− 1) rd−2
s Ωd−1

[

β
dM

dv
+
cevapπ

6β
− dSin

dv

]

. (2.73)

Hence

v =
β

2π
log

2πV

β
=

β

2π
logSBH +O(β). (2.74)

In the last equality, we assumed for simplicity that all other scales are held fixed in the

semiclassical limit GN → 0. We can therefore derive the Hayden-Preskill decoding criterion

even when the greybody factors are non-trivial.

We can also find the Page curve (up to subleading corrections) using the Ryu-

Takayanagi formula. Furthermore, our argument from section 2.3, showing that the out-

going modes automactically have exactly the right entanglement to reproduce the Page

curve, without any firewall paradox, only used entanglement wedge reconstruction and the

fact that the Ryu-Takayanagi surface is an extremum of the generalised entropy. All our

main results can therefore be derived, even in the presence of greybody factors.

49If dM/dv > 0, then this will stop being true, and the quantum extremal surface will stop existing, at

exactly the moment when the rate of change of the Bekenstein-Hawking entropy 1/4GNdAhor/dv = βdM/dv

becomes greater than the rate of increase in the entropy of the Hawking radiation. This is exactly the

moment when boundary unitarity becomes consistent with no information ever escaping the black hole.

See appendix B for a more detailed discussion of this.
50One might wonder whether there could exist multiple solutions and hence multiple non-empty quantum

extremal surfaces. We first note that, even if there did exist multiple solutions, the solution that minimised

the generalised entropy would be independent of GN , for sufficiently small GN , and so we could simple

ignore the other solutions. However, in practice, it seems that the left hand side of (2.69) should be a

monotonically increasing function of U and so only one solution will exist. If no exterior modes were in the

entanglement wedge of the CFT, we would have ∂Sbulk/∂U ∝ 1/U and the left hand side of (2.69) would

be constant. The existence of exterior outgoing modes in the entanglement wedge of the CFT should only

slow the rate of decay of ∂Sbulk/∂U as a function of increasing U .
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3 State dependence

In deriving the results of section 2, we were careful to focus on a single spacetime where

a black hole was formed by collapse in some particular initial state of the matter fields.

Although the details of how the black hole was formed did not affect any of our calculations,

we always implicitly assumed that those details were known by the observer reconstructing

interior operators. We never considered the task of reconstructing a diary from the Hawking

radiation with the initial state of the black hole partially, or completely, unknown.

We therefore avoided the issue of whether, and to what extent, reconstructions of bulk

interior operators necessarily depend on the initial state of the black hole. Such questions

will be the focus of this section. In particular, we will find that this state dependence

is crucial in resolving the information paradox. If the interior partners of the late-time

Hawking modes were encoded in the early radiation in a state-independent way, there

would be no way for the final state of the Hawking radiation to depend on the initial state

of the matter falling into the black hole, even if the final state was pure rather than thermal.

The state dependence allows the entanglement of early and late radiation to depend on

the state, despite the entanglement of late radiation and interior modes being fixed. This

allows information to escape.

We begin the section by briefly reviewing results from [38] that show how state depen-

dence can arise in entanglement wedge reconstruction.

3.1 State dependence in entanglement wedge reconstruction

Entanglement wedge reconstruction is best understood in the language of holographic quan-

tum error correction [25]. Bulk operators in AdS/CFT are only well defined within the

“code subspace” Hcode ⊆ HCFT of boundary states with the correct smooth bulk geome-

try. The claim of entanglement wedge reconstruction can then be phrased as follows: the

noisy quantum channel, mapping states ρ in the code space to their restriction ρB to some

boundary region B, forms an approximate operator algebra quantum error correcting code

for the bulk operators in the entanglement wedge b of B. This means that there exists a

decoding channel D such that, for all states ρ in the code subspace,

D(ρB) ≈ ρb, (3.1)

where ρb is the restriction of the bulk state ρ to the algebra of operators associated with

the entanglement wedge b of B.51 We can then use the adjoint channel D† to map bulk

operators φb, acting within the entanglement wedge, to boundary ‘reconstructions’ φB =

D†(φb), acting only on region B, whose action is (approximately) the same as the bulk

operator φb on states in the codespace. It is important to note that the decoding channel

D is in general highly non-unique; two very different boundary reconstructions of the same

bulk operator may be both be valid, so long as their action on states in the code subspace

is (approximately) the same.

51Here, restriction can be thought of as a partial trace, although it is really the projection of the state

onto the von Neumann subalgebra associated with the bulk region b.
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Because the spacetime geometry is dynamical, the entanglement wedge of a given

boundary region depends on the bulk geometry of the particular CFT state that we are

interested in. Even if we only consider a code space of bulk states with a fixed spacetime

geometry, the quantum extremal surface may be state-dependent because of the bulk en-

tropy term. When we say that operators in the entanglement wedge can be reconstructed

in the boundary region, we should be careful to specify which states need to have their

entanglement wedge contain the bulk operator.

The initial derivation of entanglement wedge reconstruction in [23] suggested that one

could always reconstruct a bulk operator so long as it was contained within the entan-

glement wedge of the boundary region for all pure states in the code space of states for

which the reconstruction was meant to work. However, this derivation ignored the fact that

entanglement wedge reconstruction is only approximate at finite GN . (More specifically

it ignored the fact that the equality between bulk and boundary relative entropies [22] is

only approximate at finite GN .) It should therefore only be trusted for code spaces whose

dimension is relatively small (and, in particular, independent of GN ).

A more rigorous derivation of entanglement wedge reconstruction, using the tools of

approximate quantum error correction, makes it clear that the bulk operator needs to be

contained in the entanglement wedge even for mixed states with support only in the code

space [24].52 Rather than directly considering mixed states, it is often more natural, and

is mathematically equivalent, to assume that the mixed states are purified by an arbitrary

‘reference system’ HR, whose dimension is equal to the code space dimension.53 In this

picture, the bulk operator must be contained in the entanglement wedge of B for all pure

states, including entangled states, in Hcode ⊗HR.

If, instead, the bulk operator is only contained in the entanglement wedge of B for all

pure states in the code space (with no reference system), entanglement wedge reconstruc-

tion will still be possible, but only if we allow the reconstruction to be state-dependent [38].

It is a general fact about quantum error correction that, if exact state-dependent

reconstruction of operators is possible all states in a finite-dimensional code space, then

exact state-independent reconstruction is also possible for that code space [38, 62].54 This

is why it was sufficient to only consider pure states in [23], where the reconstruction errors

were ignored.

Even if the state-dependent reconstruction is only approximate, state-independent re-

construction will necessarily also be possible (with a somewhat larger error), so long as the

code space is not too large. In holography, this corresponds to the fact that entanglement

with a reference system cannot affect the location of the Ryu-Takayanagi surface in the

semiclassical limit, so long as the dimension of the code space is O(1), because any entangle-

ment with the reference system will give a subleading correction to the generalised entropy.

52For an alternative derivation that is more directly equivalent to the derivation in [23], but which reaches

the same conclusion as [24], see [38].
53The reference system HR should not be confused with the Hawking radiation reservoir Hrad that we

use when studying evaporating black holes. The second is an actual physical system, whereas the first is

purely a mathematical ‘accounting trick’.
54In the Schrödinger picture, which is usually used to describe quantum error correction, this corresponds

to the fact that exact universal subspace quantum error correction implies full quantum error correction [62].
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(a) (b)

Figure 11. The exterior geometry of a black hole, with horizon area A0, in AdS/CFT. The bound-

ary is divided into two regions B and B̄; there exists a locally minimal surface separating B from B̄

on either side of the black hole, with areas A2 and A1. These divide the bulk into three regions b, b′

and b̄, where region b′ lies between the two minimal surfaces and contains the black hole. If A2 > A1,

region b′ is contained in the entanglement wedge of region B for all pure microstates, shown in fig-

ure 11a. However, if the black hole is entangled with a reference system with Sbulk/4GN > A2−A1,

as shown in figure 11b, the Ryu-Takayanagi surface will jump to A2 and the entanglement wedge

of B will no longer contain region b′. As a result, a state-independent reconstruction of region b′

on region B only exists for code spaces of microstates with dimension |Hcode| ≤ e(A2−A1)/4GN .

In contrast, if the dimension of the code space is very large, for example when one

considers a large number of black hole microstates, approximate state-dependent recon-

struction may be possible, even when state-independent reconstruction is not.

A simple example of this was studied in [38]. It shows up when one considers code

spaces consisting of a large number of black hole microstates, plus bulk degrees of freedom

outside the horizon, as illustrated in figure 11. We emphasize that, unlike in the rest of this

paper, we will not be interested in the details of the interior of these black hole microstates.

Suppose that we try to reconstruct bulk operators in a simply connected region B con-

sisting of slightly more than half of the boundary. For any pure black hole microstate, the

Ryu-Takayanagi surface, with area A1, lies between the black hole and the complementary

region B̄. The entanglement wedge of region B contains the black hole.

However, for a two-side black hole, such as the thermofield double state, the homology

constraint means that the Ryu-Takayanagi surface lies between region B and the black

hole, so long as the area A2 of this surface is less than the area A1 plus the horizon area

A0. The entanglement wedge will no longer contain the bulk region b′ that lies between

the two extremal surfaces.

Replacing the second CFT by an arbitrary reference system cannot affect whether

bulk operators in region b′ can be reconstructed in region B. Region b′ therefore cannot

be encoded in region B for any purification of the thermal density matrix. So long as

we correctly use the quantum extremal surface prescription to define the Ryu-Takayanagi

surface, we do indeed find that this is the case. Instead of classical area and a homology

constraint, we now have a large amount of bulk entanglement between the black hole and
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the reference system. However, the quantum Ryu-Takayanagi surface, and its generalised

entropy, are unchanged.

The black hole does not need to be maximally entangled with the reference system in

order to exclude region b′ from the entanglement wedge. We only need the entanglement

entropy S to satisfy

S >
A2 −A1

4GN
. (3.2)

At face value, we now have something of a paradox. The bulk region b′ is encoded in

region B for any pure microstate, but for sufficiently entangled state it can be reconstructed

on the combination of region B̄ and the reference system. By linearity, a reconstruction

that works for any pure state will also work for entangled states.55 But the no cloning

theorem says that quantum information can’t be simultaneously encoded in region B, and

in the combination of region B̄ and the reference system.

The resolution, of course, is the fact that entanglement wedge reconstruction can

only be made state independent, if the bulk operator is contained in the entanglement

wedge even for mixed states with support only in the code space. In this case, the

reconstruction will have to be state dependent, precisely when the entropy S of the code

space satisfies (3.2). There is therefore no single reconstruction that could be used for the

entangled state.

Again, we emphasize that this resolution is only consistent because of the approximate

nature of entanglement wedge reconstruction. Otherwise it would be impossible for a

state-dependent reconstruction to exist for every state in the code space, without state-

independent reconstruction also being possible. There would be no way to evade the

paradox described above.

If we make the code space Hcode of microstates as large as possible, so that

log |Hcode| ≈ SBH =
A0

4GN
, (3.3)

at leading order, a single reconstruction will only exist for any subspace of the code space

with dimension less than |Hcode|α, where

α =
A2 −A1

A0
. (3.4)

This is an example of something known as an ‘α-bit code’ [62]. Indeed, many of the results

about state-dependence in evaporating black holes that we will derive in this section can

be rephrased in the language of [62] as statements about the existence (or non-existence)

of α-bit codes for various values of α. However, since the terminology of ‘α-bits’ was

developed for asymptotic quantum resource equalities and is, perhaps, more misleading

than clarifying in the present context, we will not use it any further in this paper.

