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Abstract: Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin
(Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with
life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and
neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx,
whereas the role of epithelial cells of colon and kidneys in the infection process has been and is
still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel
aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated
extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding
glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer)
and their various lipoforms present in primary human kidney and colon epithelial cells and their
distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely
low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large
resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due
to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes
with a brief outlook on future challenges of Stx research.
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1. Introduction

A wide range of bacterial AB5-toxins is known for a long time having the ability to
enter mammalian cells via protein-carbohydrate interactions videlicet binding of soluble
toxins of the pathogen to glycans exposed on the mammalian cell surface [1,2]. Numerous
glycan-recognizing harmful proteinous virulence factors (by definition lectins) produced
by pathogenic bacteria have been scrutinized in the past decades upon their discovery, and
their molecular mechanisms by which they cause diseases have been largely unraveled
since that time [3–6]. Examples of renowned sugar-binding AB5 toxin specimens are the
long known cholera toxin of Vibrio cholerae [7–9], the heat-labile enterotoxins of Escherichia
coli [10–12], subtilase cytotoxin from E. coli [4,13–18], and Shiga toxins (Stxs) from Shigella
dysenteriae and E. coli [19–22].

Human endothelial cells of various endothelial beds are well known targets of Stxs,
while the role of kidney and colon epithelial cells in EHEC-caused disease is still a matter
of debate. In this review we will report on the state of research regarding the interaction of
the two human-pathogenic Stx-subtypes Stx1a and Stx2a with human kidney and colon
epithelial cells putting the focus on primary human renal proximal tubular epithelial cells
(pHRPTEpiCs) and primary human colon epithelial cells (pHCoEpiCs). The lower case
letter “p” stands for “primary” and emphasizes the fact that normal healthy cells are
covered in this review, whereas tumor-derived epithelial cells and virus-transformed or
otherwise immortalized epithelial cells are not considered here.
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The first part what we report about is the clinical impact of enterohemorrhagic E. coli
(EHEC), the human-pathogenic subgroup of Stx-producing E. coli (STEC). The subsequent
explanations of the Stx-mediated cytotoxic activity refer particularly to kidney and colon
epithelial cells and include novel findings regarding the involvement of microvesicles
in Stx-associated infection and the vesicular transport of Stx in the human bloodstream
backed up with the latest publications. Next we provide some general remarks on the
structures of Stx and glycosphingolipids, followed by a section in which the detection of Stx-
binding glycosphingolipids and their detailed lipoforms determined in pHRPTEpiCs and
pHCoEpiCs is dealt with based on very recent own investigations. This part of the review
is supplemented with few short comments to the highly efficient procedure for affinity-
purification of Stxs and their mass spectrometric identification by diagnostic ions. We
then set out the occurrence of Stx receptor glycosphingolipids in membrane microdomains
(known as lipid rafts) of pHRPTEpiCs and pHCoEpiCs, respectively, using detergent-
resistant membranes as analogs of the liquid-ordered membrane phase including also some
general remarks on the use of this biochemical methodology. The descriptions continue
with comparative data on the different susceptibility of pHRPTEpiCs and pHCoEpiCs
toward the human-pathogenic Stx1a and Stx2a subtypes. This section is followed by a
presentation of the current status regarding therapeutic options of EHEC infections. The
review closes with an outlook on groundbreaking improvements obtained by imaging mass
spectrometry showing the potential of the in situ visualization of the various lipoforms
of all kinds of lipids in tissue sections, and the increasing number of newly developed
glyco-derivatives and promising alternative strategies aimed at neutralization or at least
mitigation of the cytotoxic action of Stxs.

2. Clinical Impact of Colonic EHEC Infections, Stx-Mediated Extraintestinal
Complications, and Organ Damage

This section provides a survey of the clinical impact of EHEC infections including the
pathogen’s epidemiology and virulence potency. The topics described first are the colo-
nization of EHEC bacteria in the gut and new insights about the release of EHEC-derived
virulence factors entrapped in or associated with outer membrane vesicles with focus on
Stx. New findings about the possible mode(s) of translocation of Stx from the gut into the
blood and the toxin’s transportation in the circulation delineate the penultimate aspects of
this section, which closes with brief remarks of EHEC-caused extraintestinal complications.

2.1. EHEC Zoonotic Infections and Reservoir

Humans usually become infected through the ingestion of food (mostly ground beef,
leaf vegetables, and sprouts) or water contaminated with EHEC derived from ruminant
feces [23–26]. In the past few years, however, a number of new animal species from wildlife
and aquaculture industries have also been identified as unexpected origins of zoonotic
STEC infections [27]. Among ruminants, cattle are the environmental priority reservoir
of EHEC with shedding varying greatly among individuals and highly variable, but
unpredictable pathogenic potential for humans [28–32]. Importantly, an animal reservoir of
the Stx-producing 2011 German E. coli O104:H4 outbreak strain is presently unknown. Pigs
and poultry are not considered to be the source of EHEC although conflicting evidence
on the role that swine play in the transmission of STEC to people and human illness
requires further evaluation [33,34]. Interestingly, the Stx2e subtype is responsible for
porcine edema disease, which is the sole disease caused by STEC in animals [35–37]. EHEC
can colonize the animals for several months serving as gene reservoirs for the genesis
of highly virulent zoonotic EHEC strains questioning our current understanding of the
molecular basis of adaptation of this important E. coli pathovar [38,39]. Whether cattle
represent asymptomatic carriers as persistent colonizers of the gut without any signs of
infections or not is a matter of debate [25]. Upon colonization of the ruminant large intestine,
EHEC may especially target follicle-associated epithelial cells in the terminal rectum and
induce attaching and effacing (A/E) lesions, mediated by proteins released by the type III
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secretion system (T3SS) and the outer membrane protein intimin [40]. Evidence has been
provided that many EHEC strains, which cause A/E lesions or at least carry genes for this
trait, are diarrheagenic pathogens of calves [41]. Furthermore, cattle-derived peripheral
and intestinal lymphocytes, certain other colonic epithelial cells and macrophage-like cells
have been identified in the past as possible targets for EHEC [25,42–45]. Furthermore, the
Stx receptor glycosphingolipids of the globo-series (more precisely dealt with in Section 4)
have been detected in the bovine small and large intestine as well as discrete cell subsets in
the bovine kidney and submucosal lymphoid cells, but not in the vasculature [46]. Thus,
the proven absence of Stx receptors on bovine vascular endothelium is possibly the reason
for the apparent resistance of cattle to systemic effects of Stx and provides the explanation
for the low damage potential of Stx toward bovine aortic endothelial cells [47] known to
harbor only traces of Stx glycosphingolipid receptors [48]. From this it can be concluded
that the diverse cellular repertoire of Stx receptors might be the reason for the distinct
Stx-mediated effects in cattle versus those implicated in EHEC-caused human diseases [25].

2.2. Epidemiology and Virulence Potency of EHEC

An estimated 470 STEC serotypes have been identified, which can produce one or
more of the 12 known Stx subtypes [49]. EHEC isolates produce mostly Stx1a and/or
Stx2a subtypes (for Stx structure see Figure 1) corresponding to the toxins in the literature
often incorrectly designated as Stx1- and/or Stx2-subtypes or named as vero(cyto)toxin 1
(VT1) and VT2, or Shiga-like toxin (SLT1) and SLT2, respectively (for accurate designation
of the various Stx-subtypes refer to Scheutz and collaborators) [50]. The well-known
Stxs released by E. coli O157:H7 and other serotypes are currently the best characterized
virulence factors of EHEC strains. E. coli O157:H7 is the most frequently identified EHEC
serotype in patients with HUS worldwide and the number of STEC serotypes that cause
human illness is probably higher than 100 [25,49,51–53]. However, in 2011 Germany
experienced the historically largest clonal outbreak with an Stx-producing E. coli strain
of O104:H4 serotype ever recorded spreading to Northern Europe and illustrating the
emerging importance of this non-O157 EHEC strain documented with 855 HUS cases and
53 deaths [54–61]. Although serotype information is useful in outbreak investigation and
surveillance studies, it is not a reliable means of assessing the human health risk by a
particulate STEC serotype [49].

The clinical significance with regard to the risk of developing severe diseases as
a consequence of an EHEC infection varies considerably with the different Stx1- and
Stx2-subtypes [20,62–64], which are associated with the EHEC-caused hemolytic-uremic
syndrome (HUS) to varying degrees [65–68]. Among the various subtypes, Stx2a is con-
sidered to be the epidemiologically more important one than Stx1a with respect to the
development of HUS [69]. E. coli O157:H7 strains harboring the stx2a gene exhibit higher
virulence potency and are more frequently associated with HUS [70]. In general, it was
shown that patients infected with EHEC strains carrying stx2a as the sole stx gene, have
been found to develop HUS significantly more frequently than those infected with strains
harboring stx1a only or stx1a together with stx2a [65,71]. The reason for differential toxicity
of Stx1(a) and Stx2(a) could be the stronger ribosomal affinity and higher catalytic activity
of the A1 fragment of the A subunit of Stx2(a) compared to Stx1(a) (for Stx structure see
Figure 1 in Section 3) [72]. Last but not least, it should be noted that the stx2a gene is most
often present in STEC strains positive for the locus of enterocyte effacement (LEE) and
has consistently been associated with HUS [49]. It is assumed that the Stx genotype and
perhaps known and/or yet unknown additional virulence factors rather than the amount of
Stx or the in vitro cytotoxicity may correlate with the appearance of HUS [73]. However, the
importance of the Stx amount in the development of HUS seems to be underestimated, be-
cause a combination of both criteria, namely the Stx genotype and the Stx production level,
is more likely to contribute to EHEC pathogenicity. Studies showed that hypervirulent
lineage of EHEC O157:H7 (clade 8) carried an Stx2a phage subtype conferring the highest
Stx2a production to the host strain [74] and the types of Stx phage replication proteins,
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which influence Stx production, correlated with EHEC virulence potential [75]. Further-
more, one must be aware that some serotypes of EHEC can produce additional virulence
factors besides Stx including cytolethal distending toxin [76–81], EHEC hemolysin [82–84]
and subtilase cytotoxin [4,15–18,85–88], which might have a cumulative effect as single
compounds or as “cocktails” on Stx-mediated cellular injury.

