

ENTERPRISE SOFTWARE SYSTEM INTEGRATION
AN ARCHITECTURAL PERSPECTIVE

Pontus Johnson

April 2002

Submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

Industrial Information and Control Systems

KTH, Royal Institute of Technology

Stockholm, SWEDEN

Ex.R. 02-03

TRITA-ICS-0202

ISSN 1104-3504

ISRN KTH/ICS/R--02/2--SE

Cover photography © 2002 Pontus Johnson

Stockholm 2002, Universitetsservice US AB

I

Abstract

The present thesis is concerned with enterprise software systems of companies in the

Swedish electricity industry, an industry that for the past few years has been exposed to a

fairly tumultuous change process as a consequence of legislative reforms.

Previously, the business operations of electric utilities – as well as those of most companies

in the computerized world – were supported by a number of isolated software systems

performing specific tasks. In recent years, these systems have been extended, and more

importantly, integrated into a company-wide system in its own right, in this thesis referred

to as the enterprise software system. As enterprise software systems have evolved, so has a

need for strategies, methods and techniques for their management. Enterprise software

system management involves a number of concerns; of these concerns, software integra-

tion is one of the most prominent.

The discipline of software architecture is concerned with the modeling of large-scale struc-

tures of software systems. While the generated models are employed for a number of pur-

poses, their perhaps most significant function is to serve as a base for reasoning about the

represented system. Several methods for analysis of architectures have been proposed in

recent years, and although software architecture analysis has displayed considerable success

for a number of systems, enterprise software systems have to a large extent been ignored.

In the empirical context of the Scandinavian electricity industry, this thesis explores the

applicability of software architecture analysis to enterprise software system integration.

Two conceptually different architectural analysis methods – deduction- and induction-

based approaches – are considered, as well as the engineering process in which architec-

tural analysis is performed. As a result of the investigations, the thesis proposes a modified

process for architectural analysis, presents an evaluation of deduction-based analysis meth-

ods, and proposes an adaptation of induction-based analysis methods to the enterprise

software system context.

Key words:

Software architecture, Software integration, Enterprise software systems, Electric utilities,

Software engineering

III

Acknowledgements
This doctoral thesis is a result of my close to five years of Ph.D. studies at the Department

of Industrial Information and Control Systems, Royal Institute of Technology in Stock-

holm. Although the thesis bears my name, its contents have been influenced by many.

Firstly, I would like to express my sincere gratitude to Professors Torsten Cegrell and

Johan Schubert. Without Torsten and Johan, the completion of this endeavor would not

have been possible. The inspiring environment at the department is to a large extent the

result of Torsten’s enthusiastic and entrepreneurial commitment. Johan has provided me

with invaluable support both practically and philosophically. Our discussions as well as

Johan’s insightful (and surprisingly rapid) comments on the considerable masses of text I

have sent his way have helped me immensely.

I am indebted to the people at the department for creating an atmosphere that has made

these years both rewarding and fun. In particular, I would like to thank Jonas Andersson

for stimulating research cooperation, including many coffee-drenched late nights and early

mornings of debating, reading, and writing. I have much enjoyed the cooperation and

discussions with Mathias Ekstedt, ranging from music and photography to concepts and

relations slightly bigger than our heads. I would furthermore like to express my apprecia-

tion to Magnus Haglind, who has been an important speaking partner during these years, as

well as Judith Westerlund, without whom the department would surely come to a grinding

halt.

Finally, I would like to thank my family and my friends for their encouragement and for all

things that have not been work during this period.

Stockholm, April 2002

Pontus Johnson

V

Table of Contents

1 INTRODUCTION 1

1.1 RESEARCH QUESTION 3
1.2 RESEARCH RATIONALE 3
1.3 RELATED WORKS 5
1.4 CONTRIBUTION 6
1.5 OUTLINE 6

2 METHODOLOGY 9

2.1 RESEARCH IN SOFTWARE ENGINEERING 9
2.2 RESEARCH METHODOLOGY 10
2.3 RESEARCH DESIGNS 12
2.4 RESEARCH EVOLUTION 13

3 SOFTWARE MILIEU OF ELECTRIC UTILITIES 15

3.1 INTRODUCTION 15
3.2 THE SWEDISH ELECTRICITY INDUSTRY 15
3.3 DEREGULATION AND SOFTWARE SYSTEMS 17
3.4 SOFTWARE SYSTEMS IN THE ELECTRICITY INDUSTRY 19
3.5 A NEED FOR SOFTWARE INTEGRATION 23

4 SOFTWARE INTEGRATION 25

4.1 INTRODUCTION 25
4.2 INTEGRATION AND INTEGRABILITY 27
4.3 MONARCHICAL INTEGRATION APPROACHES 28
4.4 OLIGARCHICAL INTEGRATION APPROACHES 34
4.5 ANARCHICAL INTEGRATION APPROACHES 39
4.6 CONSOLIDATING THE APPROACHES 45
4.7 SUMMARY 48

5 SOFTWARE ARCHITECTURE 53

5.1 BRIEF INTRODUCTION TO SOFTWARE ARCHITECTURE 53
5.2 DEFINITIONS OF SOFTWARE ARCHITECTURE 54
5.3 VIEWS, COMPONENTS AND CONNECTORS 57
5.4 ARCHITECTURAL STYLES 59
5.5 ARCHITECTURE DESCRIPTION LANGUAGES 60
5.6 ARCHITECTURE IN THE SOFTWARE PROCESS 61
5.7 ENTERPRISE SOFTWARE ARCHITECTURE 62
5.8 SUMMARY 68

VI

6 ARCHITECTURAL ANALYSIS 71

6.1 INTRODUCTION 71
6.2 INDUCTION-BASED ANALYSIS METHODS 72
6.3 DEDUCTION-BASED ANALYSIS METHODS 76
6.4 DEDUCTION-BASED INTEGRABILITY ANALYSIS 87
6.5 APPLICABILITY TO ENTERPRISE SOFTWARE SYSTEMS 96

7 SUMMARIES OF INCLUDED PAPERS 99

8 CONCLUSIONS 105

9 FURTHER WORKS 111

REFERENCES 113

PAPER A 127

PAPER B 143

PAPER C 159

PAPER D 191

1

Chapter 1

Introduction

1 INTRODUCTION

This thesis project is spawned from the general research conducted at the Department of

Industrial Information and Control Systems at KTH. Originating in control systems pro-

curement and development, the department is concerned with information system man-

agement practices in an industrial setting. A central stance of the department is the focus

on the software system user organization as an active part in the engineering process, as

opposed to the software-vending organization. Traditionally, the concerns of user organiza-

tions have been the domain of disciplines such as information systems research, with a

focus on organizational issues rather than technological. In absence of an established engi-

neering discipline of software management for user organizations, the department has

linked itself to several related fields, including systems engineering [Ste98], information

systems research [Avg00], requirements engineering [Dav93], software engineering [Pre00],

and project management [Dun96]. In line with an increasing awareness at the department

that software architectural methods and approaches [Sha96a] may be applicable also in the

context of user organizations, a research project was conceived for exploring these issues.

The present thesis is thus part of this first attempt at outlining the potential benefits of

software architecture in the context of the department.

The empirical base of this research is to be found in Swedish electric utilities. During the

past decade, the Scandinavian electricity industry has undergone radical changes due to

market deregulation [Ene01]. The legislative reforms have resulted in lower margins, a

wave of mergers and acquisitions, and new requirements for business operations. These

consequences of the deregulation have had a significant impact on the software environ-

ment of electric utilities [Hag02] [And02]. Investments in new systems have resulted from

attempts to streamline the operations, from initiatives to offer new services, as well as from

regulatory requirements. Software system integration projects have resulted from mergers

and acquisitions as well as from efficiency programs in the enterprises. The electricity in-

dustry has thus constituted an excellent empirical base for the present work.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

2

The software systems of typical mid-sized to large electric utilities in the industrialized

world belong to a category here referred to as enterprise software systems. An enterprise soft-

ware system is the interconnected set of systems that is owned and managed by organiza-

tions whose primary interest is to use rather than develop the systems. Typical components in

enterprise software systems are thus considered as proper systems in most other cases. They

bear names such as process control systems, billing systems, customer information systems,

and geographical information systems. In the early days, these components were separated

from each other physically, logically, and managerially. During the last decades, however,

an ever-increasing integration frenzy has gripped the enterprises of the computerized

world. Today’s enterprise software system is thus multi-vendor based and enterprise-wide,

characterized by heterogeneous and large-grained components. The management of these

interconnected systems has become a major issue for their owners [Ola01].

Software integration is in many respects similar to solving jigsaw puzzles. If the pieces were

designed to fit, there is a fair chance of accomplishing the task with a reasonable effort. If –

as unfortunately oftentimes is the case – there was little or no coordination between the

developers of the individual pieces, then attempting to solve the puzzle becomes a difficult

assignment, where either the pieces themselves have to be re-sawed or new interconnection

pieces have to be fabricated and introduced into the puzzle. And when the pieces finally fit,

the picture may very well have been altered. Previously of modest importance, enterprise

software integration has recently and rapidly become a major concern for the software-

dependent industry. With the increasing reliance on software systems and the proliferation

of computer networks, the benefits of integration of related systems have become signifi-

cant. According to the ARC Advisory Group, the revenues of the market for enterprise

integration reached $4.8 billion in 2001, and will continue to grow by 20% per year in the

next five years, despite the recent economic downturn [Arc01]. Software integration thus

constitutes a considerable business.

Software architecture is a fairly new concept. In recognition of the ever-growing complex-

ity of software systems, software architecture has been proposed as a tool for managing

this complexity by means of abstraction [Sha89]. It is the belief of the author that the main

benefit of software architecture is linked to the reasoning about the system that the archi-

tectural description allows. From a map, it is possible to reason about distances, estimate

time of arrival, etc. From a useful architectural description, it should be possible to make

similar estimations about properties of the system, be it performance, modifiability, etc.

Because of its novelty, exactly what analyses software architecture descriptions can serve as

an input for is unclear. Reliability [Ves98], performance [Spi98], security [Mor97a], and

modifiability [And02] [Las02] are some of the properties that have been approached by the

research community so far.

The bulk of the software architecture research is concerned with the processes and artifacts

of software vendors. The implicit motivation is that software vendors are software devel-

opers while software users are nothing but users. This thesis is, as mentioned, based on the

INTRODUCTION

3

view that user organizations by necessity also are software-developing organizations. Even

though the components in the enterprise software system are normally acquired from ex-

ternal sources, the management of the resulting interconnected system becomes the re-

sponsibility of the owner. The owner responsibility includes the long-term evolution of the

system, the procurement and integration of new components, the modification and retire-

ment of legacy systems. This text is specifically concerned with the integration aspects of

these enterprise software systems.

Thus, the present work is located in the intersection of the concepts of software architec-

ture analysis, enterprise software systems and software integration. The aim is to investigate

the potential for extending software architecture analysis to enterprise software system

integration. Although this ambition has remained in focus during the thesis project, the

precise modus operandi has changed several times as new insights have been gained. How-

ever, since few readers would benefit from an account of the intellectual evolution of the

author, the thesis is presented in an as coherent manner as possible.

1.1 RESEARCH QUESTION

The purpose of the thesis is here presented in the form of a main research question, which

in the next section is refined into four sub-questions. The main question posed by the

thesis is:

To what extent is software architecture analysis applicable to enterprise software system integration?

The key terms of the main research question are thus software architecture analysis, enterprise

software systems, and (software) integration. They will all be extensively elaborated on in the bulk

of the thesis.

1.2 RESEARCH RATIONALE

Keeping the delimitation of enterprise software system integration in mind, the investiga-

tions of the thesis can be refined into two areas of software architecture analysis.

The architectural analysis method. The architecture description of a software system is

in many ways the core of software architecture. Central concepts, such as component,

connector, and view are all represented in the architectural description. A consideration of

software architecture without its description is as unimaginable as geography without a

map. Tightly linked to the form of the architectural descriptions are the means used for

reasoning about them, the architectural analysis methods.

The architecture analysis process. The architectural description and its analysis tech-

niques do not exist in splendid isolation. Descriptions need to be constructed, data col-

lected, scenarios elicited, actions taken based on the analysis results, and so on. The engi-

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

4

neering process in which architectural analysis is performed is thus a second issue of this

work.

Together, these two areas encompass the basis of architectural analysis. As mentioned,

these issues are herein further guided by the aim of extending the use of software architec-

ture to enterprise software system integration. Below, a number of sub-questions are con-

sidered that jointly attempt to address the main research question:

Q1: What is the difference between enterprise software systems and traditional software systems?

Q2: To what extent is the traditional analysis process applicable to enterprise software system integra-

tion?

Q3: To what extent are deduction-based architectural analysis methods applicable to enterprise software

system integration?

Q4: To what extent are induction-based architectural analysis methods applicable to enterprise software

system integration?

Q1 is the natural starting point of the research. Since the main approach is based on the

differentiation of enterprise software systems from traditional software systems, it is neces-

sary to detail the differences between the two system types.

Q2 concerns the process view of architectural analysis. The analysis process referred to as

“traditional” is generic in its nature, in the sense that it is not dependent on the specific

analysis methods [Kaz98]. It is however designed for the context of a traditional developer

organization, motivating an exploration of its applicability to the enterprise software system

context. Although integration is employed as a suitable delimitation, the main issue is the

process.

Q3 and Q4 concern the artifacts of software architecture, the architectural descriptions,

and their associated reasoning techniques. Within the discipline of software architecture,

there is a distinction between informal and formal approaches. Consequently, also the

analysis techniques are divided into formal and informal techniques. The approaches are in

much as the rationalists and the empiricists were in the 17th century. Formal methods at-

tempt to apply deduction-based reasoning on well-defined specifications, using inference

rules to assess properties of the described system [Cla96]. An important kind of informal

method of architectural analysis is based on architectural styles (patterns) [Bus96]. Architec-

tural styles for analysis employs induction-based reasoning, categorizing system types and

searching for generalizable properties of the categories. Because of their differences, the

two approaches are considered separately in the thesis.

The area covered by the thesis is large. Firstly, when delimiting one subject by intersecting

it with another, the contextual setting increases by the introduction of the second subject.

In this thesis, three subject areas, all deserving their own disciplines, are considered. Sec-

ondly, even the intersection per se is extensive. A conclusive treatise on the present subject

INTRODUCTION

5

is beyond the reach of this single thesis. Therefore, the thesis may to some extent be

viewed as a probe, searching for solid ground and soft spots within the area.

