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Abstract

Population stratification is a useful approach towards a better understanding of complex biological 

problems in human health and well-being. The proposal that such stratification applies to the 

human gut microbiome, in the form of distinct community composition types, termed 

“enterotypes”, was met with both excitement and controversy. In view of accumulated data and re-

analyses since the original work, we revisit the enterotype concept, discuss different methods of 

dividing up the landscape of possible microbiome configurations, and put these concepts into a 

functional, ecological and medical context. As enterotypes are of use in describing the gut 

microbial community landscape and may become relevant in clinical practice, we aim to reconcile 

differing views and encourage a balanced application of the concept.

The human body is colonized by trillions of microbes that contribute to our health and well-

being. Different communities of microbes inhabit various anatomical regions (Fig. 1). Inter-

individual variation at each of these body sites is considerable, but the separation among 

sites within individuals remains apparent1 (Fig. 1). The most densely populated habitat is the 

gut, with an estimated 0.15 kg of microbial biomass2. The gut harbors hundreds of bacterial 

and archaeal species, with Firmicutes and Bacteroidetes as dominant phyla1,3–5. 

Considerable variation in microbiota composition has been described among individuals, for 

example in the US NIH Human Microbiome Project (HMP)1, the European Metagenomics 
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of the Human Intestinal Tract project (MetaHIT)3,6 and multiple other population studies7,8. 

The gut microbial ecosystem shows a succession of different microbiota stages: community 

composition changes rapidly in early childhood, stabilizes in adults and deteriorates in old 

age8,9. There is nosimple description of this complex landscape across large populations and 

geographies, in part because some tax a vary monotonically among individuals while most 

others show bimodal or more complex distributions10 (Fig. 2A). Given the importance and 

complexity of the gut ecosystem, there is great interest in identifying compositional patterns 

and their underlying rules, as they may help us understand human health and disease states. 

A classification based on compositional patterns would potentiate microbiota-based 

diagnostics, therapies or prevention of disease, with implications for personalized treatment 

through nutritional, microbial, and pharmaceutical interventions. Such patterns of microbial 

composition could be used to stratify populations, similar to the molecular subtyping 

commonly used in cancer research, where, for example, breast cancer subclasses based on 

gene expression patterns are clinically relevant11,12. However, in other cases, like colorectal 

cancer, the determination and usefulness of such classifications remains unclear13, 

highlighting the fact that molecular stratification is notactionable in all situations.

Reproducible patterns of variation in the microbiota, like the proportions of major tax a such 

as Bacteroides and Prevotella, have been observed in the adult human gut (Fig. 2A, Suppl. 

Fig. 1). When separated into clusters, they have been termed “enterotypes” 14 and proposed 

as a useful method to stratify human gut microbiomes. Later, other studies found 

stratification in other ecosystem types, such as the vagina15and other body sites16–18. 

However, due to the nature of the clustering in the gut, the number, or even existence of 

different community types has been a topic of heated debate after the publication of the 

original approach14.

Here we assess gut microbial community composition and test the different hypotheses 

using three of the largest available metagenomic datasets, which include data from three 

continents (from HMP, MetaHIT and a Chinese type II diabetes study)1,6,19. We perform a 

refined meta-analysis and propose a modified concept of enterotypes, with the goal of 

reconciling divergent viewpoints. The results illustrate the advantages and disadvantages of 

clustering and other stratification approaches. We find that the gut microbial composition is 

structured and that clustering can provide useful insights in to some microbiome datasets, 

even when not strongly supported statistically. This approach does not diminish the need to 

pursue other analyses and avenues for interpretation, since broad community-wide 

stratification captures only some of the dimensions of microbiota complexity.

Recurrent microbial compositional patterns in the gut microbiome

From the survey of the three large datasets mentioned above, it can be seen that groups of 

samples tend towards preferred genus level composition (Suppl. Fig. 2), as was also reported 

in the original study14. That is, some configurations of relative microbial abundance occur 

more frequently than others. This can be observed by calculating distances between samples 

and investigating the resulting clustering, as well as by directly observing the complex 

abundance distributions of some gut microbial tax a (Fig. 2). This preference for specific 

microbial community profiles is modest, resulting in higher sample density around the 
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preferred constellations, but with a considerable proportion of samples falling between them. 