2.3. EHEC Colonization of the Gut

EHEC can colonize the human intestinal tract being responsible for severe intesti-
nal illnesses [89–91]. Moreover, EHEC affect the interaction between the host and the
commensal microbial communities and influence the diversity of the indigenous gut
microbiota [92–97]. In the gut, EHEC induce A/E lesions at the apical surface of entero-
cytes of the host colon [98,99]. The induction of A/E lesions is mediated by virulence
factors of the T3SS located in a genome-inserted large pathogenicity island LEE [100–103].
LEE genes encode for the adhesive protein intimin, its bacterially encoded receptor Tir,
and effector proteins, which are secreted through a T3SS from the bacterial cytosol into
the infected cells [104–106]. Regrouping of the actin cytoskeleton underneath the attached
bacteria accompanies the formation of A/E lesions and results in the formation of pedestals
leading to destruction of the microvilli of the brush border [101,107–109]. Importantly,
an animal infection model that fully recapitulates EHEC-caused human diseases remains
elusive [110].

2.4. Colonic Outer-Membrane Vesicles of EHEC

In the vast majority of E. coli strains the genes encoding for Stxs are located in the genome
of heterogenous lambdoid prophages and are under control of phage genes [111–113]. Upon
induction, the prophage can switch from the lysogenic state to the lytic cycle, accompanied
by production of large amounts of new phage particles, which is tightly linked to synthesis
and subsequent release of Stx when the host cell bursts [114,115]. Spontaneous chemical or
physical induction results in co-transcription of stx-genes together with the late phase genes
of the prophages, and after cell lysis mature bacteriophage particles together with Stx are
released into the environment [116]. Stx-releasing EHEC O157:H7 and O104:H4 strains have
been shown to shed nanoscale outer membrane vesicles (OMVs) into the culture medium.
Such OMVs contain DNA encoding for a number of virulence genes and are loaded with
EHEC-descendent virulence factors including Stx1(a) and Stx2(a) [117,118]. The OMVs of the
O104:H4 outbreak strain and EHEC O157 clinical isolates were found to contain a cocktail of
virulence determinants besides the key OMV component Stx2a and to bind to human intestinal
epithelial cells, followed by internalization and delivery of the OMV-associated virulence
factors to the interior of the cells following different intracellular retrograde routes [118–120].
Such OMVs are important tools for pathogenic E. coli to deliver pathogenic cargoes and injure
host cells, whereby antibiotic-mediated and intrahost milieu-dependent increase of OMV
production has been reported for EHEC O157:H7 and O104:H4 that might worsen the clinical
outcome of infections [121,122]. Originally dismissed as an artifact of the cell wall due to
release of cell debris by decaying bacteria, OMVs are now considered as a general bacterial
secretion system and “long distance weapons” that contribute significantly to the virulence of
pathogenic bacteria [123].

2.5. Translocation of Shiga Toxin and Toxin Carriers in the Circulation

To reach the major target cells especially sensitive endothelial cells lining the microvas-
culature of kidneys and brain, Stx must cross the intestinal epithelial barrier to enter the
blood stream and systemically spread into the circulation. In vitro models have been devel-
oped to study the passage of Stx through polarized monolayers using the human colonic
epithelial cell lines CaCo-2, T84, and HCT-8 [124–130]. Biologically active Stx was found
being capable of moving across the epithelial layer of T84 cells most likely via a transcellu-
lar route without apparent cellular disruption as assessed by measuring transmonolayer
electrical resistance [131]. Using a vertical diffusion chamber system with T84 cells and
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simulating an intestinal microaerobic environment [132], microaerobiosis caused significant
reduction of Stx production and decreased release into the medium, whereas Stx transloca-
tion across the T84 epithelial monolayer was enhanced under microaerobic environment
versus aerobic conditions [133]. Interestingly, the EHEC O157:H7 and O104:H4 serotypes
showed considerable differences in colonization, Stx production, and Stx translocation
suggesting alternative virulence strategies [133].

In the blood stream, binding of Stx toward polymorphonuclear leukocytes may occur,
a process that has been shown by in vitro studies [134,135] and underlined by detection
of the transfer of cell-bound Stx to glomerular microvascular endothelial cells [134]. The
possible functional role of neutrophils as toxin carriers for the transfer of Stx to kidney
endothelium and consequently the development of HUS was further supported by proof
of Stx-loaded polymorphonuclear leukocytes in the systemic circulation of patients with
HUS [136] and of persons among households with children with HUS [137]. Moreover,
the immunodetection of Stxs on circulating neutrophils in the blood of children with HUS
has been identified as a valuable tool for laboratory diagnosis and confirms once again
the role of neutrophils in the pathogenesis of this syndrome [138]. Experiments using
confluent endothelial cell monolayers and Stx-loaded polymorphonuclear leukocytes in
a two-chamber transmigration device that mimics the toxin-induced endothelial injury
further corroborated the role of neutrophils as toxin carriers [139]. Interestingly, confor-
mational changes of Stx due to reduced α-helix content, which may occur throughout
complicated and long-lasting multi-step purification procedures, resulted in loss of neu-
trophil binding of the toxin [140]. Toll-like receptor 4 (TLR4) is the receptor of Stx on human
neutrophils, which is specifically recognized by Stx1(a) and Stx2(a) independently of the
canonical Stx-binding GSL globotriaosylceramide (Gb3Cer) [141]. Gb3Cer (for structure
see Figure 2), the renowned recognition motif of the B pentamer of Stxs, is not expressed
by neutrophils and the interplay between TLR4 and Stx is based on a protein–protein
interaction likely between the Stx A subunit and TLR4. TLR4 facilitates binding of Stx
to colon carcinoma and primary human umbilical vein endothelial cells [142]. Soluble
TLR4 has been reported to infringe the capture of Stx2a by human serum amyloid P
component—a negative modulating factor that specifically binds Stx2a and impairs its toxic
action—allowing the toxin to target and damage human cells suggesting TLR4 as a positive
modulating factor for Stx2a [143]. Among non-cellular blood constituents extracellular
microvesicles shed from platelets and blood cells may participate in the transfer of Stx from
the circulation into the kidney and are suggested to be involved in Stx-associated HUS,
thrombosis, hemolysis and renal failure [144]. Stx can reach the kidney within microvesicles
and only recipient cells possessing endogenous Gb3Cer were found to exhibit cellular injury
after uptake of Stx-bearing Gb3Cer-positive microvesicles [145]. In addition, increasing
evidence has been provided that extracellular Stx2(a)-bearing vesicles released in the blood
of patients by toxin-challenged circulating cells (monocytes, neutrophils, and erythrocytes)
and platelets are key factors in targeting renal endothelial cells and thus in the pathogenesis
of HUS [146,147].

2.6. EHEC-Caused Systemic Complications

EHEC infections of humans start with watery and bloody diarrhea upon coloniza-
tion, may be involved in bowel necrosis, colonic perforation, and intussusceptions and
can manifest as serious hemorrhagic colitis [92,148–152]. The hallmark of hemorrhagic
colitis due to EHEC is the development of bloody diarrhea several days after the onset of
non-bloody diarrhea and abdominal pain. More severe EHEC infections can progress to
systemic life-threatening complications, such as HUS and neurological abnormalities of
the central nervous system [21,62,63,152–155]. Within a week of onset of EHEC-mediated
diarrhea/colitis, HUS develops abruptly and manifests as thrombocytopenia, intravascular
microangiopathic hemolytic anemia, and acute renal insufficiency with kidney as the most
commonly affected organ [152,156–160]. However, serious cerebral dysfunctions such as
altered mental status, seizures, stroke, and coma are most common cause of acute mortality
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in HUS patients of EHEC infections [152,161]. About 70% of patients have been reported
in long-term outcomes of EHEC-HUS that recovered fully from the acute phase, while
the remainder showed varying degrees of post-diarrheal sequelae including proteinuria,
hypertension, decreased glomerular filtration rate, or neurological symptoms [152,162,163].

3. Shiga Toxin Structure and Glycosphingolipid Receptor Lipoforms
3.1. Shiga Toxin Structure

Stx is a classic representative of the AB5 toxins composed of a single A subunit (StxA,
32 kDa), where “A” stands for “activity”, and five identical B subunits (StxB, 7.7 kDa
each), where “B” stands for “binding” [4,20,164] as shown in Figure 1A,B. The catalytic A
subunit of the ribosome-inactivating protein exerts interruption of the protein biosynthesis
at the ribosomes and the pentameric B subunit binds to globo-series GSLs on the target
cell surface [70,165–167]. Stxs are grouped in the two types Stx1 and Stx2, which are
further subdivided into three Stx1 and (at least until now) nine Stx2 subtypes (for correct
nomenclature refer to Scheutz and collaborators) [50]. Stx produced by Shigella dysenteriae
type 1 is almost identical to Stx1 of STEC (differing in only one amino acid in the A subunit),
and Stx1 and Stx2 share 55% amino acid homology [168], more precisely 55% for the A
subunit and 57% for the B subunits [20]. The Stx1 subtypes are Stx1a, Stx1c, and Stx1d,
and those of Stx2 are Stx2a, Stx2c to Stx2i and the recently discovered Stx2k [169]. The
Cooomoassie Blue-stain of SDS-PAGE-separated Stx1a and Stx2a (Figure 1C) shows their
32 kDa-sized A subunits (StxA) and 7.7 kDa-sized B subunits (StxB). Highly purified Stx1a
and Stx2a were obtained by affinity-purification, a highly efficient and practicable procedure
working on small volume scale using Gb3-functionalized magnetic beads which makes
this procedure superior to any time-consuming and labor-intensive multistep column
chromatographies [170]. Subtype verification can be done by mass spectrometry (MS)
detecting and sequencing the Stx1a- and Stx2a-specific diagnostic peptide ions in the m/z
range between 608 and 618 as shown in Figure 1D. Doubly charged ions derived from the
tryptic decapeptides 34YNDDDTFTVK43 of Stx1a at m/z 609.27 and 32YNEDDTFTVK41 of
Stx2a at m/z 616.29 represent diagnostic ions for the respective Stx subtype and are suitable
for a fast and facile MS-based identification of Stx subtypes.
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Stx2a subtype-specific diagnostic peptide ions detected by mass spectrometry (D). The structure
of Stx2a (1R4Q) was drawn with PyMOL Molecular Graphics System, Version 2.0 (Schrödinger,
Synaptic Science, LLC, Bethesda, MD, USA) based on the amino acid sequence published by Fraser
and co-workers [171] deposited in the Research Collaboratory for Structural Bioinformatics (RCBS)
data bank (https://www.rcsb.org/structure/1R4Q, 5 June 2022). The StxA subunits (StxA) and StxB
subunits (StxB) were separated under reducing conditions and stained with Coomassie Blue (C).
Diagnostic peptide ions derived from tryptic digestions of the B subunits of Stx1a and Stx2a, the
peptide positions and their amino acid sequences within the B subunits are highlighted in yellow
(taken from Steil and co-workers [170].