An important delimitation is related to the context from which the research has drawn its

empirical substance. The thesis has mainly found its material in mid-sized companies in the

Swedish electricity industry. Due to recent legislative reforms, the electricity industry has

undergone considerable structural changes. These changes have mainly benefited the re-

search, as they have both redirected and increased software-related activities of electric

utilities. Although the empirical material is from a limited sector, the results of the research

could in principle be applicable to similar companies in other industrial sectors. More

important than the industrial sector, are presumably the types of software systems and the

software management latitude of the considered organizations.

1.3 RELATED WORKS

Reviewed in later parts of the thesis, there is an abundance of literature on software inte-

gration. This is also the case with software architecture, architectural analysis and to some

extent literature related to enterprise software systems.

This project is not alone in considering intersections of the subjects. Some literature has

been written on the concept of architectural mismatch [Gar94a] [Abd96] [Gac98] [Com99],

which is a type of integration problem. Related to this are classifications of architectural

component properties required for successful integration [Kaz97] [Sha95a] [Yak99a]

[Yak99b]. With a foundation in coordination theory [Mal94], Dellarocas has proposed an

architecture-based method for integration solution design [Del96] [Del97a] [Del97b]. There

is also some literature presenting specific architectures or architectural styles of integration

solutions [Emm01] [Sou01] [Gam98] [Bus96] [Sch00]. Related is the employment of archi-

tecture specifications in the design of integration solutions [Gann00].

Furthermore, much, if not most, of the literature on software architecture is associated

with software integration in the sense that architecture mainly is concerned with interacting

components. Thus, although the main focus of most of the literature on software architec-

ture is not on integration, it is to some extent inherent in the concept.

For the fundamental concepts of software architecture, the present work leans heavily on

Garlan and Shaw’s much-referred book on software architecture [Sha96a] as well as Robert

Allen’s thesis [All97]. Although the present text does not agree completely on all accounts,

the applied approach to architectural analysis as presented by the people of the Software

Engineering Institute [Bas98] [Bac00] [Bas01a], has constituted a major influence. This is

also the case for [Bus96] and [Sch00] in the context of architectural styles. Linthicum’s

guide to enterprise application integration [Lin00] has served as a convenient overview of

the practicalities of a trade otherwise best described in a multitude of product guides. A

fruitful way of thinking of the people involved in the architectural process has been found

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

6

in Herbert Simon’s work on administrative behavior [Sim47]. Further influences are of

course many and appear throughout the thesis.

Due to the legacy of the Department of Industrial Information and Control Systems, the

general position of the thesis is applied rather than theoretical. Although several formal

approaches are discussed in some detail in the thesis, contributions that are industrially

viable in the short term are preferred to those that have a longer time horizon. In terms of

literature, this position is represented by [Bas98], [Bus96], [Del96], [Hei01a], [Hof99],

[Sch00] and [Wal01] rather than [Abd96], [All97], [Gac98], [Luc95a], [Med00], [Moo95],

[Mor95] and [Sch86]. Nonetheless, much of the foundations of the thesis are attributable to

the latter category.

1.4 CONTRIBUTION

The present work has the following contributions:

Q1: Significant differences between software systems traditionally considered in the

software architecture discipline and enterprise software systems are considered in

Paper A and Paper B as well as in Section 5.7.

Q2: An evaluation of the applicability of traditional architectural analysis processes to

enterprise software system integration analysis is presented in Paper B.

An adaptation of the process to the enterprise software system context is proposed.

A process for selection of integration solution based on architectural integration

styles is presented in Paper D.

Q3: A classification of integration issues and an evaluation of the applicability of deduc-

tion-based architectural analysis methods for the enterprise software system integra-

tion context is presented in Chapters 4 and 6 respectively.

Paper C explores the credibility of deduction-based analysis methods when assump-

tions of correct inter-specification transformations are relaxed.

Q4: Induction-based analysis in the form of architectural integration styles for enterprise

software systems is proposed in Paper D.

1.5 OUTLINE

The thesis is composed of two parts. The first part consists of the included articles. The

second part is an “extended introduction”, consisting of nine chapters. In Chapter 7, the

articles are summarized, in this section, the first part of the thesis is outlined.

Chapter 2 discusses the methodology employed in the research.

INTRODUCTION

7

Chapter 3 considers the empirical setting of the research. The structure and development

of the Swedish electricity industry is very briefly reviewed, and the current software milieu

of electric utilities is presented.

Chapter 4 discusses software system integration. The chapter reviews three common ap-

proaches to software integration. In analogy to political science, the three sections describe

the integration problems encountered and the solutions employed in a world dominated by

1) a monarchical software developer, 2) oligarchical software developers, and 3) anarchical

software developers. This review subsequently leads to a framework of integration issues.

The framework is used in Chapter 6 to evaluate deduction-based architectural analysis

methods with respect to enterprise software system integration.

Chapter 5 considers software architecture. The first part of the chapter considers software

architecture in general, describing the main concepts and presenting the view of the author.

These concepts include the definition of software architecture, architectural views, compo-

nents, connectors, architectural styles, architectural description languages, and finally some

comments on architecture in the software process. These are all traditional issues and

mainly used as a setting for the remaining chapters. The second part of the chapter, consid-

ers the concept of enterprise software architecture. It is presented in relation to traditional

software architecture and subsequently briefly compared to the fields of component-based

software engineering and enterprise application integration.

Chapter 6 considers architectural analysis methods. Although induction-based architectural

analysis is discussed, the main concern of the chapter is deduction-based analysis. A num-

ber of analysis methods are reviewed. The extent to which the methods address software

system integration is considered using the integration issue framework from the third chap-

ter. The chapter concludes by a discussion on the applicability of the methods to the enter-

prise software system context.

Chapter 7 presents summaries of the included articles. Chapter 8 and 9 contain the conclu-

sions and further works respectively.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

8

9

Chapter 2

Methodology

2 METHODOLOGY

2.1 RESEARCH IN SOFTWARE ENGINEERING

The study of software is a science of the artificial [Sim69], and as such perhaps the prime

example. A computing machine is an approximation of a model that per se has no link to

the natural world. It is the job of hardware manufacturers to create machines that ap-

proximate the model as well as possible, and it is the job of software developers to build

new models upon the computing abstraction [Dij76]. The linkage between the software and

natural world is thus weak.

The sciences that deal with the foundations of the natural world have surprised mankind

with revelations of the reductionistic cleanliness of the world in which we live. A remark-

able number of phenomena may be described with comparatively simple and elegant for-

mulae. It has thus become a basic tenet of these research disciplines to search for the sim-

ple (cf. Occam’s razor [Bri02]). The sciences that deal with the foundations of life have also

found a fundamental principle to guide the research, the principle of evolutionary rational-

ity [Cam86]. If a species has a good sense of smell, there is a reason; if it has oversized

teeth, this too has an explanation.

The sciences of the artificial, however, are still searching for their guiding principle. A fun-

damental problem when studying that which is man-made, is bounded rationality [Sim47].

In the life sciences, evolution is a guarantee that biological machines are created rationally

(at least for some environment). Although an underlying rationality is often perceivable in

man-made artifacts, there is no guarantee that this rationality is not occasionally flawed. As

Edsgar Dijkstra [Dij69] so elegantly puts it in the context of software development, “As a

slow witted human being I have a very small head.”

Nor can the artificial sciences find support for the idiom of simplicity permeating, for

instance, physics. In much the same way as with the rationality, simplicity is often found in

human constructions. This simplicity is, however, only a symptom of the designer’s sense

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

10

of aesthetics or willingness (or unwillingness) to think harder. It can therefore not be as-

sumed that e.g. software is based on an inherently simple or beautiful design; on the con-

trary, irrational complexity is oftentimes found in software artifacts. Research on software

is thus in a kind of limbo. Software can neither be assumed rational nor simple, although

both of these traits seem to permeate the subject.

In software architecture, this dilemma becomes evident, since an architectural abstraction

implicitly is based on assumptions of simplicity and rationality of the modeled system.

Slightly more concretely expressed, an architectural description assumes some kind of

homogeneity, for example that all components of a certain type have significant similarities.

If the case were the opposite, the description would be meaningless. Nevertheless, these

assumptions are not always correct. Because of the bounded rationality and bounded sim-

plicity permeating software systems, such assumptions are almost always questionable. One

might say that in the artificial sciences, the devil is in the details.

Considering software engineering [Boe81] [Bro75] [Pre00], this is a hybrid discipline mixing

the study of organizational issues and happenings with the study of inanimate objects and

their properties. And as mentioned above, the inanimate research objects are artifacts, and

as such the products of human design activities. This twilight zone between the soft and

hard sciences, between the artificial and the natural, contains a difficulty as to research

paradigm. It is generally recognized that the traditional scientific methods of the natural

sciences are insufficient, but the general heritage of the research community is one of posi-

tivism, often inspiring a sense of discomfort with too hermeneutic, relativistic or post-

modern views on science [Sea99]. Further complicating the picture is the obvious link to

engineering and engineering methodology.

When explicitly stated, research methods in software engineering are oftentimes case stud-

ies [Mur99] [Ben02], occasionally experiments [Bas96], and rarely surveys [Wan98]. Al-

though seldom considered in research methodology literature, the by far most popular

method, however, seems to be design and development of new artifacts, i.e. prototyping.

This is traditionally considered an engineering method rather than a scientific one. Never-

theless, it is the preferred method of the software engineering research community.

2.2 RESEARCH METHODOLOGY

Research methodology may be categorized into analysis methodology and data collection

methodology. The analysis methods employed in the present work are discussed in the next

section as well as in the included articles. The empirical data on which this thesis is based is

primarily collected in case studies. This section considers some issues on the topic of case

studies. The next section presents the research designs of the individual contributions.

Case study research is by its proponents, e.g. [Yin96], considered especially appropriate

when the studied phenomenon is inseparable from its environment and the environment is

difficult to control. This is typically the case in organizational contexts such as software

METHODOLOGY

11

projects. Case studies are typically categorized according to the available theory base and

theoretical intention into exploratory, descriptive, explanatory. Briefly, exploratory case

studies are aimed at investigating poorly known phenomena, thereby generating theory.

Descriptive case studies employed theory for classification of observations. Explanatory

case studies are aimed at testing theories by proving or disproving relations between phe-

nomena. Since the conducted case studies mainly were of an exploratory nature, the de-

scriptive and explanatory types will not be elaborated on herein.

The main criticism of case studies as research methodology is related to validity and gener-

alizability [Yin96]. The validity problems of case studies are primarily based on the uncon-

trolled environment; it is typically not possible to repeat a case study. This is a weakness,

perhaps not of the research approach, but of the state of the world; it is more often than

not impossible to step into the same river twice. The standard case study approach to miti-

gate this problem is to document the study with care. Although this procedure introduces a

certain stringency and allows a review to a certain point, it does not remove the problem

completely: even the most meticulously documented case study cannot be repeated.

Furthermore, the validity of case studies may be compromised by ethical considerations

[Har94] [Wad94]. Most case studies in software engineering are performed in industry.

Companies on competitive markets are, however, often hesitant to the public and uncon-

trolled distribution of information on their processes and products that may be the result

of case studies. By restricted disclosure of sensitive information, this threat is reduced at

the cost of validity.

Finally, participatory case studies, where the investigator actively participates in shaping the

studied events, run the risk of bias [Kin94]. Participation has the great benefit of providing

ample insight into the studied project, but the validity of the study may be compromised by

an investigator consciously or unconsciously pursuing certain research results.

The argument of generalizability is based on the small number of similar entities that are

normally investigated in case studies [Kin94]. Case study research as a term is almost syn-

onymous with one-occurrence phenomena investigations. The main question is whether it

is reasonable to assume that an observation in a singular case can be generalized to other

cases, and if so to what other cases. This question is a difficult one and the answer is par-

tially found in theory. As an example, the theory of gravity allows us to generalize over

objects when observing their acceleration in a free fall. If we have determined the accelera-

tion with certainty for one object, we may assume that this acceleration is also applicable to

other objects (on the same planet). In complex cases where a multitude of facts, theories

and credible hypotheses are intertwined, the issue of generalizability is often further com-

plicated. A case study should not be compared with a singular response in a statistical sur-

vey, for instance. The case study may include a great amount of related information, and

although the information will not be comparable in a statistical sense, general conclusions

may be drawn by other than statistical means (as exemplified above).

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

12

Thus, case studies are associated with a number of inherent problems, but much due to the

failure of the methods traditionally employed in the natural sciences, e.g. experiments and

statistical studies, the number of reasonably positivistic alternatives are often few.

2.3 RESEARCH DESIGNS

The present work has been of a fairly explorative nature with the general aim of investigat-

ing the applicability of software architecture analysis to enterprise software system integra-

tion. Although the research designs for the individual contributions have been explicitly

considered in each case, the general research design for the thesis as a whole has changed

as the work has progressed. In this section, the sub-questions of the thesis are commented

upon as to chosen research methods.

Q1 considers the differences between enterprise software systems and traditional software

systems. Although these differences have been continually debated throughout the course

of the thesis work, the main approach to answering the question has been a combination of

literature reviews and industrial case studies. Literature on software architecture (as pre-

sented elsewhere in the thesis) has provided an image of the systems traditionally consid-

ered in the field as well as aspects relevant for the comparison. A number of case studies

conducted by researchers at the department [Eri93] [And98] [Joh99] [And00a] [And00b]

[Hel00] [And01a] [And01b] constitute the main base for the characteristics of enterprise

software systems. This empirical information is strengthened by literature, as presented in

Chapter 3 and Section 5.7.

Q2 considers to what extent the traditional analysis process (exemplified in e.g. [Kaz94a]) is

applicable to enterprise software system integration analysis. The question was approached

as a comparison of the results of Q1 and the traditional analysis process. This comparison

generated a number of issues where the traditional process appeared inadequate. For each

inadequacy, an adaptation to the process was proposed. In parallel, the evolving adapted

process was applied in a participatory case study as reported in Paper B and [And01b]. The

experiences of the study further refined the process proposition. The parallel development

and application of the process allowed for a certain amount of iteration, but weakened the

validating function of the case study.

Q3 is concerned with the extent to which formal architectural descriptions and analysis

methods are applicable to enterprise software system integration. Chapter 4 presents a

categorization of issues managed by general integration technologies. These issues are in

Chapter 6 compared to formal, deduction-based architecture analysis methods available in

literature. The comparison thus provides a view of the concepts that are addressed by these

methods, as well as a view of those issues that are not. The methods and issues are further

considered in relation to the results of Q1, thus setting the question in the context of en-

terprise software systems. In Paper C, the credibility of these deduction-based methods is

considered with respect to inter-specification transformation distortions. The study was

METHODOLOGY

13

performed in the confines of a small controlled system development project conducted at

the department. The specifics of the project are detailed in Paper C.

