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The inelastic interaction between flying particles and optical nanocavities gives rise to entangled
states in which some excitations of the latter are paired with changes in the energy or momentum
of the former. In particular, entanglement of free electrons and nanocavity modes opens appeal-
ing opportunities associated with the strong interaction capabilities of the electrons. However, the
degree of entanglement that is currently achievable by electron interaction with optical cavities is
severely limited by the lack of external selectivity over the resulting state mixtures. Here, we pro-
pose a scheme to generate pure entanglement between designated optical excitations in a cavity and
separable free-electron states. Specifically, we shape the electron wave-function profile to dramati-
cally reduce the number of accessible cavity modes and simultaneously associate them with targeted
electron scattering directions. We exemplify this concept through a theoretical description of free-
electron entanglement with degenerate and nondegenerate plasmon modes in silver nanoparticles
as well as atomic vibrations in an inorganic molecule. The generated entanglement can be fur-
ther propagated through its electron component to extend quantum interactions beyond currently
explored protocols.

I. INTRODUCTION

Although entangled states in the context of quantum
optics are generally relying on photons [1, 2], the explo-
ration of entanglement with other types of information
carriers could open a wealth of possibilities to discover
new phenomena and materialize disruptive protocols for
quantum metrology and microscopy [3–5]. In particular,
free electrons are advantageous candidates because they
can undergo substantial inelastic scattering by nanos-
tructures [6], which is an attribute enabling electron
energy-loss spectroscopy (EELS) performed in electron
microscopes to reveal the presence, strength, and spatial
distribution of optical excitations down to the atomic
scale [7–13]. Actually, low-loss EELS has been exten-
sively used to study atomic vibrations in low-dimensional
materials [14–16] and molecules [17–20], collective exci-
tations such as plasmons [21–25] and phonon polaritons
[11, 26–28], and photon confinement in optical cavities
[29–31].

In momentum-resolved EELS, each excitation event
produced by a traversing electron is individually identi-
fied through an electron measurement as a function of the
deflection angle and energy loss, and therefore, this con-
figuration already generates entanglement between elec-
tron states with different energy/momentum and excita-
tions in the sampled structure. Consequently, the post-
interaction electron-sample state has the form

|Ψf 〉 =
∑
n

∫
d2Qf α

f
Qfn
|Qf 〉 ⊗ |n〉, (1)

∗Electronic address: javier.garciadeabajo@nanophotonics.es

where n and Qf run over final sample and electron-wave-
vector states, respectively, and αfQfn

are complex scat-
tering amplitudes [13]. But unfortunately, the resulting
electron-sample mixture of states is generally too com-
plex to be of practical interest for quantum technolo-
gies. Nevertheless, this approach holds elements of nov-
elty with respect to traditional quantum optics methods
because one of the entangled particles (the free electron)
can be highly energetic, and therefore capable of under-
going subsequent strong collisions with other objects.
Free-electron waves can be manipulated with great pre-

cision thanks to an impressive series of advances occurred
in electron microscopy over the last decades. Currently,
electron beams (ebeams) can be collimated and focused
with sub-ångstrom spatial precision [32], monochroma-
tized within a few meV [11, 26], and temporally com-
pressed down to femtosecond [33–35] and even attosecond
[36–38] time scales. In addition to traditional electron-
optics lenses [39], control over the transverse electron
wave function can be exerted by means of beam splitters
[40, 41], engineered gratings [42, 43], chiral transmission
masks [44–46], magnetic monopole fields [47], electrically
programmable phase plates [48], and active optical-phase
imprinting [49–54]. A vibrant community is swiftly gath-
ering around these methods, which are the basis for elas-
tic [55, 56] and inelastic [57–59] holography, and further
enable the synthesis of vortex ebeams [44–46, 50, 60], the
study of magnetic [45, 61] and optical dichroism [62–64],
and the excitation of localized optical modes of selected
symmetry [41].
The manipulation of the longitudinal electron wave-

function component is also possible in ultrafast elec-
tron microscopes [65], where femtosecond electron pulses
are produced from photocathodes illuminated by pulsed
lasers, and the subsequent synchronized light-electron in-
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FIG. 1: Proposed scheme for the generation of en-
tangled electron-cavity states. (a) A preshaped electron
interacts with a nanostructure (a triangular plasmonic cavity)
supporting well-defined optical or vibrational modes. The in-
cident electron wave function |ψel

