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Abstract

We present a scheme to entangle the vibrational phonon modes of two massive ferromagnetic
spheres in a dual-cavity magnomechanical system. In each cavity, a microwave cavity mode
couples to a magnon mode (spin wave) via the magnetic dipole interaction, and the latter further
couples to a deformation phonon mode of the ferromagnetic sphere via a nonlinear
magnetostrictive interaction. We show that by directly driving the magnon mode with a
red-detuned microwave field to activate the magnomechanical anti-Stokes process a
cavity–magnon–phonon state-swap interaction can be realized. Therefore, if the two cavities are
further driven by a two-mode squeezed vacuum field, the quantum correlation of the driving fields
is successively transferred to the two magnon modes and subsequently to the two phonon modes,
i.e., the two ferromagnetic spheres become remotely entangled. Our work demonstrates that cavity
magnomechanical systems allow to prepare quantum entangled states at a more massive scale than
currently possible with other schemes.

1. Introduction

Preparing entangled states of macroscopic, massive objects is of significance to many fundamental studies,

e.g., probing the boundary between the quantum and classical worlds [1–3], tests of decoherence theories at

the macro scale [4–6], and gravitational quantum physics [7], among many others. Over the past decade,

significant progress has been made in the field of cavity optomechanics [8] in preparing entangled states of

massive objects, with experimental realizations of entanglement between a mechanical oscillator and an

electromagnetic field [9, 10], as well as between two mechanical oscillators [11–13]. All those entangled

states were created and detected by utilizing the radiation pressure interaction, or, more specifically, the

optomechanical two-mode squeezing and beamsplitter (state-swap) interactions, realized by driving the

cavity with a blue- and red-detuned electromagnetic field, respectively, and optimally working in the

resolved sideband limit.

In analogy to cavity optomechanics, in recent years cavity magnomechanics (CMM) [14] has received

increasing attention, owing to its potential for realizing quantum states at a more macroscopic scale [15–17]

and possible applications in quantum information processing and quantum sensing [18]. In these systems, a

magnon mode (spin wave) of a ferromagnetic yttrium-iron-garnet (YIG) sphere couples to a microwave

(MW) cavity field [19–24], and simultaneously couples to the vibrational phonon mode (deformation

mode) of the sphere via the magnetostrictive force [25]. Owing to the high spin density and the low

damping rate of YIG, the interaction between the MW cavity field and the magnon mode can easily enter

the strong coupling regime [19–24], thus providing an excellent platform for the study of strong interaction

between light and matter. Many interesting phenomena have been explored in the context of cavity

magnonics, such as a magnon gradient memory [26], exceptional points [27], the manipulation of distant
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spin currents [28], level attraction [29], nonreciprocity [30], among others. In the tripartite system of

CMM, the phonon mode is typically of low frequency due to the large size of the sphere. The

magnomechanical interaction is a radiation pressure-like, dispersive interaction [14, 31] and the

Hamiltonian is given by H/� = G0m†m(b + b†), where m (b) is the annihilation operator for the magnon

(phonon) mode, and G0 is the single-magnon magnomechanical coupling rate. The fact that this

Hamiltonian takes the same form as that of the optomechanical interaction allows us to predict new

phenomena in CMM from known results in cavity optomechanics.

To date, magnomechanically induced transparency (MMIT) has been experimentally observed [14], and

multi-window MMIT has been proposed by coupling a cavity mode to two YIG spheres [32]. Quantum

effects in CMM have been first studied in reference [15], which shows the possibility of creating genuine

tripartite magnon–photon–phonon entanglement and cooling of the mechanical motion. Furthermore,

proposals have been made for generating squeezed vacuum states of magnons and phonons [16], and

entangled states of two magnon modes in CMM [17]. Quite recently, CMM has been used to produce

stationary entangled MW fields by coupling a magnon mode to two MW cavities [33]. These protocols

[15–17, 33] essentially utilize the nonlinear magnetostrictive interaction effectively activated by properly

driving the magnon mode with a magnetic field, which can be experimentally realized by directly driving

the YIG sphere with a small MW loop antenna [34], allowing to implement the magnomechanical

beamsplitter or two-mode squeezing interactions. Other quantum effects like tripartite

Einstein–Podolsky–Rosen steering have also been studied [35]. In addition, many other interesting topics

have been explored in CMM, including magnetically tunable slow light [36], phonon lasing [37],

thermometry [38], and parity-time-related phenomena [39–41].

