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RESEARCH ARTICLE
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Abstract

Intestinal mucus layer disruption and gut microflora modification in conjunction with tight

junction (TJ) changes can increase colonic permeability that allows bacterial dissemination

and intestinal and systemic disease. We showed previously thatCitrobacter rodentium

(CR)-induced colonic crypt hyperplasia and/or colitis is regulated by a functional cross-talk

between the Notch andWnt/β-catenin pathways. In the current study, mucus analysis in the

colons of CR-infected (108 CFUs) and Notch blocker Dibenzazepine (DBZ, i.p.; 10μmol/Kg

b.w.)-treated mice revealed significant alterations in the composition of traceO-glycans and

complex type and hybrid N-glycans, compared to CR-infected mice alone that preceded/

accompanied alterations in 16S rDNAmicrobial community structure and elevated EUB338

staining. While mucin-degrading bacterium, Akkermansia muciniphila (A.muciniphila) along

with Enterobacteriaceae belonging to Proteobacteria phyla increased in the feces, antimi-

crobial peptides Angiogenin-4, Intelectin-1 and Intelectin-2, and ISCmarker Dclk1, exhibited

dramatic decreases in the colons of CR-infected/DBZ-treated mice. Also evident was a

loss of TJ and adherens junction protein immuno-staining within the colonic crypts that

negatively impacted paracellular barrier. These changes coincided with the loss of Notch

signaling and exacerbation of mucosal injury. In response to a cocktail of antibiotics (Metro-

nidazole/ciprofloxacin) for 10 days, there was increased survival that coincided with: i)

decreased levels of Proteobacteria, ii) elevated Dclk1 levels in the crypt and, iii) reduced

paracellular permeability. Thus, enteric infections that interfere with Notch activity may pro-

mote mucosal dysbiosis that is preceded by changes in mucus composition. Controlled use

of antibiotics seems to alleviate gut dysbiosis but may be insufficient to promote colonic

crypt regeneration.
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Introduction

The gastrointestinal tract is a complex ecosystem that encounters food, microorganisms, for-

eign antigens, and toxic molecules on a daily basis. It is therefore pivotal for the endogenous

barrier mechanisms to limit the exposure of epithelial monolayers to intraluminal entities in

order to maintain gut immune homeostasis. Colonic mucus layer comprises the first line of

defense and prevents entry of bacteria while allowing diffusion of essential nutrients [1, 2].

Mucins constitute the structural and functional units of the mucus layer in human beings and

mice, with Muc-2 representing the principal component of colonic mucus [3, 4]. Muc-2 is

composed primarily of O-glycans, which have two main subtypes known as Core-1 and Core-

3-derived O-glycans [5, 6]. Due to a high degree of glycosylation, mucins provide growth sub-

strate and site of adhesion for mucus-associated microbiota [7], that when healthy, exist in a

symbiotic relationship with the host [8]. The intestinal microbiota modulates a variety of host

responses including those related to metabolism, which the host has not developed for itself

[8–10]. The microbiota provides an energy source to colonocytes in the form of short-chain

fatty acids (SCFAs) through scavenging of carbohydrates from both dietary sources and

colonic mucins [7]. Microbiota resists and competes with pathogens for space and resources,

elaborates the molecules required for mucosal integrity and modulates the immunological

responses [11].

Below the mucus layer, there is a monolayer of epithelial cells that are held together by tight

and adherens junctions (TJs/AJs) and characterized by a remarkable polarization of their

plasma membrane that restricts both transcellular and paracellular permeation of antigens,

allowing only limited quantities of molecules to cross into the mucosa in a controlled manner.

The sustained enhancement of paracellular permeability facilitates the constant passage of

luminal antigens through the mucosa which can lead to interaction with the mucosal immune

system and chronic inflammation in susceptible individuals [12].

In the colon, Notch activation modulates expression of Muc-2 and TJ proteins and the bal-

ance between proliferation and differentiation in the enterocyte progenitor pool [13, 14]. Fol-

lowing inhibition of Notch signaling, there is an exit from the proliferation compartment and

differentiation into the post-mitotic goblet cells [15]. We showed previously in a murine

model of Citrobacter rodentium (CR)-induced colonic crypt hyperplasia that chronic inhibi-

tion of Notch signaling results in severe inflammation, morbidity and mortality in an outbred

strain that otherwise exhibits a self-limiting disease [16]. In the current study, we tested the

hypothesis that CR infection combined with chronic Notch pathway inhibition may alter the

composition of the colonic mucus and the ensuing dysbiosis, tight junction disruption and

loss of multipotent intestinal stem cells (ISCs) may facilitate colitis-like disease development.