This makes it hard to describe these preferential microbial compositions mathematically or 

determine the number of such densely populated areas, prompting alternative description of 

this space as consisting of gradients16. However, it is important to characterize these local 

optima of community composition to understand the mechanisms responsible for these 

ecological constraints and community properties.

In 2011, clustering human fecal metagenomic samples from three continents, using three 

sequencing technologies (Illumina, 454, Sanger), as well as 16S rRNA gene profiling data, 

based on their taxonomic composition, resulted in the proposal of three enterotypes. They 

were described as being “densely populated areas in a multidimensional space of community 

composition”, and were independent of age, gender, cultural background and 

geography14.An investigation of the properties of each enterotype found networks of co-

occurring microbes centered around one indicator (driver) tax on, that is the tax on 

correlating best to that given enterotype: enterotype 1, here denoted ET B for clarity, has 

Bacteroides as its best indicator; enterotype 2, here ET P, is driven by Prevotella, a genus 

whose abundance is inversely correlated with Bacteroides; and enterotype 3, here ET F, is 

distinguished by an overrepresentation of Firmicutes, most prominently Ruminococcus14. 

Analyses were performed at genus level, where microbial ecological niches are hypothesized 

to be most clearly reflected20, notwithstanding functional heterogeneity of some genera (e.g. 

streptococci, grouping deadly pathogens with common commensals and useful food 

fermenting species). Species- and strain-level variations are neglected, although they can 

contribute to functional differences between individuals that are important in a clinical 

context21,22.

Although much of the discussion emphasized the existence of three enterotypes, the original 

definition had made clear that they are not discrete, and that clustering is just one way to 

define them and stratify samples to reduce complexity (see Fig. 3A comparing clustering 

and genera abundances). There are limitations to this operational definition, and although the 

resulting stratification only partially reflects the more complex structure within the 

population space, the definition has been used to demonstrate that such stratification can be 

useful in analyzing microbiome data.

Some later studies replicate dentero types in new datasets to different extents, both in the 

numbers of enterotypes and the strength of the statistical support; others reported finding no 

structure (Fig. 2, Suppl. Table 1). For example, a large scale, diet-focused study in a U.S. 

cohort23reported support for two attractors, one of which shared similar dominant tax a with 

ET P, while the other was a merge of ETs F and B. Analysis of the HMP 16S rRNA data18, a 

meta-analysis of four metagenomics datasets24 and a population-wide Flemish study7 

showed a preference for three enterotypes, similar to the originally proposed ones. A study 

of individuals from Venezuelan and Malawian rural areas and US metropolitan areas 

emphasized the importance of Prevotella and Bacteroides as driving tax a, as well as a 

strikingly different composition in infants, with their communities mostly containing 

Bifidobacteria and Proteobacteria8. The establishment of an enterotype-like structure has 

been estimated to occur between month 9 and 36 in humans25, highlighting the need for 
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caution when extrapolating overall community patterns from a limited sampling of the world 

population at different ages.

Departing from the clustering approach, Holmes et al. propose an alternate approach to 

identify structure26. Their method identifies a generative model for each possible state and 

determines how each explains the observed data, focusing on the actual genera abundances 

rather than the distances. Using this approach (i.e. Dirichlet multinomial mixture models; 

DMMs) they reported that the data from the original study most likely results from four 

generative processes (loosely referred to here as clusters). Two of the “clusters” resembled 

ET B and P, while a third showed an increased prevalence of Ruminococcus and other 

Firmicutes genera, which are usually low lyabundant in the gut microbiome. The last cluster 

had a high fraction of unidentified tax a. DMMs have also been used to identify three 

optimal clusters in a healthy Swedish cohort, again showing compositions similar to ET B 

and ET P, with one additional cluster dominated by unknown taxa27. A further study that 

applied the same method to the HMP 16S rRNA data, found that the gut microbiome is best 

approximated with four similar models17. When applying DMMs to the Meta HIT 

metagenomics dataset, we identified four groups. Two of these are overlapping with 

enterotypes B and P, while the other two are a more complex mixture (Fig. 2, Suppl. Fig.3). 