i 〉 is tailored such that we
obtain entangled states after interaction, correlating different
sample excitations (colored triangles) with separated electron
scattering directions (final electron state having components
of transverse wave vectors Q1 and Q2). A maximally entan-
gled electron-sample state is thus produced, as the sample is in
a superposition of excited states correlated with different elec-
tron scattering directions. (b) Electrons are emerging along
separate spots within a finite region of size ∆~ω×∆~Qf in the
configuration space of energy-loss and transverse-momentum
transfers. (c) Momentum-filtering at the electron detector al-
lows us to project on the desired sample mode and eventually
explore its dynamics through subsequent interrogation, for
example by exposure to a synchronized light pulse.

teraction allows one to inspect the specimen with fem-
tosecond time resolution. This is the so-called photon-
induced near-field electron microscopy [29, 30, 33–35, 66,
67] (PINEM), which, combined with free propagation,
leads to attosecond electron compression [36, 38, 68, 69]
and endows the free electrons with the ability to transfer
quantum coherence between different systems [70, 71].
The field is thus ripe for the exploitation of free electrons
as additional elements in the quantum technology Lego,
but as impressive as these advances may seem, they have
not yet been leveraged to generate pure entanglement
between light and free electrons.

Here, we demonstrate through rigorous quantum the-
ory that pure entanglement between electrons and con-
fined optical modes can be generated by suitably pat-
terning the transverse incident electron wave function.
As schematically illustrated in Fig. 1a, the electron un-
dergoes a change in the direction of propagation after
being inelastically scattered by the sample, and we pre-
pare the incident electron phase profile in such a way
that only a few sample excitations are accessible (two in
the figure), leading to separable transmission directions
(transverse wave vectors Q1 and Q2). The two possi-

ble excitations created by the electron and their different
associated scattering directions form a maximally entan-
gled state. In essence, we specify a finite volume in the
configuration space of transmitted electrons defined by
an energy-loss window ∆~ω and a transverse momentum
area ∆~Qf in which the final state only populates two
well-defined spots (Fig. 1b). As we demonstrate below,
this approach can be also used to create heralded single
sample excitations (Fig. 1c). In addition, manipulation
of the electron component in electron-sample entangled
states through, for example, electron interference could
be used to process quantum information and imprint it
on other (eventually macroscopic) objects via subsequent
interactions.

II. RESULTS AND DISCUSSION

A. Free-electron interaction with confined optical
modes

We intend to synthesize an electron-sample state as
described by Eq. (1), with the free-electron component
piled up at separate regions in momentum-energy space
(Fig. 1b) and a different sample excitation associated
with each of those regions. The starting point is the
initial combined state

|Ψi〉 = |ψel
i 〉 ⊗ |0〉,

where the sample is in its ground state |0〉 and the inci-
dent electron wave function, whose spatial dependence is
given by

ψel
i (R) =

∫
d2Qi α

i
Qi

(
eiQi·R/2π

)
, (2)

is prepared as a combination of momentum states with
coefficients αiQi

determined through the use of cus-
tomized transmission masks [44–46] or phase imprinting
based on electrostatic [48] and optical [53, 54] fields. We
consider incident monochromatic electrons, so that the
dependence of the electron wave function on 2D trans-
verse coordinates R and its decomposition in 2D wave
vectors Qi is everything we need to describe the electron
in the interaction region without loss of generality.
Electron-sample interaction operates a linear transfor-

mation relating the final coefficients αfQfn
in Eq. (1) to

αiQi
in Eq. (2). More precisely,

αfQfn
=
∫
d2Qi MQf−Qi,n α

i
Qi
, (3)

where MQf−Qi,n only depends on the momentum trans-
fer ~(Qi −Qf ) for each excited state n (see Appendix).
A connection can be readily established with EELS

experiments, in which electron counts are recorded
as a function of the energy loss ~ω, thus yielding
a frequency- and momentum-resolved loss probability
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ΓEELS(Qf , ω) =
∑
n

∣∣αfQfn

∣∣2 δ(ω−ωn), where ~ωn is the
excitation energy of sample mode n. Within first-order
perturbation theory, and further adopting the electro-
static and nonrecoil approximations, the angle-resolved
EELS probability can be expressed in terms of mode-
dependent dimensionless spectral functions gn(ω) as

ΓEELS(Qf , ω) = e2

4π3~v2

∑
n

gn(ω) (4)

×
∣∣∣∣∫ d2Rψel

i (R)e−iQf ·R wn(R, ω)
∣∣∣∣2 ,

where v is the electron velocity and

wn(R, ω) ∝
∫
d2Q e−iQ·R MQn (5)

gives the spatial profile of mode n (see details in the
Appendix, including expressions of the quantities gn(ω)
and wn(R, ω) associated with plasmons and atomic vi-
brations).