Q4 considers the extent to which induction-based architectural analysis methods are appli-

cable to enterprise software system integration. In Paper D, considering architectural styles,

the modus operandi was similar to that of Paper B. A comparison between the results of

Q1 and traditional architectural styles lead to the proposition of a number of adaptations to

the way in which architectural styles are described and employed. From literature (e.g.

[Lin00]) and industrial studies previously performed by the department, a number of archi-

tectural integration styles were elicited. Finally, the approach was exemplified by applying it

to experiences from a participatory case study performed by researchers from the depart-

ment. The case study thus served with useful exemplifying empirical data, but did not fill a

validating function in the research.

Papers A, B and D were written in close cooperation with Jonas Andersson; the specific

individual contributions are therefore difficult to separate. However, Jonas Andersson’s

work [And02] is concerned with the concept of software system modification while the

present author considers software system integration. Further differentiating Andersson’s

work from the present is his explicit focus on the aspects of time and evolution of enter-

prise software systems. Finally, the present work includes deduction-based (formal) ap-

proaches to architectural analysis. Paper C was also written in close cooperation with the

co-author, Mathias Ekstedt. The authors have contributed equally to this paper. In all pa-

pers, the names of the authors are alphabetically ordered.

2.4 RESEARCH EVOLUTION

The present thesis is the result of a journey that has traversed more topics than those pre-

sented herein. Figure 1 illustrates these disciplines in relation to the focus of the thesis.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

14

Figure 1. Evolution of thesis work.

The research topic has during the thesis project shifted from an initial focus on software

procurement projects and customer-supplier relations to software integration and enter-

prise software systems. Several of the papers that are not included in the thesis are con-

cerned with procurement projects and their characteristics [And98] [And99] [Joh99]. Al-

though the areas at first glance may seem to have few connections, many issues are tightly

linked. In particular, there is a tight coupling between component procurement and system

integration and management. The procurement of enterprise software components deter-

mines not only the base components that are to be integrated and managed, but also the

organizational latitude of subsequent enterprise software system management.

The literature considered during the project has had a clear base in software engineering.

However, as the research topic has been adjusted, so has the relevant literature; primarily

from requirements engineering and software processes to software architecture. In the

investigations on procurement projects, also theory on inter-organizational relations has

been considered.

The empirical context has remained constant during the project, namely the electricity

industry. As a part of the Energy Systems Program, the work is founded in a fairly exten-

sive study of the Swedish energy system, as provided by the program. This wide base has in

subsequent studies been narrowed to the electricity industry.

15

Chapter 3

Software Milieu of Electric Utilities

3 SOFTWARE MILIEU OF ELECTRIC UTILITIES

3.1 INTRODUCTION

Due to the empirical context of the included articles, this chapter provides a description of

the software situation within the Swedish power industry. The chapter considers the de-

regulation in general and the resulting structure of the electricity market. This is followed

by a short review of three drivers of software system evolution that have resulted from the

deregulation. The next section contains a review of software systems typical for electric

utilities. The chapter is concluded by a short discussion on the current needs for software

integration in electric utilities.

3.2 THE SWEDISH ELECTRICITY INDUSTRY

After an approximate century of monopolistic governance, the Swedish electricity market

was deregulated1. This section considers the deregulation and the structure of the new

market in terms of its actors.

3.2.1 A DEREGULATED INDUSTRY

The previously mainly monopolistic and integrated structure of the power industry was in

1996 divided into two segments based on two different regimes. Ownership and manage-

ment of the electric grid maintained a monopolistic foundation, while the structure for

electricity retailing and trading was transformed into a market-based form of governance.

As a direct consequence of this legislative reform, the formerly integrated electric utilities

have been split into several companies, abiding by fundamentally different rule sets. Under

the supervision of the Swedish National Energy Administration are the still-monopolistic

network operation companies. Under the new market regime are the generation companies,

1 It is occasionally pointed out that the “deregulation” was in fact a “re-regulation”, since the market still is regu-
lated. In this text, “deregulation” is used, as it is the commonly employed term.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

16

the electricity retailing companies and the electricity trading companies. Most of the Euro-

pean countries have undergone similar changes.

3.2.2 ACTORS

The electricity business is by the new regulations viewed as divided into a market and a

network segment.

Distribution companies. Since the cost of networks is high, the network business is con-

sidered a natural monopoly. The monopoly is mainly of a local nature in the sense that

distribution (or network) companies have geographical concession areas, covering, e.g., a

municipality. Furthermore, the distribution companies are private and profit seeking. Ap-

proximately 1500 in the fifties, the number of distribution companies have been reduced to

200 during the last half-century. Previously a consequence of municipal mergers, the con-

tinuing reduction is now mainly motivated by the deregulation [Ene01]. Thus, the tradi-

tional distribution companies, defined by their municipal concession areas, are slowly being

replaced by larger actors.

Regulatory agency. To avoid the unsound pricing that typically results from profit-

seeking monopolies, it is the responsibility of the Swedish National Energy Administration to

supervise operations of the distribution companies.

System operator. Transmission is mainly managed by the national system operator Svenska

Kraftnät (SvK). This state agency is responsible not only for managing electricity transmis-

sion on the national grid, but also for upholding the balance between electricity production

and consumption as well as import and export to and from the national network. To con-

trol the balance, Svenska Kraftnät provides a regulation market, where producers may bid for

increases or decreases in power production.

Generation companies. The generation, trading and retail companies are active in the

market-driven segment. Generation companies are typically parts of major energy compa-

nies. Together, Vattenfall and Sydkraft are responsible for approximately 70% of the total

Swedish electricity production.

Trading companies. Electricity is bought and sold either according to bilateral contracts

between companies, on NordPool, the Nordic market place for electricity trade, or on the

system operator’s regulation market. Electricity is a commodity with some particular char-

acteristics, making the trade slightly different from other markets. The most important

characteristic of electricity in the context of a market place is the requirement of simultane-

ous production and consumption, since electricity cannot (in principle) be stored. This

makes the financial trade of futures and other derivates important as a risk-distributing

mechanism. Another interesting characteristic is the perfectly undifferentiated nature of

electrons, making it possible to use the network as a giant pool into which producers pump

and consumers suck electricity.

SOFTWARE MILIEU OF ELECTRIC UTILITIES

17

Retail companies. The retail companies are the electricity industry’s primary faces to-

wards the customers. No production is necessary for retailing, since electricity can be

bought both on NordPool and by bilateral contracts with producers. Most retail companies

are the market-governed offspring of the formerly integrated municipal electric utilities,

with the distribution companies as their monopolistic sisters. The retailers have been sub-

jected to a more extensive wave of mergers and acquisitions, and are therefore now fewer

in number than the distribution companies.

Consumers. Buildings and services is the largest sector of consumption in Sweden, with an

electricity use of an estimated 73 TWh in 2001. In comparison, the industrial sector con-

sumed 55 TWh the same year [Ene01]. The main concept behind the deregulation is the

establishment of consumer choice in selecting electricity supplier (retailer). Consumers

consequently abide by the market regime in electricity consumption. Network access is,

however and as mentioned, provided by regulated distribution companies.

3.3 DEREGULATION AND SOFTWARE SYSTEMS

The deregulation has created three primary drivers of software system evolution. Firstly,

the escalated organizational dynamism of the industry, with an increase in the numbers of

mergers and acquisitions has resulted in an increased number of uncoordinated enterprise

software systems. To manage these, many retirement, and in particular integration projects

have been initiated. Secondly, new business operations resulting from the reform have

required new support systems. In particular, new routines for metering and settlement have

created a demand for new software systems specific for the Swedish electricity market.

Thirdly, increasing competition has lead to expectations of lower margins on electricity

trade. These expectations have, in turn, led to a search for new business opportunities.

3.3.1 MERGERS AND ACQUISITIONS

The deregulation of the electricity industry in Sweden and much of Europe has both facili-

tated and created an incentive for national and international mergers and acquisitions. This

has coincided with a general privatization of Swedish municipality-owned companies. In

combination, these two factors have turned a formerly stable industry into turbulent and

dynamic grounds in search of a new structure.

Only in 2000/2001, the Finish company Fortum stepped up from 50% to 100% ownership

of Birka Energi. Vattenfall invested in a third of the stock of the in the German company

Hamburgische Elektricitäts-Werke (HEW), 49% of the Berlin energy company Bewag, as

well as acquiring the Polish distribution company GZE, German Veag, Norweigan Oslo

Energi, Swedish Uppsala Energi and the network part of Sigtuna Energi [Dag01a]

[Dag01b] [Dag01c] [Dag00a] [Dag00b] [Dag00c] [Dag00d]. With German EON as a new

majority owner, Sydkraft invested in Norrköping Miljö och Energi, WM Sverige and Nora

Energi [Dag00f] [Dag00g] [Tid00a]. Birka Energi acquired Arvika Energi and Graninge

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

18

attempted to acquire Norrtälje Energi [Tid00b] [Tid01]. The French company Electricité de

France increased its share in Graninge to 35% [Dag00h].

As will be discussed below, the considerable number of mergers and acquisitions in the

industry have generated a need for management of the resulting uncoordinated systems.

3.3.2 NEW BUSINESS OPERATIONS

Not only the organizational movements in the wake of the deregulation have influenced

the software situation for the electricity companies, but also the new market operation.

Trading of electricity on the spot and regulation market as well as financial trade on the

derivative market have required new systems for all of the major actors in the industry. An

open market requires new customer relations management systems for gaining new and

keeping old customers. A new regulative system for maintaining the balance of the electric-

ity system demands new systems for the system operator. The division of the formerly

integrated electric utilities into network and retail companies has necessitated a division of

customers and thus of customer information systems. The list of new support system re-

quirements goes on. Here, we highlight the electricity metering issue, and some conse-

quences it has had on the software situation in the industry.

The procedures for buying and selling electricity are complicated by several circumstances.

The basic problem is how to measure the amount of electric energy each producer pro-

duces and each consumer consumes. Because the price changes continually with the supply

and demand, the measurements need to be performed each hour. Before the deregulation,

consumers were dependent on the electricity company owning the concession for the geo-

graphical area in which the customer was located. The measurement and settlement prob-

lem was thus an internal problem of the electricity company, being both retailer and net-

work owner. After the deregulation, customers can choose any retailer. The concession-

owning network company now needs to measure the consumers’ energy consumption (as

well as any generator’s production within the concession area), make sure that the meas-

urements are correct, estimate them if they were not registered, compare the inflow and

outflow of power into and out of its network with neighboring network companies, and

finally distribute the information to representatives of the retailers (actors responsible for

keeping the balance), and to Svenska Kraftnät. These measurement and settlement proce-

dures have proven to be difficult to implement and the primary problem has been related

to the software systems needed to perform the required tasks.

Examples of the specific problems encountered by the network companies are [Ene00]:

• The hourly metering of the many low-consumption customers has been compli-

cated by the fact that the meters have been too costly to produce. After many

twists and turns, it has finally been decided that these metering values can be es-

timated instead of measured.

SOFTWARE MILIEU OF ELECTRIC UTILITIES

19

• Problems of estimating missing meter values due to a lack of estimation function-

ality in the metering and settlement systems have been reported. These problems

have required manual interventions that have been both costly and time-

consuming, delaying the whole settlement procedure.

• After the decision to allow estimation of the meter values of low-consumption

customers, this estimation in itself has become problematic due to a lack of func-

tionality in the metering and settlement systems.

• Problems of localizing consumption points in the network due to problems of as-

set identification have been reported. This has typically been attributed to a lack

of integration between metering and settlement systems on the one hand and cus-

tomer information and asset management systems on the other.

• There have been problems managing customers attempting to switch from one

retailer to another. These problems are to be expected, since every organization,

and thus every information system previously managed only its own customers.

Functionality for retailer switching and the required inter-organizational commu-

nication procedures has thus been lacking.

• Many actors have encountered communication problems with external actors. Al-

though the communication of detailed metering information is new per se, prob-

lems are mainly due to new message format standards. According to regulations,

the format Ediel [SvK02] should be employed for measurement information, reg-

istrations of customers changing retailers, production predictions, etc.

The problems of electricity metering have thus been partly due to a lack of software system

functionality, and partly due to software integration problems.

3.3.3 NEW BUSINESS OPPORTUNITIES

For the segment of the electricity industry that is experiencing competition as a result of

the deregulation, lower margins are expected. To increase the potential for profit, these

companies – in particular those with an interface to the consumers – have been searching

for completely new business opportunities [Bäc98]. Electricity companies have for instance

attempted to move into telephony, broadband access, insurance, and home automation

markets. Of course, all such moves have required new sets of operation support systems.

3.4 SOFTWARE SYSTEMS IN THE ELECTRICITY INDUSTRY

Any attempt to describe the software systems of a complete industrial sector is doomed to

be grossly incomplete. This section can at best conjure a vague image of the software mi-

lieu of the electricity industry.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

20

Software systems are often divided into operation support systems and business support systems

[Hag02]. This division is primarily due to historic reasons. Companies developing general

(non-digital) machines for management of, e.g., the electricity process (machines such as

generators and transformers), successively added digital computing capabilities for control

and supervision of the process and its machines. Due to their environment and tasks, these

operation support systems are typically characterized by real-time performance require-

ments, high reliability, availability, robustness and safety. In contrast to operation support

systems, the development of business support systems fairly early grew into an industry in

its own right, decoupled from the specificities of the user organizations. These systems are

stereotypically characterized as mainly batch processing, with requirements on high

throughput rather than real-time performance. Requirements on extreme availability or

robustness do not belong to the general characterization of these systems. Although these

requirements may explain how the two system classes came to be, the evolution of both

the systems and the context in which they are used have greatly diffused the borders be-

tween them.

In this section, typical systems employed in the electricity industry are presented in an

(intuitive) order from “true” operation support systems to “true” business support systems

[Ceg86] [Che97] [Eng99] [Hag02] [Pit01]. For many of the systems, there is an ongoing

discussion concerning terminology, debating what functions should be included under

what system names. In this section, no justifications are provided to the categorization, and

it is of little importance.

Local monitoring and control systems. Software-based systems employed for local, low-

level monitoring and control are used in conjunction with a great number of devices in the

power process. In their most basic form, these systems collect process data, relay it to some

centrally located agents, and implement instructions received from the central systems.

Additionally, local systems may be used for data buffering, time stamping and data filtering.