In this article, we present the first proposal to entangle the vibrational phonon modes of two massive

YIG spheres. We would like to note that the entanglement of two magnon modes [17, 42–47] is a

non-classical state of a large number of spins inside the YIG spheres. In contrast, here we consider the

entanglement of the vibrational modes of the whole spheres. The phonon mode typically has a much lower

frequency than the magnon mode [14–24] (MHz vs GHz), indicating increasing susceptibility to the

thermal noise from the surrounding environment, which significantly increases the difficulty to prepare

phonon entangled states. The system consists of two MW cavities each containing a YIG sphere which

supports a magnon mode and a deformation phonon mode. The two cavities are driven by a two-mode

squeezed vacuum MW field, which entangles the two MW intra-cavity fields, and, owing to the

cavity–magnon beamsplitter interaction, the two magnon modes thus get entangled. We then directly drive

each magnon mode with a strong red-detuned MW field, activating the magnomechanical state-swap

interaction allowing for the transfer of squeezing from the magnon mode to the phonon mode. Therefore,

the two phonon modes of two YIG spheres become entangled. Similar ideas of transferring an entangled

state from light to macroscopic mechanical oscillators have been provided for optomechanical systems

[48–50].

2. The model

We consider a dual-cavity magnomechanical system, with each cavity containing an MW, a magnon and a

phonon mode, as depicted in figure 1. The magnon and phonon modes are supported by the YIG sphere,

which has a typical diameter in the 100 µm range [14]. The magnon mode is embodied by the collective

motion of a large number of spins in the YIG sphere, and the phonon mode is the deformation mode of the

sphere caused by the magnetostrictive force [25]. In each cavity, the magnon mode couples to the MW

cavity mode via the magnetic dipole interaction, and to the phonon mode via the nonlinear radiation

pressure-like magnomechanical interaction. In our scheme, each magnon mode is directly driven through a

strong red-detuned MW field, realized by, e.g., driving the YIG sphere with a small loop antenna at the end

of a superconducting MW line [33, 34], which enhances the magnomechanical coupling strength, cools the

phonon mode [15], and activates the magnon-phonon state-swap interaction [16]. The Hamiltonian of the

system is given by

H/� =
∑

j=1,2

{

ωaja
†
j aj + ωmjm

†
j mj + ωbjb

†
j bj + gj

(

a
†
j mj + ajm

†
j

)

+ G0jm
†
j mj

(

b
†
j + bj

)

+ iΩj

(

m†
j e−iω0jt − mje

iω0jt
)}

, (1)

where aj, mj, and bj (ωaj, ωmj, and ωbj) are the annihilation operators (resonance frequencies) of the cavity,

magnon and phonon modes, respectively, satisfying [Oj, O†
j ] = 1 (O = a, m, b), with j = 1, 2. The magnon

frequency ωmj can be adjusted by varying the external bias magnetic field Hj via ωmj = γ0Hj, where the

2
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Figure 1. (a) Two YIG spheres are placed inside two MW cavities, which are driven by a two-mode squeezed vacuum MW field.
Each sphere is placed in a uniform bias magnetic field and near the maximum magnetic field of the cavity mode, and is directly
driven by a strong red-detuned MW field (not shown) to enhance magnon–phonon coupling. (b) The frequencies of the modes
and drive fields in the cavities (j = 1, 2) are shown. The MW cavity with resonance frequency ωaj is driven by the jth mode (with
frequency ωsj) of the two-mode squeezed MW field. The magnon mode with frequency ωmj is driven by another strong
red-detuned MW field of frequency ω0j. The mechanical motion of frequency ωbj scatters the driving photons onto two
sidebands at frequencies ω0j ± ωbj . For the case when the cavity mode, magnon mode, and the squeezed drive field are resonant
with the blue mechanical sideband within each cavity, the two phonon modes of the two independent, spatially separated YIG
spheres become entangled.