3.2. Glycosphingolipid Receptor Lipoforms

GSLs are amphipathic molecules that are composed of a hydrophilic glycan moiety
and a hydrophobic twin-tailed ceramide (Cer), which is built up from a long-chain amino
alcohol and a fatty acyl chain [172–178]. While sphingosine (d18:1; sphingenine) represents
the most common base as a constant part of GSLs’ ceramide, the fatty acyl chain can vary
in chain length from C14 to C26 leading to various GSL lipoforms. It was the German
physician Johann Ludwig Wilhelm Thudichum, who coined the term “sphingosine” in
1884 for its enigmatic “Sphinx-like” properties [172,179]. In Greek mythology, the sphinx
is a monster that posed a riddle to all it encountered and destroyed those who could not
answer the riddle [179]. Today, (glyco)sphingolipids are the subjects of intense studies
aimed at elucidating their role in the cell membrane, their participation in signaling and
recognition events, and especially their involvement in pathological processes being the
basis for numerous human diseases [172,174–178].

Hemorrhagic colitis and life-threatening HUS caused by EHEC is triggered by Stx, the HUS-
associated key virulence factor of this pathogen. The Stx subtypes Stx1a and/or Stx2a released by
EHEC are of central importance in the development of the disease recognizing globo-series GSLs
on the long known target cells videlicet endothelial cells of kidney and brain [165,166,180]. Stx1a
and Stx2a bind with high priority to globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer),
to much lesser extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1Cer),
and not at all to Gb5Cer (Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer) as exemplarily shown in
Figure 2 for the lipoforms harboring sphingosine (d18:1) and a short-chain fatty acid (C16:0) in
the ceramide portion. It is obvious that the stepwise elongation of the oligosaccharide moiety
of Gb3Cer to Gb4Cer and to Gb5Cer goes along with rapidly decreasing attachment of Stx1a
and Stx2a (Figure 2). The prevalent lipoforms of Gb3Cer and Gb4Cer determined in the past
for primary human endothelial cells of brain and kidney as well as erythroblast target cells are
those with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) [166,181–184].
One of the most obvious “mysteries” is this enigmatic fatty acyl chain heterogeneity with
unknown biological relevance regarding this variability in chain length, in particular the species
with C24:0/C24:1 fatty acyl chains. The involvement of C24:1/C24:0 fatty acid-containing
lactosylceramide (Lc2Cer) in Lc2Cer-mediated superoxide generation and migration in neu-
trophils suggested a functional role of this Lc2Cer lipoform in basic neutrophilic signaling
processes [185]. In addition, interaction between C24 fatty acid-bearing Lc2Cer of neutrophil-
like cells (neutrophilic differentiated HL-60 cells) and the Src family kinase Lyn has been shown
as an instrumental requirement for signaling processes [186]. Furthermore, an interdigitation
between the C24 fatty acyl chain of sphingomyelin in the outer leaflet of the plasma membrane
with the glycerophospholipid phosphatidylserine (18:0/18:1) in the inner leaflet of the plasma
membrane has been described, a process which is known as “handshaking” and hypothesized
as important mechanism in membrane biology [187,188].
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4. Shiga Toxin Receptor Glycosphingolipids of Primary Human Kidney and Colon
Epithelial Cells

The cascade leading from gastrointestinal infection to renal impairment is complex,
with the microvascular endothelium of kidneys and brain being the major histopathological
target [62,166,189–191]. In addition, the observed Stx-mediated toxicity toward developing
erythrocytes (erythroblasts) determined in an ex vivo human erythropoiesis model [181,184]
and the susceptibility of kidney and colon epithelial cells toward Stx make the situation
even more complicated. Data on the GSL profiles with respect to Stx-binding globo-series
GSLs of human kidney and colon epithelial cells have been reported in the past by various
expert research groups. Their preliminary results regarding the structures of the Stx
receptor GSLs published in earlier times were appreciated by citations in our previous
articles, where we addressed this issue and published for the first time the full structures
of Stx receptors of primary human kidney epithelial cells [192,193] and colon epithelial
cells [194]. The GSL profiles of kidney- and colon-derived tumor cell lines or otherwise
immortalized cells are largely influenced by the tumor type itself and/or the developmental
stage of the tumor, where the cell lines descend from, as well as the immortalization vector
(discussed in more detail in the context of cell susceptibility toward Stx in Section 6 below).
These cell lines have been described to express different or even complete opposite GSL
repertoires compared to primary cells, e.g., high Gb3Cer levels versus Gb3Cer negative GSL
profiles, which indicate great discrepancies toward primary cells. This excludes immortal
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cell lines from reliable investigations in comparison to primary cells derived from healthy
human organs reflecting more authentically the human in vivo situation. The advantages
of primary cells have been explained in greater detail in a previous review of Legros and
co-workers [166].

In this section we present in condensed form the recently obtained novel data on the
exact structures of Stx receptor GSLs detected in lipid preparations of primary human
kidney and gut epithelial cells. For unambiguous identification of intrinsic cellular GSLs
and to avoid any artefacts from the use of animal serum (known to contain GSLs, which can
be incorporated from serum in the medium into the cellular plasma membrane), primary
human renal proximal tubular epithelial cells (pHRPTEpiCs) were propagated for the
purpose of GSL characterization with low serum and primary human colon epithelial
cells (pHCoEpiCs) under serum-free conditions (pHRPTEpiCs could not be adapted to
serum-free conditions). The synopsis of orcinol-stained neutral GSLs of pHRPTEpiCs
and pHCoEpiCs together with the thin-layer chromatography (TLC) immunodetection of
Gb3Cer and Gb4Cer with specific antibodies as well as with Stx1a and Stx2a directly on
the surface of TLC plates with separated GSLs is shown in Figure 3. Detailed protocols of
antibody- and Stx-mediated detection of TLC-separated globo-series GSLs using the TLC
overlay technique have been recently published by us [195]. The presentation of the various
lipoforms of Gb3Cer and Gb4Cer of pHRPTEpiCs and pHCoEpiCs completes this section.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 39 
 

 

 
Figure 3. Orcinol stain and anti-Gb3Cer, anti-Gb4Cer, Stx1a and Stx2a TLC overlay assays of the 
neutral GSL preparations of pHRPTEpiCs (A) and pHCoEpiCs (B). Applied GSL amounts of 
pHRPTEpiCs (A) correspond to 5 × 106 cells (orcinol stain), 2 × 106 cells using the anti-Gb3Cer and 
anti-Gb4Cer antibody, respectively, and 6 × 105 cells for the Stx1a and Stx2a TLC overlay assay, 
respectively. Applied GSL amounts of pHCoEpiCs (B) are equivalent to 5 × 106 cells (orcinol stain), 
5 × 105 cells using an anti-Gb3Cer and anti-Gb4Cer antibody, respectively, and 1 × 106 cells for the 
Stx1a and Stx2 TLC overlay assay, respectively. MHCs, monohexosylceramides. For further details 
refer to Detzner and collaborators [193,194], where the data were taken from. 

As suggested from the orcinol-stained GSLs of pHRPTEpiCs (Figure 3A), kidney 
epithelial cells contain almost equal amounts of Gb3Cer, Gb4Cer, and Gb5Cer as prevalent 
GSLs. Anti-Gb3Cer and anti-Gb4Cer TLC overlay assays gave strongly stained double 
bands of Gb3Cer and Gb4Cer, harboring lipoforms with sphingosine (d18:1) and C24 fatty 
acyl chains in the respective upper bands and lipoforms with sphingosine (d18:1) and C16 
fatty acyl chains in the respective lower bands, as the predominant GSL species [193]. 
Stx1a and Stx2a binding assays revealed Gb3Cer as the prevalent receptor for Stx1a and 
Stx2a, whereas Gb4Cer, the low affinity receptor of Stx1a and Stx2a, exhibited only weak 
binding intensity toward the Gb4Cer variant in the upper band where Gb4Cer with 
sphingosine (d18:1) and C24 fatty acid separates. Both Stx subtypes did not show any 
binding toward Gb5Cer. 

The orcinol-stained GSLs in the chromatogram of pHCoEpiCs indicated a very low 
content Gb3Cer but a strongly stained double band of Gb4Cer (Figure 3B). This structure 
prediction corresponds to rather weakly anti-Gb3Cer and clearly anti-Gb4Cer positive 

Figure 3. Orcinol stain and anti-Gb3Cer, anti-Gb4Cer, Stx1a and Stx2a TLC overlay assays of the neutral
GSL preparations of pHRPTEpiCs (A) and pHCoEpiCs (B). Applied GSL amounts of pHRPTEpiCs (A)



Int. J. Mol. Sci. 2022, 23, 6884 10 of 36

correspond to 5 × 106 cells (orcinol stain), 2 × 106 cells using the anti-Gb3Cer and anti-Gb4Cer
antibody, respectively, and 6 × 105 cells for the Stx1a and Stx2a TLC overlay assay, respectively.
Applied GSL amounts of pHCoEpiCs (B) are equivalent to 5 × 106 cells (orcinol stain), 5 × 105 cells
using an anti-Gb3Cer and anti-Gb4Cer antibody, respectively, and 1 × 106 cells for the Stx1a and Stx2
TLC overlay assay, respectively. MHCs, monohexosylceramides. For further details refer to Detzner
and collaborators [193,194], where the data were taken from.