Here, we are interested in determining the inci-
dent electron wave-function profile (i.e., the momentum-
dependent coefficients αiQi

) such that different sample
modes n are associated with final wave-function coeffi-
cients αfQfn

within well separated regions in momentum
space (see Fig. 1b). To demonstrate the feasibility of
this concept in the synthesis of electron-sample entangle-
ment, we invert Eq. (3) with a predetermined choice of
αfQfn

, which we set to designated values for each sam-
ple excitation n within a targeted finite-size region in Qf

space (see details in the Appendix). This simple proce-
dure is sufficient for the proof-of-principle demonstration
that we pursue in this work. However, more elaborate
schemes for incident electron wave-function optimization
could rely on iterative methods or neural-network train-
ing [72].

B. Selected excitation of individual plamons

As a preliminary step before addressing electron-
sample entanglement, we tackle the problem of selectively
exciting a single plasmon in a metallic nanoparticle. Al-
though this can be achieved through post-selection of a
small range of scattered electron wave vectors [41], we for-
mulate a solution in which the plasmon-exciting electrons
emerge within a relatively large region in momentum
space, and this solution is generalized below to create
entanglement. We consider a silver triangle that sustains
five plasmon modes in the 2.4-3.7 eV spectral region [73]:
two sets of doubly-degenerate dipolar (blue curve and
circles, n = 1, 2) and quadrupolar (red, n = 4, 5) plas-
mons, and one nondegenerate hexapolar mode (green,
n = 3), as revealed by the spatial and spectral functions
plotted in Fig. 2a,b (see details of the calculation in the
Appendix). We then optimize the incident electron wave
function over a Qi region discretized with 1257 pixels

FIG. 2: Selective excitation of plasmon modes in a
silver nanotriangle. (a,b) Spatial profiles (a) and spectral
functions (b) associated with plasmons in a silver nanotriangle
(2 nm thickness, 10 nm side length). We find two sets of de-
generate modes (left and right peaks) and one nondegenerate
mode (see color-matched labels with the index n). (c) Elec-
tron energy-loss spectra for two optimized incident electron
wave-function profiles ψel

i (R), the real part of which is rep-
resented as a function of transverse coordinates R in the in-
sets, framed in color-matched circumferences. The optimiza-
tion is carried out for 100 keV electrons, an electron detec-
tor consisting of 49 pixels, an incident convergence half-angle
ϕi = 1.5mrad, and a collection half-angle ϕf = 0.75mrad.
The nanotriangle contour is indicated by thin dashed curves
in (a) and (c).

and defined by a convergence half-angle ϕi = 1.5mrad,
such that either n = 1, 2 or n = 3 are the only modes
excited when the scattered electrons are collected over
a Qf region spanning a half-angle ϕf = 0.75mrad (dis-
cretized with 49 pixels) and energy-filtered between 2.4
and 3.3 eV.
The resulting real-space profiles of ψel

i (R) are shown in
the insets of Fig. 2c (circular color plots), along with the
color-matched EELS probability curves obtained from
Eq. (4) by collecting only electrons that emerge within
the indicated Qf and energy region. Incidentally, all
modes are excited by the incident electron because they
have overlapping spatial distributions (Fig. 2a) and the
EELS probability integrated over all possible Qf ’s is rig-
orously given by the incoherent average over incident
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FIG. 3: Creation of electron-sample states with a high-degree of entanglement. (a) Pursued electron-sample entangled
state, consisting of the superposition of selected electron-momentum states within the white pixels in Qf space (left) and
correlated degenerate dipolar plasmons in the silver nanotriangle sample considered in Fig. 2 (right). (b) Spatial profile of
the optimized incident wave function ψel

i (R) required to produce the final state in (a). (c) Resulting probability distributions∣∣〈Qf , n|Ψf 〉
∣∣2 with n = 1 (top) and n = 2 (bottom) in Qf space, where the colored circles are composed of the indicated

fractions of the targeted excitation n. The optimization is carried out for 100 keV electrons, 13 detector pixels, ϕi = 4mrad,
and ϕf = 2mrad.

electron positions R, weighted by the electron probabil-
ity [6, 74]

∣∣ψel
i (R)

∣∣2 (see Appendix). But remarkably, our
simple optimization procedure is capable of placing the
weight of the excitation of either n = 1, 2 or n = 3 modes
preferably inside the Qf region defined by a collection
half-angle ϕf = 0.75mrad, while electrons producing ei-
ther n = 3 or n = 1, 2, respectively, are left outside that
region.