gyromagnetic ratio for YIG γ0/2π = 28 GHz T−1 gj is the cavity–magnon coupling rate, which can be

much larger than the dissipation rates of the two modes, gj > κaj
,κmj

[19–24]. G0j is the bare

magnon–phonon coupling rate, which is usually quite small, but can be enhanced by driving the magnon

mode with a strong MW field. The Rabi frequency Ωj =
√

5
4
γ0

√

NjB0j [15] denotes the coupling rate

between the magnon mode and its driving magnetic field with frequency ω0j and amplitude B0j, while

Nj = ρVj is the total number of spins, with ρ = 4.22 × 1027 m−3 the spin density of YIG and Vj is the

volume of the spheres. Note that for the magnon modes, we have expressed the collective spin operators in

terms of Boson (oscillator) operators via the Holstein–Primakoff transformation [51] under the condition

of low-lying excitations, 〈m†
j mj〉 ≪ 2Ns (for simplicity we assume the two spheres to be of the same size and

thus of the same total number of spins N), where s = 5
2

is the spin number of the ground state Fe3+ ion in

YIG.

We now assume the two cavities to be driven by a continuous, two-mode squeezed vacuum MW input

field with frequency ωsj and each cavity to be resonant with the squeezed drive as well as the magnon mode,

such that ωaj = ωmj = ωsj, or ∆aj = ∆mj = ∆sj ≡ ∆j (j = 1, 2), where the detunings ∆Oj = ωOj − ω0j

(O = a, m, s) are with respect to the magnon drive frequency ω0j, see figure 1(b). This situation is easily

realized as all three frequencies are tunable, and the resonant case also corresponds to the optimal situation

for transferring squeezing from the driving field to the magnon mode [16, 46]. Note that ∆1 = ∆2 is

however not required as each should match the frequency of the phonon mode of the respective YIG sphere,

i.e., ∆j ≃ ωbj. This corresponds to the magnon mode being resonant with the blue mechanical sideband

(see figure 1(b)), which is required for realizing the magnomechanical state-swap interaction in each sphere,

such that the squeezing can further be transferred from the magnon mode to the phonon mode.

The quantum Langevin equations (QLEs) for describing the cavity, magnon, and phonon modes are

given by (in the frame rotating at the magnon drive frequency ω0j)

ȧj = −
(

i∆j + κaj

)

aj − igjmj +

√

2κaj
ain

j ,

ṁj = −
(

i∆j + κmj

)

mj − igjaj − iG0jmj

(

b†j + bj

)

+Ωj +

√

2κmj
min

j ,

ḃj = −
(

iωbj + γj

)

bj − iG0jm
†
j mj +

√

2γjb
in
j ,

(2)
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where γj are the mechanical damping rates, and ain
j , min

j and bin
j are input noise operators for the cavity,

magnon, and phonon modes, respectively. Owing to the injection of a two-mode squeezed vacuum field,

which shapes the noise properties of two MW cavity fields, the input noise of the two cavities ain
1,2 become

quantum correlated and possess the correlation functions

〈ain
j (t) a

in †
j

(

t′
)

〉 = (N + 1) δ
(

t − t′
)

,

〈ain †
j (t) ain

j

(

t′
)

〉 = N δ
(

t − t′
)

,

〈ain
j (t) ain

k

(

t′
)

〉 = Me−i(∆jt+∆kt′)δ
(

t − t′
)

,

〈ain †
j (t) a

in †
k

(

t′
)

〉 = M∗ei(∆jt+∆kt′) δ
(

t − t′
)

,
(

j 
= k = 1, 2
)

(3)

where N = sinh2 r, M = sinh r cosh r. Here r is the squeezing parameter of the two-mode squeezed

vacuum field, which is typically produced by a Josephson parametric amplifier (JPA) [52], a Josephson

mixer [53], or the combination of a JPA and an MW beamsplitter [54, 55]. Note that the phase factors in

the noise correlations are due to the non-zero frequencies of the squeezed driving fields in the reference

frame. The input noise of the magnon and phonon modes Oin
j (O = m, b) are of zero mean value and

correlated as
〈Oin

j (t)Oin†
j (t′)〉 = (NOj

+ 1)δ(t − t′),

〈Oin†
j (t)Oin

j (t′)〉 = NOj
δ(t − t′),

(4)

where NOj
= [exp(

�ωOj

kBT
) − 1]−1 is the equilibrium mean thermal magnon/phonon number, and kB the

Boltzmann constant and T the bath temperature. For simplicity, we assume the two cavities to be at the

same environment and thus bath temperature.