Materials andmethods

Animals

NIH:Swiss outbred and C3H/HeNHsd (C3H) inbred mice were procured from Harlan Labo-

ratories Inc. USA. C3Hmice respond very aggressively to CR infection and are used as an

excellent model of infectious colitis [17]. Core-3-/-mice lacking Core-3 β1,3-N-acetylglucosa-
minyltransferase (C3GnT), an enzyme predicted to be important in the synthesis of Core

3-derived O-glycans, against a mixed background strain of C57BL/6J were generated as

described [5]. Rag-1-/-mice lacking mature B and T-cells (Stock # 002216) in the C57BL/6J

background were purchased from Jackson Laboratory. All the mice were maintained in a spe-

cific pathogen-free (including Helicobacter and parvovirus) environment and generally used
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between 5 and 6 weeks of age. As control groups, either littermates or WTmice of identical

background were used. This study was carried out in strict accordance with the recommenda-

tions in the Guide for the Care and Use of Laboratory Animals of the National Institutes of

Health. All protocols were approved by the University of Kansas Medical Center Animal Care

and Use Committee.

Treatments

Transmissible Murine Colonic Hyperplasia was induced in the mice by oral inoculation with a

16-h culture of C. rodentium (biotype 4280, ATCC, 108CFUs) identified as pink colonies on

MacConkey agar, as previously described [17–25]. Biotype 4280 is a unique mouse-specific

strain that adheres to mature surface colonocytes within the distal colon to induce histopatho-

logical changes known as attaching and effacing lesions [26]. Adherent bacteria were assayed

using RT-PCR for bacterial intimin in whole tissue extracts [23]. Age- and sex-matched con-

trol mice received sterile culture medium only.

To block Notch signaling in vivo, we used a cell-permeable inhibitor of γ-secretase, Diben-
zazepine (DBZ) [27] (EMD Chemicals, Inc., Gibbstown, USA). DBZ was suspended finely in

0.5% (w/v) HPMC and 0.1% (w/v) Tween-80 in water and given to mice intraperitoneally (at

10μmol/kg body weight) for 10 consecutive days beginning 2 days post-CR infection. For

depletion of microbiota, mice were given drinking water containing a combination of 1g/l

metronidazole and 0.2 g/l ciprofloxacin (Wako) for 10 days.

Histology, immunohistochemistry, and immunofluorescence

Colon tissues were freshly harvested from mice and fixed with 10% neutral buffered formalin

or in Carnoy’s fixative (60% methanol, 30% chloroform, and 10% acetic acid) prior to paraffin

embedding. Paraffin-embedded sections (4 μm) were stained with Hematoxylin and Eosin for

morphology and with appropriate antibodies using standard techniques [28, 29]. Goblet cells

were stained with PAS (Richard -Allan Scientific) or Alcian blue (Thermo-Scientific) and

counterstained with Nuclear Fast Red (Sigma-Aldrich). The pictures were obtained with a

Nikon i80 microscope.

Fluorescence in-situ hybridization (FISH)

FISH was performed according to the method described previously with some modification

[3]. Paraffin sections were dewaxed and rehydrated in an ethanol gradient to water. The tissue

sections were incubated with 5 μg/ml TexasRed-conjugated EUB338 (5’- GCTGCCTCC
CGTAGGAGT-3’, Invitrogen) in hybridization buffer (0.1M Tris-HCl, 0.9 M NaCl, 0.1% SDS

and 10% formamide, pH 7.2) at 40˚C overnight. The sections were rinsed in washing buffer

(20 mM Tris-HCl, 0.9 M NaCl, pH 7.4) at 40˚C for 15 min and stained with 1 μg/ml DAPI.

After staining, the sections were mounted with Prolong Gold mounting medium (Invitrogen).

All images were obtained and analyzed with a Nikon i80 microscope.

Quantitative reverse-transcriptase PCR andWestern blotting

RNA was isolated using TRIzol (Ambion Life Technologies) and converted to cDNA using the

High-Capacity cDNA Reverse Transcription kit (Applied Biosystems). The concentration of

RNA was measured using a spectrophotometer (Nanodrop 2000, Thermo-Scientific). Gene

expression was assessed using Jumpstart Taq Polymerase (Sigma-Aldrich) and SYBR Green

nucleic acid stain (Life Technologies). Threshold crossing values for each gene were normal-

ized to GAPDH and mRNA expression was normalized to fold change relative to controls.
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Total crypt cellular or nuclear extracts (30–50 μg protein/lane), were subjected to SDS-PAGE

and electrotransferred to nitrocellulose membrane. The membranes were blocked with 5%

BSA or 5% nonfat dried milk in Tris-buffered saline (TBS) (20 mM Tris-HCl and 137 mM

NaCl, pH 7.5) for 1 h at room temperature (21˚C). Immunoantigenicity was detected by incu-

bating the membranes overnight with the appropriate primary antibodies (0.5–1.0 μg/ml in

5% BSA or 5% nonfat dried milk). After washing, membranes were incubated with horseradish

peroxidase-conjugated anti-goat, anti-mouse or anti-rabbit secondary antibodies and devel-

oped using the ECL detection system (GE) according to the manufacturer’s instructions.

