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We propose a scheme able to entangle at the steady state a nanomechanical resonator with a microwave

cavity mode of a driven superconducting coplanar waveguide. The nanomechanical resonator is capacitively

coupled with the central conductor of the waveguide and stationary entanglement is achievable up to tempera-

tures of tens of milliKelvin.
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I. INTRODUCTION

Entanglement is one of a number of inherently quantum
phenomena that it is hoped will soon be observable in mac-
roscopic mechanical systems �1�. Aside from the interest in
studying quantum mechanics in a new regime, entanglement
may be used as part of read-out schemes in quantum infor-
mation processing applications. Methods for entangling a na-
nomechanical resonator with a Cooper pair box �2�, or an
optical mode �3�, for entangling two charge qubits �4� or two
Josephson junctions �5� via nanomechanical resonators, and
for entangling two nanomechanical resonators via trapped
ions �6�, Cooper pair boxes �7�, entanglement swapping �8�,
and sudden switching of electrical interactions �9�, have all
been proposed. In the earliest proposal �2�, the entanglement
provided a means for measuring the decoherence rate of co-
herent superpositions of nanomechanical resonator states.
More recently, a scheme for entangling a superconducting
coplanar waveguide field with a nanomechanical resonator,
via a Cooper pair box within the waveguide �10�, was pro-

posed.

Here we propose a different scheme for entangling the

nanomechanical resonator, based on the capacitive coupling

of the resonator with the central conductor of the supercon-

ducting, coplanar waveguide, and which does not require any

Cooper pair box �see Ref. �11� for a related proposal�. The

paper is organized as follows. In Sec. II we derive the quan-

tum Langevin equations �QLE� of the system and discuss

when they can be linearized around the semiclassical steady

state. In Sec. III we study the steady state of the system and

quantify its entanglement by using the logarithmic negativity,

while Sec. IV is for conclusions.

II. QUANTUM LANGEVIN EQUATIONS AND THEIR

LINEARIZATION

The proposed scheme is shown in Fig. 1: a nanomechani-

cal resonator is capacitively coupled to the central conductor

of a superconducting, coplanar waveguide that forms a mi-

crowave cavity of resonant frequency �c. The cavity is

driven at a frequency �0=�c−�0. In view of the equivalent

circuit, the effective Hamiltonian for the coupled system is

H =
px

2

2m
+

m�m
2

x2

2
+

�2

2L
+

Q2

2�C + C0�x��
− e�t�Q , �1�

where �x , px� are the canonical position and momentum of

the resonator, and �� ,Q� are the canonical coordinates for

the cavity, representing, respectively, the flux through an

equivalent inductor L and the charge on an equivalent ca-

pacitor C.

The coherent driving of the cavity is given by the electric

potential e�t�=−i�2��cLE�ei�0t−e−i�0t�. The function C0�x�
describes the capacitive coupling between the cavity and the

resonator as a function of the resonator displacement x. Ex-

panding this around the equilibrium position of the resonator

at d from the cavity and with capacitance C0, we have

C0�x�=C0�1−x�t� /d�. Expanding the capacitive energy as a

Taylor series, we find to first order,

Q2

2�C + C0�x��
=

Q2

2C�

+
�

2dC�

x�t�Q2, �2�

where C�=C+C0 and �=C0 /C�.

We can now quantize the Hamiltonian, promoting the ca-

nonical coordinates to operators with �x̂ , p̂x�= �Q̂ ,�̂�= i�.

The quantum Hamiltonian, in terms of the raising and low-

ering operators for the cavity �a† ,a� and the resonator di-

mensionless canonical operators �q̂ , p̂�, is

H = ��ca
†a +

��m

2
�q̂2 + p̂2� + �

G0

2
q̂�a + a†�2

− i�E�ei�0t − e−i�0t��a + a†� , �3�

where

a =��cL

2�
Q̂ +

i

�2��cL
�̂ , �4�
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FIG. 1. Schematic representation of the capacitive coupling be-

tween a nanomechanical resonator and a superconducting coplanar

microwave cavity. �a� Plan view of the device; the dark region is

etched away and the resulting cantilever is metalized to form one

plate of a capacitor. �b� Equivalent circuit.
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q̂ =�m�m

�
x̂, p̂ =

p̂x

��m�m

, �5�

and the coupling depends on

G0 = ��c� 1

2d
� �

m�m

� . �6�

Typically, �c��m since �c /2	�10 GHz �12�, while

�m /2	�20 MHz �13�. It is convenient to move into an in-

teraction picture with respect to ��0a†a, and neglect terms

oscillating at ±2�0. The resulting Hamiltonian is

HI = ��0a†a +
��m

2
�q̂2 + p̂2� + �G0q̂a†a − i�E�a − a†� .