Process control operations that do not require central system intervention and that are

time-critical may be directly controlled by a local system. In the power system, local sys-

tems are used for data acquisition and control of devices such as protection relays, capaci-

tor banks, breakers, automatic reclosers, sectionalizers, and more. According to Ericsson

and Rahkonen [Eri95], the interfaces provided by these local power control systems are to

a great extent proprietary.

Central monitoring and control systems. Providing real-time data acquisition and re-

mote control, SCADA (Supervisory Control And Data Acquisition) systems are normally

considered the core controllers of the power system. These systems collect data from

widely geographically distributed local systems, present relevant information to the opera-

tors, relay operator commands to the local systems, analyze the state of the process, react

to anomalies by automatic control of local systems and operator alarming. Additionally,

SCADA systems store data, and more. To the central monitoring and control systems, load

management systems should be included. These systems may be used to centrally control

SOFTWARE MILIEU OF ELECTRIC UTILITIES

21

electricity consumption. Between control center applications, communication standards are

typically proprietary, while significant harmonization has been achieved between control

centers in the form of standards such as ELCOM and ICCP [Eri95].

Automatic meter reading systems. Data about the consumption and generation of elec-

tric energy is a necessary base not only for generation and load control, but also for the

economic transactions related to the use of electricity. According to regulations, this infor-

mation should be collected for each (larger) consumer and generator, each hour. Due to

the deregulation, this data collection system has recently become centralized and more

extensive. Because of the geographical distribution of electricity consumers, the communi-

cation between electricity meters and the central system is managed in a number of innova-

tive ways, including the use of telephone lines, power lines, mobile telephony, and satellites

as communication infrastructure. A standard for electronic interchange of (among other

things) metering values is currently employed in Sweden, Ediel. Ediel is based on the EDI-

FACT (Electronic Data Interchange for Administration, Commerce and Transport) stan-

dard for message presentation, and the X.400 electronic mail protocol for transmission.

Under X.400, several lower-layer communication facilities are allowed. Ediel is jointly de-

veloped by the Scandinavian electricity industry in a standardization committee called

EDIEL Nordic Forum.

Trading systems. Both the NordPool spot market and the Svenska Kraftnät regulation

market provide possibilities of trading electricity on short notice (from half an hour to a

day ahead). Since these kinds of market places were not relevant before the deregulation,

these systems have been developed fairly recently. These systems are closely related to

systems for trade of futures and other financial instruments employed for financial risk

management. Ediel is employed as a message standard for communication of bids etc.

Settlement systems. In the deregulated market, the economic settlement following the

generation and consumption of electricity is a complicated affair. Hourly metering values

are collected by network owners, missing values are estimated, values are controlled, com-

pared with neighboring network owner’s values, distributed to actors with balance-keeping

responsibilities as well as to the system operator. Balance responsible actors as well as the

system operator control and perform calculations upon the metering values to determine

the total consumption, consumption per balance responsible, etc. Values calculated by

different actors are compared to each other; inconsistencies require backtracking and error

location schemes. The whole process is so complicated that it has taken several years for

the industry just to comply with the coarsest directives of the regulations [Ene00]. A set of

the Ediel standard is used for settlement data transfer between actors.

Distribution and production management systems. Typically operating on top of the

central monitoring and control systems, distribution management systems include decision

support systems for operation and control, trouble call analysis and management systems,

trouble crew dispatch, and similar pseudo-real-time functionality.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

22

Geographical information systems. Because the power process is widely geographically

distributed, there is a need for systems linking assets and devices to a geographical position.

This is the purpose of the geographical information systems (GIS).

Planning and engineering systems. Planning and engineering systems are employed to

analyze, optimize, modify and plan operation and maintenance. These systems may per-

form different kinds of network analyses, forecast loads, predict reservoir level develop-

ment for hydro power, simulate trade markets, etc. They may also support system design,

for instance with CAD tools.

Work management systems. Systems are available for keeping track of the work flow,

including functions for work planning, estimation, orders, progress, resources, contractors,

etc. When a job is completed, the work order is closed and reported to other involved

systems.

Customer information systems. Customer information systems are employed to keep

track of the customers. This includes contract management, supply points billing, payment

control, and so on. According to general wisdom, the more the company knows about its

customers, the likelier it is to keep them. Therefore, successful integration of the customer

information system with metering systems, GIS systems, trouble call systems, is considered

a competitive advantage.

Asset management systems. There are systems for keeping track of the company’s as-

sets. These systems typically contain information about the types of assets, their age, condi-

tion, when they were last serviced, etc.

Enterprise resource planning systems. Enterprise resource planning systems are in-

tended as company-wide administrative systems for managing everything from accounting

to human resources, including customer information systems, procurement tracking sys-

tems, payroll management systems, time management systems, project and program man-

agement systems, quality management systems, and more. Several of the systems presented

above can be located under the umbrella of the enterprise resource system. Enterprise

Resource Planning Systems have long been criticized for their non-standardized communi-

cation mechanisms and have only recently begun opening up their interfaces. The market

leader, SAP’s (Systeme, Anwendungen, Produkte in der Datenverarbeitung) system, em-

ploys an old IBM middleware layer called CPI-C for program-to-program communication.

In an attempt to hide the complexities of CPI-C, an in-house mechanism called RFC (Re-

mote Function Call) has been conceived. On top of RFC, an object-oriented mechanism

called BAPI (Business Application Programming Interface) is available. SAP also defines a

message format, similar to EDI but proprietary, called IDOC (Intermediate Document)

[Lin00]. To a large extent due to a lack of standardization, much of the integration between

non-real-time systems is based on flat file transfer, where data files are exported (possibly

employing customized data extraction software) from the source application, transported

SOFTWARE MILIEU OF ELECTRIC UTILITIES

23

by e.g. FTP (File Transfer Protocol) batch converted, and subsequently imported (possibly

using load programs) into the destination system.

3.5 A NEED FOR SOFTWARE INTEGRATION

Formerly common, idiosyncratic green-field development of organization-specific systems

is nowadays highly unusual. For all of the above system types, there are today suppliers

with more or less complete product packages. These may be used as a base when introduc-

ing new functionality into the organization. Customization of the base products in delivery

projects is, however, a common activity, and often used by the developing organizations to

add functionality to their products.

A major task for electric utilities has then become to introduce and evolve a large set of

products provided by uncoordinated suppliers. The software system management of the

utilities is not so much concerned with development of new functionality, since this nor-

mally is already available in some supplier’s product. Instead, the selection of products and

suppliers, the introduction of new products into the existing enterprise-wide software sys-

tem, and the evolution of this enterprise-wide system, become the primary tasks of the

electric utility.

In the old days, systems were built as “stovepipes”, i.e., they were not designed to interact

with other systems. This was reasonable at the time, since the need for interaction was

unrecognized. During the last decades, the demands for software system integration have,

however, become much more urgent. It has become evident that the systems presented

above have a great number of relations to each other; in particular, the data present in one

system may be of interest to another system.

As discussed above, the deregulation has added to these general integration demands.

Firstly, the increase in mergers and acquisitions has created a need for software system

harmonization in the companies resulting from the organizational mergers. Secondly, the

new regime has increased the need for communication, both internally, within companies,

and between organizations. Thirdly, new business opportunities have resulted in invest-

ments in completely new systems, which also need to be integrated into the enterprise

software system.

As a closing example, we consider the network owner’s metering system, it’s data, and

where it may be of use. The data is relevant to the settlement system as well as to neighbor-

ing network owner’s, system operator’s, balance-keeping actor’s settlement systems; the

data is also relevant to the retailers billing systems and customer information systems. Fur-

thermore, metering data is related to a metering device. The metering device is registered in

the asset management system, so it might be useful to have some relation between these

systems. Furthermore, like most assets, the meter has a geographical position, which quali-

fies it for the GIS system. Assets associated with geographical information are in turn use-

ful for the work management system. The load forecasting of the planning system requires

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

24

historical load data, which is collected by the metering system. The results of the load fore-

casting are relevant to the distribution management system as well as for other planning

systems. And so on.

The requirements as well as the possibilities for meaningful software integration are thus

many. In the next chapter, the problems encountered when attempting to integrate soft-

ware systems and proposed approaches to these problems are discussed in some detail.

25

Chapter 4

Software Integration

4 SOFTWARE INTEGRATION

4.1 INTRODUCTION

This chapter reviews the concept of software integration as presented in literature. The

main purpose of the chapter is to provide a base for the subsequent evaluation of the ap-

plicability of deduction-based software architecture analysis techniques to enterprise soft-

ware system integration. As presented in Chapter 6, a number of methods for architectural

analysis of integration-related issues are available. By reviewing a set of typical integration

technologies, this chapter aims at providing a categorization of the issues that need to be

managed in enterprise software system integration projects. The underlying assumption of

this approach is that those issues that need to be managed for software integration in fact

are managed by at least one of the technologies presented herein. It is therefore not impor-

tant that all available technologies for software integration are reviewed (an impossible

task), but a sufficient number and range to ensure that no important issues have been omit-

ted. A supplemental purpose of the review is to provide a general overview of the field of

software integration.

Three different perspectives on integration are considered, monarchical integration ap-

proaches, oligarchical integration approaches, and anarchical integration approaches. The

reason for using these three perspectives is two-fold. Firstly, literature on software integra-

tion seems to be divided into three categories. Secondly, software integration is in much

concerned with agreements between component developers, and there appears to be three

common software integration situations depending on what agreements have been made

between developers. In analogy to political science, the three sections describe the integra-

tion problems encountered and the solutions employed in a world dominated by a monar-

chical software developer, oligarchical software developers, and anarchical software devel-

opers.

Because of the versatility of automatic computing, the laws that govern software develop-

ment are rarely related to physical limitations, but rather to rules created by people. For

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

26

instance, in a multitasking operating system, one process can typically not directly access

the address space of another process. This is not because it would be difficult to allow this,

but because it is a restriction deemed useful by the community. Similar man-made rules

determine how object-oriented objects can be accessed, how computers communicate over

networks, etc. Integration of software systems is to a large degree concerned with under-

standing these rules, in which context they where created, whether they can be changed or

not, or whether they can be sidestepped.

One way of viewing the three approaches of this chapter is by considering the assumptions

they make about what is modifiable, when it is modifiable and by whom. The monarchical

approach assumes that the same agent has complete access to all components all the time,

and is able to synchronize their development. The oligarchical approach assumes that there

is coordination between component developers before the components are designed. The

anarchical approach assumes that there is no coordination between the components devel-

opers at all. The job of the integrator thus varies considerably between the approaches. A

similar way of viewing the three approaches is in terms of agreements. In the monarchical

scenario, there is no need of agreements, since only one actor is involved. In the oligarchi-

cal scenario, agreements between component developers constitute the base for integra-

tion. In the anarchical scenario, although agreements would have been beneficial, none are

in place.

The section Monarchical integration approaches describes how software integration typically is

achieved at a fairly fundamental technical level, considering concepts such as shared mem-

ory, interprocess communication, remote procedure calls etc. The concepts of the section

are typically treated in literature on operating systems, compilers, programming languages,

etc. [Dei84] [Aho86] [Bac87] [Tan87] [Tan95] [Mal84] [Foi85] [Rey98]. Most of the en-

countered software integration problems may be reduced to the problems presented in this

section, and most problems are eventually solved with the corresponding techniques. The

issues presented in this section do, however, only constitute one view on the problems and

solutions of software integration. Important issues that are ignored are the results of organ-

izational interaction, or lack thereof. In the monarchical scenario, the same actor is both

component integrator and component developer; stereotypically thus, these issues concern

the lonesome green-field programmer.

The section Oligarchical integration approaches presents the concepts of integration standards.

The standards are considered in the Open Systems Interconnection reference model (OSI)

of the International Organization for Standardization (ISO) [Tan81]. Integration standards

are based on agreements among developers to employ a certain integration solution, not

necessarily because it is the most efficient solution, but simply because it can be agreed

upon. An unreasonable number of integration standards have been defined, and no single

text can describe even a fraction of them. This section is therefore confined to consider

these standards in a brief and conceptual manner, with some references to specific cases

when appropriate. In the oligarchical scenario, different actors develop the components,

SOFTWARE INTEGRATION

27

but agree on the integration solution; stereotypically, these issues are relevant for cooperat-

ing, large-scale, green-field development organizations.

The section Anarchical integration approaches reviews methods for application integration. The

standard literature on these methods is normally denoted Enterprise Application Integra-

tion (EAI), and concerns techniques and devices such as middleware, adapters, message

brokers, etc. [But99] [Lin00] [McG00] [Lin01a] [Lin01b] [Mor01] [Ruh01]. Application

integration is typically performed by integrators of independent third-party software com-

ponents. Stereotypically, the anarchical view is relevant when components constructed by

developers that never agreed on anything, are to be integrated. Although the anarchical

approach is most commonly considered in the context of enterprise software system inte-

gration, the two other approaches are of equal importance.

The final section of the chapter compiles the issues managed by the considered ap-

proaches. As mentioned, this compilation is subsequently used as a framework in the chap-

ter on architectural analysis approaches. Seven aspects, or categories, of software integra-

tion constitute the framework in this chapter. They need not to be considered as a final

categorization of software integration issues, but together they should encompass the im-

portant issues.

4.2 INTEGRATION AND INTEGRABILITY

Before considering general approaches to software integration, it is useful to consider some

definitions of common terms.

According to Bass et al. [Bas98], integrability is the ability to make the separately developed

components of a system work correctly together. A special kind of integrability is (still

according to Bass et al.) interoperability. Integrability measures the ability of parts of a system

to work together; interoperability measures the ability of a group of parts (constituting a

system) to work with another system. According to [Pol01], integration results in tightly

coupled, while interoperability creates loosely coupled systems. The difference between the

terms is thus fairly unclear. In the context of the present work, integrability is employed,

partly since integration of enterprise software system components is considered (although

these components often are viewed as systems in other contexts). Perhaps more impor-

tantly, interoperability has rather narrow connotations, primarily concerned with interface

compatibility and the creation of a communication link between two software systems

where previously there was none. Integrability is thus employed as a slightly broader term,

also concerned with some of the overarching qualities of the resulting system (such as data

consistency and security). In this text, software integration thus denotes the task of making

separately developed components of (enterprise software) systems work correctly together,

in analogy with the term integrability. In the end of this chapter, a framework attempting to

operationalize the concepts of integration and integrability is presented.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

28

4.3 MONARCHICAL INTEGRATION APPROACHES

In the monarchical development situation, the integrator is also the component developer.