Bacterial DNA extraction and microbial analysis using 16S ribosomal DNA
library preparation and sequencing

Fresh feces were collected in sterile tubes on ice and stored at −80˚C until processing. Total

genomic bacterial DNA was extracted using the QIAmp DNA stool kit (Qiagen, Valencia, CA)

following their instructions. The integrity, concentration, and quality of the total DNA were

assessed by agarose gel electrophoresis, and determined by absorption at A260, and A260 to

A280 ratio, respectively using a Nanodrop-2000 spectrophotometer (Thermo Scientific Inc,

USA). DNA solutions were stored at −20˚C until further analysis. Using bacterial DNA, the

V4 region of the 16S ribosomal RNA (rRNA) encoding gene was amplified with barcoded uni-

versal bacterial primers followed by sequencing on Ilumina MiSeq platform [30]. The resulting

raw sequence files (.fastq.gz) were submitted to the NCBI Sequence Read Archive (SRA) data-

base (https://www.ncbi.nlm.nih.gov/sra/SRP160909). The raw sequences were analyzed using

open-source bioinformatics pipeline called Quantitative Insights Into Microbial Ecology

(QIIME) [31]. Reads were trimmed and demultiplexed using exact matches to the supplied

DNA barcodes. Any reads with homopolymer runs, more than 6 ambiguous bases, nonmatch-

ing barcodes, barcode errors, or quality scores less than 25 were removed. Samples with less

than 3500 a sequence were also removed. Resulting sequences were searched against the

Greengenes 13_5 reference sequence set and clustered at 97% by Uclust [32]. The centroid of

each Operational Taxonomic Unit (OTU) was considered as the OTU representative sequence

followed by aligning the sequences with PyNast and construction of Trees with FastTree for

phylogenetic calculations [33].

Fluorescein isothiocyanate-dextran (FITC-D) assay

In-vivo permeability assay to assess epithelial barrier function was performed using FITC-D as

described [34]. Briefly, food was withdrawn for 4 h from 5- to 6-weeks-old NIH: Swiss mice in

various groups and gavaged with 80mg/100g body weight of FITC-D, (molecular weight 4,000;

Sigma-Aldrich). Serum was collected at the time of euthanasia and the fluorescence intensity

of each sample was measured with a fluorimeter (excitation, 492 nm; emission, 525 nm;

FLUOstar Galaxy 2300; BMG Labtech, Durham, NC). FITC-D concentrations were deter-

mined from standard curves generated by serial dilution of FITC-D and permeability was cal-

culated by linear regression of sample fluorescence (Excel 5.0; Microsoft).

Carbohydrate analysis

NIH:Swiss mice were euthanized and mucosal scrapings of the distal colon were collected with

EDTA free protease inhibitor (Roche). Samples of colon mucus were analyzed for O-type and

N-type glycosylation at Complex Carbohydrate Research Center, Athens, GA. Samples were

depleted of lipids, proteins were precipitated and the protein-rich powder was treated with

trypsin, purified and finally treated with PNGase F to remove N-linked glycans. Following
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removal of N-glycans, the O-glycans were removed through beta-elimination procedures and

both the N- and O-linked glycans were analyzed through standard techniques [35].

Statistical analyses

Experiments were repeated three times with consistent results. Data were expressed as mean

values ± standard error. Statistical analyses for all studies were performed using unpaired, two-

tailed Student’s t-tests and one-way analysis of variance (ANOVA) for multiple group compar-

isons (GraphPad Prism 5, San Diego, CA). p-values< 0.05 were considered statistically

significant.

Results

Alteration of mucus glycans and bacterial dysbiosis

We have shown previously that CR infection coupled with Notch pathway blockade promotes

goblet cell hyperplasia and colitis [16]. To determine why despite mucus hypersecretion, mice

endured barrier disruption and severe inflammation, we tested the hypothesis that composi-

tional changes in mucus glycans may lead to bacterial dysbiosis and facilitate the development

of the colitis-like disease. Figs 1 and 2 reveal the base peak chromatograms ofO- and N-glycans

from these mice wherein marked differences were evident between uninfected, CR-infected

and CR+DBZ groups. In particular, altered glycosylation pattern in CR+DBZ group consisting

of high mannose and complex-type and hybrid glycans and accompanied by loss of fucosylated

N-glycans compared with CR infected alone strengthens the hypothesis that chronically block-

ing Notch signaling alters the mucus composition. Since the resulting changes in glycosylation

may affect the supply of carbohydrates available to lumenal bacteria utilizing mucin glycans as

carbon source thereby changing the microbiota composition, we next performed 16S rRNA

gene sequencing. We discovered that as compared to CR, CR+DBZ group showed a significant

decrease in Bacteroidetes phyla with concomitant increases in Firmicutes, Proteobacteria and

Verrucomicrobia phyla respectively. In particular, we discovered Enterobacteriaceae and Ver-

rucomicrobiacea families to be over-represented in the CR+DBZ group (Fig 3A). Principal

coordinate analysis (PCoA) revealed a significant separation of microbial communities in fecal

samples from CR+DBZ mice when compared to either uninfected or CR-infected mice (p-

value = 0.001) (Fig 3B). Comparison of sequences at species level showed that relative abun-

dance of mucin-degrading bacterium A.muciniphila belonging to the Verrucomicrobia phyla

[36] was elevated in the CR+DBZ mice than either uninfected or CR-infected mice (Data not

shown) that coincided with mucus layer disruption as was shown by us previously [16], sug-

gesting that mucus degradation may precede onset of colitis in CR+DBZ-treated mice. An

increase in A.muciniphila in CR+DBZ compared to N and CR was validated by qPCR (Fig