�7�

The coupling term represents a low frequency modulation of

the cavity resonance frequency. This will cause a phase

modulation of the cavity field and write sidebands onto the

cavity spectrum at multiples of �m from �c.

The resonator has a mechanical damping rate 
m and the

cavity bandwidth is 2�. System dynamics also depend on the

cavity input noise ain�t�, where

	ain,†�t�ain�t��
 = n̄a��t − t�� , �8�

with n̄a= �exp���c /kBT�−1�−1, and also on the Brownian

noise acting on the cavity ends �t�, with correlation function

�14�

	�t��t��
 =

m

�m

 d�

2	
e−i��t−t����coth� ��

2kBT
� + 1� . �9�

Clearly, �t� is not delta-correlated and does not describe a

Markovian process. However, quantum effects are achiev-

able only when using resonators with a large mechanical

quality factor �Qm=�m /
m�1�, and in this limit �t� be-

comes delta-correlated �15�,

	�t��t�� + �t���t�
/2 � 
m�2n̄b + 1���t − t�� , �10�

where n̄b= �exp���m /kBT�−1�−1, and we recover a Markov-

ian process. Adding these inputs to the equations of motion

that follow from Eq. �7�, we obtain the nonlinear quantum

Langevin equations �QLEs�

q̇ = �mp , �11a�

ṗ = − �mq − 
mp + G0a†a +  , �11b�

ȧ = − �� + i�0�a + iG0aq + E + �2�ain. �11c�

Neglecting the noise and treating the deterministic equations

as classical, with a→� a complex field amplitude, we find

the fixed points of the system by setting the left-hand side of

Eqs. �11� to zero. The fixed points are then given by

ps = 0, �12�

qs =
G0

�m

ns, �13�

E2 = ns��
2 + ��0 − G0

2ns/�m�2� , �14�

where the steady state photon number in the cavity is defined

as ns= ��s�2. Equation �14� is the same as the equation of state

for optical bistability in a dispersive nonlinear medium �16�
and thus we expect for �0�0 there will be multiple stable

fixed points.

The quantum dynamics of the full nonlinear system is

difficult to analyze so we linearize around the semiclassical

fixed points. That is, we write a=�s+�a, q=qs+�q, and p

= ps+�p. This decouples our system into a set of nonlinear

algebraic equations for the steady-state values and a set of

QLEs for the fluctuation operators. The steady-state values

are given by Eqs. �12� and �13�, and �s=E / ��+ i��; an im-

plicit equation for �s, since the effective detuning � is given

by �=�0−G0
2 ��s�2 /�m. The QLEs for the fluctuations are

�q̇ = �m�p , �15a�

�ṗ = − �m�q − 
m�p + G0��s�a† + �s
*�a� + �a†�a +  ,

�15b�

�ȧ = − �� + i���a + iG0��s + �a��q + �2�ain. �15c�

Provided the cavity is driven intensely, ��s � �1, we can

safely neglect the terms �a†�a in Eq. �15b� and �a�q in Eq.

�15c�, and obtain the linearized QLEs

�q̇ = �m�p , �16a�

�ṗ = − �m�q − 
m�p + G0�s��a† + �a� +  , �16b�

�ȧ = − �� + i���a + iG0�s�q + �2�ain, �16c�

where we have chosen the phase reference so that �s can be

taken as real.

III. STEADY STATE OF THE SYSTEM

AND ITS ENTANGLEMENT PROPERTIES

In order to characterize the steady state of the system, it is

convenient to rewrite Eqs. �16�, defining G=G0�s
�2, in

terms of the field quadratures �X= ��a+�a†� /�2 and

�Y =−i��a−�a†� /�2, that is,

�q̇ = �m�p , �17a�

�ṗ = − �m�q − 
m�p + G�X +  , �17b�

�Ẋ = − ��X + ��Y + �2�Xin, �17c�

�Ẏ = − ��Y − ��X + G�q + �2�Y in, �17d�

where Xin= ��ain+�ain,†� /�2 and Y in=−i��ain−�ain,†� /�2. In

matrix form, Eqs. �17� can be written as

u̇�t� = Au�t� + n�t� , �18�

where uT�t�= ��q�t� ,�p�t� ,�X�t� ,�Y�t��, nT�t�= �0,�t� ,

�2�Xin�t� ,�2�Y in�t�� and
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A =�
0 �m 0 0