Since the magnon mode in each cavity is strongly driven, it has a large amplitude |〈mj〉| ≫ 1, and owing

to the cavity–magnon linear coupling, the cavity field also has a large amplitude |〈aj〉| ≫ 1. This allows us

to linearize the system dynamics (essentially the nonlinear magnetostrictive interaction) around the

semiclassical averages by writing any operator as Oj = 〈Oj〉+ δOj (O = a, m, b) and neglecting small

second-order fluctuation terms. As a result, the QLEs (2) are separated into two sets of equations for

semiclassical averages and for quantum fluctuations, respectively. By solving the former set of equations, we

obtain the steady-state solution for the average

〈mj〉 =

(

i∆j + κaj

)

Ωj

g2
j +

(

i∆̃j + κmj

)(

i∆j + κaj

) , (5)

where ∆̃j = ∆j + 2G0j Re〈bj〉 is the effective magnon-drive detuning including the frequency shift caused by

the magnomechanical interaction. This frequency shift is typically small because of a small G0j [14],

|∆̃j −∆j| ≪ ∆j ≃ ωbj, and thus hereafter we can safely assume ∆̃j ≃ ∆j. When ∆j ≃ ωbj ≫ κaj
,κmj

, which

is easily satisfied [14], equation (5) takes a simple approximate form 〈mj〉 ≃ i∆jΩj/(g2
j −∆

2
j ), which is a

pure imaginary number. The solutions of 〈aj〉 and 〈bj〉 can then be obtained by 〈aj〉 = −igj〈mj〉/(i∆j + κaj
),

and 〈bj〉 = −iG0j|〈mj〉|2/(iωbj + γj) ≃ −G0j|〈mj〉|2/ωbj, taking into account the mechanical Q factor is

typically high, ωbj/γj ≫ 1. The average 〈bj〉 is therefore a real number, implying that the average of

mechanical momentum, 〈pj〉 =
√

2 Im〈bj〉, is zero in the steady state.

The QLEs for the quantum fluctuations are given by

δȧj = −
(

i∆j + κaj

)

δaj − igjδmj +

√

2κaj
ain

j ,

δṁj = −
(

i∆j + κmj

)

δmj − igjδaj − Gj

(

δb†j + δbj

)

+

√

2κmj
min

j ,

δḃj = −
(

iωbj + γj

)

δbj − Gj

(

δm†
j − δmj

)

+
√

2γjb
in
j ,

(6)

where Gj = iG0j〈mj〉 is the effective magnomechanical coupling rate. We now move to a reference frame

rotating at frequency ∆j = ωbj, by introducing the slowly moving operators Õ, δaj = δãje
−i∆jt ,

δmj = δm̃je
−i∆jt , and δbj = δb̃je

−iωbjt , where δãj, δm̃j, and δb̃j are defined in the new reference frame. We

make the same transformation for the input noise operators, and obtain noise correlations in the new

frame, which remain the same as in equations (3) and (4) but without the phase factors in equation (3), as

we are now in a frame that is resonant with the squeezed drive field. By substituting the above

4
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transformations into the QLEs (6), and neglecting fast oscillating non-resonant terms, we obtain the

following QLEs

δ ˙̃aj = −κaj
δãj − igjδm̃j +

√

2κaj
ãin

j ,

δ ˙̃mj = −κmj
δm̃j − igjδãj − Gjδb̃j +

√

2κmj
m̃in

j ,

δ
˙̃
bj = −γjδb̃j + Gjδm̃j +

√

2γjb̃
in
j ,

(7)

which are a good approximation if the condition ∆j = ωbj ≫ Gj, gj,κaj
,κmj

, γj is satisfied. The QLEs (7)

clearly reveal a beamsplitter interaction in the cavity–magnon and magnon–phonon subsystems, which

allows for cooling the phonon modes and the transfer of two-mode squeezing from the driving fields to the

two cavity modes, then to the two magnon modes, and finally to the two phonon modes of the two spatially

separated YIG spheres.