Using the results of [62], it is possible to put strict lower bounds on the size of the

non-perturbative error that must exist to avoid a cloning paradox. Specifically we find that

55For approximate reconstructions, this fact is somewhat non-trivial to prove. However, it is indeed true,

up to a dimension-independent increase in the error size [63].
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the error in the reconstruction of region b′ on region B for a code space Hcode must be at

least e−O(∆S), where

∆S = A2/4GN −A1/4GN − log |Hcode|, (3.5)

is the minimum difference, for any state in the code space, between the generalised entropies

of the two extremal surfaces [38].

3.2 State dependence in evaporating black holes

Exactly the same effects that were described in [38] also happen in evaporating black holes.

The boundary HCFT and the reservoir Hrad play the roles of the two boundary regions HB

and HB̄.

Suppose, as in section 2.3, that we throw a small diary into a black hole. This time,

however, rather than knowing the initial state of the black hole exactly, we only know that

the initial state was in some large code space of possible states.

For example, we can imagine starting with a small black hole, with Bekenstein-Hawking

entropy Scode, in a completely unknown state. If we then throw a large amount of additional

energy (this time in a known state) into this black hole, we end up with a larger black hole,

whose state is partially unknown. It lies in a code space of possible states, which has

entropy log |Hcode| = Scode.

When can we reconstruct the diary from the Hawking radiation? As discussed in

section 2, for any pure initial black hole state, there is a phase transition in the Ryu-

Takayanagi surface at the Page time. After this point, the diary will be in the entanglement

wedge of the Hawking reservoir Hrad (assuming it was thrown into the black hole at least

one scrambling time into the past).

Unfortunately, our lack of knowledge about the state of the black hole prevents us

from taking advantage of this fact. Instead, we can only successfully decode the state

of the diary once a state-independent reconstruction becomes possible that works for the

entire code space of possible initial states.

Such a reconstruction will only be possible once the diary is contained in the entangle-

ment wedge of the reservoir Hrad even for highly mixed states in the code space of initial

microstates (or equivalently code space states that are highly entangled with a reference

system HR). These states will have a large bulk entropy in the interior, which will increase

the generalised entropy of the non-empty quantum extremal surface for Hrad, as shown

in figure 12. Note that, because we are no longer considering bipartite pure states, the

Ryu-Takayanagi surfaces for Hrad and HCFT will no longer necessarily be the same. The

Ryu-Takayanagi surface of Hrad will therefore remain empty for highly mixed states until

Srad − SBH > Scode. (3.6)

Immediately after the Page time, we need to know the exact initial state of the black hole

in order to reconstruct the diary. However, as the black hole continues to evaporate, the

amount of state-dependence required in the reconstruction decreases; a single reconstruc-

tion can work for an increasingly large class of microstates. Happily, (3.6) agrees exactly
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Figure 12. After the Page time, the entanglement wedge of the reservoir contains most of the

interior for any pure initial black hole microstate. However, if we only know that the initial state

was in some large class of possible microstates, we cannot take advantage of this fact to do a

Hayden-Preskill recovery, unless the interior is also contained in the entanglement wedge for states

in the code space of possible microstates that are highly entangled with a reference system. This

entanglement entropy increases the generalised entropy of the non-empty quantum extremal surface

(dotted lines) and can make the Ryu-Takayanagi surface χrad become empty (solid line), preventing

us for doing a Hayden-Preskill reconstruction until the black hole has evaporated further.

with the amount of state-dependence required for the Hayden-Preskill decoding criterion

in simple random unitary toy models [38].

This state dependence does not just make the entanglement wedge version of Hayden-

Preskill compatible with toy models. It also provides the mechanism by which information

about the initial state of the black hole is able to escape out into the Hawking radiation.

The Hawking radiation that escapes the boundary is always entangled with interior modes

in the same way, regardless of the initial state of the black hole. However, the way that

the interior modes are encoded in Hrad depends on the initial state of the black hole.

The Hawking radiation will be purified by a different subsystem of Hrad, depending on

the initial state of the black hole.56 As a result, the reservoir Hrad, plus the additional

Hawking radiation, contains more information about the initial state of the black hole

than the reservoir alone. The bulk evaporation is consistent with information escaping,

56We emphasize that, for any single state, the subsystem that purifies some Hawking quanta is not

uniquely defined because the decoding channel used to reconstruct the interior mode on Hrad is not unique.

The point here is that there is no subsystem that purifies the Hawking quanta for all the possible initial

states.
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even though the state of the Hawking radiation and the interior mode does not care about

the initial microstate of the black hole.

Interestingly, even if the initial microstate is completely unknown, and so the code

space entropy Scode is equal to the initial Bekenstein-Hawking entropy of the black

hole, (3.6) will be satisfied long before the black hole has completely evaporated, because of

the thermodynamic entropy increase from the evaporation. The information in the diary,

as well as all the information about the initial state of the black hole, will be revealed,

in a completely state-independent way, even while the black hole is still an O(1) fraction

of its original size. This is closely related to the fact that, even for a completely thermal

initial black hole state, the von Neumann entropy of the reservoir will peak and begin

decreasing, even while the black hole is still an O(1) fraction of its initial size, as discussed

by Page in [7]. For black holes in our universe, both events occur when the black hole has

approximately 90% evaporated [7].

The same effect happens with reconstructions of the interior on the boundary CFT,

before the Page time. In this case, a large amount of bulk entropy in the interior will

increase the generalised entropy of the empty surface for HCFT, and so can make the

Ryu-Takayanagi surface for HCFT become non-empty. As shown in figure 13, the Ryu-

Takayanagi surface of HCFT will only be empty for highly mixed/entangled states if

Scode < SBH − Srad. (3.7)

The interior can therefore only be reconstructed on HCFT in a state-independent way for

code spaces with entropy Scode satisfying (3.7). Initially, we don’t need to know very much

about the state of the black hole to reconstruct the entire interior on the boundary CFT.

However, as the black hole evaporates, the reconstruction becomes more and more state-

dependent. Eventually, just before the Page time, one needs to know the exact initial state

of the black hole. Again, (3.7) agrees with toy models.

The part of the interior that lies between the non-empty quantum extremal surface

and the boundary is always encoded in the CFT in a completely state independent way,

both before and after the Page time. No amount of bulk entanglement with a reference

system can stop the entanglement wedge of the CFT from including this region.

The non-empty extremal surface lies at a radius O(GN ) inside the event horizon of the

black hole. An outgoing lightcone starting from this extremal surface will therefore hit the

singularity after an infalling time equal to the scrambling time plus an O(β) correction after

the infalling time of the extremal surface. This infalling time is within O(β) of the ‘current’

time, when the last radiation was extracted into Hrad. The worldline of an observer, who

jumps into the black hole at an O(β) time into the future, will remain entirely within

the entanglement wedge of the CFT. The entire experience of the observer in the interior,

until the curvature becomes large close to the singularity, will be encoded in the CFT in a

completely state-independent way.

This is a somewhat comforting fact. It means that the accessible part of the black

hole interior is always encoded in the state of the black hole itself, plus O(1) number of
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Figure 13. Before the Page time, the interior is in the entanglement wedge of the CFT for any

pure state. However, if the initial state is allowed to be highly entangled with a reference system,

the Ryu-Takayanagi surface χ
CFT

for the CFT may jump to the non-empty quantum extremal

surface. (In contrast, the RT surface χrad of the reservoir will remain empty.) This means that a

reconstruction of the interior that acts only on the CFT, and not on the reservoir, will have to be

at least somewhat state dependent, if the code space is too large.

recent quanta of outgoing Hawking radiation.57 The initial state of the black hole does

not matter, nor do manipulations, even arbitrarily complicated ones, of Hawking radiation

that escaped from the black hole a long time in the past.

In particular, so long as rs ≪ lAdS, an observer who jumps into the black hole from

the boundary will never leave the entanglement wedge of the CFT at the time that they

left the boundary. This seems to still be true, even for large AdS black holes, at least when

the Hawking radiation is extracted from inside the zone, as in section 2.2. Potentially, this

is important for precomputation versions of the firewall paradox [65], where an observer

attempts to extract a mode from Hrad, which is expected to take exponential time [17],

before jumping into the black hole.

57This is somewhat similar to recent work by Yoshida [64], where it was shown, in a qubit toy model of

a black hole, that swapping an O(1) number of degrees of freedom and then applying a scrambling unitary

was sufficient to make new Hawking radiation be unentangled with the early Hawking radiation, even long

after the Page time. Yoshida therefore argued that swapping in the new degrees of freedom had made

the interior be encoded in the black hole degrees of freedom, plus the purification of these new degrees of

freedom, with no dependence on the initial black hole state. In our case, it is simply the continuous increase

with time of the combined thermodynamic entropy of the black hole and Hawking radiation that makes

part of the interior be encoded in the CFT. See appendix B for an example of the extremal surface that

lies exactly on the event horizon because there is no net increase in thermodynamic entropy.
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However, as discussed in appendix B, by making the infalling modes be at a tem-

perature very close to the black hole temperature, we can make the extremal surface be

arbitrarily close to the event horizon. By tuning the state of the infalling modes, we can

therefore always ensure that the observer is able to escape the entanglement wedge of the

CFT and encounter the infalling mode that they extracted into Hrad. The fundamental

answer to the precomputation version of the firewall paradox seems to simply be that we

can indeed manipulate the interior using Hrad, so long as we are able to do very compli-

cated, non-semiclassical manipulations. After all, it is well known that it is possible to

manipulate the interior of a two-sided black hole in the thermofield double state, just by

acting on the left CFT.

3.3 Approximation to the rescue

Just like the α-bit codes found in [38] and summarised in section 3.1, the results that

we found in section 3.2 only make sense because entanglement wedge reconstruction is

approximate. This fact should be somewhat apparent from our discussion in section 3.1

and 3.2. However, in the interests of clarity, we now give a simple, explicit example of a

paradox that would otherwise occur.

Suppose that we allow a black hole to evaporate until slightly before the Page time,

storing the Hawking radiation in a reservoir H1. We then allow it to continue to evaporate

until slightly after the Page time, storing the Hawking radiation in a different reservoir

H2. Let the entropy of the Hawking radiation in H1 be (1 − δ)SBH and the entropy of

the Hawking radiation in H2 be 2δSBH . where δ > 0 is small and SBH is the Bekenstein-

Hawking entropy of the black hole after all the evaporation has taken place. For reasons

that will become clear, we shall refer to the combined state of the evaporating black hole

and the Hawking radiation as the ‘entangled state’.

The black hole has evaporated beyond the Page time. The Ryu-Takayanagi surface of

Hrad is therefore non-empty and lies just inside the horizon of the black hole. Most of the

interior of the black hole is encoded in H1 ⊗H2.

Now suppose that we do a complete measurement of H2 in some arbitrary basis.

Regardless of the outcome of such a measurement, and regardless of the basis that we

measure in, the Ryu-Takayanagi surface for the CFT will now be empty and so the interior

will be encoded in HCFT. We shall refer to the states that result from such a measurement

as ‘pure states’, in contrast with the original ‘entangled state’, because they are pure states

in HCFT ⊗H1.

We now have exactly the same apparent paradox that was found in [38] and discussed

in section 3.1. For any pure state, the interior is encoded in the CFT. However, in the

entangled state, it is encoded in H1 ⊗H2 and so, by the no-cloning theorem, it cannot be

encoded in the CFT. The boundary Hilbert space HCFT plays the role of the boundary

subregion Hilbert spaceHB that we had access to in section 3.1; the early Hawking radiation

reservoir H1 plays the role of the complementary boundary subregion Hilbert space HB̄

and the later Hawking radiation reservoir H2 plays the role of the reference system HR.