While DMMs represent a statistically more rigorous approach, further research is needed to 

determine if the distributional assumptions of generative models hold on microbiome data.

The three dominant gut tax a that contribute to enterotype clustering (Prevotella, Bacteroides 
and Ruminococcaceae) have been shown to have the largest variance in terms or relative 

abundance, despite being core taxa7. Therefore, it is not surprising that an ensemble-based 

network approach recovered them as hubs of three co-occurrence network clusters and 

showed that their abundances are mutually negatively correlated (Ref. 1 and Suppl. Fig. 5 

therein). This negative correlation was also shown with qPCR data of 35 signature taxa28. 

Three distinct networks were found in adult Amish individuals29, with the dominant genera 

in these networks largely overlapping with the driver tax a of the original enterotypes. 

Similarly, six species co-abundance groups (CAGs) were reported in a dataset consisting of 

Irish adults and elderly individuals, with healthy hosts mostly possessing networks that 

correspond to the original three enterotypes9,30. Thus, independent of clustering and 

modeling approaches, bacterial co-abundance networks provide a species network that may 

underline the fundamental properties of these preferred community profiles. Theoretical 

studies show that enterotype-like structures can be an emerging feature of communities over 

a wide range of species interaction strengths31.

Enterotype-like structures have also been reported in several animal studies, although their 

gut composition is distinct from that of humans. In mouse gut microbiomes, obtained from 

hosts living under controlled experimental conditions32, clustering showed a clear 

compositional stratification while in animals living in the wild (mice33, primates34,35 and 

pigs36,37) clustering was considerably weaker. This is suggestive of preferred community 

states emerging more clearly when no external factors influence the microbiome. Thus the 

enterotype concept is not anthropocentric and can be defined in animals as well38, which has 

led to the speculation that enterotypes have existed before the pan-human split39. As gut 

commensals are mostly evolving in competition with each other, under the restraints of the 
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host organism40, enterotypes might thus represent optimized states of symbiont 

compositions, that represent local optima in community effectiveness, that are still 

compatible with the restraints imposed by the host.

Challenges in defining microbial community types

Assessing clustering in fecal microbiota profiles is non-trivial, given that demonstration of 

alternate states is debated in disciplines from ecology to philosophy16,41. Given the nature of 

enterotype clustering, and additional factors including multiple choices for taxonomic levels, 

distance metrics, clustering algorithms and cluster optimality scores, it is not surprising that 

analysis can yield different numbers of clusters (Suppl. Fig. 4 and Supplementary Material), 

even on the same dataset (e.g. 16). Thus some have argued that there is little support for 

enterotypes in the data8,16,23,29,42,43. However, separating samples by body-sites(skin, stool, 

vaginal, and oral)using the same methods also has little statistical support (Suppl. Fig. 4), 

even though this separation is widely accepted in the scientific community.

Regardless of clustering support or modelling assumptions (Supplementary information), an 

analysis of the largest three public datasets, backed by reports from the literature (Suppl. 

Table 1), reveals that the local substructure is always similar, i.e., a three-cluster model finds 

Bacteroides, Prevotella and Firmicutes-dominated clusters, and a two-cluster model 

separates Prevotella-driven samples from the rest. Partitioning of the gut microbiota is thus 

stable in the sense that related cluster compositions are recovered, reconciling many studies 

and supporting the existence of preferred community compositions.

There is certainly agreement that there are distinct areas within the complex microbial 

composition landscape in which the respective gut communities show biological 

differences44. The concept of enterotypes can help capture such differences, although 

defining meaningful and robust boundaries remains a challenge. This is analogous to 

clustering of macro-biomes, which faces similar problems despite the recognition of 

separate types of environments. For example, Treeless, Savannah, and Forest ecosystems in 

sub-Saharan Africa could equally be represented as a gradient in response to mean 

precipitation45 or as contrasting stable states46.