3. Entanglement of two YIG spheres

We now proceed to study the entanglement of the two phonon modes. We rewrite the QLEs (7) in terms of

quadrature fluctuations, which can be cast in the following form

u̇(t) = Au(t) + n(t), (8)

where u =
(

δx1, δy1, δx2, δy2, δX1, δY1, δX2, δY2, δq1, δp1, δq2, δp2

)T
, and the quadrature fluctuation

operators are defined as δxj = (δãj + δã
†
j )/

√
2, δyj = i(δã

†
j − δãj)/

√
2, δXj = (δm̃j + δm̃

†
j )/

√
2,

δYj = i(δm̃
†
j − δm̃j)/

√
2, δqj = (δb̃j + δb̃

†
j )/

√
2, and δpj = i(δb̃

†
j − δb̃j)/

√
2. Similarly, we can define the

quadratures of the input noise Oin
j (O = x, y, X, Y, q, p). For simplicity, we have removed the tilde signs for

the quadrature operators. n =
(√

2κa1
xin

1 ,
√

2κa1
yin

1 ,
√

2κa2
xin

2 ,
√

2κa2
yin

2 ,
√

2κm1
Xin

1 ,
√

2κm1
Y in

1 ,
)

(√

2κm2
Xin

2 ,
√

2κm2
Y in

2 ,
√

2γ1qin
1 ,

√
2γ1pin

1 ,
√

2γ2qin
2 ,

√
2γ2pin

2

)T
is the vector of input noise, and the drift

matrix A is large and its specific form is provided in appendix A.

Owing to the linearized dynamics and the Gaussian nature of input noise, the system preserves Gaussian

states for all times. The steady state of the system is a six-mode Gaussian state, which is fully characterized

by a 12 × 12 covariance matrix (CM) C, whose entries are defined as Csk(t) = 1
2
〈us(t)uk(t′) + uk(t′)us(t)〉

(s, k = 1, 2, . . . , 12). The stationary CM C can be obtained by directly solving the Lyapunov equation [56,

57]

AC + CAT
= −D, (9)

where D is the diffusion matrix defined by Dskδ(t − t′) = 1
2
〈ns(t)nk(t′) + nk(t′)ns(t)〉. It can be written in

the form of a direct sum, D = Da ⊕Dm ⊕Db, where Da is related to the squeezed input noise of the two

cavity modes

Da =

⎛

⎜

⎜

⎝

κa1
(2N+ 1) 0

√
κa1

κa2
(M+M∗) i

√
κa1

κa2
(−M+M∗)

0 κa1
(2N + 1) i

√
κa1

κa2
(−M+M∗) −√

κa1
κa2

(M+M∗)√
κa1

κa2
(M+M∗) i

√
κa1

κa2
(−M+M∗) κa2

(2N+ 1) 0

i
√
κa1

κa2
(−M+M∗) −√

κa1
κa2

(M+M∗) 0 κa2
(2N+ 1)

⎞

⎟

⎟

⎠

,

(10)

and Dm (Db) is associated with the thermal input noise for two magnon (phonon) modes,

Dm = diag
[

κm1
(2Nm1

+ 1),κm1
(2Nm1

+ 1),κm2
(2Nm2

+ 1),κm2
(2Nm2

+ 1)
]

, and

Db = diag
[

γ1(2Nb1
+ 1), γ1(2Nb1

+ 1), γ2(2Nb2
+ 1), γ2(2Nb2

+ 1)
]

. Once the CM of the system is

obtained, one can then extract the state of the two phonon modes and calculate their entanglement

property. We adopt the logarithmic negativity [58] to quantify the entanglement of the Gaussian states,

whose definition is provided in appendix B.