3C). We next assessed bacterial invasion into the colonic epithelium in the CR+DBZ group by

FISH using a ubiquitous eubacterial probe, EUB338. As is revealed in Fig 3D, significantly

more bacteria colonized the mucosa while only a small number of bacteria invaded the colonic

crypts in response to CR infection. In the CR+DBZ group, however, a dramatic increase in

bacterial colonization of the crypts was observed (Fig 3D). To explore if the loss of antibacterial

peptide gene expression may have led to higher bacterial burden in the CR+DBZ mice, we

next looked at the expression levels of antibacterial peptide genes such as Itln1/2, Retnlb, and

Ang4 encoding intelectin-1/2, resistin-like molecule-β, and angiogenin-4, respectively (35). As
is revealed in Fig 3E, expression of both Itln1, known to be involved in bacterial clearance [37]

and its homolog Itln2 [38], decreased significantly in response to CR infection while the levels

were further attenuated in the CR+DBZ group. Interestingly, expression of both Ang4 and

Retnlb increased following CR infection but declined in the CR+DBZ group (Fig 3E). These
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results suggest that enteric infections coupled with Notch blockade may be detrimental to the

integrity of the colonic mucosa.

Tight and adherens junctions are disrupted during CR infection and Notch
pathway blockade

Since enteric pathogens are implicated in barrier disruption, we hypothesized that CR infec-

tion coupled with the Notch pathway blockade may promote alterations in epithelial barrier

integrity by modulating proteins involved in the tight and adherens junction (TJ, AJ)

Fig 1. Analysis of colon mucus samples forN-type glycosylation. A. FTMSm/z 800–1800 of mucus samples.
Processing of mucus samples from uninfected (Normal), CR-infected (CR) and CR+DBZ-treated (CR+DBZ) mouse
colons included removal of lipids and precipitation of proteins into a protein-rich powder that was subsequently
treated with trypsin, purified, then treated with PNGase F, to removeN-linked glycans. A full FTMS spectrum was
collected at 30,000 resolution with 3 microscans. The highest abundance glycans are primarily high mannose, and
complex-type species containingN-glycolylneuraminic acid (NeuGc). MS/MS analysis of the highest abundance
complex-type glycans appears as a z = 3 ion at m/z 966. B. Detection of glycans from each sample, as well as the
results of each MS/MS analysis from total ion mapping (TIM) analysis. Some representative mucus glycan
structures are shown together with the terminal end structures including the interconnecting linkages of the different
monosaccharides, which are explained in the key. Red rectangles represent differences between uninfected (N) and
CR-infected (CR) mucus samples while blue rectangles represent mucus glycans unique to CR+DBZ-treated mice.

https://doi.org/10.1371/journal.pone.0206701.g001
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formation and maintenance in the colon. We observed a significant loss of TJ protein ZO-2

along with decreases in AJ proteins β-catenin and E-cadherin in the colons of CR+DBZ mice

compared to those from untreated or CR-infected mice (Fig 4). Since C3Hmice respond more

aggressively to CR infection, we also treated CR-infected C3Hmice with DBZ and discovered

further loss in staining for ZO-2, β-catenin and E-cadherin respectively (Fig 4). We further val-

idated our findings in Rag-1-/-mice, which are deficient in T and B-cells and lack adaptive

immunity. Rag-1-/-mice have been shown to exhibit transient colitis in response to CR infec-

tion [39]. Immunohistochemistry revealed decreased staining for ZO-2, β-catenin, and E-cad-

herin in the distal colons of CR+DBZ-treated mice (Fig 4). Finally, we utilized Core-3-/-mice

which lack β-1,3-N-acetylglucosaminyltransferase, an enzyme important in the synthesis of

Fig 2. Analysis of colon mucus samples forO-linked glycans. A. FTMSm/z 800–1800 of mucus samples.After
removing the N-glycans from the proteins with PNGase F, theO-glycans were removed through beta-elimination
procedures. The glycans were then purified again with a C18 column, permethylated, purified again, then analyzed
with MALDI and NSI-MS. NumerousO-glycans are detected in the samples. Additionally, a number of trace glycans
are detected as a result of Total Ion Mapping (TIM). B. O-Glycans Detected by FTMS. RepresentativeO- structures
assigned are “proposed” structures based on the fall and tandemMS data observed, as well as common biosynthetic
pathways common to mammalian and (if possible) the speciesMus Musculus. Red rectangles represent differences
between normal (N) and CR-infected (CR) mucus samples while blue rectangles represent mucus glycans unique to
CR+DBZ-treated mice.

https://doi.org/10.1371/journal.pone.0206701.g002
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core-3-derived O-glycans, the primary component of the intestinal mucin. These mice have

defects in the mucus barrier and are susceptible to colitic insult [5]. We have shown previously

that Core-3-/-mice when subjected to CR+DBZ treatment, develop severe inflammation and

colitis [16]. In the current study, the staining intensities for ZO-2, β-catenin and E-cadherin

proteins declined in CR infected mice and these reductions in protein intensities were exacer-

bated in CR+DBZ-treated mice (Fig 4). Thus, using mice of varying genetic backgrounds, we

clearly demonstrate that loss of junctional proteins corroborate with bacterial invasion and

colitis.