Given the practical challenges in accurately determining gut community structure, such as 

overcoming batch effects, considering confounders (Suppl. Fig. 5) and accounting for 

temporal variation, an objective number of stable states is difficult to determine. Still, in the 

(mostly Western) subjects studied cross-sectionally, Bacteroides and Prevotella act as the 

driving tax a that explain inter-individual differences, and delineate the main sources of 

variation regardless of the technique employed. The extremes of the enterotypes pace are 

substantially different in microbial composition and diversity, and these are discussed in the 

following sections in terms of their function, ecology and disease. While three enterotypes 

may not always be the best explanation of the data, it is the model that has been used most 

and that provides a framework that we use below.
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Functional and ecological context of enterotypes

Differences in taxonomic composition suggest that enterotypes may differ in functional and 

ecological properties. Analysis of the three large datasets revealed significant functional 

variation associated with microbial composition (Fig. 3B).Indeed, when gene types are 

considered, most KEGG Orthologs (KOs)47 and Non-supervised Orthologous Groups 

(NOGs)48 differ in abundance among the three enterotypes (64% and 77%, respectively, 

FDR<0.1). The same is true for egg NOG functional categories, where 23 out of 25 are 

significantly different (Suppl. Fig. 6). Other models choosing two or four enterotypes show 

similar broad functional differences (Suppl. Table 3), with some differences highly relevant 

to gut metabolism. For example, it has been shown on several occasions that either ET 

P23,29,49,50 or Prevotella (when no enterotype was reported) was enriched in individuals with 

non-Western and/or fiber-rich diets8,51–53. This association can be better understood in light 

of functional differences, as Prevotella hydrolases are specialized in the degradation of plant 

fibers54 and an overall decreased lipolytic and proteolytic fermentation potential has been 

reported for the whole ET P community44. Conversely, ET B has been associated with diets 

enriched in animal proteins and saturated fats23,53, in line with a large proportion of 

Bacteroides-specific CAZyme's (50%)55 being specialized on animal carbohydrates (Suppl. 

Table 2). Further, we find enzymes specific to carbohydrate metabolism overrepresented in 

ET B (Suppl. Table 3), corroborating recent research showing an increased saccharolytic as 

well as proteolytic potential44. While some of the functional differences between 

enterotypes can be attributed to the driver genera, others emerge only after imposing 

structure on the variation space.

The observed functional differences between enterotypes support the notion that they have 

varying community properties, such as richness, diversity and temporal stability. Such 

characteristics are relevant from an ecological perspective, where theory predicts a higher 

diversity in dynamic systems like the gut, with nutrient availability and type fluctuating over 

time56. Using 16S amplicon sequencing, richness differences between three enterotypes 

were first shown in an Amish population29, with a cluster similar to ET B having the lowest 

richness, as has been recently confirmed in a large population-wide study7. Our analysis of 

the three large datasets used here replicated these differences, with ET B having the lowest 

and ET F having the highest taxonomic as well as functional richness (Suppl. Fig.7 and 8). 

Community diversity, as measured by the Shannon diversity index, is also highest in ET F in 

all datasets, while ET B and ET P are similarly decreased in diversity (Suppl. Fig. 8). 

Moreover, such differences go hand in hand with differences in stool consistency57 and/or 

transit time58– with slow transit associated ETs also showing a higher relative ratio of 

proteolytic over saccharolytic potential44 and proteolisis-derived metabolites58.

Gut community composition in healthy adults in many studiesdoes not change substantially 

over long time periods23,29,59, indicative of agenerally stable ecosystem and enterotype 

stability. There are, however, important exceptions. Our analysis of the HMP metagenomic 

time-series dataset, containing individuals sampled more than 6 months apart, reveals 

significant stability in all three enterotypes, though 16% of individuals switched putative 

enterotypes between visits (Suppl. Fig. 9). This suggests that, at least for some individuals, 

gut microbial types are relatively fluid and do not have discrete boundaries (Suppl. Fig. 9). 
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These observations could be explained through alternate models of gut community 

dynamics: a) the existence of preferred community compositions (i.e., enterotypes, Suppl. 