C. Generation of electron-plasmon entangled states

We now apply the principle of ψel
i shaping to demon-

strate the generation of electron-sample entanglement for
the same triangular sample as considered above. Specifi-
cally, we focus on the lowest-energy degenerate plasmons
n = 1, 2 and aim at correlating these excitations with
final electron momentum states along separate Qf direc-
tions (Fig. 3a). Following the same procedure as above,
we find the optimized electron wave function shown in
Fig. 3b, from which we obtain the actual scattered elec-
tron distribution plotted in Fig. 3c in Qf space for com-
ponents corresponding to the excitation of n = 1 (top)
and n = 2 (bottom) modes. When examining the Qf re-
gion enclosed by the two colored circles in Fig. 3c, we find
that 77% of the electron signal inside the left one is asso-
ciated with the excitation of the n = 1 plasmon, whereas
the right circle is made of 75% excitation of n = 2, thus
revealing a high degree of entanglement between the ex-
cited plasmons and the selected electron scattering direc-
tions. We note that the symmetry of the selected degen-
erate plasmons plays a similar role as photon polarization
in light-based entanglement schemes [1].

D. Electron entanglement with atomic-vibrational
states

The electron-sample entanglement scheme under con-
sideration can be applied to sample excitations of differ-
ent nature. We illustrate this versatility by considering
atomic vibrations in a hexagonal boron nitride (hBN)
molecule (Fig. 4), which we simulate from first principles
[75] (see Appendix) assuming passivation of the edges
with hydrogen atoms. This structure supports a num-
ber of excitations up to energies ∼ 450meV, including
a set of triply-degenerate N-H bond-stretching modes at
440meV, on which we focus our analysis. We again op-
timize the incident electron wave function to achieve en-
tanglement between final electron states and vibrational
modes of the molecule. Because of the strong spatial con-
finement of vibrational modes, the angular ranges that
need to be considered for the incident and scattered elec-
tron wave functions are now considerably larger than
for plasmons (cf. angle scales in Figs. 3 and 4). The
achieved electron-sample state, illustrated in Fig. 4a, ex-
hibits a high degree of entanglement when selecting elec-
trons scattered along the colored circles in Qf space, also
revealed through the partial probabilities contributed by
each of the three vibrational modes to each of the regions
enclosed by those circles (see table in Fig. 4b).

III. CONCLUDING REMARKS

By entangling the transverse momenta of free electrons
with localized optical excitations in a nanostructure, we
could selectively measure one of the corresponding out-
going electron directions, thus providing a way to her-
ald the creation of single designated excitations in the
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FIG. 4: Entanglement of free electrons and atomic
vibrations. (a) Representation of the obtained electron-
sample entangled state. We plot the momentum distribu-
tions of scattered electrons (left) corresponding to the ex-
citation of the 440meV triply-degenerate vibrational modes
of a hBN molecule (right). (b) Probability matrix showing
the fractional contribution associated with the excitation of
each of the three vibrational modes n = 1− 3 to the energy-
filtered electron signal contained within the three selected cir-
cular areas around final transverse wave vectors Q1, Q2, and
Q3 in (a). The sum of the 9 matrix elements is normalized
to 1. We consider 60 keV electrons, 29 detector pixels, and
ϕi = ϕf = 100mrad.

sample. This should allow us to follow the dynamics of
the later and gain insight into the state-dependent decay
pathways, for example by subsequently probing the evo-
lution of the specimen through scattering of laser pulses
that are synchronized with the electron in an electron-
pump/photon-probe approach. An additional possibil-
ity is offered by correlating the angle-resolved electron
signal with traces originating in the decay of the sam-
ple excited states (e.g., an electrical signal produced by
coupling to electron-hole pairs in a proximal semiconduc-
tor or also the polarization- and angle-resolved cathodo-
luminescence emission associated with radiative decay).
The present scheme could also be extended to incorporate
gain processes similar to those in PINEM upon illumina-
tion of the sample with symmetry-matched optical pulses
that can simultaneously excite a subset of its supported
excitations. Finally, besides the investigated examples

of plasmons in nanoparticles and atomic vibrations in
molecules, free electrons could also be entangled with op-
tical modes in dielectric cavities [31] and photons guided
along optical waveguides [76], which together configure
a vast range of possibilities for leveraging the quantum
nature of free electrons in the design of improved mi-
croscopy and metrology schemes.