Fig 3. Evidence of bacterial dysbiosis during chronic blockade of Notch pathway in the colons of outbred mice. A.
Comparison of major microbial populations in fecal samples. Fecal samples from uninfected (N), CR-infected (CR)
and CR+DBZ-treated mice were subjected to 16S rDNA sequencing and relative abundance of phyla and families were
compared. Each chart represents the taxonomic composition in the indicated groups (n = 10 mice/group). B.
Principal Coordinate Analysis (PCoA) of fecal microbiome composition.While N (shown in “orange”) and CR
(shown in “red”) samples grouped closer to each other, CR+DBZ samples (shown in “blue”) shifted towards the
opposite ends of the coordinates revealing distinct microbial communities (p<0.001; n = 10 mice/group). C. Species
identification as a potential etiologic agent. Real-time qPCR showing relative abundance for A.mucinophila in
various treatment groups (p<0.005; n = 3 independent experiments).D. Fluorescence microscopy to detect bacterial
invasion. The attached bacteria in the flushed colonic tissues of N, CR or CR+DBZmice were detected by FISH using
a general bacterial 16S probe (TexasRed-Eub338; Bar = 100μm; n = 10 mice/group). DAPI was used as counter-stain.
E. Effect of chronic Notch inhibition on anti-bacterial peptide gene expression. qPCR to examine expression levels
of antibacterial peptide genes Itln1/2, Retnlb and Ang4 encoding Intelectin-1/2, Resistin-like molecule-β and
Angiogenin-4, respectively (�, ��p<0.005; n = 3 independent experiments).

https://doi.org/10.1371/journal.pone.0206701.g003
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Antibiotic treatment ameliorates colitis and increases survival of CR+DBZ-
treated mice

Since CR+DBZ treatment was associated with significant dysbiosis (Fig 3), we next investi-

gated the hypothesis that antibiotics (Abx) treatment may help ameliorate colitis by blocking

increases in potential pathobionts. Fig 5A describes a treatment strategy for NIH: Swiss out-

bred mice. In response to Abx administration to CR+DBZ mice, the overall survival was in the

60% to 90% range compared to CR+DBZ alone (Fig 5B). Intriguingly, the body weight of CR

+DBZ+Abx mice as compared to CR+DBZ mice did not correlate with survival despite the

absence of any gross pathology (Fig 5C). Histology of colon sections confirmed a significant

reduction in immune cell infiltration following antibiotic treatment (Fig 5D). Since microbiota

and microbial metabolites contribute significantly towards epithelial proliferation and turn-

over, we next examined the impact of microbiota depletion on cellular proliferation. Staining

of colon sections with Ki-67, a proliferation marker, revealed that CR+DBZ+Abx mice

Fig 4. Chronic Notch inhibition and tight and adherens junction integrity. Paraffin-embedded sections prepared
from the colons of uninfected (N), CR-infected (CR) and CR+DBZ-treated NIH: Swiss, C3H, Rag-1-/- and Core-3-/-

mice were stained for β-catenin, E-cadherin and ZO-2, respectively. Arrows highlight the significant loss of these
proteins in CR infected or CR+DBZ-treated colons. Bars = 100μm; n = 3 independent experiments.

https://doi.org/10.1371/journal.pone.0206701.g004
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exhibited even lesser epithelial proliferation than CR+DBZ mice (Fig 5D) suggesting not only

that microbiota is required for cellular proliferation but that lack of weight gain in CR+DBZ

+Abx group may corroborate with less efficient mucosal recovery. To further examine the

effect of antibiotics treatment on 16S rDNA profile, we evaluated fecal samples from various

groups. As is revealed in Fig 5E, acute Abx treatment restored Bacteroidetes and reduced Pro-

teobacteria. Intriguingly, however, the relative abundance of the Verrucomicrobia phyla

increased in response to antibiotics (Fig 5E). Next, colons from the same group of mice were

Fig 5. Effect of antibiotics treatment on amelioration of colitis. A. Schema of CR infection and DBZ and antibiotics
treatment (1g/l metronidazole and 0.2 g/l ciprofloxacin). B. Survival kinetics for mice in indicated groups (n = 5
independent experiments). C. Periodic weight measurement of mice in various treatment groups (Error bars represent
the SD of samples within the group; p< 0.05; n = 5 per group).D. Representative hematoxylin and eosin (H&E; left
panel) and Ki-67 (right panel) staining of colon sections prepared from the indicated groups (bar = 100μm; n = 5
independent experiments). E. The microbial composition at the phyla level in the feces of N, CR, CR+DBZ and CR
+DBZ+Abx-treated mice (#s in the chart represent % of each phyla) (n = 10 mice/group). F. The bacteria in the colonic
tissues of N, CR, CR+DBZ, and CR+DBZ+Abx-treated mice were detected by FISH using a general bacterial 16S probe
(red, TexasRed-Eub338; Bar = 100μm; n = 3 independent experiments). DAPI was used as counter-stain.G.Mice in
indicated groups were subjected to gavage with FITC-D, and serum concentrations, shown as fluorescence units, were
measured 4h later. �, p<0.05 versus CR; !, p<0.05 versus CR+DBZ; n = 3 independent experiments.H. qPCR to
examine expression levels of pro-inflammatory cytokines, IFNγ and TNFα in the indicated groups (�, ��p<0.05; n = 3
independent experiments).