− �m − 
m G 0

0 0 − � �

G 0 − � − �
� , �19�

Eq. �18� has the solution

u�t� = M�t�u�0� + 
0

t

dsM�s�n�s� , �20�

where M�t�=exp�At�. The stability conditions can be derived

by applying the Routh-Hurwitz criterion �17�,

s1 = 2
m����2 + ��m − ��2���2 + ��m + ��2�

+ 
m��
m + 2����2 + �2� + 2��m
2 ��

+ ��mG2�
m + 2��2 � 0, �21a�

s2 = �m��2 + �2� − G2� � 0. �21b�

For driving on the blue sideband of the cavity ��=−�m� we

have

G � �2
m���4 + 4�m
2 �2 + 
m

2 �2 + 4
m��m
2 + 2
m�3

+ 
m
2 �m

2 ��1/2/��m�
m + 2��� , �22�

while for driving on the red sideband ��=�m�,

G � ��m
2 + �2. �23�

Since the noise terms in Eq. �18� are zero-mean Gaussian

and the dynamics are linear, the steady state for the fluctua-

tions is a two-mode Gaussian state, fully characterized by its

symmetrically ordered 4�4 correlation matrix. This has

components Vij = 	ui���u j���+u j���ui���
 /2. When the sys-

tem is stable, using Eq. �20�, we get

Vij = �
k,l


0

�

ds
0

�

ds�M�s�ikM�s�� jl��s − s��kl, �24�

where ��s−s��kl= 	n�s�kn�s��l+n�s��ln�s�k
 /2 is the matrix of

stationary noise correlation functions. Here ��s−s��kl

=Dkl��s−s��, where D=Diag�0,
m�2n̄b+1� ,2��n̄a+1/2� ,

2��n̄a+1/2�� and Eq. �24� becomes

V = 
0

�

dsM�s�DM�s�T, �25�

which, by Lyapunov’s first theorem �18�, is equivalent to

AV + VAT = − D . �26�

Solving this equation, we can then quantify the entanglement

of the steady state by means of the logarithmic negativity, EN

�19,20�. This entanglement measure is particularly conve-

nient because it is the only one which can always be explic-

itly computed and it is also additive �21�. In the continuous

variable case we have

EN = max�0,− ln 2�� , �27�

where �=2−1/2���V�− ���V�2−4 det V�1/2�1/2, with ��V� ex-

pressed in terms of the 2�2 block matrix

V = � Vb Vcorr

Vcorr
T Va

� �28�

as ��V�=det Vb+det Va−2 det Vcorr.

The logarithmic negativity, assuming �= ±�m, depends

on T, G, �c, �, �m, and 
m. We first consider the zero-

temperature entanglement, such that our results are indepen-

dent of T and �c. In all cases, entanglement increases with

increasing coupling G; the limit on our entanglement being

due to the limit on G specified by our stability conditions,

Eqs. �22� and �23�, and we shall set G just below this thresh-

old. At zero temperature, the absolute magnitude of �m is

also insignificant, so we may hold it fixed �at �m=5

�108 s−1, say�, leaving � and 
m as our remaining free pa-

rameters. It is implicitly assumed here that damping rates are

controllable independent of resonant frequencies. The zero-

temperature EN is shown in Figs. 2�a� and 2�b� for driving on

the blue and red sidebands, respectively. From this data,

along with the stability conditions, we note that on the blue

sideband, entanglement is maximized in a regime where

�m�G ,�. This is not the case for driving on the red side-

band. We also observe that the logarithmic negativity pla-

teaus in both cases as � and 
m increase.

Now the temperature dependence of the entanglement fol-

lows from the Planck distributions specifying the noise input

correlation functions, Eqs. �37� and �10�; hence the magni-

tudes of the resonant frequencies become significant in these

calculations. Typical temperature dependence of the logarith-

mic negativity is shown in Fig. 3�a�, decreasing from a posi-

tive value at zero temperature to zero at a temperature we

shall refer to as the critical temperature, Tc. Now Tc increases

both with increasing �c and �m; henceforth, we shall con-

sider these fixed, with �c=1010 s−1. The dependence of Tc on

the damping is shown in Figs. 3�b� and 3�c�; the entangle-

ment in the red sideband case appears more robust with re-

spect to increases in temperature.