As suggested from the orcinol-stained GSLs of pHRPTEpiCs (Figure 3A), kidney
epithelial cells contain almost equal amounts of Gb3Cer, Gb4Cer, and Gb5Cer as prevalent
GSLs. Anti-Gb3Cer and anti-Gb4Cer TLC overlay assays gave strongly stained double
bands of Gb3Cer and Gb4Cer, harboring lipoforms with sphingosine (d18:1) and C24 fatty
acyl chains in the respective upper bands and lipoforms with sphingosine (d18:1) and
C16 fatty acyl chains in the respective lower bands, as the predominant GSL species [193].
Stx1a and Stx2a binding assays revealed Gb3Cer as the prevalent receptor for Stx1a and
Stx2a, whereas Gb4Cer, the low affinity receptor of Stx1a and Stx2a, exhibited only weak
binding intensity toward the Gb4Cer variant in the upper band where Gb4Cer with sphin-
gosine (d18:1) and C24 fatty acid separates. Both Stx subtypes did not show any binding
toward Gb5Cer.

The orcinol-stained GSLs in the chromatogram of pHCoEpiCs indicated a very low
content Gb3Cer but a strongly stained double band of Gb4Cer (Figure 3B). This structure
prediction corresponds to rather weakly anti-Gb3Cer and clearly anti-Gb4Cer positive
immunostained bands. Stx1a and Stx2a exhibited a weak reaction with the small quantities
of Gb3Cer as expected and recognized only the upper Gb3Cer lipoform with sphingosine
(d18:1) and C24 fatty acid [194]. Similarly, only the upper band of the Gb4Cer doublet
revealed a positive reaction with Stx1a and Stx2a, confirming the well-known low-binding
potency of Gb4Cer toward these two Stx subtypes. Interestingly, pHCoEpiCs did not
produce Gb5Cer, the Galβ3-elongated Gb4Cer structure found in pHRPTEpiCs (for GSL
structures see Figure 2). This feature represents a striking difference between colon and
kidney epithelial cells.

The mass spectra obtained by electrospray ionization mass spectrometry (ESI MS),
showing the various lipoforms of the detected GSLs of the globo-series of pHRPTEpiCs
and pHCoEpiCs, are portrayed in Figure 4A,B, respectively. Prevalent Gb3Cer, Gb4Cer,
and Gb5Cer lipoforms of kidney epithelial cells are those carrying sphingosine (d18:1) as
the constant part of their ceramide cores linked with C16:0, C22:0, or C24:1/C24:0 fatty
acyl chains (Figure 4A). Proofs of the MS1-characterized GSL structures were performed
by collision-induced dissociation experiments (for details refer to Detzner and collabora-
tors [193]). The MS1 spectrum obtained from a GSL preparation of colon epithelial cells is
characterized by a lower extent of fatty acyl chain variability (Figure 4B) when compared to
kidney epithelial cells. The dominant Gb3Cer and Gb4Cer lipoforms of colon epithelial cells
harbor sphingosine (d18:1) as the sole sphingoid base of the ceramide lipid anchors linked
to C16:0, C22:1/C22:0, or C24:1/C24:2 fatty acyl chains, whereas Gb3Cer and Gb4Cer lipo-
forms with C24:0 fatty acyl chains are missing (Figure 4B). Proofs of the MS1-characterized
GSL structures were performed by collision-induced dissociation experiments (for details
refer to Detzner and collaborators [194]). Collectively, pHRPTEpiCs exhibit a more complex
profile with a higher extent of lipoform variability regarding the Stx receptors Gb3Cer and
Gb4Cer and exhibit as a unique feature Gb5Cer, which is undetectable in pHCoEpiCs.
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Figure 4. Overview MS1 spectra of the globo-series GSLs detected in the GSL preparations of
pHRPTEpiCs (A) and pHCoEpiCs (B). The spectra show the various lipoforms of Gb3Cer, Gb4Cer,
and Gb5Cer carrying sphingosine (d18:1) as the sole sphingoid base and variable fatty acyl chains
as indicated. GSLs were detected as monosodiated species using the positive ion mode. The
asterisks mark polyethylenglycols, which appear as serial contaminations in the GSL preparation of
pHCoEpiCs. For further details refer to Detzner and collaborators [193,194], where the data were
taken from.

Interestingly, the Gb3Cer and Gb4Cer lipoforms of primary human kidney epithelial
cells (pHRPTEpiCs) and primary human colon epithelial cells (pHCoEpiCs) as demon-
strated in this review are very similar to those previously determined for primary human
endothelial cells of brain and kidney as well as for erythroblast target cells having Cer
(d18:1, C16:0), Cer (d18:1, 22:0), and Cer (d18:1, C24:1/C24:0) as their common lipid an-
chors [166,181–184]. Thus, functionally different cells, i.e., those lining the blood vessels
and cells of the urinary tract system possess nearly the same collection of globo-series
GSLs. Importantly, globo-series of the uroepithelial system can be abused by uropathogenic
E. coli, which are known to adhere through their PapG adhesins to globo-series GSLs on
the surface of human kidney and bladder uroepithelial cells [196].

5. Liquid-Ordered and Liquid-Disordered Membrane Phases

A fluid mosaic model for the gross organization and structure of proteins and lipids of
biological membranes has been presented by Singer and Nicolson in 1972 [197]. However,
the details of the lateral domain formation in biological membranes remained largely specu-
lative at this time of membrane research. Since this fundamental work, enormous progress
has been made considering the condensing effect of sterols on phospholipids spread as
monomolecular films at the air–water interface and the thermodynamics of sphingomyelin-
cholesterol interactions defining the biophysical model of the liquid-ordered and liquid-
disordered membrane phase [198,199]. An updated model with emphasis on the mosaic
nature of cellular membranes has been created regarding lipid–lipid, protein–protein, and
lipid–protein interactions in the membrane plane as well as cell–matrix, cell–cell, and
cytoskeletal interactions maintaining the unique mosaic organization of cell membranes in
functional, dynamic domains [200–202]. Model membranes including unilamellar vesicles
and lipid bilayers are emerging as essential tools for studying the lateral heterogeneity of
the liquid-ordered and liquid-disordered membrane phase [203]. Importantly, fundamental
similarities of liquid-ordered phase domains in unilamellar vesicles and detergent-resistant
membranes, which are formed at lower temperatures by cooperative interactions of choles-
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terol with saturated acyl chains as well as unsaturated acyl chains in the presence of >25
mol% cholesterol, are known for a long time [204]. Thus, cholesterol exhibits multiple
accommodating interactions with saturated acyl chains and less intensive interactions due
to low miscibility with unsaturated acyl chains and transmembrane proteins [204]. The
assembly of membrane domains with specific lipid and protein compositions regulates
numerous biological processes underlying evolutionary design principles of phase seg-
regation [205,206]. Sphingolipids may take center stage in re-defining their functional
significance in the cholesterol-sphingomyelin-enriched liquid-ordered membrane phase,
and a further type of microdomains termed ceramide-rich platforms with gel-like structure
has been recently postulated offering some fresh view on the membrane architecture [205].
Sphingolipids are substantially involved in the formation of membrane microdomains in
the glycerophospholipid bilayer that acts as a two-dimensional fluid construct allowing
lateral movement of membrane constituents forming the lipid raft concept of membrane
subcompartmentalization [207,208].

5.1. The Lipid Raft Concept

Lipid rafts are nano-scaled, heterogeneous, dynamic domains enriched in cholesterol,
sphingomyelin, and GSLs creating a liquid-ordered phase with properties intermediate
between a gel and fluid phase [199,209–216]. Such clusters of ordered lipids float freely
within the liquid-disordered bilayer of cellular membranes profoundly influencing mem-
brane organization and form dynamic platforms for the regulation of a plethora of vital
cellular functions such as signal transduction, vesicular trafficking, protein processing, and
membrane turnover in biological membranes [217–220].

GSL-cholesterol microdomains have been proposed in early reports to provide plat-
forms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol
(GPI)-anchored proteins and src-family tyrosine kinases [221]. Cross-linking of GSLs as well
as that of GPI-anchored proteins induce a rapid activation of src-family kinases and a tran-
sient increase in the tyrosine phosphorylation of several substrates, suggesting important
roles of GSLs in signal transduction mediated by the microdomains [221]. Such signaling
platforms in the plasma membrane are instrumental for the translation of the extracellular
cues into intracellular signals for gene activation. To this end, different membrane-bound
components need to be assembled in a coordinated manner to exert cellular communication
as it is the case in diverse raft-based signaling pathways of T lymphocytes and natural killer
cells [222]. The structure of lipid rafts is dynamic, resulting in an ever-changing assembly
of membrane constituents with cholesterol as the major compound for formation and
configuration of lipid raft microdomains, which provide signaling platforms capable of acti-
vating both pro-apoptotic and anti-apoptotic signaling pathways [223]. Raft microdomains
exist as caveolae, morphologically recognizable flask-like invaginations, or as less easily
detectable planar forms furthermore characterized by their interaction with and dynamic
rearrangement of cytoskeletal components [224]. The interaction between microdomains
and the underlying cytoskeleton regulates many facets of eukaryotic cellular functions
and cellular adaptation to changing environments. Moreover, many processes necessary
for the correct functions of the nervous system occur in lipid rafts and are dependent on
lipid raft organization [225,226]. Lipid rafts are deeply involved in molecular transcytosis,
a well-known process concerning the transport of metabolites between the apical and
basolateral faces of various cell types, and maintenance of cellular homeostasis [227]. An
increasing body of evidence indicates a substantial role of lipid rafts in the modulation
of immune signaling and its potential to combat autoimmune diseases and inflammatory
disorders [228]. The involvement of lipid rafts and caveolae in endothelial cell membrane
biogenesis and cell response to extracellular stimuli, endothelial cell migration and pro-
liferation as well as angiogenesis and maturation of the blood vessels are key issues in
the organization of the human endothelium lining the different vascular beds [229,230].
The apical cell membrane of absorptive intestinal enterocytes and kidney proximal tubule
epithelial cells is formed as a brush border, composed of regular, dense arrays of microvilli.
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The microvillar surface is organized in cholesterol/sphingolipid-enriched atypical lipid
rafts with specialized functions, which exhibit, in particular those of enterocytes, some un-
usual properties [231]. These include stable rather than transient/dynamic microdomains
resisting solubilization with Triton X-100 at physiological temperature and pleiomorphic,
deep apical membrane invaginations between adjacent microvilli. The architecture of these
rafts supports a digestive and/or absorptive strategy for nutrient assimilation suggesting
lipid rafts as pluripotent microdomains capable of adapting in size, shape, and content to
specific cellular functions [232].