APPENDIX

Appendix A: Transfer matrix for inelastic
electron-sample scattering

The time-dependent electron-sample system can be
generally described by a wave function of the form
|ψ(t)〉 =

∑
n

∫
d3q αqn(t)e−i(εq+ωn)t |q〉 ⊗ |n〉, where |q〉

and |n〉 are electron and sample eigenstates of the non-
interacting Hamiltonian with energies ~εq and ~ωn, re-
spectively. In particular, electron states are labeled by
the three-dimensional momentum ~q and satisfy the or-
thonormality relation 〈q|q′〉 = δ(q − q′). The expan-
sion coefficients αqn(t) are determined by solving the
Schrödinger equation with an electron-sample interaction
Hamiltonian Ĥ1, which is generally weak for the ener-
getic probes that are typically employed in electron mi-
croscopes, so we can work within first-order perturbation
theory. Then, taken the sample to be initially prepared in
its ground state n = 0, the post-interaction wave func-
tion has coefficients αqn(∞) = (−2πi/~)

∫
d3q′ δ(εq −

εq′ +ωn) 〈n| 〈q| Ĥ1 |q′〉 |0〉αq′0(−∞), where we set ω0 = 0
without loss of generality. We further adopt the nonrecoil
approximation [13] εq − εq′ ≈ (q − q′) · v under the as-
sumption that the transverse electron energy is negligible
compared with the longitudinal energy along the ebeam
direction defined by the average electron velocity v. This
condition is commonly satisfied in electron microscopes.
In this approximation, the energy ~ωn transferred from
the electron to the sample is fully absorbed by a change
in the longitudinal electron wave vector given by −ωn/v,
so for monochromatic incident electrons, the initial and
final longitudinal components of the electron wave func-
tion play a trivial role and can be disregarded in the
description of the present problem. Consequently, we
can expand the final wave function as shown in Eq. (1),
with coefficients αfQfn

≡ αqn(∞) that only depend on
the transverse electron wave vector Qf for each sample
excitation n and are determined from the incident elec-
tron wave-function coefficients αiQi

≡ αq0(−∞) through
the linear relation

αfQfn
=
∫
d2Qi MQf−Qi,n α

i
Qi

(A1)

with

MQf−Qi
= (−2πi/~v) 〈n| 〈qf | Ĥ1 |qi〉 |0〉 . (A2)

We remark that the transfer-matrix elements defined in
Eq. (A2) involve just the difference between incident and
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scattered transverse wave vectors. In what follows, we
develop a formalism to relateMQf−Qi to the EELS prob-
ability and obtain specific expressions for plasmonic and
atomic-vibration modes.

Appendix B: EELS with shaped electron beams

We consider the configuration of Fig. 1a and assume
the electron velocities and sample dimensions to be small
enough as to neglect retardation effects and work in the
electrostatic regime. Further adopting the aforemen-
tioned nonrecoil approximation, we can disregard the lon-
gitudinal component of the electron wave function and
only consider the dependence on transverse coordinates
R = (x, y) (i.e., taking the electron velocity v along z).
We can then write a general expression for the EELS
probability ΓEELS(ω) in terms of the energy loss ~ω, the
transverse wave vector Qf ⊥ ẑ of the final (f) electron
state (corresponding to a wave function eiQf ·R/2π), and
the transverse component of the initial (i) electron wave
function, ψi(R). More precisely, using Eq. (17) of ref. 6,
we have ΓEELS(ω) =

∫
d2Qf ΓEELS(Qf , ω), where

ΓEELS(Qf , ω) = e2

4π3~v2

∫
d2R

∫
d2R′ ψi(R)ψ∗i (R′)

× eiQf ·(R′−R)W(R,R′, ω) (B1)

is the momentum-resolved probability and

W(R,R′, ω) =
∫ ∞
−∞

dz

∫ ∞
−∞

dz′ eiω(z−z′)/v (B2)