Results in the rotating wave approximation

The results in the regime �m�G ,� may be understood

with the aid of a rotating wave approximation �RWA� calcu-

lation. We will refer to this as weak driving as G depends on

ns, the intracavity photon number, which itself depends on

the strength of the driving field, E. It is then useful to intro-

duce the nanomechanical annihilation operator �b= ��q

E
N

E
N

κ
_κ

_

γ
_

m γ
_

m

(a) (b)

0
0

1

0 0

1

2
0.8

1 1

FIG. 2. �Color online� Zero-temperature logarithmic negativity

for �a� driving on the blue sideband and �b� driving on the red

sideband. �̄=��10−6 s−1, 
̄m=
m�10−6 s−1.
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+ i�p� /�2, such that Eqs. �16a� and �16b� are equivalent to

�ḃ = − i�m�b −

m

2
��b − �b†� + i

G

2
��a† + �a� +



�2

�29�

and the whole system is described in terms of annihilation

and creation fluctuation operators by Eqs. �16c� and �29�. We

now move to a further interaction picture by introducing the

slowly moving tilded operators �b�t�=�b̃�t�e−i�mt and �a�t�
=�ã�t�e−i�t. They obey the QLEs

�b̃
˙

= −

m

2
��b̃ − �b̃†e2i�mt� +

ei�mt

�2
+ i

G

2
��ã†ei��+�m�t

+ �ãei��m−��t� , �30�

�ȧ̃ = − ��ã + i
G

2
��b̃†ei��+�m�t + �b̃ei��−�m�t� + �2�ainei�t.

�31�

The RWA allows us to ignore terms rotating at ±2�m and use

���0. Then, for driving on the blue sideband we have �c

��0−�m and

�b̃
˙

= −

m

2
�b̃ + i

G

2
�ã† + �
mbin, �32�

�ȧ̃ = − ��ã + i
G

2
�b̃† + �2�ãin, �33�

and for driving on the red sideband we have �c��0+�m

and

�b̃
˙

= −

m

2
�b̃ + i

G

2
�ã + �
mbin, �34�

�ȧ̃ = − ��ã + i
G

2
�b̃ + �2�ãin. �35�

Note that ãin�t�=ain�t�ei�t, possessing the same correlation

function as ain�t�, and bin�t�=�t�ei�mt /�2 which, in the limit

of large �m, acquires the correlation functions �22�

	bin,†�t�bin�t��
 = n̄b��t − t�� , �36�

	bin�t�bin,†�t��
 = �n̄b + 1���t − t�� . �37�

From Eqs. �32� and �33� we see that, for driving on the blue

sideband, the cavity mode and nanomechanical mode play

the role of the signal and the idler of a nondegenerate para-

metric oscillator, characterized by an interaction term

�b̃†�ã†+�ã�b̃. Therefore it can generate entanglement. How-

ever, from Eqs. �34� and �35�, in the red sideband case the

two modes are coupled by the beamsplitter-like interaction

�b̃†�ã+�ã†�b̃, which is not able to entangle modes starting

from classical input states �23�.
Now introduce tilded quadrature operators �X̃

= ��ã+�ã†� /�2 and �Ỹ = ��ã−�ã†� / i�2, with corresponding

input noise operators Xin= �ãin+ ãin,†� /�2, Y in= �ãin

− ãin,†� / i�2, qin= �bin+bin,†� /�2, and pin= �bin−bin,†� / i�2.

We again obtain a system of the form �18�, now

with uT�t�= ��q̃�t� ,�p̃�t��, �X̃�t�, �Ỹ�t�, nT�t�= ��
mqin�t� ,

�
mpin�t� ,�2�Xin�t� ,�2�Y in�t��, and

A � A± =
1

2�
− 
m 0 0 ± G

0 − 
m G 0

0 ± G − 2� 0

G 0 0 − 2�
� ,

�38�

where the upper �lower� sign corresponds to the blue �red�
sideband case. For driving on the blue sideband, the stability

condition of Eq. �21a� simplifies in the RWA limit to

G � �2
m� , �39�

while the system is unconditionally stable for driving on the

red sideband. For the symmetrically ordered correlation ma-

trix, we obtain an equation of the form �26�, which can be

solved to give a matrix of the form

V � V± =�
V11

± 0 0 V14
±

0 V11
± ± V14

± 0

0 ± V14
± V33

± 0

V14
± 0 0 V33

±
� , �40�

where

V11
± = n̄b +

1

2
+

2G2���n̄a + 1/2� ± �n̄b + 1/2��
�
m + 2���2
m� � G2�

, �41a�

V33
± = n̄a +

1

2
+

G2
m��n̄b + 1/2� ± �n̄a + 1/2��
�
m + 2���2
m� � G2�

, �41b�

V14
± =

2G
m���n̄b + 1/2� ± �n̄a + 1/2��
�
m + 2���2
m� � G2�

. �41c�

T

E
N

Tc Tc

κ
_

κ
_

γ
_

m

γ
_

m

(a) (b) (c)
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FIG. 3. �Color online� �a� Typical temperature, T �mK� depen-