Fig. 10A) or b) individual-specific attractors that exist mostly due to temporal 

autocorrelation of that individual's gut community60 (Suppl. Fig. 10B). To disentangle these 

models requires information about the response of the microbial community to different 

perturbations there by allowing us to determine if individuals are more likely to maintain/

return to their original composition or maintain/return to their enterotype. Unfortunately, 

only limited data on gut community perturbations are available—e.g., antibiotics, fecal 

microbiota transplantation (FMT) and diet—many of which were not considered in the 

enterotype frame work, making it difficult to draw conclusions about which steady-state 

model is correct. Short-term therapeutic antibiotic treatment was shown to induce 

substantial, partially recoverable shifts in the gut microbiota of humans61,62, suggesting little 

resistance to such a dramatic disruption. Indeed, antibiotics treatment canlead to a complete 

deterioration of the community and subsequent pathogen invasion (e.g., C. difficile63), 

effectively resulting in failure to recover the original community state.

Dietary interventions, which cause considerably less perturbation to the microbial ecosystem 

of the human gut, may thus be better suited for investigating community resilience. Effect of 

such interventions, with significant compositional changes, have been observed within four 

days and could cause an enterotype shift23,64. However, after about ten days, enterotypes 

appeared to be stable23, suggesting a tendency of recovering the original state. Stability was 

also observed in a 6-month intervention, using the ratio of Prevotella to Bacteroides 
(obtained by qPCR) as a proxy for enterotype assignments28. These results suggest that there 

are limitations on how much an individual's microbiome may be perturbed by short-term 

dietary interventions and support enterotype resilience. In contrast, long-term perturbations 

have a more profound effect, with dietary modulation over the period of a year having a 

strong impact on the Bacteroidetes/Firmicutes ratio23,65, potentially leading to enterotype 

switches. As enterotypes were generally stable over time and no follow-up studies exist for 

the long-term interventions, no approximation of their resilience either in terms of overall 

community resemblance or enterotype assignmentcan be derived from the available data. 

There are however indications that enterotypes may vary in their recovery after intervention, 

with ET F estimated to have the lowest overall bacterial growth rate44, possibly resulting in a 

delayed return to equilibrium.

Although it is not yet possible to predict how particular perturbations will modify the 

microbiota, it is possible that different microbiome configurations, including those stratified 

as enterotypes, might allow stratified treatment and diet recommendations in the future. 

Modulation of the gut microbiome is particularly relevant for diseases, where the challenge 

is to shift the microbiome back to a healthy pre-disease state in a given individual.

Clinicalrelevance of enterotypes

A simple classification scheme of gut community structure by enterotypes has the potential 

to be clinically useful. First, it can help in diagnosis, contributing to the identification of a 

disease state in an individual. Second, it can serve as an indicator of the risk or susceptibility 

of developing certain conditions. Third, the stratification may be a useful biomarker for 
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changes that occur upon disease progression. Fourth, given that the gut microbiota 

influences xenobiotic metabolism, it may be that different enterotypes are associated with 

different pharmacokinetics and dynamics of drug metabolism66–69. Thus, enterotyping may 

guide treatment options and help in understanding different treatment responses.

Several associations between enterotypes, or their main taxonomic drivers, and human 

disease phenotypes have been reported (Fig. 3D). For example, an increase of Bacteroides or 

ET B itself, which tends towards lower overall diversity (Suppl. Fig. 7&8), has been linked 

to NASH70, colorectal cancer49,71,72, celiac disease73, immune-senescence and constant 

low-grade inflammation6,30. Reanalysis of the MetaHIT dataset found lymphocyte counts 

and C-reactive protein to be significantly increased in ET B compared to ET F (FDR<0.1), 

with ET F samples on average lower in insulin resistance index (HOMA IR) and insulin 

levels, (FDR=0.107 for both) (Suppl. Table 4). Increased Prevotella abundance has been 

linked to long-term antibiotic usage74, rheumatoid arthritis75, type IIdiabetes76 as well as 