Being the developer of the components provides the integrator with an uncontested choice

of integration solution. The totalitarian control over integration solution is thus in analogy

with monarchical governance. Continuing with the analogy, the integrator follows the rules

of the platform developer (typically including hardware, operating system, virtual machine

or compiler, etc.). He is thus the subject of the platform’s regulations, decided on before-

hand, as were they the constitution of a monarchic state.

The issues considered in this section are mainly treated in computer science literature on

operating system, compilers, and (imperative) programming languages [Dei84] [Aho86]

[Tan87] [Bac87] [Tan95] [Mal84] [Foi85] [Rey98].

The section begins by the simplest communication between components – the communi-

cation between successive statements in a program – and then increases the granularity of

the components. For each component type, the introduced communication problems are

described and typical technologies to overcome them are presented. Issues that are not

automatically managed by the platform become the concern of the developer; these re-

sponsibilities are also considered.

Figure 2. Monarchical integration on increasing levels of abstraction (notation according to [Bas98]).

Although elaborated on elsewhere in the thesis, for the purposes of this section, the term

component represents an active software entity that is capable of some kind of communica-

tion with its peers (this is in line with [Sha96a]). Components are in the monarchical con-

SOFTWARE INTEGRATION

29

text defined by the supporting soft- and hardware. The semantics of objects, for instance,

are defined by the compiler while processes are defined by the operating system. In this

section, the supporting soft- and hardware is referred to as the platform. At first glance, this

section may seem to ignore the integration between the components and the platform,

which may be considered a component in its own right. However, the platform is to a large

extent the creator of the component abstractions and the manager of the integration issues,

and viewing it as a component would result in an unsound kind of nesting. The platform is

thus addressed as an underlying abstraction creator and integration manager.

4.3.1 PROCESS EVENT INTEGRATION

The term process event is used here to denote the execution of a program statement2. Thus, as

programs are composed of statements, processes are composed of events (cf. [Hoa85]). An

event may be viewed as an atomic component; it is in this context hardly meaningful to

imagine a smaller component (according to the above definition) than a single process

event. Let us therefore, as a reference, begin by considering how process events communi-

cate with each other (cf. Figure 2-a). There are two issues that need to be communicated

from one event to the next, control (i.e., execution) and data.

Considering transfer of control, in the simplest of processes, the events follow each other

sequentially in time as specified by the program. The program pointer, indicating the ad-

dress of next the statement to be executed by the processor, is incremented for each exe-

cuted statement, thereby transferring control from one statement to the next. When writing

a simple program, the developer thus need not worry about how control is transferred

from one event to the next, since the platform manages this. However, he does need to

follow the convention of arranging the statements in the same order in program text space

as he wants the process events to be executed in time. He also needs to follow the syntax

conventions of platform-defined statements.

For data transfer, shared memory is employed. The execution of an assignment statement

stores a value to an area of the memory region. The memory for the process is common to

all statements; so two statements in the same program can access the same data if they

know the address. The developer need not be concerned with how data is written to and

read from memory. However, he is responsible for the format of the data. The developer

also needs to ensure that the two communicating statements refer to the same data address

space as well as the meaning of the data.

4.3.2 IN-PROCESS PROCEDURE INTEGRATION

A next level in component granularity considers procedures (subroutines or functions) as

components. A procedure is a bundle of statements that can be invoked several times by

the program. The procedure brings not only structure to a program but also economy,

2 In this section, a very simple language is considered, without subroutines, jump statements or variables.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

30

since repetition of program text may be avoided. Procedure integration (cf. Figure 2-b)

considers how control and data is transferred to and from procedures3. Jumps and vari-

ables are therefore considered here.

The main problem of transferring control between components (in comparison with the

previous example) is how to make the program counter jump from the process call to the

process definition and back. When a procedure is invoked, its first statement will probably

not be located exactly after the invoking call. In the simple program (above), the program

counter is incremented for each executed statement, but clearly, when procedures are pre-

sent the program counter needs to be able to point to other addresses. Furthermore, when

the procedure has reached its final statement, the program counter should return to the

statement following the invoking statement, again making a jump. Procedures are invoked

by procedure calls. Automated control transfer in a procedure call is managed by the plat-

form first storing the current value of the program counter in the process’s stack, then

changing the value of the program counter from the current address to the address of the

first statement of the called procedure. When the called procedure is finished executing, the

return address is returned to the program counter. This is also the typical way of perform-

ing system calls. In the context of procedure calls, the developer need not be concerned

with the memory address of the invoked procedure, but only the proper procedure name.

In this sense, the platform, taking the name as input and yielding address as output, imple-

ments a location directory service as well as actual control routing. The developer is re-

stricted by the procedure call convention prescribing the complete execution of the proce-

dure before returning to the statement following the procedure call. Furthermore, to make

a procedure call control transfer, the developer needs to match the name of the procedure

in the procedure definition and the procedure call. Any sequences beyond call-return are

the responsibility of the developer (e.g., Call-return A must follow Call-return B).

Considering data transfer; in the process event integration scenario, data was accessed by

direct memory addressing. This is problematic since the programmer needs to directly

manage memory addresses. Instead of addressing memory directly, variables may be em-

ployed. These are normally both memory references and format directives. Additionally, a

procedure may have local variables, it may be invoked using parameters, and it may return

variables. In principle, all these variables could be global variables accessible to all state-

ments in the program; this is however not desirable. Instead, local variables, residing in a

reserved memory segment, are accessible only to the statements within the procedure.

Procedure parameters and return variables thus need to be passed between the invoking

statement and the procedure. This is accomplished by pushing these parameters onto a

designated place in the stack, available to the called procedure. Either the parameter values

or the parameter addresses are pushed onto the stack, call-by-value and call-by-reference

respectively. Return variables are treated in a manner similar to parameters, i.e. using the

3 The present discussion is equally applicable to system calls, i.e., procedures defined by the operating system.

SOFTWARE INTEGRATION

31

stack. When the procedure is finished executing, the local variable and parameters are freed

from the stack. The calling statement may assign the return variable to some (more) persis-

tent variable. Summarizing the data transfer responsibility distribution between developer

and platform, transport of data from call to procedure and back is thus managed by the

platform (the stack is hidden from the developer). Furthermore, data transport is simplified

by parameters and return variables. Using variables, the developer’s responsibility over

location is decreased since the platform implements a directory service, and data represen-

tation is standardized by the platform. The developer still does need to adhere to the repre-

sentational conventions defined by the variable types, and ensure that the variable names

(address references) are correct, designating the intended variables. To some extent, with

the statements operating on variables (e.g. arithmetic operations on integers), the platform

determines the meaning of certain data. The developer is further responsible for this mean-

ing by any developer-defined operations.

4.3.3 IN-PROCESS OBJECT INTEGRATION

Objects are instantiated classes, and as such bundles of procedures (methods) and variables

(attributes). Bundling is among other things intended to lead to higher cohesion and lower

coupling [Bri97] [Bri99] [Ede94] [Hit95] in the program. Objects preferably communicate

(cf. Figure 2-c) by means of method invocations. In (single-threaded) object-oriented sys-

tems, control is passed between components by method invocations, much in the same

way as in procedure-oriented systems. When an object is instantiated, a special method

(constructor) is automatically invoked. Attributes and methods may be accessible to other

objects (public) or not (private). Although attributes in one object may be directly accessi-

ble by another object, it is generally preferred that local methods manipulate local data.

Method invocation, being the typical solution to control and data transfer between objects,

basically functions in the same way as procedure calls. The main additional problem of

control transfer between objects is related to object creation. Objects are dynamic and

therefore do not have an address at compile time as procedures do. Since an object’s ad-

dress become known only at run-time, it needs to be transferred run-time to any object that

wishes to invoke that particular object’s methods or access its data. This problem is solved

by the platform making object address references accessible to the creating object at the

time of creation. The references are subsequently used for invoking methods in the object

as well as for accessing data. Object references often are typed variables, which implies that

the syntax is determined by the platform. Correctly representing the reference is however

the developer’s responsibility. Furthermore, run-time location, i.e., passing object refer-

ences to the appropriate instances (other interested objects), is mainly the developer’s task.

Finally, some aspects of the sequence of interactions between objects are regulated by the

platform, while others are the responsibility of the developer. For instance, an object must

be created before its methods are invoked, but the order of method invocations between

creation and destruction is up to the developer.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

32

4.3.4 LOCAL PROCESS INTEGRATION

On most modern operating systems, several processes can execute (seemingly) simultane-

ously. A major purpose of these concurrent processes is to facilitate management of multi-

ple independent control threads, a kind of separation of concerns [Dij76]. A process is here

defined as an executing program with a single thread of control and associated data (while

for some operating systems, a process may contain several threads of control). Processes

typically have address space protection, making it impossible for one process to directly

access the address space of concurrently executing processes. To further isolate processes,

they normally only communicate with the environment (I/O, the file system, etc.) using

system calls provided by the operating system.

As for procedure and object integration, the objectives of process integration (cf. Figure 2-

d) are control and data transfer. However, control transfer takes on a new meaning since

each process already has a thread of control. The address space protection mechanism

makes it impossible for one process to set its program counter to the address space of

another process. This restriction is a major benefit of the process concept, but it makes it

impossible to transfer control as in the previous examples (e.g. object integration). The

substitute of control transfer then becomes synchronization of execution. Since synchroni-

zation is performed via data transfer, the issue of control is dependent on data transfer. But

also direct data access is prevented by address space protection. Other means of data trans-

fer are thus necessary. Interprocess communication mechanisms are implemented in the

platform using a variety of specific technologies, but in two distinct ways: by providing

means for processes to share a process-external memory area and by providing some mes-

sage passing mechanism.

Message passing has been implemented in numerous ways, including pipes, remote proce-

dure calls, remote method invocations, sockets, etc. Message-passing systems may be syn-

chronous, resulting in processes running in lockstep, or asynchronous, using mailboxes or

other buffers for temporary storage of messages. As an example of a message passing

mechanism, remote procedure calls [Kha95] [Rud96] simulate synchronous control transfer

in the sense that one process acts as a server, waiting for a client process to invoke a pro-

cedure, and while the procedure is being executed on the server, the client is blocked. Con-

sidering the responsibility distribution between developer and platform, remote procedure

calls are designed to have much of the same properties as ordinary procedure calls. How-

ever, location of communicating parties is a special problem in the inter-process version.

These location issues may be aided by platform-provided directory services. For RPC, it is

not enough to locate the correct process, but also the correct procedure. The platform may

support interface discovery mechanisms to this effect. Another problem that may occur in

the multi-process context is that the called process is unavailable. These situations typically

need to be managed by the developer, although the platform might support some error

control, e.g. time-outs and error notification. Although some message-passing systems do

not specify the data representation of the messages at all, for remote procedure calls – like

SOFTWARE INTEGRATION

33

ordinary procedure calls – the developer determines the numbers and types of parameters,

but the variable representation is determined by the platform .

Shared memory is typically implemented as a process-external memory buffer accessible for

reading and writing of processes by means of some system calls. Normally, shared memory

refers to direct access memory, but the properties of e.g. file sharing are similar. The first

problem of shared memory is how to notify the involved processes of where it is located.

In general, there are three ways to determine the location of the shared memory area: a)

there may be only one (as is the case for the typical clipboard file); b) the shared memory

area may be determined at design time (as in file-sharing, when the location and name of

the shared file is determined by the developer); or c) the location may be determined run-

time (as when the shared file is determined by a user or some other third party). In the first

case, the platform manages the location issue completely; in the remaining cases, the devel-

oper needs to take some responsibility over this issue. Typically, shared memory mecha-

nisms provide variables or pointers to the shared data. These mainly function as references

to the data but may also be typed, thereby allowing type checking. Furthermore, processes

reading and writing on a shared memory area need to agree on the representation and

meaning of the data. To some extent, this may be determined by the platform (e.g. by set-

ting the data types), but often, the developer is responsible for these issues. Yet another

important issue is synchronization. Two processes sharing a common resource risk dead-

lock, starvation and other undesirable situations. Computer science has evolved a niche on

these issues including solutions such as the TEST AND SET LOCK instruction, semaphores,

monitors, Peterson’s solution, and more [Tan87]. Some platforms implement these kinds

of techniques for process synchronization. Finally, as with most technologies, errors may

occur in shared memory mechanisms (e.g. a process may attempt to open a non-existent

file). The error control provided by the platform is typically restricted to error notification.

Finally, if several possible communication mechanisms are available, the processes will

need to agree on which to use. This is typically the responsibility of the developer.

4.3.5 REMOTE PROCESS INTEGRATION

The term remote process denotes a process located on one network node that may com-

municate with processes on other nodes. Remote process integration (cf. Figure 2-e) intro-

duces a number of new integration problems as compared to local process integration.

Node integration is heavily based on network communication protocols. Distributed object

technologies, for instance, may use TCP/IP as underlying communication protocol. The

issues managed by these protocols are discussed in the section on oligarchical integration

approaches. In this section, we briefly consider some concerns relevant for remote process

integration, such as DCE RPC (Distributed Computing Environment’s Remote Procedure

Call), Java RMI method invocations, COM and CORBA [Kha95] [Cha96] [Smi98] [Pri99]

[Mon00] [MSD01] [Obj01] [Rap01]. It may be well worth noting that these remote process

integration mechanisms, as a number of other mechanisms of this chapter, are not clearly

classifiable in one category or another; they have both monarchical and oligarchical charac-

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

34

teristics. For instance, interface definition languages are standards suitable for the oligarchi-

cal context. However, because of their similarities to local process integration mechanisms,

they are considered in this section.

When two processes on different nodes attempt to communicate, the problems are related

to the introduction of the network and its associated devices, and the division of memory

into two distinct entities. The division of memory prohibits shared memory4 (therefore

only message passing is considered). The introduction of the network introduces problems

related to addressing and data transfer. Remote process communication tends to be unreli-

able, which introduces a potential for transmission errors.

Communicating processes on a single computer need to be able to find each other, e.g. by

a process identifier. If the processes are located on different nodes on a network, the ad-

dress of the node is also required. A problem of location is related to how the address is

obtained by the process initiating the communication. Node addressing (e.g. by use of IP

numbers, MAC addresses or other machine identifiers) is a means for managing the net-

work location of processes. However, even with an addressing system, the calling process

may not know the address to the called process. In these cases, directory services may be

required, matching e.g. a machine name, application name or other reference with an ad-

dress. COM, CORBA and DCE RPC all provide these directory services. COM and

CORBA additionally provide interface exploration facilities for location of specific meth-

ods.