https://doi.org/10.1371/journal.pone.0206701.g005

Enteric infection and inhibition of Notch signaling – A double-edged sword for colitis development

PLOSONE | https://doi.org/10.1371/journal.pone.0206701 November 1, 2018 10 / 20

https://doi.org/10.1371/journal.pone.0206701.g005
https://doi.org/10.1371/journal.pone.0206701


flushed to remove feces followed by FISH analysis that revealed a reduction in mucosally

attached bacteria in the CR+DBZ+Abx group (Fig 5F) that correlated with reduced paracellu-

lar permeability (Fig 5G). qPCR of colon tissues from CR+DBZ+Abx group revealed a signifi-

cant reduction in pro-inflammatory cytokines IFNγ and TNFα compared to either CR or CR

+DBZ group (Fig 5H). These results coincided with a significant reduction in CD3+ T cells

and F4/80+ macrophages in response to antibiotics compared to CR+DBZ group (Fig6A and

6B). Interestingly, Foxp3+ regulatory T cells that showed elevated levels in CR+DBZ-treated

colons did not elicit dramatic changes in the antibiotic-treated group (Fig 6C). This is consis-

tent with Tregs being more common in actively inflamed than uninflamed IBD mucosa [40–

43].

Since Notch signaling has been implicated in the maintenance of intestinal stem cells, we

next explored the status of putative stem cell marker doublecortin-like kinase 1 (Dclk1) in vari-

ous treatment groups. In response to CR+DBZ, there was a significant reduction in the levels

of Dclk1 (Fig 6Di) consistent with our previous findings [16]. Interestingly, CR+DBZ+Abx

group exhibited increased Dclk1 staining that correlated with increases in Dclk1+ cells/crypt

(Fig 6Dii). Dclk1 however, did not co-localize with PCNA suggesting that Dclk1+ cells were

quiescent cells (Fig 6). These findings indicate a novel role for Dclk1 in promoting mainte-

nance of crypt integrity without necessarily acting as the reservoir for epithelial proliferation.

As a proof-of-concept, we confirmed Notch blockade through pharmacological inhibition

via γ-secretase inhibitor DBZ in a series of experiments described in Fig 7. Alcian blue staining

confirmed the loss of goblet cells in CR-infected crypts while DBZ treatment of CR-infected

mice resulted in the loss of proliferating crypt progenitors due to their conversion into post-

mitotic goblet cells. Interestingly, Abx treatment failed to reverse goblet cell hyperplasia (Fig

7A) consistent with its inability to restore epithelial proliferation (Fig 5D). These studies were

also consistent with significant Muc-2 staining in both CR+DBZ-treated and CR+DBZ+Abx-

treated sections and MUC5AC staining in CR+DBZ-treated sections (Figs 7B and 7C), respec-

tively. Western blotting or immunostaining of Hes-1, a downstream target of Notch signaling,

revealed increases in relative abundance in response to CR while DBZ treatment reduced the

levels/staining significantly (Fig 7D and 7E) as was shown by us previously [16]. Abx treatment

of CR+DBZ mice, however, rescued Hes-1 to some extent (Fig 7 D and 7E). Finally, we fixed

unflushed colon tissues in Carnoy’s fixative to capture lumenal and/or mucosally-attached

bacteria, particularly in the CR+DBZ group, via EUB338 staining (Fig 7F). Upon Abx treat-

ment, crypt invasion was significantly attenuated (Fig 7F). We have shown previously that

DBZ alone in the absence of CR infection, had no toxicity or adverse effects in the gut [16]. As

is depicted in Fig 7G–7J, data on histology, cell proliferation, electron microscopy, micro-

biome, and mucosal permeability further clarify that treatment of control mice with DBZ has

no effects on any of these parameters and that DBZ on its own, is not toxic. These results estab-

lish the reproducibility of our experimental strategies.

Discussion

This study delineated the role of enteric infection and Notch pathway blockade in microbial

dysbiosis, severe inflammation, and colitis-like disease development in outbred mice that typi-

cally recover from a self-limiting disease [18]. We report alterations in mucus composition

that coincides with microbial dysbiosis, bacterial dissemination to the epithelial monolayers

and disruption of epithelial junctions preceding and/or accompanying immune cell activation

and colitis-like disease development.