5.2. Lipid Raft Association of Stx-Binding GSLs

It is widely acknowledged that attachment of Stxs to GSLs in the outer leaflet of
the plasma membrane, followed by internalization and retrograde routing of the toxin-
GSL-complex to intracellular targets, is favored by lipid raft-associated GSLs [3,233]. The
arrangement of GSL receptors in lipid rafts has been reported to be a pivotal requirement
for efficient binding and internalization of Stxs [234,235]. Through multivalent binding to
GSLs, Stxs induce lipid clustering and negative membrane curvature, which drives the
formation of inward membrane tubules [236–238]. The presence of the Stx receptor GSL
Gb3Cer in lipid rafts is believed to play a key role in the pathology of HUS since binding of
Stx1a and Stx2a to tissue sections of human renal glomeruli was found detergent-resistant,
whereas Stx binding to renal tubules was detergent sensitive [239,240]. Furthermore, fatty
acid heterogeneity of different Gb3Cer lipoforms may have a functional role regarding the
membrane-organizing principle of lipid rafts and perhaps in the pathogenic outcome of
HUS [234]. Anyway, presence of Gb3Cer within membrane microdomains in glomerular
cells may be the basis for the glomerular-restricted pathology of Stx-induced HUS [234,240].
Another approach indicated the requirement of lipid rafts for the uptake of Stx1(a) across
the apical membrane of Caco-2 cells as previously shown [241], whereby not only presence
of Gb3Cer but also the density of Gb3Cer in lipid rafts may be important for Stx binding as
shown for Vero cells [242].

5.3. Detergent-Resistant Membranes as Membrane Analog Tools

Increased content of cholesterol and sphingolipids in lipid rafts renders such clus-
ters relatively robust against solubilization by non-ionic detergents, allowing isolation
of detergent-resistant membranes (DRMs) and accompanying nonDRMs by sucrose den-
sity gradient ultracentrifugation [243,244]. DRMs and nonDRMs are used in many fields
as equivalents for the liquid-ordered and liquid-disordered membrane phase, respec-
tively [213]. DRMs can readily be prepared and exhibit many properties such as lipid
rafts [245–248]. DRMs have been successfully applied in the analysis of Stx-receptor inter-
actions and retrograde trafficking of the toxin and the association of Stx with DRMs has
been reported as an essential requirement for a cytotoxic effect [242,249].

5.4. Membrane Distribution of Stx Receptor GSLs in pHRPTEpiCs and pHCoEpiCs

With the aim to gain basic knowledge about the membrane distribution of the Stx re-
ceptor GSLs of primary human colon and renal epithelial cells, it makes sense to investigate
the distribution of Gb3Cer and Gb4Cer, the high and low affinity Stx receptor, respectively,
in connection with the “membrane glue” cholesterol of primary human colon and renal
epithelial cells using lipid raft-analog membrane preparations. To this end the distribution
of Gb3Cer and Gb4Cer to DRM (top) and nonDRM (below) fractions obtained from sucrose
gradient preparations of kidney proximal tubular and colon epithelial cells was analyzed
in TLC overlay assays with anti-Gb3Cer and anti-Gb4Cer antibodies, respectively, and the
detection of cholesterol was performed with manganese(II)chloride as shown in Figure 5.
DRMs (F1 to F3) represent the top fractions of the sucrose gradients and those below are
the nonDRMs (F4 to F7), which can be further subdivided into intermediate (F4 to F6) and
bottom fractions (F7 and F8). Gb3Cer and Gb4Cer added up to 78% and 81%, respectively,
in the three DRM fractions (F1 to F3) and to a corresponding lower relative content of 23%



Int. J. Mol. Sci. 2022, 23, 6884 14 of 36

and 19% in the five nonDRM fractions (F4 to F8) of pHRPTEpiCs along with 67% and 33%
of cholesterol in DRMs and nonDRMs, respectively (Figure 5A) [193]. Similar distribution
patterns were obtained in case of pHCoEpiCs with Gb3Cer and Gb4Cer summed up to
80% and 79%, respectively, in the DRM fractions (F1 to F3) and to a related lower relative
content of 20% and 21% in the nonDRM fractions (F4 to F8) of pHCoEpiCs together with
69% and 31% of cholesterol in DRMs and nonDRMs, respectively (Figure 5B) [194].
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Figure 5. Distribution of Gb3Cer, Gb4Cer, and cholesterol to sucrose gradient fractions F1 to F8
prepared from pHRPTEpiCs (A) and pHCoEpiCs (B). Anti-Gb3Cer and anti-Gb4Cer antibodies were
employed for immunostaining and manganese(II)chloride for cholesterol (Chol) detection. Standard
(S) equivalents of 2 µg and 0.2 µg of reference neutral GSLs from human erythrocytes and 1 µg of
reference cholesterol (Chol) were applied as positive controls for the anti-Gb3Cer and anti-Gb4Cer
TLC overlay assay and the cholesterol detection, respectively. DRMs, detergent-resistant membranes.
For further details refer to Detzner and collaborators [193,194], where the data were taken from.

The bar chart depicted in Figure 6 illustrates the distribution of Gb3Cer, Gb4Cer,
and cholesterol to the DRMs and nonDRMs showing a high degree of resemblance of
distribution patterns for the analytes of pHRPTEpiCs (yellow bars) and pHCoEpiCs (brown
bars). The preference of Gb3Cer and Gb4Cer to the DRM fractions, particularly to the
canonical DRM fraction F2, suggests enrichment of the Stx receptor GSLs in the liquid-
ordered membrane phase of lipid rafts. Moreover, Gb3Cer and Gb4Cer together with
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cholesterol can be taken as true microdomain markers not only of the DRM fractions but
also for the liquid-ordered membrane phase of lipid rafts.
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Figure 6. Bar chart illustration of the distribution of Gb3Cer (A), Gb4Cer (B), and cholesterol (C) to
sucrose gradient fractions F1 to F8 obtained from pHRPTEpiCs and pHCoEpiCs. The immunostained
TLC bands of Gb3Cer and Gb4Cer and the cholesterol spots shown in Figure 5 were densitometrically
quantified and normalized for each fractionation to 100%. For further details refer to Detzner and
collaborators [193,194], where the data were taken from.

6. Different Susceptibility of Human Kidney and Colon Epithelial Cells toward Stx1a
and Stx2a

The general susceptibility of primary human renal epithelial cells toward Stx has
been documented in previous reports [250–256]. Evidence has been provided that kidney
epithelium harbors, besides the renal endothelial microvasculature, further targets of Stx
suggesting epithelial contribution to clinical signs of HUS [159,191,257–259] and involve-
ment in Stx-mediated kidney failure as previously shown in a mouse model [260,261].

The situation for colon epithelial cells with regard to Stx-mediated cell-damaging
effects is less clear compared to renal epithelial cells. The basic susceptibility of primary
intestinal epithelial cells toward Stx is considered certain as reported in a number of
publications [89]. However, tumor-derived colonic epithelial cell lines such as Caco-2,
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HCT-8, HT-29 and T84 were predominantly used in most previous studies as epithelium
equivalent, although their susceptibility toward Stx and cellular endowment with Stx
receptors might strongly differ from that of primary colonic epithelial cells [126,262–269].
Of note, despite partly contradictory results in the case of the T84 cell line [126], these
studies were helpful, because they indicated the principal capability of colon cancer cell
lines to produce Stx-binding GSLs of the globo-series and showed susceptibility toward Stx
suggesting colon epithelial cells as possible targets for Stx that may be directly damaged by
the toxin in the intestine. At that time the common assumption was that normal human
colonic epithelial cells lack the Stx receptor GSL Gb3Cer [126,266,270], although contrary
data suggested that Gb3Cer may be present in small quantities in human colonic epithelia,
where it may compete for Stx binding with the more abundant GSL Gb4Cer [268]. In
addition, Stx-binding and presence of Gb3Cer have been detected histologically in normal
intestine [270]. Thus, the existence of the Stx receptor GSLs in primary human colon
epithelial cells has been and may be still a matter of debate [89].

Primary cells in general preserve much better the genetic signature of normal cells
of healthy donors than tumor-descendants isolated from cancer patients. Like other pri-
mary cell types, primary human renal proximal tubular epithelial cells (pHRPTEpiCs)
and primary human colon epithelial cells (pHCoEpiCs) have a limited life span when
propagated in vitro and require certain growth factors and/or other supplements when
compared to unlimited growing immortal cell lines [271,272]. From our side, the number
of passages of primary kidney and intestinal epithelial cells is recommended to be less
than ten passages for physiological experiments. Unambiguous signs of senescence are the
formation of a spindle-like phenotype and/or the loss of the characteristic cobblestone-like
morphology accompanied with a reduced proliferation rate that indicate cellular dediffer-
entiation. Immediately after receipt a master bank of the primary cells should be set up.
Cells at very early passages should be stored as deep frozen aliquots in the gas phase over
liquid nitrogen at approximately −192 ◦C. Cells should be thawed on demand, cultivated
only for the shortest possible period of time and discarded when reaching passage 10 of
cultivation. We used primary human kidney epithelial cells and primary human colon
epithelial cells and summarize comparatively in this section the recently acquired data
about their susceptibility toward the clinically EHEC-HUS-relevant Stx-subtypes Stx1a and
Stx2a [193,194].