Concerning transmission errors, over a network these typically including jumbled messages,

duplicated messages, lost messages, etc. Many of these issues are dealt with on the network

protocol level and there is much theory available for error detection and correction. Nor-

mally, user processes need only be concerned with presumably lost messages, i.e., expected

messages or invocations that do not arrive. This, however, becomes especially problematic

in synchronous message passing systems such as the traditional remote procedure call,

since the receiving process nominally remains blocked until the expected message arrives.

The problem is often managed by a platform-supported timeout for the blocked procedure

call.

The integration issues managed by monarchical approaches are consolidated in the end of

this chapter. In the next section, oligarchical approaches are considered.

4.4 OLIGARCHICAL INTEGRATION APPROACHES

In the oligarchical development situation the integrators are multiple component develop-

ers; this is thus the case when two systems with different developers are to be constructed,

explicitly considering their future integration. The rules governing the transfer of data and

4 An abstraction of shared memory can of course be created, cf. file sharing, but this abstraction needs to be based
on message passing.

SOFTWARE INTEGRATION

35

control are then decided upon by negotiation and agreement. When an agreement is in

place, the systems can be designed to include the agreed upon integration capabilities.

These oligarchical agreements are the integration standards of the software world. This

subsection considers those integration issues that are considered by the Open Systems

Interconnection (OSI) reference model [Tan81]. Together with the previous and the next

section, the most pertinent integration issues will arguably have been addressed.

For component integration, there is an extreme amount of standards, including well-known

acronyms such as TCP [Tan89], HTTP [Fie97], CSMA [IEE00a], EDI [Uni02], RS-232

[Tan89], IP [Tan89], UDP [Pos80], FTP [Pos85], X.25 [Tan89], X/Open [All99], ASN.1

[Tan89], SOAP [Jep01], XML [Bra00] to mention but a fraction. In an attempt to abstract

from these specific protocols to general responsibilities, the OSI reference model has been

proposed. In this section, the OSI is employed for the same purpose, abstraction. Compar-

ing this section with the previous, the OSI layers here replace the platform as abstraction

creator and manager of integration issues. The OSI is a layered model, where higher-layer

protocols are dependent on the services provided by those below.

Figure 3. The Open Systems Interconnection reference model.

The seven layers proposed by the OSI are the physical layer, the data link layer, the net-

work layer, the transport layer, the session layer, the presentation layer, and the application

layer. One of the critical comments about the OSI model is that few protocols abide by it;

for instance, the Internet standard TCP/IP does not conform to it. In the context of this

text, this is not important, since the concern is of responsibilities in general rather than of

their location in the OSI stack. Another critique against the OSI model is its increasing

vagueness with layer number. Especially the application layer (the top layer) is considered

to contain everything that the other layers do not address. Attempts to define an eighth

layer of the OSI model have therefore been proposed (e.g. [Gla98]). For the purposes of

the present work, the application layer thus provides limited support. Furthermore, the

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

36

physical layer (the bottom layer) is concerned with mechanical and electrical integration

rather than software integration. It will therefore not be elaborated on.

4.4.1 THE DATA LINK LAYER

The main task of the data link layer is to take the raw transmission facility provided by the

physical layer and transform it into a line that appears free of transmission errors to the

network layer [Tan89]. Error control is thus a main issue in for this layer. An additional

problem managed by the data link layer – specifically by the Media Access Control (MAC)

sublayer– is how to allocate a single broadcast channel among competing users, i.e., how to

determine who gets to use, for instance, a LAN at a given time [Lit01]. If several network

nodes attempt to use a single LAN simultaneously, the messages may garble, resulting in

error. There are many protocols available for managing this issue, e.g. CSMA/CD (Carrier

Sense Multiple Access with Collision Detection) [IEE00a]. Furthermore, when several

nodes share communication medium, the machines must be uniquely identifiable. This is

thus a question of addressing.

Between nodes, communication may be connection-oriented or connectionless. Especially

in the connection-oriented communication, error control becomes important. One prob-

lem that the data link layer needs to manage is the potential bit-level errors that the physical

layer may introduce in the communication. By breaking up the data into frames and using

different checksums, the data link layer may detect whether bits have been lost or added

during transmission. The faulty frames may then be retransmitted. But introducing frames

introduces potential frame-related errors. Therefore, techniques for managing lost, garbled

and duplicated frames are introduced. Yet another problem encountered on the data link

layer is uneven flow of messages. If the sender transmits faster than the receiver can accept,

frames will be lost. This is typically managed by introducing some feed-back from the

receiver to the sender, thus controlling the flow.

4.4.2 THE NETWORK LAYER

The network layer is concerned with controlling the operation of network [Tan89]. As with

the data link layer, communication may be connection-oriented or connectionless in the

network layer. Although the primary focus is routing, also congestion control and inter-

networking are relevant to this layer. Routing becomes an issue when a package requires

multiple hops from source to destination. Furthermore, each machine over a potentially

large network needs a unique identifier. In the well-known IP protocol, this identifier is the

nodes IP number. Innumerable routing algorithms have been devised, attempting to pro-

vide correctness, simplicity, robustness, stability, fairness and other desirable qualities. One

result of bad routing may be network congestion, i.e., that the amount of traffic becomes

higher than the network can manage. Congestion control algorithms may be implemented

to address this concern. These algorithms function by discarding packets, choking off

input, or by similar techniques, when congestion occurs.

SOFTWARE INTEGRATION

37

Internetworking becomes an issue when communication is required between different

subnets, perhaps based on different protocols. Strictly speaking, these issues are relevant

for more layers than the network layer. Bridges, gateways, and protocol converters are

normally employed to manage the network integration issues that may occur. Bridges are

employed to manage connections with differing protocols on the data link layer, gateways

are employed when connecting dissimilar network layer networks and protocol converters

are used for higher-layer integration. These devices need to manage a number of compati-

bility issues, including frame and packet reformatting and differing protocol speeds (a kind

of flow control). In specific cases, other issues may become problematic. For instance, one

protocol may not incorporate information required in the other, e.g., priority or security

properties. Therefore, in some cases, integration cannot be complete.

4.4.3 THE TRANSPORT LAYER

The transport layer is to a large extent a local abstraction of the network layer; the bottom

four OSI layers can be seen as the transport service provider, whereas the upper three

layers are the transport service user [Tan89]. Since the network layer hides many of the

complexities of the network (such as routing) the transport layer resembles the data link

layer, again managing communication between two nodes. Error and flow control there-

fore resurface in the transport layer. An issue that does not appear in the data link, but in

the transport layer, is addressing. How does a process find the address to a server providing

the desired service? Typically, directory services are employed for these purposes, i.e., yel-

low pages, linking address to service reference. The transport layer also provides a process

abstraction for host machines. For example, the TCP protocol contains ports in addition to

IP addresses, thereby allowing several parallel connections from one host.

The subnet as seen by the transport layer, as opposed to the physical connection as seen by

the data link layer, is capable of storing and even duplicating messages. Duplicated mes-

sages may result in errors if they are not detected. The transport layer therefore requires

facilities for managing this problem. A final issue that is dealt with in the transport layer is

crash recovery. A host that crashes is particularly precarious, but if it restarts, there are

possibilities of resuming communication where it ended.

4.4.4 THE SESSION LAYER

The session layer is considered a thin layer, mainly providing facilities for managing and co-

ordinating dialogs between two application processes [Mod91]. For instance, the standard

synchronous remote procedure call prohibits a client from making a second call before the

first has been completed. If the remote procedure call concept [Bir84] were to fit anywhere

in the OSI model (which it does not), it would be in the session layer or possibly the appli-

cation layer [Tan89]. Dialog management is thus a matter of sequencing. Another issue

supported by the session layer is the resynchronization of a bungled transmission. For

instance, when large file transfers are unexpectedly interrupted, the use of synchronization

points inserted in the file can be used to avoid retransmitting the entire file. A similar con-

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

38

cern is activity management, which is supported by a set of primitives in the session layer.

Activities are used to isolate certain communications, e.g. transferred files or other related

information. Activities may also be interrupted, thus introducing a kind of task swapping

into the communications. Finally, the session layer provides a feature for reporting unex-

pected errors between communicating parties.

4.4.5 THE PRESENTATION LAYER

The presentation layer is concerned with the representation of the data that is to be exchanged

between two communicating processes [Tan89]. It is common that communicating peers

do not employ the same data representation for the same concept. Examples of differing

representations range from low-level stuff such as EBCDIC vs. ASCII character represen-

tation and big and little endian byte numbering, to representations of complex structures

such as maps or CAD drawings. Because of these incompatibilities, data transformations

are necessary. A popular approach for managing transformations is by using a canonical

form for describing data structures. Instead of devising a transformation between every

two formats, it suffices to devise a single transformation to the canonical form for every

format. The drawback of this approach is that all actors will need to agree on which format

to use. Another popular, and less ambitious, approach is to not only send the data in some

implicit format, but to attach the data structure description to the data. The receiver then

has a fair chance of correctly interpreting the data.

Using a common standard for data structure specification can be characterized as an oligar-

chical approach to an anarchical problem, because now the format of the data structure

description needs to be agreed upon. Everyone agrees to disagree on actual format, and

instead agrees to agree on how to characterize the disagreements. However, since even this

agreement has been difficult to achieve, several standards have been proposed. Two such

standards are Abstract Syntax Notation 1 (ASN.1) [Bar92], specified as a part of the OSI

development work, and the more recent eXtensible Markup Language (XML) [Mor01].

Briefly, ASN.1 is designed for efficient communication, while XML is designed primarily

for readability. Mappings between the two standards have been proposed [Ima00]. It may

be well worth noting that even when two actors settle for on e.g. XML, further mutual

understanding is necessary for a correct interpretation of the meaning of the communi-

cated data.

Two other issues related to data representation, namely data compression and encryption,

fall into the domain of the presentation layer. There are innumerable technologies for these

issues, but in this text, we restrict ourselves to noting their inclusion in the presentation

layer.

4.4.6 THE APPLICATION LAYER

The application layer holds the application processes [Tan89]. The OSI has standardized a

number of common applications, such as e-mail, virtual terminals, file transfer, file access,

SOFTWARE INTEGRATION

39

directory services, transaction management, and more. Application layer protocols include

DNS, Finger, FTP, HTTP, IMAP, POP, SMTP, SNMP, SSL, TraceRoute, and WhoIs.

Because of the diversity of applications, the application layer is broad and heterogeneous.

Here, only a few particularly interesting application layer issues are considered. A first ob-

servation is that although the shift is subtle, the protocol specifications cover much of the

component functionality in this layer, as compared to the lower layers, which mainly con-

sider the components interface. A second relevant observation is that there are some appli-

cations in the layer that explicitly address integration concerns, e.g., directory services and

CCR (Commitment, Concurrency, and Recovery) [Hen92]. Directory services may allow

the run-time discovery of components to interact with [MGr00] [Ric00], e.g., the Domain

Name System (DNS) [Sha01]. CCR primarily implements the two-phase-commit protocol

(cf. transactional middleware in Section 4.5.4), thus ensuring atomicity of transactions.

It is interesting to note some seemingly irrational deviations from the layering of the OSI

model. As such, the Simple Object Access Protocol, SOAP [Jep01], is a prime example.

SOAP primarily provides remote method invocation functionality. As such, it is (at least to

some extent) located in the session layer. However, SOAP is standardized on top of XML

(if anything, a presentation layer standard), which is embedded in HTTP, an application

layer protocol. The HTTP probably runs over TCP/IP. In the SOAP example, then, the

layering order seems unnecessarily complex. The reason for parts of this design is that the

HTTP protocol typically is permitted to pass through firewalls, while RPC calls are

blocked. By embedding RPC in HTTP, the firewalls are thus overcome. Instead of remov-

ing or reconfiguring the firewalls, new protocols are introduced. In a sense, the evolution is

thus similar to an armaments race: the security people might respond by introducing more

firewalls, and the people interested in functionality retaliate by devising new, even more

complicated protocol stacks, able to penetrate the new firewalls.

The issues managed by the oligarchical integration approaches are compiled with the mon-

and anarchical approaches at the end of this chapter.

4.5 ANARCHICAL INTEGRATION APPROACHES

In a competitive and rapidly evolving marketplace, standards are rarely generally agreed

upon. It is sometimes good business to develop a competing standard rather than adhering

to an existing, and once a technology has been standardized, there is generally room for

improvement by deviation. Oftentimes, there is no standard at all. It is thus not uncommon

for user organizations to attempt the integration of software systems that were built with

no, or few, common interaction assumptions. This is the anarchical development situation,

where every man is for himself. The component developers have not agreed on anything

and the integrator must accept the components as they are, with the integration facilities

that they happen to provide. Furthermore, the components have typically been considered

to be independent systems in their own right before the idea of their integration was intro-

duced. Typical components are therefore accounting systems, geographical information

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

40

systems, process control systems, production planning systems, etc. This is the context of

Enterprise Application Integration (EAI) field [Gol99] [Lin00] [Mor01] [McG00] [Ruh01].

EAI may be divided into three main issues. The first issue concerns access to data and

functionality in the different components. The second issue deals with the actual intercon-

nection needs to be managed, including data transformation, message routing, etc. Finally,

the properties of the resulting “system of systems” need to be managed. There are several

system-level properties that often become problematic, e.g. security and data consistency.

4.5.1 ACCESS

Many business applications are designed in a three-layered architectural style, with a data-

base on the lowest layer, business logic on the middle layer, and a user interface on the top

layer. The rationality of this division is similar to that of the object-oriented paradigm,

dividing objects into attributes (data), methods (logic), and interface. When attempting to

access the data or functionality of a system, there is often a choice of which layer to inte-

grate to.

Oftentimes, business systems have a separately accessible database – perhaps developed by

a third party. Database-oriented integration allows access to data but not functionality.

Many software systems provide interfaces to allow invocation of functionality. The types of

interfaces (and of course the functionality) offered vary significantly. The main concern of

application-oriented integration is to discover and employ the syntax and semantics of

these interfaces. Some systems offer only one interface to data or functionality, namely the

user interface. These are typically legacy systems constructed without any consideration of

future integration. User-interface integration is concerned with exploiting this singular

interface.

In the fortunate case, a system acting as a server has an interface abiding by the exact rules

that a client system expects; this is the monarchical and oligarchical scenario. In the unfor-

tunate (and unfortunately common) case, the interface of the server system does not match

the expectations of the client system. This is the case normally considered by the EAI

literature. The typical approach for management of these mismatches is to employ wrap-

pers, adapters, connectors, gateways, bridges, etc.