The human colon is a reservoir for mucus whose secretion is largely controlled by multiple

factors including LPS and lipoteichoic acid, cytokines, and hormones produced during
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inflammation [36]. Changes in mucin glycosylation alter the supply of carbohydrates available

to bacteria utilizing mucin glycans as a carbon source, thereby changing the microbiota com-

position. We have observed altered N- and O-glycosylation pattern with a significant loss in

fucosylated N-glycans in CR+DBZ group which is consistent with previous report wherein,

the repression of LEE virulence genes by enterohaemorrhagic E. coli was mediated by

increased concentration of free fucose in the colon [44]. The significance of mucin glycans is

further highlighted in several mouse models deficient in glycosyltransferases. Transgenic mice

lacking Core-1β1,3-galactosyltransferase (C1GalT1, also called T-synthase) and Core 3β1,3 N-
acetylglucosaminyltransferase (C3Gnt) are highly susceptible to inflammatory insults includ-

ing dextran sodium sulfate (DSS) challenge [5, 6, 45]. The chemical diversity of endogenous

O- and N-linked glycans requires that mucosal bacteria produce many different degradative

enzymes to effectively use these heterogeneous polymers. While O-glycans most likely impart

structural stability to the mucus layers of the distal colon, they are increasingly appreciated as

Fig 6. Effect of antibiotics treatment on immune cell recruitment and ISCmarker expression. A-D. Representative
immuno-staining for CD3 (A), F4/80 (B), FoxP3 (C) and Dclk1 (Di) in the colon sections prepared from the indicated
groups. Bar = 100μm; n = 3 independent experiments).Dii.Quantitative assessment of Dclk1+ cells/crypt; �p<0.05;
n = 3 independent experiments.

https://doi.org/10.1371/journal.pone.0206701.g006
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important in shaping the composition of the microbial communities within the gut [46]. For

Escherichia coli, the O-glycans present in secreted mucins may also impact the ability of some

bacteria to thrive after they colonize [47], suggesting a nutritional basis for selection. The abil-

ity to extract carbohydrates from mucin glycans is concentrated in bacterial groups, which

express a vast set of hydrolase enzymes and transporters enabling the utilization of monosac-

charides as carbon sources. Among the bacterial phyla of the human gut, Bacteroidetes express

Fig 7. Proof-of-concept experiments to confirm Notch blockade in response to γ-secretase inhibitor,
Dibenzazepine (DBZ).NIH: Swiss mice were infected with CR and treated with DBZ, i.p. @ 10μmol/Kg body weight
or DBZ+ antibiotics (Abx) (1g/l metronidazole and 0.2 g/l ciprofloxacin) for 10 days.A, B. Paraffin sections prepared
from uninfected (N), CR-infected (CR), CR+DBZ-treated and CR+DBZ+Abx-treated mice were stained with Alcian
blue (A) and Muc-2 (B) to detect goblet cells. C. Paraffin sections from uninfected (N), CR-infected (CR) and CR
+DBZ-treated mice were stained for MUC5AC. Bars (A-C) = 150-200μm; n = 3 independent experiments.D.Western
blot showing relative abundance of Hes-1 in crypt extracts prepared from the indicated groups. Bar graph shows fold
change in Hes-1 levels (n = 1). E. Representative immuno-staining for Hes-1 in the sections prepared from the
indicated groups. Bar = 125μm; n = 3 independent experiments. F. Representative fluorescence microscopy to detect
bacteria in the unflushed and Carnoy-fixed colonic tissues of N, CR, CR+DBZ and CR+DBZ+Abx-treated mice via
FISH using a general bacterial 16S probe (TexasRed-Eub338; Bar = 100μm; n = 10 mice/group). DAPI was used as
counter-stain. Two-sided arrows represent the distance between the bacterial staining and the epithelial monolayer.
G-J. Control experiments in uninfected (N) mice treated with DBZ or DBZ+Abx and CR-infected mice treated
with Abx. Indicated analyses including H&E, Alcian Blue and Ki-67 staining (G; bar = 75μm), FITC-Dmeasurement
as fluorescence units (H; �p<0.05), electron microscopy (I) and 16S sequencing at the phyla level (J) were performed.
n = 3 independent experiments.

https://doi.org/10.1371/journal.pone.0206701.g007
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the largest carbohydrate-fermenting machinery. Several Firmicutes, such as Ruminococcus

intestinalis, R. gnavus and R. flavefaciens also express>100 carbohydrate degrading enzymes

per genome and are capable of digesting mucin glycans [48]. Members of Proteobacteria, such

as Enterobacteriaceae in contrast, have limited ability to degrade intestinal mucins. Among

Actinobacteria, several Bifidobacterium spp. are specialized at fermenting complex fucosylated

oligosaccharides [49] while A.muciniphila, a member of the Verrucomicrobiota phylum, is

another microbe specialized in the utilization of intestinal mucins as carbon source [50]. We

discovered significant loss in Bacteroidetes while Proteobacteria and Verrucomicrobiota phyla

showed prominent increases in the CR+DBZ group. In particular, we saw A.mucinophila to

increase significantly and coincide with changes in mucus composition and microbial dysbio-

sis. Earle et al., using imaging methods, recently showed a bloom of the Akkermansia popula-

tion in mice following a depletion of microbiota accessible carbohydrates, resulting in a

thinner mucus layer in the distal colon [51]. Another study similarly observed Akkermansia to

increase markedly after DSS treatment [52], while this phenomenon was not always reproduc-

ible in other studies [53]. One could speculate that the thickness of the mucus layer and the

observed low-grade inflammation in the DSS mice may negatively influence A.muciniphila

colonization. Similarly, Ganesh BP et al. [54] also observed increased A.muciniphila during