HIV77, although the latter enriched in one of the risk groups that is in men who have sex 

with men78, which might confound the reported association. Lastly, ET F has been linked to 

high microbiota diversity and decreased host inflammatory status, and has only been 

associated with an increased risk of atherosclerosis79. Given the multitude of associations to 

different disease phenotypes, an enterotype classification by itself may not be sufficiently 

specific as a stand-alone diagnostic marker of any disease80, but may be able to indicate an 

increased risk of some. Enterotype associations within groups of healthy individuals at risk 

of certain conditions are rare, and it remains unclear if enterotype classifications might be 

useful as prognostics for disease development. In one example, increased prevalence of ET P 

had been reported in healthy individuals who had the heterozygous form of a Crohn's 

Disease (CD) risk allele27, while in the MetaHIT cohort, there is a significant enrichment of 

CD patients in ET B, implying inflammation shifting community states to these two 

enterotypes and thus indicating an increased risk for IBD.

Finally, it is possible that some diseases will have different etiologies, depending on 

enterotype. Stratification could allow discovery of these underlying signals, thereby 

eliminating part of the large variation observed in microbial communities between 

individuals that may be irrelevant to the disease itself. In one mouse study, for example, such 

stratification allowed discovery of genotype-microbiome and cage-microbiome 

associations32. Similarly, stratifying human patients into 8 microbial clusters helped identify 

medical parameters that correlated with microbial composition30, and microbial 

stratification significantly improved accuracy in classifying C. difficile-associated 

diarrhea81. Although there are currently no long-term data, responses to diet and drugs as 

well as the impact of intestinal physiology and lifestyle are also likely to differ depending on 

the position of an individual in the compositional landscape, and thus stratification 

represents an entry point into various clinically relevant areas. It can be implemented largely 

independently of a gradient- or cluster-centric view, analogous to the body mass index 

(BMI) where defined cutoffs are an important guide to patient disease risk82.
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Towards guidelines for rational enterotyping

For enterotyping to be useful, standardization is essential. In addition to the technical 

challenges mentioned above, an inherent property of clustering is that assignments of single 

samples depend on which other samples are analyzed at the same time. An enterotype 

defined this way makes comparisons across studies difficult. For example, if by chance the 

majority of samples in a single study are ET B or ET F and only a few are ET P, the optimal 

cluster score might indicate two or even only one cluster(s). Nevertheless, one might identify 

these few ET P samples based on the knowledge that similar samples have been clustered in 

other data sets. Combining data from multiple studies is often challenging, because 

differences in DNA extraction methods, sample handling, sequencing technology, primer 

choice (for 16S rRNA gene amplification) and data processing (e.g. 16S rRNA clustering, 

copy number correction and chimera reduction) influence the proportions of bacteria 

detected and lead to biases in detecting enterotype clusters83. Extreme rigor is needed in 

standardizing these steps, perhaps in conjunction with artificial “mock” communities that 

span a large proportion of the phylogenetic spectrum of microbes found in the gut, and 

enable comparability between standard and clinical samples. Furthermore, there is a need for 

more longitudinal studies involving larger population cohorts across multiple continents to 

identify additional confounding factors. Indeed, several consortia such as IHMS41, 

MBQC42 and GSC43 are already trying to set standards for metagenomics and identify 

sources of variation.

We propose a classification procedure that both circumvents many of the problems outlined 

above as well as providing more comparable results (Fig. 4). While we do not want to limit 

other explorations of the data or novel analysis options, alternative schemes should at least 

be compared with the results from the procedure described here. Based on the MetaHIT 

data6 set, we have trained a classifier at genus level on taxonomic and functional features 

that recovers putative clustering observed in the Chinese type II diabetes study19 and in the 

HMP1 data set (Suppl. Fig.11). The classifier is available at [http://enterotypes.org]. If the 

results of a denovo clustering differ from the classifier results, we recommend caution in 

directly comparing the stratification outcome to the enterotypes described in this meta-

analysis. Moreover, this approach also defines an enterotyping space, by determining which 

samples are compositionally similar to a reference set. This could be used to define the 

boundaries of ‘normal’ gut communities and identify individuals outside of them, serving as 

a health indicator. Unusual disease states have been previously reported: for example, by 

using a model of six-species communities, networks resembling the three enterotypes were 

most strongly overrepresented in healthy patients, whereas two new states were 

overrepresented in frail, elderly patients9. Another case reported in new enterotype H, 

enriched in Enterobacteriaceae70. The above classifier would consider samples from this 