We present our main result of the steady-state entanglement between two YIG spheres in figure 2. The

stability is guaranteed by the negative eigenvalues (real parts) of the drift matrix A. We have adopted

experimentally feasible parameters [14]: ωa = ωm = ωs = 2π × 10 GHz, ωb1
= 2π × 10 MHz,

ωb2
= 1.2ωb1

, γ = 2π × 100 Hz, κa = 2π × 3 MHz, κm = κa/5, and T = 10 mK. Note that, in our model

the linewidth of the magnon (cavity) mode is defined as 2κm (2κa). Here we take 2κm = 1.2 MHz, which is

larger than the magnon intrinsic dissipation (typically of the order of 1 MHz), as well as the demonstrated

value 1.12 MHz [14]. For simplicity, we have assumed equal frequencies for the two cavity (magnon)

modes, and squeezed driving fields, ωO1
= ωO2

≡ ωO (O = a, m, s) [59], due to their flexible tunability, but

generally different frequencies for the two phonon modes. This means that the frequencies of the two

magnon drive fields are also different because ω0j = ωm − ωbj. For convenience, we have also assumed equal

5
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Figure 2. (a) Entanglement (logarithmic negativity) EN of the two phonon modes as a function of the two coupling rates G and
g for a two-mode squeezed driving field with r = 1. (b) Stationary cavity–cavity (black dashed), magnon-magnon (red
dotted-dashed), and phonon–phonon (blue solid) entanglement vs r, with G = 0.2κa and g = κa. All other parameters are taken
from [14] and are given in the text.

Figure 3. Calculation of the steady-state mechanical entanglement EN vs bath temperature T with r = 0.4, clearly showing that
the non-classical correlation between the two phonon modes survives up to the temperature of 118 mK. All other parameters are
the same as in figure 2(b).

dissipation rates for all pairs of modes of the same type. In figure 2(a), we show the mechanical

entanglement versus two coupling rates g1 = g2 ≡ g and G1 = G2 ≡ G, and consider g, G � κa ≪ ωb1,2
, in

order to meet the condition used for deriving equation (7). Figure 2(b) shows that in the steady state the

two cavity/magnon/phonon modes are all entangled, and the entanglement increases with larger r. The

mechanical entanglement is even stronger than the magnon entanglement when r >∼0.2, although the

former is transferred from the latter. This is possible because the cavities are continuously driven, and the

total entanglement is distributed among the three different subsystems with steady-state bipartite

entanglement. We use a relatively larger cavity decay rate κa ≫ κm, which has been shown to be an optimal

condition for obtaining magnon entanglement [46], which is a pre-requisite for phonon entanglement in

our protocol. We would like to note that, for the parameters of figure 2(b), the entanglement of any two

modes of different types are either negligibly small or zero.

In figure 3, we show the entanglement as a function of bath temperature for a two-mode squeezed

vacuum of r = 0.4. This corresponds to a logarithmic negativity EN = 0.8 [60] of the driving field, which

has been experimentally demonstrated in reference [53]. With such a driving field, we obtain mechanical

entanglement EN = 0.54 for T = 10 mK, and the entanglement survives up to 118 mK.

Lastly, we would like to discuss how to detect the entanglement. The generated entanglement of two YIG

spheres can be verified by measuring the CM of the two phonon modes [12, 13]. The mechanical

quadratures can be measured by coupling each sphere to an additional optical cavity which is driven by a

weak red-detuned laser. This yields an optomechanical state-swap interaction which maps the phonon state

onto the cavity output field [61]. By homodyning this field, the mechanical quadratures can be measured,

based on which the CM can be reconstructed.
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4. Validity of the model

We now discuss the validity of the approximations that were made in our model. For the magnon modes,

we have assumed low-lying excitations, 〈m†
j mj〉 ≪ 2Ns, in order to express the collective spin operators

in terms of Boson operators. For a 250-µm-diameter YIG sphere, N ≃ 3.5 × 1016, and the coupling

G = 0.2κa = 2π × 0.6 MHz used in figures 2(b) and 3 corresponds to |〈m〉| ≃ 1.2 × 107 for

G0/2π = 50 mHz. Therefore, 〈m†m〉 ≃ 1.4 × 1014 ≪ 2Ns = 1.7 × 1017, which is well satisfied.