× Im {−W (r, r′, ω)}

is a transverse screened interaction obtained from the full
screened interactionW (r, r′, ω). The latter stands for the
Coulomb potential created at r by a point charge of mag-
nitude e−iωt placed at r′, including the effect of screening
by the environment. Now, as we show below for plas-
monic and phononic structures, the transverse screened
interaction in Eq. (B2) is separable as

W(R,R′, ω) =
∑
n

gn(ω)wn(R, ω)w∗n(R′, ω), (B3)

where n runs over excitation modes characterized by spa-
tial profiles wn(R, ω) and dimensionless spectral func-
tions gn(ω). Finally, inserting Eq. (B3) into Eq. (B1),
we readily find Eq. (4) in the main text. Incidentally,
the angle-integrated inelastic electron signal (i.e., the
integral of Eq. (B1) over Qf ) reduces to ΓEELS(ω) =
(e2/π~v2)

∑
n gn(ω)

∫
d2R

∣∣ψi(R)
∣∣2∣∣wn(R, ω)

∣∣2, which
is an average over transverse positions R weighted by
both the incident electron probability [6, 74] and the
mode spatial profile, and consequently, since the ebeam
can generally excite different modes n, the optimization
scheme that we pursue here to produce entanglement es-
sentially consists in rearranging the Qf distribution of

the scattered electron component associated with the ex-
citation of each of those modes.
We note that the spectral functions in this formalism

can be generally approximated by Lorentzians,

gn(ω) ≈ Im
{

Gn/π

ωn − ω − iγn/2

}
,

peaked at the mode energies ~ωn and having areas Gn
and widths γn (see below) that determine the spectral
positions and strengths of the EELS features.

Appendix C: Numerical determination of |ψel
i 〉 for

creating selected excitations and entangled
electron-sample states

Given a desired final state defined through the coef-
ficients αfQfn

, we numerically obtain αiQi
by inverting

Eq. (3) upon discretization of Qi using a finite number of
points (pixels at the electron analyzer in the Fourier plane
Qf ), as specified in the main text. More precisely, we
follow a simple procedure consisting in specifying target
values of αfQfn

within a region Q < Qf,max (effectively
setting it to 0 outside it) and obtain αiQi

for Qi < Qi,max
through the noted numerical inversion. The wave vector
ranges are related to the maximum incidence|collection
half-angle ϕi|f through Qi|f,max = (mev/~) sinϕi|f . In
this procedure, to select a single sample excitation n = n0
(Fig. 2), we set αfQfn

= Cδnn0Θ(Qf,max −Qf ), where C
is a constant and Θ is the step function. However, to pro-
duce electron-sample entanglement involving two (Fig. 3)
or three (Fig. 4) sample states nj correlated with final
electron wave vectors Qj (see Fig. 1b), we set αfQfnj

to a
constant at the Qf -space pixel that contains Qj , and zero
elsewhere. We then construct |ψel

i 〉 from the obtained co-
efficients αiQi

(also setting them to zero for Qi > Qi,max),
and insert this input wave function in Eq. (4) to generate
the actual final state, plotted in the figures with a finer
discretization in Qf space.

Appendix D: Transfer matrix from the spectral and
spatial mode functions

An expression for the EELS probability analogous to
Eq. (4) can be readily obtained from Eq. (A1):

ΓEELS(Qf , ω) =
∑
n

∣∣∣∣∫ d2Qi MQf−Qi,n α
i
Qi

∣∣∣∣2δ(ω − ωn).

(D1)

The connection between Eqs. (4) and (D1) is established
by adding finite mode widths γn to the latter and expand-
ing the incident electron wave function in the former as
an integral over momentum components, as indicated in
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Eq. (2). Comparing the two resulting expressions, we
find

MQn = e

4π2v

√
Gn
π~

∫
d2R eiQ·Rwn(R, ω), (D2)

which provides a prescription to obtain the transfer-
matrix coefficients defined in Eq. (A2) directly from the
screened interaction, thus bypassing the need for a de-
tailed specification of the interaction Hamiltonian. Then,
the spatial profiles in Eq. (5) are simply given by the in-
verse Fourier transform of Eq. (D2).