Salmonella Typhimurium infection. It is interesting that A.muciniphila is a commensal bacte-

rium in the mammalian gastrointestinal tract belonging to family Verrucomicrobiaceae that

adheres to the mucus layer and has an important role in maintaining gut barrier function [50,

55, 56]. Support for the beneficial effect of Akkermansia on colitis comes from the observation

that extracellular vesicles from A.muciniphila were found to protect against the DSS-induced

phenotype [53]. In most human studies, a depletion of A.muciniphila is observed in IBD

mucosa and in fecal samples from ulcerative colitis patients [57, 58]. It is therefore probable

that altered lumenal/mucosal microenvironment may convert A.muciniphila into a potential

pathobiont that further influences inflammatory signaling. Regardless of whether it promotes

barrier disruption and colitis or maintains physiological mucus production in the gut, the

impact of mucin carbohydrate on microbiota changes merits further investigation.

Although tight junctions efficiently restrict most microbes from penetrating into deeper tis-

sues and contain the microbiota, some pathogens have developed specific strategies to alter or

disrupt these structures as part of their pathogenesis, resulting in either pathogen penetration

or consequences such as diarrhea. Since delineating the strategies that microorganisms use to

regulate the functions of tight junctions is paramount to understanding the role of microbiota

in disease pathogenesis, we analyzed the contribution of Notch signaling in the maintenance

of tight and adherens junction proteins in our model. In this report, we show that during C.

rodentium infection and in the absence of Notch signaling, there is impairment of TJ and AJ

proteins which leads to increased permeability and hence the exposure of luminal contents to

immune system eliciting inflammation [59]. Under physiological conditions, the gastrointesti-

nal epithelium expresses TJ proteins that prevent luminal antigens from penetrating into

deeper tissues. However, various pathological insults, including enteric pathogens, may com-

promise this function. For example, TJs are altered during infection with C. rodentium result-

ing in a functionally deficient epithelial cell barrier [60]. Giardia lamblia [61],Helicobacter

pylori [62], and rotavirus [63] have all evolved the ability to disrupt intestinal epithelial TJs,

leading to increased paracellular permeability. Similarly, extensive in vitro studies have deter-

mined that EPEC is capable of altering TJ integrity and paracellular permeability in cultured

human IECs [64]. In IBD, a dysfunction of AJ proteins has been described and consists of

downregulation of E-Cadherin, which weakens intercellular adhesion and promotes inflam-

matory response [65]. Our studies further add to this discussion by providing insight into the
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role of enteric infection in facilitating intestinal barrier disruption and ensuing inflammation

leading to the development of infectious colitis.

Alterations in gut microbiota and specifically reduced intestinal microbial diversity, have

been found to be associated with chronic gut inflammation in inflammatory bowel disease

(IBD). Specific bacterial pathogens, such as virulent Escherichia coli strains, Bacteroides spp,

andMycobacterium avium subspecies paratuberculosis, have been linked to the pathogenesis

of IBD. Antibiotics may influence the course of these diseases by decreasing concentrations of

bacteria in the gut lumen and altering the composition of intestinal microbiota. Different anti-

biotics, including ciprofloxacin, metronidazole, the combination of both, rifaximin, and anti-

tuberculous regimens have been evaluated in clinical trials for the treatment of IBD [66]. A

combination of metronidazole and ciprofloxacin decreased the intensity of the bacterial

attachment to the colonic mucosa and attenuated inflammation in CR+DBZ+Abx group (Fig

5). Intriguingly, however, the antibiotic cocktail failed to diminish or eliminate the Verrucomi-

crobia phyla that exhibited an almost 2-fold increase in relative abundance following Abx

treatment. Since antibiotics reduce/eliminate key commensal bacteria that provide coloniza-

tion resistance [67], it is tempting to speculate that this may have lowered the threshold

required for Verrucomicrobia phyla to flourish resulting in a 2-fold increase. These studies

underscore the complexity of gut microbiota and suggest a complex regulatory mechanism

worthy of future investigations. In general, however, the protective role of Abx was evident

since there were increased survival rates, decreased proinflammatory cytokines and immune

cells in the colonic mucosa. The protective role of metronidazole or the combination of metro-

nidazole and ciprofloxacin in acute DSS colitis model has been shown by several other studies

[68, 69].

Previous studies have investigated therapy based on stem cell administration for the treat-

ment of IBD-like diseases in mice. Amelioration of experimental colitis has been described

using hematopoietic stem cells [70], mesenchymal stem cells [71] and colonic stem cells [72].

In response to Abx treatment, we observed a significant increase in Dclk1+ cells that correlated

with increased animal survival and amelioration of colitis-like symptoms. How increases in

endogenous Dclk1 contribute towards disease amelioration and survival remains to be deter-

mined and is currently being investigated in our laboratory.

In conclusion, we report a novel mechanism wherein, enteric infection coupled with

chronic Notch pathway inhibition is associated with changes in mucus composition, bacterial

dysbiosis and loss of tight junction integrity that leads to severe inflammation and colitis. Our

findings also suggest that controlled use of antibiotics may alleviate gut dysbiosis but may not

be sufficient to promote complete mucosal recovery.
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