As before, the resolution of this paradox is two-fold. Firstly, the reconstruction of the

interior onHCFT necessarily depends on the state of the interior modes that were previously
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entangled with H2. Hence, there is no single reconstruction that will work for all possible

states of those interior modes. This would be necessary to reconstruct the interior of the

entangled state in HCFT.

However, this resolution only works because the reconstruction is approximate. Since

the reduced density matrix of the entangled state on H2 consists of a large number of

approximately independently and identically distributed thermal modes, the smooth max

entropy of H2 in the entangled state is approximately equal to its von Neumann entropy

2δSBH , up to subleading corrections of order O(
√
S) [66]. By the definition of the smooth

max entropy, this means that we can construct a code space Hcode ⊆ HCFT⊗H1 satisfying

log |Hcode| = 2δSBH +O(
√

SBH), (3.8)

such that the entangled state can be approximated, with very high fidelity, by a state in

Hcode ⊗H2.

Any interior operatorO should have a state-independent global reconstruction Ocode on

HCFT⊗H1 that works for the entire code spaceHcode. If entanglement wedge reconstruction

were exact, then, for any state |ψ〉, the state-dependent reconstruction Oψ
CFT that acts only

on the CFT would satisfy

Oψ
CFT |ψ〉 = Ocode |ψ〉 . (3.9)

However, as shown in [62, 67], this would imply that there must also exist a state-

independent reconstruction Ocode
CFT that works for the entire code space and acts only on

the CFT. The cloning paradox can only be resolved if there is an error term in (3.9) with

size at least exp(−O(δ SBH)) [62].

This error is tiny; it is non-perturbatively small in GN for any fixed δ > 0. It is

expected that non-perturbative exp(−O(S)) corrections to the bulk physics of black holes

in AdS/CFT must exist in order for the decay of correlators to be consistent with boundary

unitarity [68]. However, there has been debate about whether such tiny errors can explain

the large-scale “O(1)” paradoxes that show up in evaporating black holes. The answer

is that they can and do. If the code space of allowed microstates has exponentially large

dimension, exponentially small errors can be amplified in very entangled states and become

O(1) in size.

Once we have measured H2, regardless of the measurement outcome we obtain, a diary

in the interior of the black hole will be encoded in HCFT and only has a non-perturbatively

small effect on the state of H1. However, the entanglement with H2 amplifies these tiny

differences, so that orthogonal diary states are almost exactly orthogonal on H1 ⊗H2. No

magic is required; just the same mechanism that occurs in random unitary toy models [62].

3.4 Large diaries

So far we have assumed that any diaries thrown into the black hole are small, both in

energy and entropy. We have therefore been able to ignore both their backreaction on

the geometry and their contribution to the bulk entropy. In this section, we remove those

assumptions.
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If a heavy diary is thrown into a black hole before the Page time, it can still be

reconstructed immediately after the Page time (so long as the entropy of the diary is

small). The only change is that the Page time will be delayed by the increase in the

horizon area of the black hole caused by the diary. By almost identical arguments to those

in section 3.2, if the diary also has a large entropy Sdiary, we have to wait until

Srad − SBH ≥ Sdiary, (3.10)

so that the diary is contained in the entanglement wedge of Hrad even for highly mixed

diary states.

A more interesting situation occurs when a large diary is thrown into the black hole

after the Page time. Let us first consider the case where the entropy of the diary is small,

but the energy is large. The diary now causes a large backreaction on the geometry that

significantly increases the horizon area. We assume, for simplicity, that the diary is encoded

only in s wave modes and so the rotational symmetry of the spacetime is preserved. After

we throw the diary into the black hole, the Bekenstein-Hawking entropy of the black hole

will again be significantly larger than its entanglement entropy; heuristically, we will have

made the black hole young again.

What happens to the quantum extremal surface in such a spacetime? Before the

diary is thrown into the black hole, the quantum extremal surface will continuously move

forwards in infalling time, at a radius just inside the event horizon, as radiation escapes

the black hole into Hrad. However, radiation that would have escaped shortly after the

diary was thrown into the black hole will instead fall into the larger black hole created by

the backreaction of the diary.

The actual radiation that escapes instead comes from close to the new event horizon,

which, being teleological, already began moving out from the apparent horizon rs along

an outgoing lightcone in anticipation of the diary falling in. Even at very late times, the

Hawking radiation comes from outside the past lightcone of the boundary, which in turn

will always lie outside the event horizon, although it will approach the horizon exponentially

at any fixed time as we evolve the boundary forwards in time.

Using (2.31) and (2.34), it is therefore easy to see that the quantum extremal surface

stops tracking along the horizon after the diary is thrown into the black hole, and instead

asymptotes to a radius

r = rs −
GNcevap

3(d− 1)Ωd−1r
d−2
s

, (3.11)

at the infalling time v when

rhor(v) = rs +
GNcevap

3(d− 1)Ωd−1r
d−2
s

. (3.12)

For simplicity, we are assuming here, as in sections 2.2 and 2.3, that the Hawking radiation

is extracted from close to the horizon and so there are no greybody factors.

If the change in horizon area δAdiary caused by the diary is small compared to the

original horizon area Ahor, we find that

v = vdiary −
β

2π
log

δAdiary

cevapGN
+O(β), (3.13)
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where vdiary is the infalling time at which the diary is thrown into the black hole. In

deriving (3.13), we have used the fact that the event horizon is an outgoing lightcone,

obeying (2.10), and that, at vdiary, the radius of the event horizon should be approximately

equal to the new Schwarzschild radius of the black hole.

The entanglement wedge of Hrad will not contain the diary. The large amount of energy

thrown into the black hole has stopped any information from escaping. The location of the

extremal surface and the entanglement wedges in shown in figure 14.

However, this quantum extremal surface will not remain the Ryu-Takayanagi surface

forever. As new radiation escapes from the black hole into Hrad, the bulk entropy, calcu-

lated using this quantum extremal surface, will increase. Heuristically, the new Hawking

radiation is entangled with interior modes that lie close to the new, larger black hole hori-

zon and hence lie in the entanglement wedge of HCFT. More formally, as in (2.42), the

cut-off ε2 in (2.19) shrinks exponentially as

ε2 ∝ exp(−2πvrad/β) (3.14)

where vrad is the ‘current’ infalling time (i.e. the point in time where we last extracted

Hawking radiation into Hrad). In contrast, the radial distance

rl.c. − r ≈ rhor − r, (3.15)

between the past lightcone and the RT surface is approximately constant. As a result, we

find using (2.19) that
∂Sbulk
∂vrad

=
cevapπ

6β
. (3.16)

This is the increase in entropy that one finds with thermal outgoing modes that are purified

by degrees of freedom in HCFT [57, 58]. By adding energy, we have stopped information

escaping the black hole and made the Hawking radiation be purely entangled with the

CFT. The black hole did indeed become young again.

The surface χ1 at (3.11), (3.13) remains a quantum extremal surface even at boundary

times long after the diary was thrown into the black hole. However, it is not the only non-

empty quantum extremal surface at such late times. There will also be a second non-empty

quantum extremal surface χ2 that lies, as usual, approximately the scrambling time before

the current boundary time. Because of the increase in horizon area created by the diary,

the generalised entropy of the extremal surface χ2 will initially be significantly larger than

the generalised entropy of the surface χ1.

However the generalised entropy of χ1 steadily increases over time because of the in-

crease in bulk entropy discussed above. Meanwhile, the generalised entropy of χ2 decreases

over time as the black hole evaporates. Eventually, after the new Page time of the black

hole, the generalised entropy of χ2 will become smaller than the generalised entropy of χ1.

The later extremal surface χ2 will be the Ryu-Takayanagi surface, and the diary will finally

be in the entanglement wedge of Hrad and can be decoded.

If the diary had a large amount of entropy, as well as a large amount of energy, we

would have to wait even longer in order to recover the diary. Even after the new Page time,
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Figure 14. When a large diary is thrown into a black hole, the radius rhor of the event horizon

(solid line) begins increasing in anticipation of the diary falling in, while the radius rs of the

apparent horizon (dotted line) continues to slowly decrease until the diary is actually thrown into

the black hole. As the black hole continues to evaporate, the past lightcone (dashed line) of the

current boundary remains outside the event horizon. The Ryu-Takayanagi surface χ1 asymptotes

to a point approximately the scrambling time before the diary was thrown in. There is a second

quantum extremal surface χ2 at an infalling time after the diary is thrown in. Initially, this extremal

surface is not the RT surface because its area is larger than the area of χ1. However, eventually,

at the new Page time, there will be a phase transition, with χ2 becoming the new RT surface, and

the diary can finally be reconstructed from the Hawking radiation, so long as its entropy is small.

(Left: Eddington-Finkelstein coordinates, right: a Penrose diagram.)

when the Ryu-Takayanagi surface has a phase transition for pure diary states, the Ryu-

Takayanagi surface of Hrad will still not contain the diary for highly mixed diary states. To

actually recover the diary from the Hawking radiation, we need to wait until the diary is

contained in the entanglement wedge of Hrad, even for such highly mixed states, as shown

in figure 15. This requires

Snew
rad − δAdiary + δAevap

4GN
> log |Hdiary| (3.17)

where Snew
rad is the bulk entropy of the new radiation emitted after the diary was thrown

into the black hole, δAdiary > 0 is the change in horizon area from throwing the diary into

the black hole, δAevap < 0 is the change in horizon area from the black hole evaporation

after the diary is thrown into the black hole and Hdiary is the Hilbert space of the diary.

Note that the generalised second law implies that

δAdiary/4GN ≥ log |Hdiary| (3.18)

and

Snew
rad ≥ −δAevap. (3.19)

Hence, whenever (3.17) is satisfied, we will also have

Snew
rad > log |Hdiary|. (3.20)
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Figure 15. If a heavy diary, left, is thrown into the black hole, it can only be reconstructed

from Hrad once the generalised entropy (solid lines) of the surface χ1 for Hrad is greater than the

generalised entropy (dotted lines) of the surface χ2. The generalised entropy of χ1 has contributions

from both the area term and the entropy of Hawking radiation emitted after the diary was thrown

into the black hole. In contrast, so long as the diary has small entropy, the surface χ2 only has a

contribution from its area, plus an O(1) bulk entropy correction. However, if the diary also has a

large entropy (right), the diary also needs to be in the entanglement wedge, even when it is in a highly

mixed state, or is entangled with a reference system. This increases the generalised entropy of χ2.

It follows that there is always sufficient entropy in the new Hawking radiation to encode the

diary. Entanglement wedge reconstruction is consistent with quantum capacity bounds, so

long as we consider mixed (or entangled) states in the code space.

It can be verified (3.17) is consistent with random unitary toy models [38], although,

as discussed in section 2.3, most of the focus in random unitary models has been on evapo-

ration that is either perfectly or approximately thermodynamically reversible, where (3.18)

and (3.19) are equalities.

As in section 3.2, the period when the interior reconstruction depends on the state

of the diary does not merely make the amount of information encoded in the Hawking

radiation be compatible with quantum capacity bounds; it also provides the mechanism by

which information about the state of the diary escapes the black hole. The new Hawking

radiation is entangled with the same interior modes, regardless of the state of the diary.

However, because the encoding of those interior modes in Hrad depends on the state of the

diary, an observer with access to the reservoir Hrad can learn information about the diary

from the new Hawking radiation.

So far, both in this section and in section 2.3, we have not worried too much about

the errors that exist in entanglement wedge reconstruction, even though we showed in sec-

tion 3.3 that their existence was crucial to the consistency of our results. Reconstruction

errors are also present in the Hayden-Preskill protocol in random unitary toy models of

black holes. Since all our other results have been consistent with random unitary toy mod-
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els, we might hope that the error in the Hayden-Preskill entanglement wedge reconstruction

will also be consistent with random unitary toy models.