dence of the logarithmic negativity �in this case, driving on the blue

sideband with �=
m=5�104 s−1�. �b� Tc �mK� as a function of

damping for driving on the blue sideband. �c� Tc �mK� as a function

of damping for driving on the red sideband. �̄=��10−6 s−1, 
̄m

=
m�10−6 s−1.
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Now det Vcorr
± = � �V14

± �2, which is non-negative in the red

sideband case, a sufficient condition for the separability of

bipartite states �24�. Thus in the red sideband case �RWA

regime�, the steady state is not entangled.

We can quantify the entanglement by proceeding along

the lines of Eqs. �27� and �28�. We may reproduce the en-

tanglement of Figs. 2 and 3 for the blue sideband case, but

we see no entanglement for the red sideband case. This is

because the RWA regime puts us at a coupling far below the

instability threshold. When the blue sideband steady-state

correlation matrix is symmetric �that is, 2�=
m and n̄a= n̄b

= n̄� we find

EN = max�0,ln
1 + G/2�

1 + 2n̄
� . �42�

This and the stability condition of Eq. �39� imply that en-

tanglement vanishes when 2n̄�1, and that the logarithmic

negativity is bounded above as EN� ln 2. Comparison with

Fig. 2�a� shows that this is actually an upper bound in all

cases.

We shall now consider the experimental accessibility of

the parameters described above. The coupling of Eq. �6� may

be calculated by assuming �=0.002, d=100 nm, �m

�108 s−1, �c�6�1010 s−1, and m=10−15 kg, giving G0

�18 s−1. For these parameters the equivalent capacitance is

C�0.1 pF and an equivalent inductance of L�3 nH.

For driving on the red sideband and the largest damping

considered �
m=�=105 s−1�, stability requires G���m
2 +�2

��m so G�108 s−1. Maximal coupling, before loss of sta-

bility, then corresponds to �s=107, or a peak driving poten-

tial of 136 mV, which would be feasible.

For driving on the blue sideband, the stability condition in

Eq. �22�, with �=
m and �m�� stability requires G��2�
�105 s−1. Maximal coupling then corresponds to �s=103,

and a corresponding maximum voltage of 38 �V. It should

also be noted that the very lowest damping rates depicted in

Figs. 2 and 3 would not be achievable, due to the finite

quality factors of the resonator and cavity.

IV. CONCLUSIONS

We have shown a scheme able to entangle at the steady

state a nanomechanical resonator with a microwave cavity

mode of a driven superconducting coplanar waveguide. The

nanomechanical resonator is capacitively coupled with the

central conductor of the waveguide and the steady state of

the system, in an appropriate parameter regime, is entangled

up to temperatures of tens of milliKelvin. We have explained

how this can be achieved by presenting an approximate treat-

ment based on a rotating wave approximation.

Let us briefly discuss how to detect the steady state en-

tanglement. From the above equations, and especially the

correlation matrix of the steady state in the RWA limit, Eq.

�40�, it is clear that the entanglement appears as a correlation

between �q̃�t� and �Ỹ�t�, and also as a correlation between

�p̃�t� and �X̃�t�. A measurement of entanglement thus re-

quires that we measure these correlation functions. This is

not an easy matter as it will require highly efficient measure-

ments of both the nanomechanical resonator displacement

and the field amplitudes in the microwave cavity. Methods

based on single electron transistors now enable a displace-

ment measurement at close to the Heisenberg limit �13�. Un-

fortunately measurements of the weak voltages on the copla-

nar cavity are not yet quantum limited due to the need to

amplify the signals prior to detection. This is not a funda-

mental problem and a number of efforts are underway to do

quantum limited heterodyne detection of the cavity fields. It

thus seems likely that a direct measurement of the entangle-

ment between a mesoscopic massive object and an electro-

magnetic field may be demonstrated using the approach of

this paper. This would provide a path to entangling many

nanomechanical resonators via a common microwave cavity

field.
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