4.5.2 INTERCONNECTION

Even though the interfaces may be accessible, some problems remain for a successful

integration of software systems. Firstly, a message from a data provider needs to have a

data consumer, and it is not always the case that the provider knows the address of the

consumer. Secondly, the request must be transported from the provider to the consumer.

Thirdly, the data representation of the message may not match that expected by the con-

sumer (or even of the consumer’s adapter). Adapters sometimes manage some of these

issues, but an underlying infrastructure is required and furthermore, it is becoming more

SOFTWARE INTEGRATION

41

common that specialized integration mediators handle some of the traditional adapter

concerns.

4.5.3 EXTRA-FUNCTIONAL PROPERTIES

The success of an integration project is not solely measured by the success of access and

interconnection between components. There are several situations that may arise when the

components function perfectly in isolation and when access and interconnection have been

duly managed, but the resulting system is unsatisfactory. The system-wide qualities that

appear in the cooperation of the components are sometimes called extra-functional proper-

ties.

There are a number of extra-functional properties that tend to be particularly problematic

in EAI projects. Data inconsistency is one such issue, to a large extent related to the as-

sumption of many components that they are alone in manipulating the data in their data-

base and that this data is only stored in their database. When this assumption becomes

untrue, inconsistencies may appear. Another common issue is security, since integration

often implies opening new ways into a component. Yet another issue is performance. An

example of this is when many components are to employ one database, originally designed

for only one or a few connections. The list of extra-functional problems goes on, including

reliability, atomicity, durability, and more.

4.5.4 EAI TECHNOLOGIES

In this section, a number of common EAI technologies for the problems described above

are presented. These technologies include adapters, data-oriented middleware, transactional

middleware, message-based middleware and message brokers. Finally, the popular concept

of web services is considered.

ADAPTERS

The most obvious issue in software integration is the need to somehow access the data and

functionality that is contained within an application. The standard way of doing this is by

employing interfaces to the application. There are two main interface types to an applica-

tion, the application interface and the user interface. Application interfaces come in several

forms, implemented as language-specific import libraries to be linked into the calling appli-

cation’s code, as component framework interfaces (such as CORBA interfaces), etc. They

may offer complete access to functionality and data of the application, or only to a re-

stricted subset. Some applications have no application interface at all.

Adapters are employed when an interface needs to be transformed into another form. For

instance, if a component provides an interface based on the CORBA standard is to be

integrated into a system of COM-based components, an adapter may be employed. There

is no general agreement of what, exactly, is the difference between adapters, connectors

and wrappers (sometimes called bridges and gateways), so this section will treat them as

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

42

belonging to the same group (adapters) [Sne96] [Luc97] [Sne97] [Cim98] [Sne98] [Gan00]

[Ber00] [Chi00]. The main purpose of adapters is to present the interface that the client

system expects on the one end, and convert this into manipulations that the server system

interface expects.

The most rudimentary adapters simply translate between data representations of, for in-

stance, procedure calls, renaming procedures, reordering parameters, etc. More compli-

cated adapters may additionally translate data formats on other levels (e.g. between big-

endian and little-endian format or database record structures). Adapters may also be sensi-

tive to certain calls from the application, and they may listen for, and trigger on, application

events. In some cases, the adapter may need to wait for several external systems to provide

sufficient parameters for a call to the application, and vice versa, one call from an external

system may require several calls from the adapter to the application. In the complicated

cases, the adapter may need to perform several invocations, queue messages, retain its state,

manage security, error control, monitor and log events, manage timing, and so on [But99].

Furthermore, sophisticated adapters may dynamically discover certain aspects about the

application they are connecting to, such as database schema. Dellarocas thesis [Del96]

contains an in-depth study of the construction of adapters.

If an application does not provide any application interface, screen scraper adapters may be

employed to interpret and manipulate the user interface in accordance with functions of

the adapters application interface, thereby providing software access to the application. A

final (generally unpopular) option is to modify the source code of the application to allow

interfacing.

DATABASE-ORIENTED MIDDLEWARE

Database-oriented middleware, including database federation software, database gateways, vir-

tual databases, call-level interfaces, and database replication software, are employed to

simplify data access from heterogeneous data sources. There are two typical problems that

these products address. Firstly, an application may encounter difficulties when requiring

data access from more than one database, since the database developers oftentimes use

native data formats and application interfaces. From the point of view of the client applica-

tion, the best thing would be if it could perceive the multiple heterogeneous databases as a

single homogeneous one. By introducing a software layer between the application and the

databases, this illusion can be created. A similar problem is when two databases for some

reason need to contain the same data. This may be the case when two unmodifiable sys-

tems with useful functionality require the same data, but are designed to only access the

data in its own database. A mediating component may then be introduced, keeping the data

consistent between the systems.

To manage these functions, database-oriented middleware typically performs two main

functions, connection and translation. Connection to native databases is performed with

database-specific adapters, in this context usually denoted database drivers. Adapters are

SOFTWARE INTEGRATION

43

discussed above. Translation denotes the transformation of the format of the actual data-

base data. Depending on the situation, the transformation may be between idiosyncratic

representations, or to a third format suitable for external access. The compilation of several

databases to one virtual database is also mainly a representational concern.

TRANSACTIONAL MIDDLEWARE

Transactional middleware products are not single-problem solutions, but rather wide-ranging

concepts. The main issue approached by these products is coordination between several

resources in performing restricted tasks called transactions. A basic characteristic of a

transaction is its “all or nothing” character; either the transaction is completed or not, but

never left in an undetermined state. The reservation of a theatre ticket, for instance, often

includes the preliminary booking of a seat while the transaction is carried through. If the

transaction is terminated before completion, the preliminary booking is cleared. This prop-

erty of a transaction is called atomicity. Additional transaction requirements include consistency

(e.g., two databases never end up with inconsistent data), isolation (e.g., two customers never

book the same seat) and durability (e.g., once committed, the ticket reservation survives

system failures). Jointly, these properties are referred to as the ACID properties.

Furthermore, transactional middleware is often responsible for additional features, such as

increasing scalability by e.g. using load balancing (dynamic processing load distribution) and

database connection pooling (multiplexing transactions over database connections), secu-

rity and fault management.

The X/Open Distributed Transaction Processing standard [All99] defines three main com-

ponents for transaction processing: applications, transaction managers, and resource man-

agers. Briefly, application requests are accepted by the transaction manager, which invokes

a number of resource managers, which in turn commit data to databases or perform some

functionality. Transaction processing monitors were for a long time the prime transaction

managers, but recently, Java- and Web-enabled application servers are challenging their

hegemony, providing a location for application logic [Lin01b].

Transactional middleware thus potentially manages all kinds of integration-related issues.

The resource managers function as adapters, connecting to the databases or other re-

sources, both transforming APIs and translating data. Location of communicating parties

and routing is performed by the transaction manager as well as error control related to the

ACID properties (e.g. by two-phase commit and dynamic switching). The transaction man-

ager also determines how messages and invocations should be ordered and under what

circumstances they should be directed to one party rather than another. Additional mid-

dleware is however normally employed for data transport.

MESSAGE-ORIENTED MIDDLEWARE AND MESSAGE BROKERS

Message-oriented middleware denotes middleware solutions based on the dispatch and

reception of messages between applications [Lin00]. From a functional point of view, it

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

44

does not differ significantly from message-based, monarchical, operating-system-provided,

inter-process communication, simply passing messages between processes, possibly utiliz-

ing queues. In the anarchical context, however, the main benefit of message-oriented mid-

dleware is the platform-independence that these solutions often bring about. Two common

models for messaging is point-to-point, where each component sends messages directly to

its communication parties, and publish-subscribe, where a component may publish mes-

sages on a centrally located hub and other components may retrieve the messages by sub-

scribing to a certain topic. Further kinds of messaging options are queued and direct mes-

saging. In the queued model, the recipient does not necessarily need to take care of the

message immediately, while this is required in the direct version. Platform independence is

in no way inherent in the message-oriented concept; it is instead the result of an explicit

effort by the developers of these systems. The most well-known messaging middleware is

probably IBM’s MQSeries (recently renamed WebSphere MQ) [Tho99], with support for

an impressive number of platforms, including IBM OS/390, Pyramid, Open VMS, Unix,

Solaris, OS/2, Windows NT, MacOS and more.

On top of message-oriented middleware (and sometimes on top of other middleware) a

message broker may be located. The message broker communicates with a number of

applications using application-specific adapters that accept messages from the broker, feed

them to the application, collect outgoing data from the application and submit them to the

broker. The message broker consequently functions as a central hub, receiving and dis-

patching messages from a number of applications. When a message arrives from one appli-

cation, the broker determines where it should be passed, transforms it into a format suit-

able for the receiving application, and forwards it. Successful use of message brokers in

heterogeneous environments is heavily dependent on application adapters. Message broker

vendors therefore provide a wide range of adapters to common systems as well as adapter

development environments, to be used for new applications. Typically, message broker

adapters are noninvasive.

A second key function of message brokers is message transformation. The preferred solu-

tion uses a canonical form to which all message formats have a mapping. From the canoni-

cal form, any message can be generated as long as its data has the expected semantics.

Conversion applies to the schema level as well as the bit-level of data representation. In a

sense, the conversion rules of a message broker contain much of the semantics of the data

in an enterprise system, since each data item is presented in many forms, each indicating

some aspect of the item.

The third function of message brokers is called intelligent routing. A message entering the

message broker from an application is parsed, decomposed, and interpreted. Based on the

interpretation, i.e. the contents of the message, it is transformed into some other represen-

tation, possibly combined with some other message, and finally dispatched to recipients

according to the message brokers internal logic. The forwarding of messages based on their

contents is called intelligent, or content-based, routing. As the message transformation,

SOFTWARE INTEGRATION

45

intelligent routing indicates some form of understanding rather than mindless, indiscrimi-

nate processing.

Many of the variable functions performed by message brokers are based on rules. These

rules, specifying when a message should be forwarded to application A or application B, to

what format it should be converted, with what other data it should be merged, etc., de-

scribe much of an organization’s processes. Therefore, yet another layer of functionality

has been added in the enterprise application integration world, the process automation

layer. Process automation tools may be employed to visualize and control how information

flows through the organization’s systems.

WEB SERVICES

The fairly new concept of web services [Che01] [Sne01] addresses anarchical integration

from an oligarchical viewpoint. It is recognized that many existing software components

that could generate value if integrated were built without agreements on interoperability

standards. The solution to this problem is, according to the web services concept, to stan-

dardize the descriptions of the components. Briefly, via a central registry (called a Universal

Description Discovery and Integration, UDDI, registry), standardized information (au-

thored in the Web Service Description Language, WSDL) describing software components

(called services) is located. When in need of a particular service, autonomous software

components may search the registry for the relevant service, find sufficient information on

offered functionality and interfaces, accepted data formats, protocols, etc., to be able to use

the service [Mou01].

Marketed as the ultimate solution to software integration over the Internet, web services do

however disappoint in the perhaps most crucial issue: the semantics of the services. The

descriptions available via the UDDI registry contain machine-readable information on

method signatures, protocols etc., but no information on the actual functions performed by

the service. These service descriptions are instead available in natural language. Therefore,

the most probable readers of the UDDI registry and the WDSL descriptions are software

developers rather than software, and seamless and automatic integration of components is

still a thing for the future.

4.6 CONSOLIDATING THE APPROACHES

In this section the integration issues managed by the three approaches described above are

consolidated. This consolidation serves as a foundation for the concluding evaluation of

architectural analysis approaches of Chapter 6. Table 1 to Table 3 summarize the above

technology reviews from the perspective of the below presented categorization. For each

technology and integration issue, the tables indicate whether the platform/technology

manages the issue and to what extent.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

46

Data representation. Data representation refers to syntactic issues. In the context of

integration, this particularly concerns data translation; if the data representation issue is not

managed, communicated data will not be readable by the recipient [Kim91] [Bri92] [Här99].

Furthermore, data representation is typically an issue on several layers of abstraction. In the

remote procedure call, for instance, the developer is responsible for following the syntax as

prescribed by the platform. Within the limits of the platform, the developer is free to select

procedure and parameter names. With the freedom comes the responsibility of ensuring

that procedure definitions and procedure calls match. In the underlying communication

supporting the remote procedure call, network protocols require correct representation of

packet headers and such.

In the OSI stack, all layers are to some extent concerned with data representation, since

packet headers sent between peers need to be understood in terms of addresses and the

like, but layer 6 is responsible for the data representation of the actual content of a mes-

sage, managing issues such as translation, compression and encryption. Application integra-

tion adapters often manage issues of data representation, wrapping one interface with an-

other, translating parameters and messages. A prime example of a data representation tech-

nology is data-oriented middleware, which is employed explicitly for the translation of large

amounts of data.

Data semantics. Data semantics refers to the meaning of data. If the data semantics issue

is not managed, the data may be readable, but it will be interpreted incorrectly. For in-

stance, one component may send the integer 10 to another component. The first compo-

nent may have measured 10 as the temperature in degrees Celsius, while the second com-

ponent interprets it as the number of books to buy. It is often the responsibility of the

developers to make sure that the meaning of data is preserved, but also the platform pre-

scribes meaning to data. For instance, the integer in the example above is partially defined

by arithmetic operations defined by the platform. Examples of management of data seman-

tics also include message broker’s intelligent routing: the message broker interprets the data

of a message and decides on its destination based on its contents. Furthermore, an XML

message includes a tag for each data item, indicating its meaning. A weakness of XML is of

course that it is necessary for the components to agree on the meaning of the tag instead of

the data per se. A categorization of increasing maturity levels of semantics capabilities in

communication is presented by Ericsson and Schubert in [Eri96].

Connector semantics. Connector semantics refers to the behavior of connectors, i.e.,

synchronization and sequencing of interactions between components [Bar95b] [Hua98]

[Jma00]. Typical results of failure to manage connector semantics include deadlocks, starva-

tion, etc. Connector semantics are, as data representation issues, defined on several layers.

For instance, in a remote procedure call, the platform ensures that the server responds to

the client. The remote call may, however, on a lower level be communicated with TCP/IP,

which in itself contains and manages a number of synchronization issues between peers.

SOFTWARE INTEGRATION

47

On top of the remote procedure call, the developers may have implemented additional

sequencing or synchronization rules.