Unfortunately, the actual size of the errors in entanglement wedge reconstruction re-

mains unknown. However, the lower bound on their size that was derived in [38] and

discussed briefly in section 3.1 suggests that, for reconstruction with error ε to be possible,

the difference ∆S between the generalised entropy of an extremal surface for which the

bulk operator would not be in the entanglement wedge and the generalised entropy of the

Ryu-Takayanagi surface, where the bulk operator is in the entanglement wedge, must satisfy

∆S ≥ O

(

log
1

ε

)

. (3.21)

Note that (3.21) needs to be satisfied for all states, both pure and mixed, in the code

space. The exact coefficient in (3.21) depends on how the error is measured, and we will

not worry about it here.

The generalised entropy of the extremal surface χ1, where the diary is not in the

entanglement wedge of Hrad, increases by an O(1) amount in O(β) time. Similarly, the

generalised entropy of the extremal surface χ2, where the diary is in the entanglement

wedge of Hrad, decreases by an O(1) amount in O(β) time.

If we make the strong assumption that the lower bound on the error ε derived in [38]

is approximately saturated, we find that to reconstruct the diary with error ε, we need to

wait for an additional time

O(β log

(

1

ε

)

,

even after the condition (3.17) is satisfied. Up to the (unstated) linear coefficient, this

agrees, yet again, with random unitary toy models [8, 62].

3.5 Minimal state dependence

So far, we have avoided talking about state dependence for interior operators in black holes

that have not evaporated at all, where there is no auxiliary reservoir Hrad. Yet this is the

situation in which state dependence is most commonly discussed [32, 33, 37].

There is a very good reason for our reticence. Every proof of entanglement wedge

reconstruction assumes that there is a global isometry from the bulk code space to the

larger boundary Hilbert space. It is this isometry, combined with a partial trace over some

of the boundary degrees of freedom, that creates a noisy quantum channel and, potentially,

a quantum error correcting code. Yet, so long as such an isometry exists, there must always

exist state-independent global boundary reconstructions.

If the CFT is the only Hilbert space and pure bulk states correspond to pure boundary

states, interior operators cannot be encoded in the CFT in a state-dependent way, within

the framework of quantum error correction.

Nonetheless, suppose we take as an axiom the idea that boundary reconstructions are

state independent if, and only if, the bulk operator is contained in entanglement wedge

even for states in a ‘code space’ of the bulk effective field theory that are entangled with a
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reference system.58 If a code space of interior states Hcode satisfies

log |Hcode| < SBH , (3.22)

the entanglement wedge of the boundary should always include the interior, even if the

state is entangled with a reference system.59 A single reconstruction of interior operators

should therefore exist that works for the entire code space.

In contrast, if

log |Hcode| ≥ SBH , (3.23)

then we can make states in Hcode ⊗ HR where the RT surface is non-empty, and part of

the interior is no longer contained in the entanglement wedge of the boundary.

To distinguish this idea from most of the literature on interior state dependence, which

has focussed on constructing interior operators for a single microstate, or at most a small

code space of microstates with O(1) dimension, we shall refer to it as ‘minimal state

dependence’. We emphasize, however, that this paper is far from the first to suggest it,

see, for example, the discussion near the end of [32].

As discussed, given that we are taking results derived using quantum error correction

and applying them outside of that framework, we should be somewhat cautious about

this idea. In particular, rather than making too many claims about code spaces for

which (3.23) is true, it seems better to focus on the fact that, so long as a code space

satisfies (3.22), we should be relatively confident that everything is well behaved and that

all bulk operators have global, state-independent boundary reconstructions that work for

the entire code space.

An important question is how small

∆S = SBH − log |Hcode| (3.24)

can be without causing any problems. However, since we don’t have the tools to answer

such a question with any confidence, we shall be maximally cautious and assume that ∆S

needs to be non-zero at leading order. In other words, we shall require

log |Hcode| ≤ (1− δ)SBH , (3.25)

for some δ > 0, which should be fixed in the semiclassical limit.

We can now show how minimal state dependence neatly avoids the so-called AMPSS

argument [65] that generic black hole microstates must have firewalls.

The AMPSS argument goes as follows. Consider the subspace of CFT states within

some narrow, but O(1) width, energy band M ≤ E ≤ M + δM . If M is sufficiently large

and δM is sufficiently small then all such states have a bulk description as a black hole.

58We emphasize that this may no longer be a code space of a quantum error correcting code in the

traditional sense.
59The dimension of the code space here includes both allowed interior degrees of freedom, as well as any

degrees of freedom describing an end-of-the-world brane that are also included in the code space, if our

geometry ends in such a brane. See, for example, [37, 69] for discussion of interior geometries ending on

end-of-the-world branes.
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We then assume that there exists some state-independent operator b†ω that acts as a raising

operator for an interior Hawking mode, as well as an inverse operator (1 + b†ωbω)
−1 bω.

Acting with the operator b†ω decreases the Schwarzschild energy by ω and so maps our

subspace of CFT states into the energy band M −ω ≤ E ≤M + δM −ω. But the number

of states in this energy band is smaller than the number in our original energy band by a

factor of approximately e−βω. So the map cannot be invertible, contradicting our original

assumption. The authors of AMPSS conclude that b†ω, and hence the interior, cannot exist.

It is, of course, well known that the argument above breaks down if the operator b†ω is

state dependent. Our point here is simply to emphasize that this is still true even if the

operator b†ω is only minimally state dependent.

Up to logarithmic corrections, the entropy of the maximally mixed state in the energy

band M ≤ E ≤ M + δM is equal to the Bekenstein-Hawking entropy. Assuming minimal

state-dependence, we won’t be able to find a single state-independent operator b†ω. Our

code space is too large. If instead we restrict to a random code subspace, within the energy

band and with entropy at most (1 − δ)SBH , there will be plenty of space for the image of

the code subspace in the energy band M − ω ≤ E ≤M + δM − ω.

Of course, instead of looking at a random subspace of states within the energy window,

we can alternatively make δM so small that the entire code space of states in the energy

band has a single state-independent reconstruction. To do so, it would be necessary to have

δM = O(e−δSBH ). (3.26)

If we insisted that the energy band M ≤ E ≤ M + δM be mapped invertibly into the

energy band M −ω ≤ E ≤M + δM −ω, we would still have a paradox, because the latter

band is still strictly smaller than the former.

This would be far too strong a requirement however. More reasonably, we should only

expect the energy of a state to decrease by ω plus non-perturbatively small corrections.

However, since δM is itself non-perturbatively small, this non-perturbatively small uncer-

tainty in ω can significantly increase the size of the energy window. We can therefore avoid

the paradox.

4 Discussion

4.1 Summary of results

In this paper, we have argued that the key expected features of unitary black hole evapora-

tion in AdS/CFT can be derived from the bulk semiclassical description of an evaporating

black hole, so long as we assume entanglement wedge reconstruction. We now review those

arguments.

• We studied entanglement wedge reconstruction in an evaporating black hole, formed

from collapse, where the Hawking radiation was extracted out of the AdS space con-

taining the black hole, with boundary Hilbert space HCFT, and into an auxiliary

Markovian reservoir Hrad. Importantly, we assumed that the bulk description of the
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evaporation was semiclassical, and so the bulk entanglement between the Hawking ra-

diation and the interior of the black hole continued to grow, even after the Page time.

• Using the maximin prescription, we saw that the quantum Ryu-Takayanagi surface,

associated to the entire boundary Hilbert space HCFT, must become non-empty at

the Page time. Since the overall state |ψ〉 ∈ HCFT ⊗ Hrad is pure, this non-empty

RT surface will also be the RT surface for Hrad.

• If the Hawking radiation is extracted into Hrad from deep inside the zone, near the

horizon, the greybody factors will all be either zero or one, depending on whether a

given angular momentum mode is extracted or not. The location of the non-empty

quantum Ryu-Takayanagi surface can then be calculated explicitly. It lies at a radius

r = rs −
cevapGN

3(d− 1)rd−2
s Ωd−1

= rhor −
cevapGN

6(d− 1)rd−2
s Ωd−1

, (4.1)

where rs is the radius of the classical apparent horizon of the black hole, rhor is the

radius of the event horizon of the black hole and cevap is the number of modes that

are extracted into the reservoir Hrad. The infalling time of the quantum extremal

surface is given by

v = − β

2π
log

SBH
cevap

+O(β), (4.2)

where v = 0 is the current boundary time. A large part of the black hole interior

lies in the entanglement wedge of the Hawking radiation reservoir Hrad, rather than

the boundary Hilbert space HCFT.

• A small diary thrown into the black holes early in the evaporation can therefore be

reconstructed from the Hawking radiation immediately after the Page time. A small

diary thrown into the black hole after the Page time can be reconstructed after

waiting for the scrambling time. These two results constitute the Hayden-Preskill

decoding criterion [8].

• If the number of angular momentum modes cevap extracted into the Hawking

radiation is large, there is a small, logarithmic decrease in the delay before the diary

can be decoded from the radiation. This decrease is consistent with a heuristic

picture of fast scrambling where a perturbation spreads exponentially through the

degrees of freedom.

• More generally, we showed that, in any evaporating black hole after the Page time,

the RT surface lies at an infalling time

v = − β

2π
log

1

GN
+O(β), (4.3)

where the subleading corrections depend on the details of the evaporation and,

in general, cannot be analytically calculated, because of greybody factors. We

can therefore derive the Hayden-Preskill decoding criterion, up to unknown, but

subleading, corrections, even when non-trivial greybody factors are present.

– 58 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
2

• Given the location of the Ryu-Takayanagi surface, it is an immediate consequence of

the Ryu-Takayanagi formula that the entanglement between the CFT and the reser-

voir is given by the Page curve. Moreover, entanglement wedge reconstruction ex-

plains how the entanglement entropy ends up decreasing (and how the AMPS firewall

paradox is avoided). It decreases because the outgoing radiation is entangled with

interior modes that are in the entanglement wedge of, and so are encoded in, Hrad.

• If we consider the change in bulk entanglement entropy from transferring a small

amount of Hawking radiation from HCFT to Hrad, we find exact quantitative

agreement with the change in entropy given by the Ryu-Takayanagi formula, i.e. the

Page curve.

• This quantitative agreement does not only exist in the simple cases where we can

calculate the Ryu-Takayanagi surface explicitly. It is a general consequence of the fact

that the quantum Ryu-Takayanagi surface is an extremum of the generalised entropy.

As with the Hayden-Preskill decoding criterion, we are therefore able to derive the

Page curve, and avoid the firewall paradox, even when there are greybody factors.

• As argued in [38], based on results about approximate operator algebra quantum

error correcting codes derived in [39–41], state-independent entanglement wedge

reconstruction is only possible for a given code space if the bulk operator is contained

in the entanglement wedge of the boundary region for all states, both pure and mixed

that have support only within the code space.

• State-dependent entanglement wedge reconstruction is possible so long as the bulk

operator is contained in the entanglement wedge of the boundary region for all pure

states in the code space.

• Using these results, we were able to derive the correct state dependence for Hayden-

Preskill reconstructions. Immediately after the Page time, the diary can only be

reconstructed if the exact initial black hole microstate is known. As the black hole

continues to evaporate, less state dependence is required, in exact agreement with

toy models. Specifically, a single reconstruction will work for a large code space of

possible initial black hole states, with entropy Scode, so long as

Scode < Srad − SBH , (4.4)

where Srad is the bulk entanglement entropy between the Hawking radiation and

the interior and SBH is the Bekenstein-Hawking entropy of the black hole.