Appendix E: Transfer matrix and transverse
screened interaction for plasmonic nanoparticles

In the electrostatic limit under consideration, we can
recast the response of an arbitrarily shaped homogeneous
nanoparticle into an eigenvalue problem [77, 78]. We
then need to find the real eigenvalues λn and eigen-
vectors σn(s) of the integral equation 2πλnσn(s) =∮
ds′F (s, s′)σn(s′), where s and s′ run over particle sur-

face coordinates, and F (s, s′) = −n · (s − s′)/|s − s′|3.
Here, we solve this eigensystem for triangular parti-
cles using the MNPBEM toolbox [79], based on a finite
boundary-element discretization of the particle surface.
Then, the spectral functions in Eq. (B3) reduce to [77, 78]

gn(ω) = Im
{

−2
ε(1 + λn) + (1− λn)

}
,

whereas the spatial profiles become

wn(R, ω) = 2
∮
dsσn(s)e−iωsz/vK0

(
ω |R − S|

v

)
with s = S + sz ẑ. This expression neglects the contri-
bution of bulk modes, which should be a reasonable ap-
proximation at loss energies well below the bulk plasmon.
Inserting it into Eq. (D2), the transfer-matrix elements
reduce to

MQ,n ≈
e

2πv

√
Gn
π~

eiQ·S

Q2 + ω2
n/v

2

∮
dsσn(s)e−iωsz/v,

where we have approximated ω ≈ ωn. For silver, we
model the dielectric function as [6] ε = εb−ω2

p/ω(ω+ iγ)
with εb = 4.0, ~ωp = 9.17 eV, and ~γ = 21meV, yielding
mode frequencies ωn = ωp/

√
εb + (1− λn)/(1 + λn), flat

widths γn ≈ γ, and spectral weights Gn = πω3
n/[ω2

p(1 +
λn)].

Appendix F: Transfer matrix and transverse
screened interaction for atomic vibrations

For molecules or nanoparticles whose mid-infrared re-
sponse is dominated by atomic vibrations, we find the

spectral and spatial dependence of the modes in Eq. (B3)
to be governed by [75, 80]

gn(ω) = Im
{

ω2
n

ω2
n − ω(ω + iγ)

}
(F1)

and

wn(R, ω) = 2
ωn

∑
l

1√
Ml

∫
d3r′ K0(ω|R −R′|/v)

× eiωz′/v [enl · ~ρl(r′)] , (F2)

where n now runs over vibrational modes, ωn and enl
are the corresponding real frequencies and normalized
atomic displacement vectors (

∑
l enl ·en′l = δnn′), respec-

tively, the l sum extends over the atoms in the structure,
Ml is the mass of atom l, ~ρl(r) denotes the gradient of
the charge distribution associated with displacements of
that atom, and we have incorporated a phenomenological
damping rate γ (here set to ~γ = 1meV). From Eq. (F1),
we have γn ≈ γ for all modes, as well as Gn ≈ πωn/2.
Following ref. 75, we use density-functional theory (DFT)
to calculate ~ρl(r), ωn, and enl (see below). The prescrip-
tion |R −R′| →

√
|R −R′|2 + ∆2 is also adopted with

∆ = 0.2Å to approximately account for a cutoff ∼ ~/∆
in momentum transfer [6] and so avoid the unphysical di-
vergence associated with close electron-atom encounters.

Appendix G: First-principles description of atomic
vibrations

We use DFT and the projector-augmented-wave
method [81] as implemented in the Vienna ab initio sim-
ulation package [82–84] (VASP) with the Perdew-Burke-
Ernzerhof generalized gradient approximation for elec-
tron exchange and correlation [85]. We apply this method
to describe hBN flakes with hydrogen-passivated edges,
using a plane-wave cutoff energy of 500 eV, as well as
a sufficient amount of vacuum spacing in all directions
around the structure to avoid interaction among the pe-
riodic images. Atomic equilibrium positions are found
by minimizing the total energy using the conjugate gra-
dient method with convergence criteria between consecu-
tive iteration steps set to 10−5 eV for the total energy and
0.02 eV/Å for the atomic forces. Vibrational frequencies
and eigenmodes are found by diagonalizing the dynami-
cal matrix, which is calculated for 0.01Å displacements.
The corresponding gradients ~ρ val

l (r) of the charge distri-
bution are obtained by treating core electrons and nuclei
as point particles, while the contribution coming from va-
lence electrons is directly taken from DFT using a dense
grid.
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