Figure 7 shows the course of the survival rates of pHRPTEpiCs from the kidney upon
exposure to increasing concentrations of Stx1a (Figure 7A, left panel) and Stx2a (Figure 7B,
left panel) in comparison to Stx1a- and Stx2a-treated pHCoEpiCs of the colon (Figure 7A,B,
right panel, respectively). A significant initial sensitivity of pHRPTEpiCs toward Stx1a
occurred at a toxin concentration of 100 pg/mL exerting a decrease in the cell survival
rate to 92.1 ± 10.6% as shown in the box plot (Figure 7A). The concentration-dependent
gradually reduced viability of the cells dropped to 12.8 ± 1.9% viability when challenged
with the highest applied Stx1a concentration of 106 pg/mL (equivalent to 1 µg/mL). The
50% cytotoxic dose (CD50) of Stx1a amounted to 1.31 × 102 pg/mL for pHRPTEpiCs. On
the other hand, the course of the cell survival rate showed high tolerance of colon epithelial
cells toward Stx1a with only marginal response to toxin concentrations in the range of 103

to 105 pg/mL (Figure 7A, right panel). Application of the highest toxin concentration of
1 µg/mL of Stx1a resulted in a reduced cell viability of 79.7 ± 5.1%.
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trations of Stx1a (A) and Stx2a (B). The cell-damaging effect was determined with the crystal violet
assay, and the absorption readouts of Stx1a- and Stx2a-treated cells are displayed as box plots. The
extent of cell damage is given as percentage values related to untreated cells, which represent 100%
viable cells. For further details refer to Detzner and collaborators [193,194], where the data were
taken from.

A stepwise rise in the cytotoxic action was detected after exposing pHRPTEpiCs to
Stx2a (Figure 7B, left panel) indicating a beginning toxin-mediated decrease in viability at
an Stx2a concentration of 10−1 pg/mL (90.9 ± 5.6% viability) and a continuing decline to a
final cell survival of 18.3 ± 2.8% when treated with 106 pg/mL (equivalent to 1 µg/mL) of
Stx2a. The CD50 of Stx2a for pHRPTEpiCs accounted for 1.66 × 103 pg/mL. When probing
pHCoEpiCs with Stx2a, a slight susceptibility was recognized for Stx2a corresponding to a
cell survival of 89.5 ± 12.4% upon toxin challenge using the uppermost toxin concentration
of 1 µg/mL applied in this study (Figure 7B, right panel).

In sum, Stx1a exhibited a more than one order of magnitude higher cytotoxic activity
against renal pHRPTEpiCs than Stx2a (CD50 Stx1a of 1.31 × 102 versus CD50 Stx2a of
1.66 × 103 pg/mL) based on the comparison of the 50% cytotoxic doses indicating a more
efficient cell killing rate of Stx1a. In striking contrast, intestinal pHCoEpiCs were largely
refractory in a concentration range of 10−3 up to 105 pg/mL of both Stx subtypes. However,
colonic epithelial cells were not resistant to the toxins showing at least a slight cell damage
upon application of the uppermost concentration of 1 µg/mL of both Stx subtypes applied
in these assays [193,194]. The extremely low susceptibility of primary colonic epithelial
cells suggests a large resilience of the intestinal epithelium against the human-pathogenic
Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer
in colon epithelial cells when compared to the high susceptibility and higher content of
Gb3Cer of primary renal epithelial cells.

7. Therapeutic Options of EHEC Infections

Despite decades of research elucidating the mechanisms of Stx-mediated toxicity, there is
no specific and effective remedy to date for curation of patients suffering from EHEC-associated
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HUS. Therapy mostly relies on supportive intensive care regimens for both EHEC-associated
intestinal and potentially lethal extraintestinal complications [152,160,273–275]. Importantly,
differential features arise in an inconsistent patient population between pediatric and adult
clinical presentation. EHEC-HUS in adults is marked by prevalence of neurological symp-
toms and a poorer prognosis when compared to children having consequences for critical
care management and treatment of the disease that remains a public threat due to lack of a
specific treatment [276]. Although early diagnosis and supportive therapy are essential to limit
complications and supportive care is beneficial for patients and has significantly reduced the
mortality rate [152,160,277], the emergence of new strains with increased aggressive virulence
potential requires clinical and research initiatives of high public health priority using novel
molecular typing systems such as whole genome sequence-based approaches for unravelling
emerging new pathotypes in more detail [59,278–284].

7.1. Application of Antibiotics or Not That’s the Question

The administration of antibiotics in EHEC infections was and remains controversial
because of concerns about triggering HUS by increasing Stx production [285–287]. Stxs
are encoded by genes located on genomes of lambdoid prophages and certain antibiotics
stimulate their induction leading to enhanced production of Stxs [288]. Although numer-
ous studies have reported that antibiotics enhance the severity of disease symptoms and
increase the risk of progression to HUS development, further corroborated by in vitro an-
tibiotic studies using certain EHEC strains, others have reported that antibiotics do not have
any effect or can even reduce the rate of HUS development in EHEC infections [289–296].
The current data situation leads to the conclusion that the infecting EHEC strain, the type
of antibiotic, and the timing of its application appear to significantly affect the development
of HUS in EHEC-infected patients [285].

7.2. Development of Non-Antibiotic Therapeutics

In recent years, a variety of alternative treatment approaches and therapeutic inter-
ventions has been developed and evaluated in vitro, in animal models and clinical trials
for preventing EHEC-associated HUS [297,298]. The majority of possible non-antibiotic
therapeutics has been or is in the developmental stage aimed to neutralize Stx, to prevent
toxin adhesion, to block receptor biosynthesis, and to interfere trafficking, processing, and
activity of the toxin within the cell [6,156,293,299–301]. Since Stx induces the secretion
of inflammatory cytokines and chemokines from susceptible cells that contribute to the
pathogenesis of HUS, these compounds are useful indicators of disease activity as well as
predictors of disease progression and candidates for an anti-inflammation therapy as an
additional treatment regimen for severe E. coli-associated HUS [302].

7.2.1. Inhibitors of Glycosphingolipid Biosynthesis and Stx-Neutralizing Glycoconjugates

Ceramide is the hydrophobic backbone of all complex amphipathic glycosphingolipids
(GSLs). Its initial glycosylation forming glucosylceramide (GlcCer) is the first committed
and rate-limiting step in the biosynthesis of GSLs with GlcCer core leading to the various
GSL-families including the globo-series [303]. A number of ceramide analogs such as
classical D-PDMP and many others has been scrutinized in the past as potential inhibitors
of GlcCer synthase mainly developed for the treatment of human lipid storage diseases
named as substrate reduction therapy [304–308]. The capability of traditional and novel
GlcCer synthase inhibitors to reduce the cellular level of the Stx receptor Gb3Cer in various
cell types including human epithelial and endothelial cells [183,309] and to prevent the
cytotoxic action toward this way Gb3Cer-truncated target cells has expedited an additional
focus on the Stx receptor Gb3Cer as therapeutic target in Stx-mediated HUS. An example
of a newly developed GlcCer-synthase inhibitor is the ceramide analog Eliglustat [308],
also primarily developed as an alternative approach to the enzyme replacement therapy of
patients suffering from GSL storage diseases [310], effectively protects human renal tubular
epithelial cells from Stx-caused cellular damage due to reducing the cellular Gb3Cer levels
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suggesting its potential as Stx protector [311,312]. The prevention of Gb3Cer-synthesis
and neutralization of Stx-mediated cytotoxic action by the ceramide analog C-9, shown for
primary human renal epithelial cells in vitro and an in vivo animal HUS model in rats offer
a further option for treatment of EHEC-HUS [255,313].

Aligned to the opposite site of an amphipathic GSL from the lipid anchor, modifications
of the hydrophilic glycan represent a further approach to impede or prevent Stx binding.
Such metabolic modification can easily be done and has been reported for feeding of
in vitro propagated cells with 2-deoxy-D-glucose or 2-fluoro-2-deoxy-D-glucose revealing
protective effects of both compounds against Stx [314,315]. 2-deoxy-D-glucose becomes
incorporated into the carbohydrate moiety of GSLs and protects cells against Stxs [314],
while 2-fluoro-2-deoxy-D-glucose inhibits GlcCer biosynthesis thereby reducing the cellular
levels of GSLs as shown for various cell types including human brain microvascular
endothelial cells. This glucose-modification is much more efficient in protecting cells against
Stx when compared to 2-deoxy-D-glucose [315]. Furthermore, the clinically approved
glucose-derivative Miglustat has been shown being effective in human endothelial and
epithelial cells to decrease the level of Stx receptor Gb3Cer suggesting its application
as a feasible strategy to protect kidney tissues from Stx-mediated kidney injury [316].
Collectively, the enumerated ceramide analogs and glucose-derivatives suggest potential
clinical applications for Stx-caused diseases.

Since protein toxins of enterotoxic bacteria have proven to be attractive targets for
drug development [300,317], numerous therapeutic glycoconjugates based on Stx-specific
analogs of the glycan receptor Gb3 have been developed [297,318]. Synsorb Pk [319],
Starfish [320], Daisy [321], SUPER TWIGS [322,323], polymeric acrylamide-Gb3 conju-
gates [324], Gb3 (glycan) encapsulated gold nanoparticles [325,326], neoglycolipid-spiked
glycovesicles [327,328] or engineered probiotics expressing Gb3 analogs on their sur-
face [329] are examples of glycoconstructs, developed for neutralization of Stxs as described
more precisely in a nice and highly recommended recent review [297]. However, although
effective in vitro, potential Stx-binding neutralizers have failed in vivo showing no benefit
in clinical trials and none of them has received clinical approval to date [191,292].

7.2.2. Monoclonal Antibodies

Despite a tremendous increase of knowledge has been gained with regard to the
generation of neutralizing humanized (chimeric) or human monoclonal anti-Stx antibodies
to combat Stx-mediated diseases [330–332], so far no monoclonal antibody against Stx1(a)
or Stx2(a) has received clinical approval [297,333]. The broadly administered anti-C5 mon-
oclonal antibody Eculizumab during the 2011 outbreak of an O104:H4 EHEC strain in
Germany gave an equally good outcome of treated versus untreated patients and pointed
to an advantageous use, at least for severe cases [334]. This anti-C5 complement blocker
has obviously made the difference between favorable or detrimental outcome [334,335].
The administration of Eculizumab in EHEC-associated HUS with neurological involve-
ment indicated that early use of Eculizumab appeared to improve neurological outcome,
whereas late treatment seemed to show less benefit suggesting advantage of prophylactic
Eculizumab therapy before development of neurological symptoms [336]. Thus, treatment
of EHEC-HUS patients with Eculizumab has shown positive clinical improvement and
proven effective in some cases [191,337,338].