• Similarly, before the Page time, reconstructions of the interior on the boundary CFT

become increasingly state dependent as the black hole evaporates. The entropy Scode
of the code space of allowed initial states must satisfy

Scode < SBH − Srad. (4.5)

Eventually, at the Page time, the reconstruction is only possible if the exact initial

black hole state is known.
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• The state dependence in the encoding of interior partners of Hawking modes in the

early radiation (after the Page time) explains how the final (microscopic) state of

the combined early and late radiation can depend on the initial state of the black

hole (i.e. how we can avoid information loss) despite the state of the late Hawking

mode and its interior partner having no dependence on the initial state.

• These results are only consistent because entanglement wedge reconstruction is only

approximate. Tiny, non-perturbatively small errors build up and have O(1) effects.

• When a heavy diary is thrown into the black hole, the Ryu-Takayanagi surface stops

tracking along the horizon and instead asymptotes to a location approximately one

scrambling time before the diary was thrown in. The Hawking radiation will contain

no further information until the new Page time is reached, at which point the

Ryu-Takayanagi surface will jump forwards in time and the diary can be decoded

from the Hawking radiation.

• If the entropy of the diary is large, as well as its energy, we have to wait even longer

before it can be decoded. Specifically, we have to wait until the generalised entropy

of the earlier quantum extremal surface, where the diary is not in the entanglement

wedge of Hrad, is greater than the generalised entropy of the later quantum extremal

surface plus the entropy of the diary code space.

• All our results about Hayden-Preskill reconstructions of large diaries are consistent

with random unitary toy models [38].

• If we assume that the lower bound, derived in [38], on errors in entanglement wedge

reconstruction is saturated up to a linear coefficient, we find that the errors in

Hayden-Preskill reconstructions are consistent with toy models.

• Finally, our arguments suggest that, even when a black hole has not evaporated at

all, its interior can only be reconstructed with ‘minimal’ state dependence. Such

state dependence is beyond the framework of quantum error correction, but it

provides a natural resolution to the AMPSS typical state firewall paradox.

In appendices,

• We give a simple pedagogical example of the importance of the coordinate dependence

of cut-offs in entanglement entropy calculations.

• We calculate the location of the Ryu-Takayanagi surface explicitly when the infalling

modes are replaced by thermal modes or by pure modes of constant energy density. In

each case we find that information stops escaping in the Hawking radiation (from the

perspective of an observer with access either only to the reservoir, or to the reservoir

and a purification of the thermal infalling modes) exactly at the moment that no

information escaping becomes consistent with boundary unitarity.
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• We show that the Kourkoulou-Maldacena state-dependent interior reconstruction in

the SYK model can be trivially extended to give minimally state-dependent recon-

structions.

4.2 Entanglement wedge reconstruction in toy models

Throughout this paper, we have found that bulk calculations, using entanglement wedge

reconstruction and the Ryu-Takayanagi formula, agree perfectly with random unitary and

fast scrambling toy models of the boundary dynamics.

Not only do our results agree with the Page curve and the Hayden-Preskill decoding

criterion, but we also found exactly the right state dependence, for both reconstructions

acting on the CFT before the Page time and reconstructions acting on the reservoir after

the Page time. Our results for large diaries were consistent with toy models as a function

of the both the energy and the entropy of the diary, as were the reconstruction errors so

long as we assumed that the lower bound from [38] was approximately saturated.

This seems either to be a somewhat remarkable coincidence, or to involve some deep

magic of quantum gravity. In fact, it is neither of these things. We simply have the direction

of causation in reverse. Rather than random unitary models determining the consequences

of entanglement wedge reconstruction, entanglement wedge reconstruction determines the

behaviour of random unitary toy models.

A random unitary toy model of black hole evaporation is an exceptionally trivial ex-

ample of a random tensor network [70]. An iterated random isometry model like that in

figure 9 is another, more complicated, example.

However, random tensor networks are well known to obey the Ryu-Takayanagi formula

and hence have entanglement wedge reconstruction [70]. It is therefore inevitable that

random unitary models agree with results derived from Ryu-Takayanagi and entanglement

wedge reconstruction. Indeed, one of the most popular methods to prove results about

error correction in random unitaries, the so-called decoupling approach [71, 72], essentially

involves deriving entanglement wedge reconstruction from the Ryu-Takayanagi formula.

Of course, random tensor networks do not have all the properties of holographic space-

times. In particular, they are not covariant. A tensor network corresponds to a single

timeslice of a bulk spacetime; RT surfaces, in a tensor network, are minimal, not extremal,

surfaces.

For many of the calculations in this paper, for example the scrambling time delay in the

Hayden-Preskill criterion, the extremality of the surface, or equivalently the maximisation

over Cauchy slices in the maximin prescription, was crucial in deriving the correct results.

In particular, the covariant Ryu-Takayanagi surface somehow knows about the fast scram-

bling dynamics of the boundary theory. If there is any magic going on, it seems to be here.

4.3 The post evaporation state and the bulk-to-boundary map

While we have studied evaporating black holes both before and after the Page time in

this paper, we have not discussed the final state of the system, after the evaporation is

complete. We make some comments about this state now.
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Figure 16. After the black hole has completely evaporated, the bulk encoded in the CFT will be in

the vacuum state. However, we can choose a (disconnected) bulk Cauchy slice where the radiation

in the reservoir Hrad is still be entangled with the pinched-off interior wormhole, which lies in its

entanglement wedge. The Ryu-Takayanagi surface is empty and has zero generalised entropy; the

two systems HCFT and Hrad are therefore unentangled.

When the black hole has nearly completely evaporated, the horizon curvature will

become large and so stringy and Planckian effects will become important. We can no

longer trust semi-classical calculations.

However it is reasonable to expect that, after an indeterminate, but short, time, there

will no longer be any sort of smooth connected geometry between the wormhole and the

AdS space that previously contained the black hole. The mouth of the wormhole will have

closed; the black hole will have completely evaporated. Let us assume we have extracted

all the remaining energy out of the AdS space and into the reservoir Hrad, so that the

original bulk AdS space lies in the vacuum state. This is shown schematically in figure 16.

Because the closed wormhole geometry has no boundary, on its own, the Ryu-

Takayanagi surface is no longer sufficient to define an entanglement wedge, and hence

a generalised entropy. For example, if the RT surface is empty, we need to further specify

whether the wormhole is in the entanglement wedge of the reservoir or of the CFT, before

the generalised entropy is well-defined. In this case, it is obvious that the RT surface should

be empty, with the wormhole in the entanglement wedge of the reservoir, since this gives

zero generalised entropy.60

There is no entanglement between HCFT and Hrad; both states are pure. Entanglement

wedge reconstruction tells us that the state of the wormhole is encoded in the Hawking

radiation. Any information thrown into the black hole during the evaporation will be

contained in the entanglement wedge of Hrad, no matter how large the entropy of the

60Recall that the empty surface is contained in every Cauchy slice, and so will be the RT surface if there

is any Cauchy slice for which it has minimal generalised entropy.
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initial state. The information thrown into the black hole is therefore encoded in Hrad in a

completely state-independent way.61 All the information has been preserved.

Even though we know from the Ryu-Takayanagi formula that the state of the Hawking

radiation in Hrad is pure, it appears from a bulk perspective that it is still entangled with

the closed-off wormhole. How should we understand this seeming contradiction?

An entangled state of the Hawking radiation and wormhole can be written as

|ψ〉 =
∑

i

√
pi |φi〉 |χi〉 , (4.6)

where the states |φi〉 describe the radiation and the states |χi〉 describes the wormhole.

The Hilbert space of a holographic theory is associated with its boundary. However, the

wormhole has no boundary. We therefore conclude (perhaps somewhat controversially)

that its Hilbert space is trivial; it is isomorphic to the complex numbers C. The states |χi〉
are therefore simply complex coefficients ci. The state

|ψ〉 =
∑

i

√
pici |φi〉 (4.7)

is therefore simply some complicated, pure state in Hrad.

Of course, there exists a perfectly valid bulk description of the same bulk state |ψ〉
from (4.7) where the Hawking radiation is simply in a bulk state that has a complicated

entanglement structure, but no wormhole.62 Some version of black hole complementarity,

or the ER = EPR duality [18], makes it equally valid to suppose that the wormhole still

exists, or that it has vanished leaving some complicated pure state of the Hawking radiation.

If we apply some complicated unitary operator to Hrad, we can transform the compli-

cated state |ψ〉 into a simple state, say |ψ0〉. From the perspective where the wormhole

continues to exist, we will still be in an ‘entangled state’

∑

i

√

p′i |ψi〉 |χ′
i〉 , (4.8)

where there are many non-zero p′i. However, the states |χ′
i〉 are now very complicated su-

perpositions of the original ‘simple’ wormhole states |χi〉. Each term in each superposition

is simply a complex number. For |χ′
0〉 the coefficients in the superposition must add con-

structively, so that |χ′
0〉 is some large complex number c′0. For |χ′

i〉 with i 6= 0, they must

interfere destructively so that |χ′
i〉 = 0. The ‘entangled state’ really is just |ψ0〉.

Just like in ordinary AdS/CFT, we have a linear ‘bulk to boundary’ map from the state

of bulk fields Hbulk on a fixed background spacetime (in this case the closed wormhole) to

a ‘boundary’ state of the spacetime itself. However, since the ‘boundary’ Hilbert space is

trivial, up to normalisation, this map simply projects the bulk fields on the wormhole into

a particular, very complicated state.

61In contrast, the interior of the black hole, from before it began to evaporate, appears to be encoded in the

reservoir Hrad in exactly the same minimally state dependent way that it was originally encoded in the CFT.
62If it is not clear that the Markovian reservoir Hrad has a bulk description at all, recall that we can

imagine throwing each small chunk of Hawking radiation into its own copy of anti-de Sitter space.
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The coefficients ci which describe the ‘boundary’ state associated to a particular worm-

hole state are simply the coefficient of that state in the projected wormhole state. This

story is, in effect, simply the Horowitz-Maldacena final state postselection proposal [42].

From a bulk perspective, Horowitz and Maldacena suggested that the projection happens

at the singularity. Our arguments suggest that, in the microscopic boundary description of

the theory, it happens the moment that the wormhole closes off, even if we choose a bulk

Cauchy slice that includes the wormhole.

In fact, the process that ends in this final state projection begins immediately after

the Page time, long before the black hole fully evaporates. At this point, there are, for

the first time, more ‘orthogonal’ states of the interior fields, that are needed to describe

the entanglement with the Hawking radiation, than there are microstates of the black hole

according to the Bekenstein-Hawking entropy.

As a result, even though each ‘orthogonal’ pair of bulk states will be almost orthogonal

on the boundary, there must exist very complicated superpositions of states of the interior

fields that are annihilated by the map to the boundary. Indeed, this is what allows the

entanglement entropy between the reservoir and the CFT to be much less than the bulk

entanglement entropy between the radiation and the interior, in accordance with the Ryu-

Takayanagi formula.

As with the post-evaporation state, the combined state of the black hole and radiation,

after the Page time can be written as

|ψ〉 =
∑

i

√
pi |φi〉 |χi〉 , (4.9)

where the probabilities pi are determined by the semiclassical bulk evaporation, the states

|φi〉 describe the Hawking radiation in the reservoir and the states |χi〉 now describe black

hole microstates, which are encoded as CFT states. If there was an isometry, or even an

approximate isometry, mapping each apparently distinct microstate |χi〉 to a different CFT

state, the entanglement entropy between the reservoir and the CFT would be equal to Srad.

However, minimal state dependence says that the bulk ‘code space’ of microstates |χi〉 is

too large for such an isometry to exist. Since the map from bulk states to boundary states

is not an isometry, there is no inconsistency with the entanglement entropy between HCFT

and Hrad actually being the Bekenstein-Hawking entropy SBH .