“enterotype” compositionally dissimilar to those present in large datasets, and they would 

thus be labeled as being outside the enterotyping space. The individuals with this unusual 

41http://www.microbiome-standards.org/
42http://www.mbqc.org/
43http://gensc.org/
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composition frequently suffered from obesity, NASH, high blood ethanol as well as reactive 

oxygen species (ROS) levels70, suggesting this unusual compositional state to be dysbiotic.

Whether used for disease state identification, prospective stratification, or the flagging of 

technical issues, standardized enterotyping will ensure comparability across a wide range of 

studies and will facilitate our understanding of the role and importance of enterotypes.

Conclusions

Identification and characterization of the major patterns related to human gut microbiota 

configurations remains challenging. Given an array of available approaches, each with their 

advantages and caveats, the number of recovered enterotype states and their statistical 

support can vary. With more standardization, control of sample processing and data analysis, 

increased concordance among different studies can be expected. Enterotype attribution can 

be further refined by the addition of a wider range of samples and contextual information, 

extending beyond the industrialized world to better represent the global human population. 

For now, however, we here propose a way of restricting the enterotyping space, allowing for 

the detection of samples that are outside of it.

Independent of the many difficulties outlined above, multiple studies have reported 

enterotypes with similar compositional properties albeit with varying statistical support (Fig. 

2). While clearly not discrete and confounded by various factors, they differ in taxonomic, 

functional and ecological properties, and can be accurately recovered across large datasets 

(Suppl. Fig.11).They represent a way of capturing preferred microbial compositions in the 

human gut and thus appear to be useful stratifiers in many settings.

Relying solely on enterotypes classifications, can obscure potentially important microbial 

variation, and therefore should not replace direct clinical associations and expert statistical 

analysis with microbial species and functions, where possible. However, enterotypes may 

still be relevant in various clinical settings, ranging from direct disease associations to 

prospective study stratification or even personalized dietary interventions or other gut 

modulation treatments. We believe, despite our still limited knowledge, that enterotypes can 

be a useful tool for studying the human microbial community landscape.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The microbiota of distinct body locations within the healthy human is separable at the 
genus level
Using 2381 HMP samples profiled with 16S rRNA, we illustrate the degree of separation 

between body-sites using different distance measures and taxonomic resolutions: (A) 

unweighted UniFrac on OTU level, (B) Jensen-Shannon divergence on genus level (OTUs 

belonging to the same genus are added up together) and (C) Jensen-Shannon divergence on 

OTU level. Shown are the first two principal coordinates of a PCoA analysis for each, as 

well as a summary of the within and between body-site distances in the top left. Median 

inter-sample distances (error bars ranging from the 25th to the 75th quantile) compared to 

the median between all body-sites (red line) illustrate the ability to capture similarities and 

differences between these biomes, albeit with different effectiveness. We note that the 

Silhouette Index (a measure of clustering strength) in the case of unweighted UniFrac 

suggests a clustering into only three types, with an absolute value of ∼0.2 (Suppl. Fig.4).
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Figure 2. Stratification of the microbial composition landscape of the human gut microbiome
(A) Abundance distributions of prevalent microbial genera of the human gut are often 

complex. Theoretical beta distributions (left panels) were compared with observed 

distributions (middle panel) and the observed abundance plotted in enterotype space (right 

panel) of key enterotype tax a or ratios thereof, based on 278 MetaHIT samples6. While 

Bacteroides abundance distribution is close to log-normal in the three large-scale datasets 

studied, that of Prevotella is bimodal, suggesting that the observed values are perhaps better 

explained by a mixture of two distributions, generated by two distinct processes, one of 

which corresponds to a dominating role in the community, while the other to a low 

abundance state.