We have also assumed the magnon frequency shift caused by the magnomechanical interaction to be

negligible, i.e., ∆̃ ≃ ∆. While in the numerical study we have considered two phonon modes of close

frequencies, for simplicity we assume equal frequencies ωb(1,2)
/2π = 10 MHz for a brief estimation. We

obtain |〈b〉| = G0|〈m〉|2/ωb ≃ 7.2 × 105, and the frequency shift 2G0|〈b〉| ≃ 4.5 × 105 Hz, which is much

smaller than ∆ = ωb ≃ 6.3 × 107 Hz, and thus can be safely neglected.

We have further adopted strong pumps for the magnon modes, which may bring in unwanted

nonlinearities owing to the Kerr nonlinear term Km† mm†m in the Hamiltonian [34], where K is the Kerr

coefficient. For a 250-µm-diameter sphere, K/2π ≃ 6.4 nHz [15]. In order to keep the Kerr effect

negligible, K|〈m〉|3 ≪ Ω must be guaranteed. With the parameters used in the plots in figures 2(b) and 3,

we obtain a Rabi frequency Ω ≃ |〈m〉|(∆2 − g2)/∆ = 6.9 × 1014 Hz (corresponding to the drive magnetic

field B0 ≃ 3.8 × 10−5 T and drive power P = 8.3 mW [62]), and we thus have K|〈m〉|3 ≃ 6.9 × 1013 Hz ≪
Ω. Therefore, the Kerr nonlinearity can also be safely neglected in our linearized model.

5. Conclusions

We have presented a protocol to entangle the vibrational modes of two massive ferromagnetic spheres in a

hybrid cavity–magnon–phonon system. The cavity–magnon subsystem has an intrinsic state-swap

interaction, whereas the magnon–phonon subsystem is coupled by a nonlinear magnetostrictive

interaction. We therefore directly drive the magnon mode with a red-detuned MW field to activate the

magnomechanical state-swap interaction. This allows for the successive transfer of quantum correlations

from a two-mode squeezed driving field to two cavity modes, then to two magnon modes, and finally to

two phonon modes. We further analyze the validity of the model in detail by confirming the conditions of

the approximations that have been made, and the feasibility of the protocol by considering realistic

parameters, as well as experimentally accessible squeezing in MW sources. Our work studies quantum

entanglement between two truly massive objects and may find applications in the study of macroscopic

quantum mechanics and gravitational quantum physics.
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Appendix A. Drift matrix

Here we provide the specific form of the drift matrix A used in equation (8), which can be constructed in

the form of

(A1)

where 04 is the 4 × 4 zero matrix, Ac = − diag(κa1
,κa1

,κa2
,κa2

), Am = − diag(κm1
,κm1

,κm2
,κm2

),

Ab = −diag(γ1, γ1, γ2, γ2), and Acm and Amb are the coupling matrices for the cavity–magnon and
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magnon–phonon subsystems, respectively, which are given by

Acm =

⎛

⎜

⎜

⎝

0 g1 0 0

−g1 0 0 0

0 0 0 g2

0 0 −g2 0

⎞

⎟

⎟

⎠

, (A2)

and Amb = −diag(G1, G1, G2, G2).

Appendix B. Entanglement measure-logarithmic negativity

The entanglement of two-mode Gaussian states can be quantified by the logarithmic negativity [58], which

is defined as [63]

EN := max [0,− ln 2ν̃−] , (A3)

where ν̃− = min eig|iΩ2C̃b| (with the symplectic matrix Ω2 = ⊕2
j=1iσy and the y-Pauli matrix σy) is the

minimum symplectic eigenvalue of the CM C̃b = PCbP , with Cb the CM of two phonon modes, which is

obtained by removing in C the rows and columns related to the cavity and magnon modes, and

P = diag(1,−1, 1, 1) is the matrix that performs partial transposition on CMs [64]. In the same way, we

can calculate the logarithmic negativity of two cavity/magnon modes.
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