It is often suggested that state dependence makes quantum mechanics nonlinear. How-

ever the map from bulk states to boundary states is perfectly linear in this proposal; it

just isn’t an isometry. In effect, the näıve inner product on the bulk effective field theory

is very different from the pull back of the boundary inner product to bulk states, which

defines the actual microscopic inner product of the quantum theory. What then is the

bulk inner product? The most natural answer, which is consistent with recent work on JT

gravity [73], is that the bulk inner product is a statistical average of the boundary inner

product over an ensemble of microscopic Hamiltonians, such as a small range of couplings.

It is well known that final state projection models can lead to issues with describing

measurements done by an observer falling into the black hole [74–76]. While we leave a
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detailed accounting of these issues to future work, the solution to at least some of these

problems appears to be quantum error correction.

So long as we only consider a sufficiently small code spaces of allowed states, for

example the code space of states describing the state of the observer jumping into the

black hole, along with her experimental apparatus, there is always an isometry from the

bulk to the global boundary (including the reservoir).

On the boundary, the evolution is described by standard quantum mechanics with

no postselection. In the bulk, the observer is free to manipulate the unitary evolution

of the experiment. The state of the experiment can also decohere and become entangled

with the state of the observer; in more conventional phrasing, the observer can measure

the experiment.63 The isometry from the code space to global boundary states maps all

these events to ordinary unitary quantum mechanics with no postselection on the global

boundary. The only change that happens as the black hole evaporates is that the observer

and the experiment end up being encoded in the reservoir Hrad, rather than the CFT.

4.4 The peak of the Page curve

The other part of the evaporation that we skipped, in the interests of avoiding speculative

discussion, was the period of time, very close to the Page time, when the Page curve peaks

and begins to decline.

In a simple random unitary toy model of black hole evaporation, the entanglement

entropy is almost exactly equal to the number of qubits in the radiation, until the black hole

is within an O(1) number of qubits of half its original size. There is then an O(1) correction

to the entropy at the peak of the curve, before the entropy becomes approximately equal

to the number of qubits describing the black hole an O(1) number of qubits later [60].

For an actual black hole, at times within O(tpage/
√
SBH) of the Page time, O(

√
GN )

fluctuations in the horizon area of the black hole and O(
√
S) fluctuations in the total energy

of the Hawking radiation mean that there will not be a single well-defined Ryu-Takayanagi

surface. At such times, we should therefore expect that the entanglement entropy will

neither increase as fast as the bulk entropy of the radiation, nor decrease as fast as the

Bekenstein-Hawking entropy of the black hole.

However, we can write the total state of the black hole and Hawking radiation as a

superposition of O(
√
S) states, each of which has only O(GN ) fluctuation in the horizon

area and where the entanglement spectrum of the Hawking radiation, in each state, has

O(1) width.64

For almost all of the states in such a superposition, there is still a well defined Ryu-

Takayanagi surface. Indeed, if we believe that the lower bound on the reconstruction

error from [38] is approximately saturated, then, at any given time, the quantum extremal

63It is important to note that causality prevents this decoherence from escaping the black hole. No

measurement by an interior observer will ever ‘have happened’ from the perspective of an observer that

remains outside the black hole.
64We cannot reduce the area fluctuations by more than this without substantially altering the bulk

geometry, see [77, 78], for example, for details.
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surface prescription will be valid with very small error for all but an O(1) number of the

states in this superposition.

For some fraction f of the states in the superposition, the interior will be encoded in

the reservoir Hrad, while for almost all the rest, it will be encoded in the CFT. As the black

hole evaporates, the fraction f will increase, until eventually the fraction f approaches one

and the interior can be reconstructed using only the reservoir, with only a very small error.

From the fraction f , as a function of time, it should, in principle, be possible to calculate

the shape of the peak of the Page curve.

Because the fluctuations in the evaporation rate smear out the Page time over an

O(β
√
SBH) time window, it seems plausible that, with sufficient work, one could calculate

the entropy, up to an O(1/
√
SBH) error, at all times. In other words, the fluctuations in

the area of the black hole and the energy of the Hawking radiation may make it feasible to

calculate the Page curve much more precisely than would otherwise be possible.

4.5 Explicit interior reconstruction

While we were able to make very precise statements in this paper about when and where

information was encoded in an evaporating black hole, we said comparatively little about

how the information was encoded. In particular, one would ideally want to have explicit,

even if not necessarily practical, reconstructions of the interior operators.

There has been considerable work done in recent years on understanding how entangle-

ment wedge reconstruction can be done explicitly [24, 79, 80]. However, these approaches

often assume knowledge of some global reconstruction, such as HKLL [81]. For interior op-

erators, it is not clear even what global reconstruction to use as a starting point. Infalling

modes can, of course, simply be evolved back in time to give exterior operators, but this is

not possible for outgoing interior modes.

This is not a new problem; it has been a major focus of research in AdS/CFT for many

years. In particular, there are some credible suggestions of ways in which one can construct

a state-dependent interior operator, given a particular choice of microstate [32, 33, 37]. If

we believe the arguments from section 3.5, however, reconstructions should in principle be

possible for much larger code spaces.

In appendix C, we give a simple generalisation of the Kourkoulou-Maldacena state-

dependent interior reconstruction for the SYK model that works for code spaces with

entropy almost as large as the Bekenstein-Hawking entropy.

We can also make the following more general argument for extending state-dependent

reconstructions that work for a single microstate to minimally state-dependent reconstruc-

tions. Suppose we assume the existence of a single unknown reconstruction φcode of an

interior operator φ for a large code space Hcode with orthonormal basis |i〉. Moreover, sup-

pose we also assume that for any state |i〉 in this basis, we know an explicit reconstruction

φi, which is consistent with the unknown reconstruction φcode. In other words, for all |i〉,

φcode |i〉 ≈ φi |i〉 . (4.10)
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But then for any state

|ψ〉 =
∑

i

ci |i〉

we have
∑

i

φi |i〉 〈i|ψ〉 =
∑

i

ciφi |i〉 ≈ φcode |ψ〉 . (4.11)

Hence

φ̃code =
∑

i

φi |i〉 〈i| (4.12)

is an explicit reconstruction that approximates φcode when acting on any state in the code

space.

4.6 The information paradox beyond AdS/CFT

This paper is entirely about AdS/CFT. However, by understanding the information para-

dox in AdS/CFT, we hope to eventually learn something about the information paradox

in more general quantum gravity. Does information escape black holes in our universe (in

the absence of the cosmic microwave background etc.) and if so how does it do so?

So far, entanglement wedge reconstruction, and the Ryu-Takayanagi formula, are only

understood in the context of AdS/CFT. However, there is no obvious reason to think

that they are specific to spacetimes with a negative cosmological constant. In particular,

for asymptotically flat spacetimes, one can anchor a ‘Cauchy’ slice at some ‘boundary’

surface in asymptotic future infinity, and then calculate quantum extremal surfaces based

on this. Indeed, in this case, one does not even need to do anything special to get absorbing

boundary conditions. There is no timelike boundary for modes to reflect from. Instead,

early modes will simply automatically not be included if they reach the asymptotic infinity

at an earlier outgoing time than the time at which we anchored our ‘Cauchy’ slice.

For de Sitter spacetimes, which most resemble our universe, there is no timelike or

lightlike asymptotic region that we can use to anchor spacelike slices. However, one would

still hope that the basic conceptual ideas of this paper — essentially the fact that there is

a state-dependent encoding of the black hole interior in the early Hawking radiation after

the Page time — might be relevant.

As an intermediate step, consider the case of black holes in AdS/CFT that are small

enough to be microcanonically unstable. These black holes are so small that we do not

need to extract Hawking radiation into an auxiliary system for the black hole to evaporate;

the black hole will have already evaporated by the time the Hawking radiation can reach

the boundary and come back.

If we don’t extract the Hawking radiation, there is no entanglement wedge that can

show us that the interior is encoded in the Hawking radiation after the Page time. The

Hawking radiation entirely surrounds the black hole horizon; there is no boundary region

whose entanglement wedge contains the radiation, but not the black hole.

However, if we do extract the Hawking radiation, which we can do using non-local

boundary dynamics, it is clear from entanglement wedge reconstruction that the interior is

indeed encoded in the Hawking radiation, just like for larger AdS black holes. The interior
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must still have been encoded in the Hawking radiation before we extracted the radiation;

we just had no way to learn this using only entanglement wedge reconstruction.

To directly see that the interior was encoded in the radiation, even before we extracted

the radiation, we would need a way to distinguish the microscopic degrees of freedom en-

coding a small neighbourhood of the black hole from the microscopic degrees of freedom

describing the Hawking radiation further out. This would require understanding hologra-

phy beyond asymptotic boundaries. There has been considerable recent progress in that

direction using T T̄ deformations of conformal field theories [82–86].

Acknowledgments

I would like to thank Raphael Bousso, Netta Engelhardt, Daniel Harlow, Frances Kirwan,

Lampros Lamprou, Juan Maldacena, Don Page, Daniel Ranard, Phil Saad, Eva Silverstein,

Jon Sorce, Steve Shenker, Douglas Stanford, Alex Streicher, Lenny Susskind, Mae Teo and

Aron Wall for valuable discussions. In particular, I would like to thank my advisor, Patrick

Hayden, for his invaluable support throughout, Edward Witten, for first suggesting that

arguments similar to those in [38] could potentially explain the black hole information

paradox and for detailed feedback on this manuscript, and Ahmed Almheiri, for explaining

his paper [31] to me and for other very valuable discussions. This work was supported in

part by AFOSR award FA9550-16-1- 0082 and DOE award DE-SC0019380.

A Cut-offs in Rindler space

In this appendix, we study a simple pedagogical example of a situation where understanding

the coordinate dependence of cut-offs is vital, if we want to calculate entanglement entropies

correctly. The example is closely related to, but distinct from, the black hole extremal

surface calculations in sections 2.2 and 2.4.

Consider the interval [0, r] of the vacuum state in some (1 + 1)-dimensional conformal

field theory. The entanglement entropy of this interval is given by

S =
c

3
log

r√
ε1, ε2

(A.1)

where ε1 and ε2 are the cut-offs at each end of the interval [57, 58]. We therefore find that

the derivative of the entanglement entropy

dS

dr
=

c

3r
. (A.2)

We can also do this calculation in Rindler space, where it corresponds to finding the

derivative of the entropy of an infinite half-line of a thermal state at inverse temperature

β = 2π. The entropy of a long interval of a thermal state of a CFT is equal to

S =
πc l

3β
(A.3)
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where l is the length of the interval [57, 58]. We therefore find that

dS

dr∗
=
c

6
(A.4)

where the Rindler position r∗ = log r. Hence

dS

dr
=

1

r

dS

dr∗
=

c

6r
. (A.5)

However, this differs from (A.2) by a factor of two. We apparently have a contradiction.

We can also look at the entanglement entropy of the interval [r,∞]. In the Minkowski

space calculation, the gradient of the entropy of an interval tends to zero as the length of

the interval tends to infinity. However, for the thermal state in Rindler space, the gradient

is simply the negative of (A.5).

The resolution of the paradox is, of course, the cut-offs. Implicitly, we assumed in the

Minkowski space calculation that the cut-off was constant in units of r, while in the Rindler

space calculation we assumed that it was constant in terms of the Rindler position r∗.

However, r and r∗ are nonlinearly related. So the cut-off cannot be constant in both units.