7.2.3. Further Alternative Therapeutic Concepts

Among further alternative therapeutic strategies, a promising approach is the use
of probiotic microorganisms showing antagonistic effects on EHEC strains of various
serotypes [292,339–341]. Suitable vaccine candidates against EHEC infections are polysac-
charide conjugates such as constructs built up from E. coli O157 or E. coli O145 polysaccha-
rides linked to bacterial carrier proteins offering high prospects for effective preventive
treatment for future clinical studies [342,343]. Phage therapy using specific phages against
E. coli O157:H7 has to be taken into consideration as well. More than 60 specific phages are
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known so far and in vitro experiments have been successful in elimination or reduction of
E. coli O157:H7 numbers, but in vivo experiments have not been as promising [344]. The
proof or principle of the novel antibiotic-peptide wrwycr has been reported effective in
killing of EHEC in synergistic combination with antibiotic treatment without enhancing
release of Stxs. This strategy offers a potential new candidate for a preventive antimicro-
bial for EHEC infections [345,346]. The retrograde transport of internalized Stx directly
from early endosomes to the Golgi apparatus is an essential step to bypass degradation
in the late endosomes and lysosomes, which then continues to the endoplasmic reticu-
lum before translocation of the enzymatically active moiety to the ribosomal target in the
cytosol [167,301,309,347–350]. This renders the crucial retrograde transportation route an
ideal attack point for small molecule inhibitors of toxin trafficking as possible therapeutics
acting at the endosome/Golgi interface [351,352]. Substances that interfere with intracellu-
lar trafficking inhibiting the transport of Stx have been summed in recent reviews [6,297]
and will not be discussed further at this point.

7.2.4. Current Situation

A comprehensive study that summarized the results of clinical trials for preventing
EHEC-associated HUS including antibiotics, the Stx inhibitor Synsorb Pk, and a monoclonal
antibody against Stx (Urtoxazumab) revealed no firm conclusions about the efficacy of these
interventions given the small number of included studies and their small sample sizes [298].
Collectively, despite significant advances in understanding the molecular mechanisms
of Stx being imperative for the design of appropriate drugs or adjunctive therapeutics, a
rationally designed drug that targets Stx has yet not reached the market [191,297,298].

8. Outlook

Understanding of the Stx-mediated cellular injury requires basic knowledge on the
molecular mechanisms triggering the interaction between the toxin and its receptor molecules.
The GSL receptors of Stx exhibit a huge variety regarding their lipid membrane anchor
videlicet the ceramide moiety. The functional impact of the various lipoforms carrying C16
up to C24 fatty acyl chains and their enrichment and/or specific localization in a certain lipid
environment in the liquid-ordered membrane phase known as lipid rafts are still enigmatic.
This applies equally to endothelial cells [166] and epithelial cells as summarized in this
review exhibiting a high variability of Gb3Cer and Gb4Cer species with Cer (d18:1, C16:0),
Cer (d18:1, C22:0/C22:1), and Cer (d18:1, C24:0/C24:1). The biological function of this
ceramide heterogeneity is so far largely unclear and remains to be resolved in the future.
However, from our data it is tempting to speculate that the long-chain C24 fatty acyl chains of
Gb3Cer and Gb4Cer found in human endothelial cells [166], human erythroblasts [181,184],
and human kidney and colon epithelial cells [192–194] may be involved in a molecular
interdigitation of outer membrane acyl chains with inner membrane phospholipids, a process
known as “handshaking”. However, this molecular interaction has been so far described for
sphingomyelin with C24 fatty acyl chain located in the outer layer of the plasma membrane
with the glycerophospholipid phosphatidylserine (18:0/18:1) in the inner layer of the plasma
membrane [187,188]. Collectively, unravelling the functional role of the diversity of GSL
lipoforms in toxin-membrane interactions and their molecular arrangement in native lipid
rafts of the plasma membrane still remain challenging tasks for glycobiologists and requires
further in-depth investigations in the future to solve these puzzles.

Groundbreaking advancements achieved with newly developed matrix-assisted laser
desorption/ionization mass spectrometry (MALDI MS) imaging technologies allows for label-
free in situ detection of glycolipids and further lipids in tissue or organ sections [353–356].
MS imaging can simultaneously record the lateral distribution of numerous biomolecules
in tissue slices [357] and provides precise structural details of membrane constituents on
the cellular niveau with subcellular high resolution in mass and space at the single-cell
level [358–361]. On-tissue enzyme treatment can overcome ion suppression effects of bulk
phospholipids for enhanced MS imaging of GSLs [362] and chemical modification has been
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demonstrated to allow the localization of carbon-carbon double bonds in phospholipids and
glycolipids [363,364]. Moreover, imaging mass spectrometry has the power of a diagnostic tool
for resolving lipid-related pathological conditions, which can be combined with conventional
(immuno) histochemical staining and immunofluorescence microscopy to increase our under-
standing of a pathological development versus the healthy state [365–367]. Thus, the analysis
of glycolipids in tissue sections of kidney, brain, or cancer tissue can shift our understanding
of human health to a higher level [367,368]. Further aspects of future MS research are geared
to the development of three-dimensional MS imaging aimed at studying the topographic
distribution of compounds on irregular 3D surfaces with subcellular resolution and to unravel
lipid heterogeneity of cell states during differentiation by coupling high-resolution mass
spectrometry imaging to single-cell lipidomics to gain new insights into the self-organization
of multicellular systems [369–372].

Progress in understanding the protein-carbohydrate dependent pathogen–host in-
teraction is the basis for the manufacture of novel glycotherapeutics basically postulated
by the pioneers of glycoscience more than two decades ago [373,374]. Carbohydrate-
based multivalent inhibitors have already been created in the early phase of glycore-
search and in the following years with a few showing the potential to competitively
inhibit the binding of Stx to glycosides with Gb3-core and to neutralize its cytotoxic
activity in vitro [320,327,328,375–379]. Real-time interaction analysis of GSLs in model
membranes and membrane preparations with lectins of all kinds, including Stxs and viral
hemagglutinins, employing the recently applied surface acoustic wave (SAW) technol-
ogy [170,380,381] combined with inhibition assays using, e.g., multivalent glycan deriva-
tives, has a promising perspective for the development of anti-adhesion therapeutics. On
the other hand, GSL reduction therapy based on GSL-lowering agents previously devel-
oped for the treatment of GSL storage disorders (glycosphingolipidoses) [306], can be used
to prevent and/or combat infections [382]. Noteworthy in this context, selective elimination
of uropathogenic E. coli, endowed with type 1 fimbriae carrying the mannose-binding FimH
adhesin, from the intestine using a high-affinity inhibitory mannoside (M4284), has been
shown as a functional blocker of the pathogen [383], already predicted by Nathan Sharon
more than 15 years ago [376]. However, current approaches to the treatment of diseases
that have their origin in the attachment of pathogens and/or their virulence factors to
certain glycan structures exposed on the surface of target cells are still in their infancy.

Alternatives to competitive Stx blockers are small molecules that act directly through
anti-toxin properties or indirectly on the toxin by preventing toxin expression and are in
the sights of new research approaches [6,384]. Moreover, certain cell permeable agents are
capable to intracellularly interfere with the retrograde cargo of Stx and can efficiently target
the toxin’s early endosome-to-Golgi transport acting as inhibitors of the trafficking step
that makes them potential therapeutics [351].

The role of epithelial cells of colon and kidneys in the infection process of EHEC
and particularly their involvement in the development of HUS are currently discussed
intensively. We have therefore given priority in this review to summarizing our latest
findings on the existence and relative abundance as well as the exact structures of the
distinct Stx receptor GSLs in primary human kidney and colon epithelial cells. Both
epithelial cell types possess a set of various lipoforms of Gb3Cer (high-affinity Stx receptor)
and Gb4Cer (low-affinity Stx receotor) each harboring ceramides with sphingosine (d18:1)
as the sole sphingoid base and variable fatty acyl residues with C16, C22 and C24 chain
length. However, the main differences were the low level of Gb3Cer in primary colonic
epithelial cells when compared with primary renal epithelial cells and the presence of
Gb5Cer in kidney epithelial cells, while colon epithelial cells are lacking this GSL. While
the role of Gb5Cer is irrelevant for Stx-GSL interaction—Stx1a and Stx2a do not bind to
Gb5Cer—The low content of Gb3Cer correlated with low sensitivity of colonic epithelial
cells toward both HUS-associated Stx subtypes. This fact may explain the resilience in
situ of the colon epithelium toward EHEC-released Stx in the intestine, whereas strong
Stx-mediated cellular damage of the renal epithelium correlates with the high content of
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globo-series GSLs particularly of Gb3Cer and thus with the clinical signs of kidney damage
in the manifestation of HUS. Gb3Cer and Gb4Cer mainly distributed among detergent-
resistent membranes used as lipid raft-analog supramolecular structures, suggesting a
functional role of both Stx receptor GSLs in the liquid-ordered membrane phase of the
plasma membrane of epithelial cells in the kidney and the colon. These findings may help
to clarify some critical points that were (and might still be) a matter of debate regarding the
involvement of renal and colonic epithelial cells in the development of HUS. In conclusion, it
should be noted that the “traditional” supportive therapy of HUS can hopefully be replaced
in the near future by alternative treatment approaches including the application of anti-Stx
monoclonal antibodies, toxin receptor analogs, or vaccination strategies, which have been
evaluated so far using in vitro and animal models, of which a few have progressed to the
clinical trial phase [297].
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364. Bednařik, A.; Preisler, J.; Bezdeková, D.; Machálková, M.; Hendrych, M.; Navrátilová, J.; Knopfová, L.; Moskovets, E.; Soltwisch,
J.; Dreisewerd, K. Ozonization of tissue sections for MALDI MS imaging of carbon-carbon double bond positional isomers of
phospholipids. Anal. Chem. 2020, 92, 6245–6250. [CrossRef] [PubMed]

365. Lalowski, M.; Magni, F.; Mainini, V.; Monogioudi, E.; Gotsopoulos, A.; Soliymani, R.; Chinello, C.; Baumann, M. Imaging mass
spectrometry: A new tool for kidney disease investigations. Nephrol. Dial. Transplant. 2013, 28, 1648–1656. [CrossRef] [PubMed]