(B) Geographical distribution of studies that report enterotypes (Suppl. Table 1), colored 

according to the number of microbial clusters reported. Map locations indicate the country 

from which samples were collected. Links between locations represent samples belonging to 

a single study. Overrepresentation of “Western” countries is a well-known bias and probably 

misses a portion of variation in other human societies.

(C) Schematic representation of the simulated microbial composition landscape with three 

density peaks, modeled as multivariate normal distributions, each representing an enterotype 

and drawn out of scale to make the concept more accessible. This figure illustrates how 
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segmentation of this space by clustering with different parameters would result indifferent 

numbers of clusters (three and two here) and in differential coverage of individuals 

(represented by intersecting planes). Top-most overlay presents the discretizing 

segmentation, which splits the space into three zones.

(D) Projection onto a set of 278 Danish samples6 of the three most frequent enterotype 

classification schemes based on different methods, including the Prevotella/Bacteroides 

gradient. This shows a split into a gradient and two, three (distance based clustering) or four 

enterotypes (Dirichlet multinomial mixture models). The local structure is preserved 

regardless of the method applied, and Prevotella (ET P) remains separated, suggesting the 

methods mostly differ in dividing the area between ET B and ET F. Additionally, the top 

right of each PCoA with a number of clusters greater than or equal to two shows the distance 

within a cluster (colored accordingly) compared to the median distance between the clusters 

(black line), showing that for all cases the distances within are smaller than between; bar 

height is the median distance and the whiskers represent the 25th and 75th quantile. It should 

be noted that a “horseshoe effect” can occur in ordinations, in particular if samples contain 

non-overlapping compositions84, which is not the case in the datasets analyzed here.
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Figure 3. Microbiota of human fecal samples has local substructure
Ordination of 278 MetaHIT6 samples on Jensen-Shannon distance transformed space. For 

orientation, a three-enterotype model is illustrated by color in A, B and D. (A) The log-

transformed relative abundance of the most significantly differing genera. On the adjacent 

axis, the projected abundance changes between the respective community types are shown. 

Bimodal abundance profiles (dotted lines, dip test p-value < 0.05) as well as gradual 

abundance changes (solid lines) can be identified, supporting a gradient or cluster model, 

respectively. (B) Abundance changes of selected COG categories were projected onto the 

ordination, illustrating that functional composition differs between enterotypes. (C) mOTU 

level Shannon diversity index and gene richness (low gene count is considered for subjects 

with less than 480k genes according to 6; all other subjects have high gene count) are 

significantly different between enterotypes (Suppl. Fig. 8), mostly following gradual 

changes over the whole enterotype space. (D) Summary of the diseases and dietary 

constituents that have been associated with Prevotella, Firmicutes or Bacteroides 
enrichedgut communities (Suppl. Table 5).Acronyms: CD: Crohn's disease, CRP: C-reactive 

protein, NASH: Nonalcoholic Steatohepatitis, ROS: reactive oxygen species.
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Figure 4. Determination of Enterotype structure
Flow diagram of recommended steps for determining enterotype assignment based on 

microbial abundance data. Two main routes to obtain enterotype assignments are depicted: 

denovo identification (enterotype discovery) and enterotype assignment based on a reference 

dataset. The suitability of existing models imposed on the data to describe the composition 

landscape (1) can be assessed by either determining the existence of cluster structure, using 

one of the proposed clustering strength measures (Suppl. Fig. 4) or by using a DMM 

modeling framework26. Other models might also be useful in capturing the structure in the 
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data, although an exact implementation is not yet available. Determining whether samples 

are within the enterotype space (2) is based on similarity incomposition to adult human stool 

samples from the HMP1 and MetaHIT6 studies. This suitability check and a respective 

classifier are available at [http://enterotypes.org]. There are many explanations for the 

different compositional structures (3); for example, they may come from non-western 

individuals, or from infants. Technical issues such as DNA extraction, PCR primers, and/or 

bioinformatics preprocessing, may skew the analysis. The consistency of the separation (4) 

obtained from the classifier may be determined using a Silhouette index.
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