Let us assume that we actually wanted the cut-off to be constant in terms of the

Rindler position r∗. Recall that a constant cut-off in units of r∗ really means that the

cut-off is equal to

ε0
∂

∂r∗
,

for some constant ε0. Since
∂

∂r∗
= r

∂

∂r
(A.6)

the cut-off ε2 in (A.1), which is in units of r, is r ε0. We therefore find that

dS

dr
=

c

6r
, (A.7)

while the derivative of the entropy for the interval [r,∞] is −c/6r. The results now agree

with the Rindler space calculation.

B Finite temperature infalling modes

In this appendix, we generalise the explicit calculation of the location of the non-empty

quantum extremal surface from section 2.2 to thermal infalling modes at finite temper-

ature, and to pure infalling modes with constant energy density and without long range

entanglement. As in section 2.2, we assume that the outgoing modes are extracted from

close to the horizon and so there are no greybody factors. We assume throughout the

section that we are after the Page time, and so the non-empty quantum extremal surface

is the Ryu-Takayanagi surface.65 Throughout this section, we shall work in Eddington-

Finkelstein coordinates, as in section 2.2. However, the calculations can also easily be done

in Kruskal-like coordinates, as in section 2.4.

65The exception is when the temperature, or energy density of the infalling modes is sufficient to prevent

the black hole ever reaching the Page time. As we shall see, in those cases, there does not exist a non-empty

quantum extremal surface at all.

– 69 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
2

We begin by studying the case of thermal infalling modes at a temperature T ′ that

may be different from the black hole temperature T . We assume that the infalling modes

are purified by an auxiliary Hilbert space Hpur and hence, importantly, are unentangled

with the outgoing Hawking radiation. We consider both the information learned by an

observer with access to Hrad ⊗Hpur, and an observer with access only to Hrad.

Taking into account the new infalling thermal flux, we find that (2.15) becomes

dM

dv
=
cevapπ

12
(T ′2 − T 2). (B.1)

Hence we have
drs
dv

=
cevapπGN

3T (d− 1)rd−2
s Ωd−1

(T ′2 − T 2), (B.2)

and, using (2.11), the event horizon is at

rhor = rs +
cevapGN

6(d− 1)rd−2
s Ωd−1

T ′2 − T 2

T 2
. (B.3)

Using (2.13), the classical maximin surface lies on the classical apparent horizon rs at

v = − β

2π
log

SBHT
2

cevap (T 2 − T ′2)
+O(β). (B.4)

As the infalling radiation temperature T ′ approaches the black hole temperature T , the

location of the classical maximin surface diverges into the infinite past because drs/dv → 0.

In contrast, we shall see that the non-empty quantum extremal surface for the CFT remains

well-behaved at this temperature.

We first calculate the Ryu-Takayanagi surface associated to HCFT. (Since the overall

tripartite state is pure, this is also the Ryu-Takayanagi surface for Hrad ⊗ Hpur.) The

entropy of the outgoing modes is the same as (2.26), but, because the ingoing modes are

now at finite temperature, the entropy of the infalling modes in the entanglement wedge

of the CFT is now

Sin = −cevapπT
′v

6
+ . . . , (B.5)

where, as usual, we have dropped constant terms and we have assumed that the cut-off is

independent of position in units of v.66 The total bulk entropy is therefore

Sbulk =
cevap
6

log (rlc(v)− r)− cπv

6
(T + T ′) + . . . (B.6)

Note that for T ′ = T , which corresponds to the Hartle-Hawking state, we expect

that the total entanglement entropy of ingoing and outgoing modes will agree with the

Minkowski vacuum formula for the entanglement entropy based on the proper distance

between the quantum extremal surface and the point where the outgoing modes are ex-

tracted. Using the Schwarzschild time translation symmetry, or boost symmetry, of the

Hartle-Hawking state, we can map this interval to a small interval close to the bifurcation

66We are also, as usual, ignoring the corrections associated with the finite infalling time range of the

infalling modes because these corrections should vanish in the semiclassical limit.
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surface, where the Hartle-Hawking state locally looks like the Minkowski vacuum.67 It can

easily be verified that this is indeed the case.

Using (B.2) and (B.6), it is easy to calculate the location of the Ryu-Takayanagi surface

of HCFT. We find that

0 =
∂Sbulk
∂v

+
1

4GN

∂A

∂v
, (B.7)

=
∂Sbulk
∂v

, (B.8)

=
∂rlc/∂v

6(rlc − r)
− π

6
(T + T ′), (B.9)

(T + T ′)(rlc(v)− r) = 2T (rlc − rs(v)), (B.10)

while (2.34) continues to be valid. Hence the quantum extremal surface lies at

r = rs +
T ′ − T

T

GNcevap

3(d− 1)Ωd−1r
d−2
s

= rhor − (T ′ − T )2
GNcevap

6(d− 1)rd−2
s Ωd−1T 2

, (B.11)

and satisfies

rlc(v) = rs+
T ′ + T

T

GNc

3(d− 1)Ωd−1r
d−2
s

= rhor+

[

4− (T ′ − T )2

T 2

]

GNcevap

6(d− 1)rd−2
s Ωd−1

. (B.12)

Thus

v = − β

2π
log

SBH

cevap(4− (T ′−T )2

T 2 )
+O(β). (B.13)

When the infalling modes are at the same temperature as the black hole, the Ryu-

Takayanagi surface lies exactly on the event horizon.68 At all other temperatures, it lies

strictly inside the event horizon. When T ′ = T , and only when T ′ = T , the total ther-

modynamic entropy of the black hole and exterior radiation does not increase with time.

The entropy of the new Hawking radiation is cancelled by the loss of entropy from radi-

ation falling into the black hole, while the entropy of the black hole itself stays constant.

Because all outgoing modes in the interior are in the entanglement wedge of Hrad ⊗Hpur,

the Hawking radiation, even Hawking radiation far in the future, is perfectly thermally

entangled with Hrad ⊗ Hpur. Since the ingoing modes are also thermally entangled with

Hpur and the horizon area is constant, the black hole entanglement entropy stays constant.

67In contrast, the case where the infalling modes have zero temperature corresponds to the Unruh state,

which is singular at the white hole horizon and so does not locally look like the Minkowski vacuum near

the bifurcation surface.
68Since we only calculated the radius to O(GN ), higher order corrections can potentially move the quan-

tum extremal surface outside the horizon. When calculating the entanglement wedge of the CFT plus all

the future ingoing thermal modes that will be thrown into the black hole, the RT surface cannot end up

outside the event horizon without creating a paradox. However this is not true for the entanglement wedge

of the CFT alone. In that case, corrections from only having a finite interval of infalling thermal modes

pushes the RT surface an O(G2
N ) radial distance outside the horizon, as was shown in [87] after this paper

first appeared on arXiv. (The result follows most obviously as a consequence of the time-reversal symmetry

of the state forcing the RT surface to lie in the static slice.)
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This is consistent with the Page curve, which can also be derived using Ryu-Takayanagi

formula. Indeed, at any temperature T ′, the entanglement structure of the Hawking radia-

tion will be exactly consistent with the Page curve, because of our general argument from

section 2.3. It can easily be verified that this is indeed the case.

The Ryu-Takayanagi surface remains approximately one scrambling time in the past

so long as the temperature of the infalling modes is relatively low (the latest infalling time

is obtained at T ′ = T ), but diverges into the past at T ′ = 3T . At higher temperatures,

the radial distance between the quantum extremal surface and the event horizon, required

by (B.11), will be greater than the radial distance between the quantum extremal surface

and the outgoing lightcone, required by (B.12). Since the outgoing lightcone can never be

inside the event horizon, no quantum extremal surface can exist.

An observer with access to Hrad⊗Hpur will only ever learn the state of a diary thrown

into the black hole if the temperature T ′ < 3T . Interestingly, T ′ = 3T is exactly the

temperature at which thermal Hawking radiation, unentangled with Hrad⊗Hpur, becomes

consistent with unitarity. At this temperature,

1

4GN

dAhor

dv
=

2cevapπ

3β
=
dSin
dv

+
dSrad
dv

, (B.14)

where dSin/dv ≥ 0 is the entropy of the ingoing modes per unit infalling time and

dSrad/dv ≥ 0 is the rate that entropy is produced in the Hawking radiation. The in-

crease in the Bekenstein-Hawking entropy is therefore just sufficient to purify both the

outgoing Hawking radiation, and the purification Hpur of the infalling modes.

If the observer only has access to Hrad, but not to Hpur, it will affect the information

that they learn about the black hole. To understand this, we need to calculate the location

of the Ryu-Takayanagi surface for Hrad. (Because the system is no longer in a bipartite

pure state, this is not the same as the Ryu-Takayanagi surface of HCFT.)

The entanglement wedge of Hrad contains the part of the interior inside the Ryu-

Takayanagi surface, as well as the outgoing modes that were extracted into the reservoir.

Since the overall state of the outgoing modes is pure, the outgoing entropy in the

entanglement wedge of Hrad for a given candidate RT surface is equal to the outgoing

entropy in the entanglement wedge of HCFT for the same candidate surface. (Since the

Ryu-Takayanagi surfaces for Hrad and HCFT will end up being different, they will have

different entropies for the outgoing modes. However as a function of the location of the

surface, they are the same.)

This is not true for the ingoing modes, which are in a mixed state that is purified by

Hpur. The entanglement wedge of HCFT contains ingoing modes at infalling times that are

later than the Ryu-Takayanagi surface, while the entanglement wedge of Hrad contains at

infalling times that are earlier than the RT surface. Hence, instead of (B.6), we have

Sbulk =
cevap
6

log (rlc(v)− r) +
cπv

6
(T ′ − T ) + . . . (B.15)

We therefore find that the quantum extremal surface for Hrad lies at

r = rs −
T ′ + T

T

GNcevap

3(d− 1)Ωd−1r
d−2
s

= rhor − (T ′ + T )2
GNc

6(d− 1)rd−2
s Ωd−1T 2

, (B.16)
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and satisfies

rlc(v) = rs+
T − T ′

T

GNc

3(d− 1)Ωd−1r
d−2
s

= rhor+

[

4− (T ′ + T )2

T 2

]

GNcevap

6(d− 1)rd−2
s Ωd−1

. (B.17)

Thus

v = − β

2π
log

SBH

c(4− (T ′+T )2

T 2 )
+O(β). (B.18)

For T ′ < T , information thrown into the black hole will still reappear in the Hawking radia-

tion. However the location of the extremal surface diverges as T ′ → T ; for T ′ ≥ T no infor-

mation will ever escape in the Hawking radiation for an observer with access only to Hrad.

As before, this is exactly the temperature at which the Hawking radiation can look

thermal, to an observer with access only to Hrad without violating unitarity. The total

entropy of HCFT ⊗Hrad increases because thermal modes are being thrown into the black

hole. The entropy of Hrad can therefore increase at the same rate, and the new Hawking

radiation can be unentangled with Hrad, even while the horizon area, and hence the entropy,

of the black hole remains constant.

Finally, the Ryu-Takayanagi surface of Hpur will always be empty — it will always

be in a thermal state. This is a necessary consequence of the boundary dynamics being

unitary; the state of Hpur is initially thermal, and this is unchanged when we throw its

purification into a black hole.