366. Yalcin, E.B.; De la Monte, S.M. Review of matrix-assisted laser desorption ionization-imaging mass spectrometry for lipid
biochemical histopathology. J. Histochem. Cytochem. 2015, 63, 762–771. [CrossRef]

367. Bien, T.; Perl, M.; Machmüller, A.C.; Nitsche, U.; Conrad, A.; Johannes, L.; Müthing, J.; Soltwisch, J.; Janssen, K.P.; Dreisewerd, K.
MALDI-2 mass spectrometry and immunohistochemistry imaging of Gb3Cer, Gb4Cer, and further glycosphingolipids in human
colorectal cancer tissue. Anal. Chem. 2020, 92, 7096–7105. [CrossRef]

368. Kettling, H.; Vens-Cappell, S.; Soltwisch, J.; Pirkl, A.; Haier, J.; Müthing, J.; Dreisewerd, K. MALDI mass spectrometry imaging of
bioactive lipids in mouse brain with a Synapt G2-S mass spectrometer operated at elevated pressure: Improving the analytical
sensitivity and the lateral resolution to ten micrometers. Anal. Chem. 2014, 86, 7798–7805. [CrossRef]

369. Kompauer, M.; Heiles, S.; Spengler, B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical
topography of nonflat surfaces. Nat. Methods 2017, 14, 1156–1158. [CrossRef]

http://doi.org/10.3389/fmicb.2018.00440
http://doi.org/10.1016/j.ijfoodmicro.2016.12.004
http://doi.org/10.1099/mic.0.047365-0
http://doi.org/10.1038/s41598-020-66571-z
http://doi.org/10.1038/nrmicro2279
http://doi.org/10.1007/82_2011_154
http://doi.org/10.3390/toxins9110340
http://doi.org/10.3390/toxins13060377
http://doi.org/10.3390/toxins12050342
http://doi.org/10.1038/s41598-020-59694-w
http://doi.org/10.1016/j.plipres.2010.07.001
http://doi.org/10.1039/c2an36337b
http://doi.org/10.1126/science.aaa1051
http://www.ncbi.nlm.nih.gov/pubmed/25745064
http://doi.org/10.1007/978-1-0716-2030-4_2
http://www.ncbi.nlm.nih.gov/pubmed/34902138
http://doi.org/10.1016/j.copbio.2016.09.003
http://www.ncbi.nlm.nih.gov/pubmed/27690313
http://doi.org/10.1016/j.cbpa.2013.07.017
http://doi.org/10.1007/s00418-013-1097-6
http://doi.org/10.1038/s41592-019-0536-2
http://doi.org/10.1021/acs.analchem.0c04905
http://www.ncbi.nlm.nih.gov/pubmed/33646746
http://doi.org/10.1021/acs.analchem.6b01084
http://www.ncbi.nlm.nih.gov/pubmed/27212679
http://doi.org/10.1002/anie.201806635
http://www.ncbi.nlm.nih.gov/pubmed/30025193
http://doi.org/10.1021/acs.analchem.0c00641
http://www.ncbi.nlm.nih.gov/pubmed/32286046
http://doi.org/10.1093/ndt/gft008
http://www.ncbi.nlm.nih.gov/pubmed/23553250
http://doi.org/10.1369/0022155415596202
http://doi.org/10.1021/acs.analchem.0c00480
http://doi.org/10.1021/ac5017248
http://doi.org/10.1038/nmeth.4433


Int. J. Mol. Sci. 2022, 23, 6884 36 of 36

370. Passarelli, M.; Pirkl, A.; Moellers, R.; Grinfeld, D.; Kollmer, F.; Havelund, R.; Newman, C.F.; Marshall, P.S.; Arlinghaus, H.;
Alexander, M.R.; et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving
power. Nat. Methods 2017, 14, 1175–1183. [CrossRef]

371. Dreisewerd, K.; Yew, J.Y. Mass spectrometry imaging goes three dimensional. Nat. Methods 2017, 14, 1139–1140. [CrossRef]
372. Capolupo, L.; Khven, I.; Lederer, A.R.; Mazzeo, L.; Glousker, G.; Ho, S.; Russo, F.; Montoya, J.P.; Bhandari, D.R.; Bowman, A.P.;

et al. Sphingolipids control dermal fibroblast heterogeneity. Science 2022, 376, eabh1623. [CrossRef]
373. Karlsson, K.A. Animal glycosphingolipids as membrane attachment sites for bacteria. Annu. Rev. Biochem. 1989, 58, 309–350.

[CrossRef]
374. Sharon, N.; Ofek, I. Fighting infectious diseases with inhibitors of microbial adhesion to host tissues. Crit. Rev. Food Sci. Nutr.

2002, 42 (Suppl. 3), 267–272. [CrossRef]
375. Kanda, V.; Kitov, P.; Bundle, D.R.; McDermott, M.T. Surface plasmon resonance imaging measurements of the inhibition of

Shiga-like toxin by synthetic multivalent inhibitors. Anal. Chem. 2005, 77, 7497–7504. [CrossRef]
376. Sharon, N. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim. Biophys. Acta 2006, 1760, 527–537.

[CrossRef]
377. Jacobson, J.M.; Kitov, P.I.; Bundle, D.R. The synthesis of a multivalent heterobifunctiponal ligand for specific interaction with

Shiga toxin 2 produced by E. coli O157:H7. Carbohydr. Res. 2013, 378, 4–14. [CrossRef]
378. Di, R.; Vakkalanka, M.S.; Onumpai, C.; Chau, H.K.; White, A.; Rastall, R.A.; Yam, K.; Hotchkiss, A.T., Jr. Pectic oligosaccharide

structure-function relationships: Prebiotics, inhibitors of Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity
in HT29 cells. Food Chem. 2017, 227, 245–254. [CrossRef]

379. Zhang, P.; Paszkiewicz, E.; Wang, Q.; Sadowska, J.M.; Kitov, P.I.; Bundle, D.R.; Ling, C.C. Clustering of Pk-trisaccharides on
amphiphilic cyclodextrin reveals unprecedented affinity for the Shiga-like toxin Stx2. Chem. Commun. 2017, 53, 10528–10531.
[CrossRef]

380. Detzner, J.; Steil, D.; Pohlentz, G.; Legros, N.; Humpf, H.U.; Mellmann, A.; Karch, H.; Müthing, J. Real-time interaction analysis
of Shiga toxins and membrane microdomains of primary human brain microvascular endothelial cells. Glycobiology 2020, 30,
174–185. [CrossRef]

381. Detzner, J.; Steil, D.; Pohlentz, G.; Legros, N.; Müthing, J. Surface acoustic wave (SAW) real-time interaction analysis of influenza
A virus hemagglutinins with sialylated neoglycolipids. Glycobiology 2021, 31, 734–740. [CrossRef] [PubMed]

382. Aerts, J.M.F.G.; Artola, M.; Van Eijk, M.; Ferraz, M.J.; Boot, R.G. Glycosphingolipids and infection. Potential new therapeutic
avenues. Front. Cell Dev. Biol. 2019, 7, 324. [CrossRef] [PubMed]

383. Spaulding, C.N.; Klein, R.D.; Ruer, S.; Kau, A.L.; Schreiber, H.L.; Cusumano, Z.T.; Dodson, K.W.; Pinkner, J.S.; Fremont, D.H.;
Janetka, J.W.; et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 2017, 546, 528–532.
[CrossRef] [PubMed]

384. Huerta-Uribe, A.; Roe, A.J. Disarming the enemy: Targeting bacterial toxins with small molecules. Emerg. Top. Life Sci. 2017, 1,
31–39. [CrossRef]

http://doi.org/10.1038/nmeth.4504
http://doi.org/10.1038/nmeth.4513
http://doi.org/10.1126/science.abh1623
http://doi.org/10.1146/annurev.bi.58.070189.001521
http://doi.org/10.1080/10408390209351914
http://doi.org/10.1021/ac050423p
http://doi.org/10.1016/j.bbagen.2005.12.008
http://doi.org/10.1016/j.carres.2013.05.010
http://doi.org/10.1016/j.foodchem.2017.01.100
http://doi.org/10.1039/C7CC06299K
http://doi.org/10.1093/glycob/cwz091
http://doi.org/10.1093/glycob/cwab009
http://www.ncbi.nlm.nih.gov/pubmed/33527987
http://doi.org/10.3389/fcell.2019.00324
http://www.ncbi.nlm.nih.gov/pubmed/31867330
http://doi.org/10.1038/nature22972
http://www.ncbi.nlm.nih.gov/pubmed/28614296
http://doi.org/10.1042/ETLS20160013

	Introduction 
	Clinical Impact of Colonic EHEC Infections, Stx-Mediated Extraintestinal Complications, and Organ Damage 
	EHEC Zoonotic Infections and Reservoir 
	Epidemiology and Virulence Potency of EHEC 
	EHEC Colonization of the Gut 
	Colonic Outer-Membrane Vesicles of EHEC 
	Translocation of Shiga Toxin and Toxin Carriers in the Circulation 
	EHEC-Caused Systemic Complications 

	Shiga Toxin Structure and Glycosphingolipid Receptor Lipoforms 
	Shiga Toxin Structure 
	Glycosphingolipid Receptor Lipoforms 

	Shiga Toxin Receptor Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells 
	Liquid-Ordered and Liquid-Disordered Membrane Phases 
	The Lipid Raft Concept 
	Lipid Raft Association of Stx-Binding GSLs 
	Detergent-Resistant Membranes as Membrane Analog Tools 
	Membrane Distribution of Stx Receptor GSLs in pHRPTEpiCs and pHCoEpiCs 

	Different Susceptibility of Human Kidney and Colon Epithelial Cells toward Stx1a and Stx2a 
	Therapeutic Options of EHEC Infections 
	Application of Antibiotics or Not That’s the Question 
	Development of Non-Antibiotic Therapeutics 
	Inhibitors of Glycosphingolipid Biosynthesis and Stx-Neutralizing Glycoconjugates 
	Monoclonal Antibodies 
	Further Alternative Therapeutic Concepts 
	Current Situation 


	Outlook 
	References