We can also calculate the location of the quantum extremal surface when the infalling

modes are in a pure state, with constant energy density η, but without long range entan-

glement, for example, if there is a constant infalling particle flux. Again, it is important

that the ingoing modes are unentangled with the outgoing Hawking radiation. In this case,

both (2.31) and (2.34) will continue to be valid as in the vacuum case. However, instead

of (2.15), we now have
dM

dv
= −cevapπ

12β2
+ η, (B.19)

and
drs
dv

= − cevapπGN

3β(d− 1)rd−2
s Ωd−1

+
4GNβη

(d− 1)rd−2
s Ωd−1

. (B.20)

This affects the radius rl.c.(v) of the past lightcone as a function of the infalling time v,

which is given in (2.12). Hence, while the Ryu-Takayanagi surface still lies at

r = rs −
GNcevap

3(d− 1)Ωd−1r
d−2
s

, (B.21)

its infalling time will now be given by

v = − β

2π
log

SBH
1− 4β2η/cevapπ

+O(β). (B.22)

As before, when sufficient energy, in this case η > cevapπ/4β
2 are thrown into the black

hole, no quantum extremal surface exists. The event horizon, and thus the outgoing light

cone, are at too large a radius for (2.31) and (2.34) to be simultaneously satisfied.
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Yet again, this is exactly the point at which it stops being necessary for information

to escape the black hole in order to preserve unitarity. At this energy density the rate of

increase of the Bekenstein Hawking entropy is equal to the rate of increase in the entropy

of the radiation
1

4GN

dAhor

dv
=
cevapπ

6β
=
dSrad
dv

. (B.23)

Hence the Hawking radiation can remain thermal, and unentangled with Hrad, forever,

without exceeding the entanglement entropy exceeding the Bekenstein-Hawking entropy of

the black hole.

The ingoing energy flux at which information stops escaping the black hole is highest

for thermal infalling modes and an observer who has access to both the reservoir Hrad and

the purification Hpur of the ingoing modes. This is because there needs to be sufficient

Bekenstein-Hawking entropy in the black hole both to purify outgoing thermal Hawking

radiation and to purify the degrees of freedom in Hpur.

In contrast, when the observer only has acccess to Hrad, the required ingoing energy

flux for thermal infalling modes is much smaller. The ingoing entropy makes it easier for

the Hawking radiation to be unentangled with Hrad, because Hrad can be purified by Hpur

as well as the black hole.

Finally, when the ingoing modes are in a pure state with no long range entanglement,

information stops escaping at an intermediate ingoing energy flux. The increase in the

Bekenstein-Hawking entropy needs to be sufficient to purify the Hawking radiation in

Hrad; there is no ingoing bulk entropy to make this either harder or easier.

C Minimal state dependence in the SYK model

In this appendix, we construct minimally state-dependent interior reconstructions in a

simple toy model of quantum gravity, known as the SYK model. This model has been

studied in great depth in the last few years [88–94]; here we provide only the bare minimum

of background detail necessary for our purposes.

The SYK model is a 0 + 1-dimensional quantum mechanical model that consists of N

Majorana fermions ψi. These satisfy

{ψi, ψj} = δi,j .

Using a Jordan-Wigner transformation, it can be easily seen that there is a single qubit

degree of freedom associated with every pair of Majorana fermions. The Hilbert space

therefore has dimension 2N/2. The model has Hamiltonian

H =
∑

iklm

jiklmψiψkψlψm, (C.1)

where jiklm are independent Gaussian random couplings with 〈j2iklm〉 = 6J2/N3.

In the limit N → ∞, at fixed βJ ≫ 1, the SYK model appears to become holographic;

it has many features that resemble nearly-AdS2 gravity. Although the precise dual gravity

description, if one exists, remain unknown, both the SYK model and simple nearly-AdS2
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gravity theories such as Jackiw-Teitelboim gravity [73, 95–98] have an emergent reparam-

eterisation symmetry that is both spontaneously and explicitly broken, with the explicit

symmetry-breaking term proportional to the so-called Schwarzian action

S =
αSN

J

∫

dτ

(

f ′′

f ′

)′

− 1

2

(

f ′′

f ′

)2

, (C.2)

where f(τ) is the reparameterisation and αS is a numerical constant. From a gravity

perspective, this action appears as a boundary term when we cut-off the nearly-AdS2

geometry at some fixed dilaton value φb; for Jackiw-Teitelboim gravity, in particular, it

describes the entire dynamics of the theory, which can be interpreted as the dynamics of a

boundary particle, describing the location of the cut-off, in a rigid AdS2 background.

A complete basis for the entire Hilbert space of the SYK model is given by the states

|Bs〉, satisfying
(ψ2k−1 − iskψ2k) |Bs〉 = 0, (C.3)

where for all k, we have sk = ±1. If we evolve these states in Euclidean time, we get a set

of states

|Bs(β)〉 = e−βH/2 |Bs〉 , (C.4)

which form an approximate, overcomplete basis for the low energy states of the theory. In

fact, if we allow arbitrary superpositions of these states, they still form a complete basis

for the entire Hilbert space, because the map e−βH is invertible. However, to create a high

energy state, we need a very finely tuned superposition

|ψ〉 =
∑

s

cs |Bs(β)〉 , (C.5)

where

〈ψ|ψ〉 ≪
∑

s

|cs|2 〈Bs(β)|Bs(β)〉 . (C.6)

However we will only allow ‘generic’ superpositions of the states |Bs(β)〉 that do not sat-

isfy (C.6).

It was shown in [37] that the states |Bs(β)〉 have a natural gravity interpretation

as black hole microstates with a smooth interior ending on an ‘end-of-the-world brane’

(figure 17). Excitations in the interior can be created by acting with additional boundary

operators during the Euclidean time evolution.

If the system is evolved with the unperturbed Hamiltonian H, then such excitations

can never reach the boundary. However, if we perturb the Hamiltonian by

δH = −εJ
N/2
∑

k=1

skiψ2k−1ψ2k, (C.7)

then, from a gravity perspective, the Schwarzian ‘boundary particle’ is pulled into the bulk

of the AdS′2 space, as shown in figure 17. By evolving the system with the perturbed

Hamiltonian H + δH, we can render the interior of the black hole visible to the boundary.
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(a) (b)

Figure 17. The states |Bs(β)〉 have a gravity description as a one sided black hole, ending on an

end-of-the-world brane (black). If the system is evolved using the unperturbed SYK Hamiltonian,

shown in figure 17a, the bulk operator φ lies behind the black hole horizon (blue). However if the

Hamiltonian is perturbed in a state-dependent way, shown in figure 17b, the boundary (green) is

pulled inwards and so the operator no longer lies behind a horizon. In the original construction,

the Hamiltonian was precisely tuned for a single state |Bs(β)〉. However one can easily adapt the

Hamiltonian to work for a large set of states.

Interior operators can be reconstructed using boundary operators time-evolved using this

perturbed Hamiltonian.

The perturbation δH was carefully adapted to the state |Bs(β)〉. The reconstruction

is therefore highly state-dependent. A natural question is whether we can reduce this state

dependence, and find a reconstruction that works for a larger class of microstates.

Instead of using the perturbation (C.7), suppose instead that we perturb the Hamil-

tonian H by

δHf = −εJ
fN/2
∑

k=1

skiψ2k−1ψ2k, (C.8)

where 0 < f < 1 is a fixed O(1) fraction. Since the number of terms in δHf continues

to be O(N), the perturbation δHf will also make the interior of the black hole microstate

|Bs(β)〉 visible to the boundary.69

However this perturbation only depended on the first fN/2 spins sk of the microstate

|Bs(β)〉. We have found a single reconstruction that works for 2(1−f)N/2 different mi-

69The argument that the perturbation δH can be used to make the interior visible to a boundary observer

is given in section 7 of [37]. For the full details, we simply refer readers to that work. However the basic

strategy is to assume that for ε ≪ 1 we can treat δH as a perturbation to the Schwarzian action (C.2)

of the reparameterisation modes. So long as we have O(N) terms, the perturbation will appear in the

semiclassical action at large N . It can then be shown that, at sufficiently large, but fixed, βJ , we can

choose ε so that the semiclassical large N equation of motion for the Schwarzian ‘boundary particle’ makes

the entire black hole interior visible. The argument for δHf is identical, except for the addition of the O(1)

factor f in the perturbation to the large N semiclassical Schwarzian action.
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crostates |Bs(β)〉. By linearity, the same reconstruction should also work for generic su-

perpositions of these microstates.

Since the low temperature entropy of the SYK model is approximately

S0 ≈ 0.23N, (C.9)

we have found a single reconstruction that is valid for more than eS0 microstates. Of course,

not all these microstates are independent. Instead, the effective size of the code subspace

is determined by the entropy of the mixed state

ρs1 = 2−(1−f)N/2
∑

s2

|Bs1⊕s2(β)〉 〈Bs1⊕s2(β)| , (C.10)

where the sum is over spins sk ∈ s2 for fN/2 ≤ k ≤ N/2 while the spins sk ∈ s1 for

1 ≤ k < fN/2 are held fixed.

How large is this entropy? Since

e−βH

Tr(e−βH)
= 2−fN/2

∑

s1

ρs1 , (C.11)

then the strict concavity of entropy means that

〈S(ρs1)〉s1 < S0, (C.12)

where the expectation is taken over possible states s1 of the fixed spins. If ρs1 were a

uniform mixture of 2(1−f)N/2 randomly chosen microstates |Bs(β)〉, we would expect that

S(ρs−1) would be very close to S0 for (1 − f)N/2 > S0. There would be no remaining

space to encode the interior degrees of freedom. However this will not be the case for the

particular set of microstates in (C.10).

At largeN , there is an emergent O(N) symmetry of the SYKmodel. In particular there

is a Z
n
2 subgroup of this symmetry group, called the flip subgroup, that acts transitively

on the set of states |Bs(β)〉). This means that S(ρs1) depends, at leading order, only on

the number of spins that are held fixed, and not on the signs of those spins.

If no spins are held fixed, the ensemble is simply the canonical ensemble, which has

entropy S0 to leading order in 1/N for fixed βJ ≫ 1. Now suppose that we know the

average entropy Sf for a state ρs1 with a fixed fraction f of the spins held fixed. We then

consider the ensembles ρs1⊕1 and ρs1⊕−1 formed by fixing a single additional spin. These

two ensembles therefore have a fraction f + 2/N of their spins fixed. Note that

ρs1 =
1

2
(ρs1⊕1 + ρs1⊕−1) . (C.13)

Hence

2S(ρs1)− S(ρs1⊕1)− S(ρs1⊕−1) = S(ρs1⊕1||ρs1) + S(ρs1⊕−1||ρs1) (C.14)

≥ 1

4
‖ρs1⊕1 − ρs1⊕−1‖21, (C.15)
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where we have used Pinsker’s inequality [99]. However, we can lower bound the trace

distance ‖ρs1⊕1 − ρs1⊕−1‖1 by

‖ρs1⊕1 − ρs1⊕−1‖1 = max
O

|Tr [O (ρs1⊕1 − ρs1⊕−1)]|
‖O‖ ≥ |Tr [ψ2k−1ψ2k (ρs1⊕1 − ρs1⊕−1)]| ,

(C.16)

where k = Nf/2 + 1 labels the additional spin fixed in ρs1⊕±1, but not in ρs1 . This last

quantity was shown to in [37] to be order one in the limit of large N (although it decays

as a function of βJ). Hence

Sf − Sf+2/N = O(1) (C.17)

and thus

S0 − Sf = O(fN), (C.18)

for any fixed f > 0. If the fraction f is small, the entropy is very close to S0 at leading

order, but there is still plenty of space left to encode the interior. We have found an explicit,

minimally state-dependent reconstruction.

Of course, we have only constructed minimally state-dependent operators for a very

particular class of ensembles of microstates. Our arguments in section 3.5 suggested that

there should exist minimally state-dependent reconstructions for any sufficiently small code

subspace. For the special ensembles that we have considered in this section, the reconstruc-

tions only involved a simple perturbation to the SYK Hamiltonian; for arbitrary code sub-

spaces, the reconstructions would presumably be much more complicated. We gave a more

general, but much less practical, procedure for constructing minimally state-dependent re-

constructions out of reconstructions that only work for individual states in section 4.5; it

seems reasonable to expect that such a procedure should also work for the SYK model.
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