Component semantics. The term component semantics refers to the behavior of com-

ponents [Moo97]. If the component semantics issue is not managed, a component invoked

by another will not behave as expected by the invoker, even though the invocation was

syntactically impeccable. In the reviewed technologies, the developer is primarily responsi-

ble for component semantics. To a minor extent, dynamic adapters may probe the compo-

nents to which they are attached to explore certain aspects of how they work. Web service

descriptions also manage component semantics to some extent, since they describe the

functions of the component. However, these descriptions are primarily of an intuitive

nature, and require human interpretation. The application layer of the OSI stack, does

however, specify a considerable portion of the component semantics for the applications

considered by the ISO. Generally, and particularly for the lower OSI layers, the distinction

between component and connector semantics is vague, since the component is restricted

by the connector semantics. Arguably, for the lower layers, however, only a small portion

of the desirable functionality of a component is specified by the connector semantics.

Error control. Error control refers to the management of undesired behavior. If error

control is not implemented, everything will work fine under optimal circumstances, but

once a disturbance is introduced, the system execution is in danger. For instance, layer 2 of

the OSI stack manages bit-level transmission errors that may be caused at the physical

layer. Layer 3 in the OSI stack manages network congestions and reroutes traffic when

network nodes are lost. Transactional middleware typically implements two-phase commit

protocols, ensuring multi-component synchronization by a sequence of assurances between

the components. Much of error control is also managed by the developers.

Location. Location refers to the identification, location, addressing of and routing to of

communicating parties. If the location issue is not managed, a message sent by one party

might reach some recipient, but not the intended. Layer 2 and 3 of the OSI stack are con-

cerned with addressing and routing. For remote procedure calls, the platform may provide

a directory service mapping procedure names to network addresses. It is, however, nor-

mally the developers’ responsibility to locate the service reference (e.g. the node, process or

procedure name). Message brokers typically route messages to the appropriate destination

based on a set of criteria, e.g. the source and the message contents.

Extra-functional properties. Extra-functional properties, or quality attributes, refer to an

array of “ilities” that often need explicit consideration in software integration projects.

These include security, data consistency, performance, modifiability, reliability, and more.

Extra-functional properties are in the practical case often tightly linked to functionality. For

instance, reliability is enhanced with mechanisms for error control and performance is

increased with load balancing and connection pooling. Moreover, they are only partly re-

lated to the actual integration solution, since they are heavily dependent on the nature of

the components per se. Furthermore, there is no end to the number of extra-functional

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

48

properties that could be considered. It is thus difficult to clearly delimit the specific proper-

ties to take into consideration here. The set considered in this text is determined by the

individual properties prominence in literature. For instance, those technologies that explic-

itly address error control, also address reliability. Furthermore, the OSI presentation layer

explicitly considers security by means of encryption, and performance by means of com-

pression. Transactional middleware featuring two-phase-commit explicitly address atomic-

ity.

The integration issues presented above may be compared to similar classifications, such as

[But99], [DeL99] and [Yak99b]. Although the issues described above all are important for

software integration, they are in many respects of different types. For instance, the five first

issues are related to what components expect of one another. A component expects data

on a certain form and it expects the data to mean something, it expects certain communica-

tion sequences, it expects collaborating components to behave in particular ways, and it

may expect certain kinds of disturbances. Extra-functional properties are in this context a

horse of a different color, expressing characteristics of the system as a whole. Also, there is

overlap between certain issues. For instance, the extra-functional property reliability and

the error control issue are closely related. These overlaps are to be expected due to the

vagueness of extra-functional properties. Despite these overlaps, the issues considered are

– and need to be – managed when integrating software components. To the author’s

knowledge, there is no more appropriate classification of integration concerns.

4.7 SUMMARY

This chapter has reviewed and consolidated three different approaches to software integra-

tion. The primary reason for the review was to identify the issues that different integration

mechanisms tackle. These issues are, arguably, those that generally need to be addressed

when integrating software systems. A compilation of integration issues thus concludes the

chapter.

Software integration is monarchical when the same actor (be it a single developer, a soft-

ware developing organization, or a user organization) develops the components to be inte-

grated as well as performs the actual integration. Examples of monarchical integration

mechanisms include procedure integration, object integration, and process integration.

Literature on operating systems, compilers and programming languages dominate in the

monarchical approach.

Software integration is oligarchical when the component developers agree on integration

mechanism before developing the components. Examples of oligarchical integration

mechanisms include TCP/IP, XML, FTP, and many other similar standards. In this chap-

ter, these agreements between component developers were considered within the frame-

work of the OSI reference model.

SOFTWARE INTEGRATION

49

Software integration is anarchical when there are several component developers, but they

have not agreed on integration mechanism. The software integrator is then forced to resort

to unstandardized mechanisms for accomplishing the task. Examples of anarchical integra-

tion mechanism include adapters, virtual databases, application servers, message brokers,

and more. Literature on anarchical integration approaches is typically found in the enter-

prise application integration (EAI) field.

The three integration approaches are all concerned with a number of problems of integra-

tion. Communicated or shared data needs to be presented in a form that is readable as well

as understandable to all components; communication must take place in a manner that is

expected by the components; the components must have correct expectations on each

others behavior; certain potential errors need to be managed; components need to be able

to find each other; and the collaborating components should display certain system-wide

properties. These issues, data representation, data semantics, connector semantics, compo-

nent semantics, error control, location, and extra-functional properties, are considered by

the reviewed integration mechanisms. In Chapter 6, deduction-based approaches to archi-

tectural analysis of software integration are evaluated on the basis of the same integration

issues.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

50

 Monarchical integration

 Process events Procedures Objects Local Processes Remote processes

Data

representa-

tion

Platform determines

syntax of state-

ments.

Platform determines

syntax of (general)

procedure call and

partially determines

syntax of variables.

Platform determines

syntax of object refer-

ences. Platform deter-

mines syntax of (general)

method invocation and

partially determines

syntax of variables.

RPC: Platform determines

syntax of (general)

procedure call and partially

determines syntax of

variables.

Shared memory: Platform

partially determines syntax

of variables.

RPC: Platform

determines syntax of

(general) procedure

call and partially

determines syntax of

variables.

Shared memory:

Platform partially

determines syntax of

variables.

Data

semantics

None. Platform prescribes

some meaning to

variables (integer,

character) by

statements operating

on variables.

Platform prescribes some

meaning to variables

(integer, character) by

statements operating on

variables.

Platform prescribes some

meaning to variables

(integer, character) by

statements operating on

variables.

Platform prescribes

some meaning to

variables (integer,

character) by state-

ments operating on

variables.

Connector

semantics

Platform determines

sequence of

statement execu-

tion.

Platform determines

call-return model.

Platform determines

creation-usage-

destruction sequence.

Platform determines call-

return model.

RPC: Platform determines

call-return model.

Shared memory: Platform

determines creation-usage-

destruction sequence.

Platform may be responsi-

ble for synchronization.

RPC: Platform

determines call-return

model.

Shared memory:

Platform determines

creation-usage-

destruction sequence.

Platform may be

responsible for

synchronization.

Component

semantics

Platform defines

meaning of

statements.

Platform defines

meaning of state-

ments. Connector

semantics.

Platform defines meaning

of statements. Connector

semantics.

Platform defines meaning

of statements. Connector

semantics.

Platform defines

meaning of statements.

Connector semantics.

Error

control

The management of

unexpected

situations is typically

shared between

platform and

developer.

The management of

unexpected situations

is typically shared

between platform and

developer.

The management of

unexpected situations is

typically shared between

platform and developer.

Unavailable communicating

RPC-party, shared-

memory-synchronization

partially managed by

platform (error notification),

partly by developer.

Transmission error

partially managed by

platform (correction or

error notification, e.g.

on time-out), partly by

developer.

Location Platform prescribes

data addressing

conventions.

Platform provides

reference service for

procedures as well as

variables (procedure-

name-to-address;

variable-to-address).

Platform provides

directory service for

object references (object-

reference-to-address).

Platform provides

directory service for

procedures as well as

variables (procedure-

name-to-address;

variable-to-address).

Platform may provide

directory service for

process references as well

as interface discovery

support.

Shared memory: Platform

may be responsible or

prescribe conventions for

addressing. Variables may

be employed.

Platform prescribes

node (and port)

addressing system.

Platform may provide

directory service for

node and port

references as well as

interface discovery

support.

Table 1. Integration issues managed by monarchical approaches

SOFTWARE INTEGRATION

51

 Oligarchical integration

 OSI 2 OSI 3 OSI 4 OSI 5 OSI 6 OSI 7

Data

representa-

tion

Communication

primitives

prescribed by

layer.

Communication

primitives

prescribed by

layer.

Gateways reformat

packets between

subnets.

Communication

primitives

prescribed by

layer.

Communication

primitives prescribed

by layer.

Communication

primitives prescribed

by layer.

Layer 6 is explicitly

concerned with data

representation

(including compres-

sion and encryp-

tion).

Communication

primitives

prescribed by

layer.

Data

semantics

Layer prescribes

semantics to

communication

primitives.

Layer prescribes

semantics to

communication

primitives.

Layer prescribes

semantics to

communication

primitives.

Layer prescribes

semantics to

communication

primitives.

Layer prescribes

semantics to

communication

primitives.

Limited semantics

via data representa-

tion.

Layer prescribes

semantics to

communication

primitives.

Connector

semantics

Layer partially

prescribes

connector

semantics.

Layer partially

prescribes

connector

semantics.

Layer partially

prescribes

connector

semantics.

Layer partially

prescribes connector

semantics.

Specifically, layer 5

concerned with

dialog management

and “activities” for

task distinction and

swapping.

Layer partially

prescribes connec-

tor semantics.

Layer partially

prescribes

connector

semantics.

Component

semantics

Only by connector

semantics.

Only by connector

semantics.

Only by connector

semantics.

Only by connector

semantics.

Only by connector

semantics.

To a considerable

degree.

Error

control

Layer 2 manages

bit-level as well as

frame-level

transmission

errors.

Flow control.

Congestion

control.

Bridges and

gateways

implement flow

control between

subnets.

Flow control.

Manages

duplicate

message errors.

Crash recovery

(network or

hosts).

Synchronization

points for resynching

bungled transmis-

sion.

Error-reporting

facilities.

No explicit provi-

sions.

CCR-protocol

controls consis-

tency-related

errors

Location MAC sublayer

manages LAN

node addressing.

Layer 3 manages

network address-

ing (e.g. IP-

numbering) and

routing.

Directory services

may be provided.

Port addresses

are typically

provided.

None. None. Directory services

(e.g. DNS).

Extra-

functional

properties

Reliability explicitly

addressed by error

control.

Reliability explicitly

addressed by error

control.

Reliability

explicitly

addressed by

error control.

Reliability explicitly

addressed by error

control.

Performance

explicitly addressed

by compression.

Security explicitly

addressed by

encryption.

Atomicity and

reliability in CCR.

Table 2. integration issues managed by oligarchical approaches.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

52

 Anarchical integration

 Adapters Database-oriented

middleware

Transactional middleware Message-oriented

middleware

Web

services

Data repre-

sentation

Renaming of procedures,

reordering of parameters,

translation of database records,

manipulation of database

schemas.

Translation of

database schemas,

records, additional

representation.

Cf. Adapters.

Resource managers function

as adapters.

Translation between

representations.

Cf. Adapters.

Describes

invocation

syntax.

Data seman-

tics

Translation between representa-

tions.

Translation between

representations.

Cf. Adapters.

Translation between

representations.

Cf. Adapters.

Translation rules for

many representa-

tions.

Intelligent routing.

Cf. Adapters.

By tagged

variables.

Connector

semantics

Follows source and destination

prescriptions.

Application event triggers, call

synchronization and pooling.

Cf. Adapters. Two-phase commit,

Cf. Adapters.

Intelligent routing.

Cf. Adapters.

Specifies

protocols.

Component

semantics

Dynamic component discovery. No. Only by connector seman-

tics.

Intelligent routing. In natural

language.

Error control No generic, in some cases. No generic. Two-phase commit,

additional fault-tolerance

(rerouting / dynamic

switching, redundancy).

Task distribution.

No generic. None.

Location No. No. Task distribution / routing.

Load balancing.

Intelligent routing. The UDDI

registry.

Extra-

functional

properties

No generic. Sometimes security. Data consistency Performance, Security,

Reliability, Atomicity,

Consistency, Isolation,

Durability

Table 3. Integration issues managed by anarchical integration approaches.

53

Chapter 5

Software Architecture

5 SOFTWARE ARCHITECTURE

5.1 BRIEF INTRODUCTION TO SOFTWARE ARCHITECTURE

Software architecture is the name of a particular form of abstraction, or model, of software

systems. In a general sense, models of software systems are, of course, not new; these kinds

of models have existed as long as software has. To distinguish software architecture from

other software abstractions, a number of specific characteristics have been proposed: soft-

ware architecture is concerned with a higher-level abstraction; software architecture is related to

more complex systems; software architectures consist of components and connectors; software archi-

tecture describes the structure, or topology, of a software system; software architecture is par-

ticularly concerned with the external properties of components and their relations; software archi-

tecture is located in the early design phases.

However, before the concept of software architecture was conceived, module interconnec-

tion languages (MILs) [Ric94], interface definition languages (IDLs) [Pri99], object-oriented

modeling languages [Boo99], hardware description languages such as VHDL5 [IEE00b]

[Sha86], Ada packages [Dia93], Modula-3 modules [Kin93], structured analysis notations

and techniques [Huß97], process interaction notations such as Hoare’s Communicating

Sequential Processes (CSP) [Hoa85], statecharts [Dav93], and many other techniques, con-

cepts and notations had been developed for much the same purposes as software architec-

ture. Furthermore, industry has for a long time been bubbling with idiosyncratic techniques

for describing software systems. In this context, software architecture as a concept seems

to provide little that was not already in existence.

In fact, there is nothing really new with software architecture. Software architecture is

simply a new name for the same old thing: to on a conceptual level try to understand the

essential aspects of a software system. It is therefore not always meaningful to attempt to

5 Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

54

separate software architecture from other design paradigms or notations. High-level, con-

ceptual or early design has simply been renamed software architecture.

What is important with the emergence of software architecture as a distinct academic field

is the problem area as such: how software systems can be represented and understood.

Software architecture can be viewed as an attempt to refocus on this question and to gather

those research groups that have been considering these issues in their own context.

5.2 DEFINITIONS OF SOFTWARE ARCHITECTURE

Although software architecture as a term may be found in texts from the seventies [Bro75]

and eighties [San81] [Bjö82], the first generally cited attempts to legitimize software archi-

tecture as an academic discipline, were authored by David Garlan, Mary Shaw, Dewayne

Perry and Alexander Wolf [Sha89] [Per92].

There seems to be some agreement what software architecture is and is not, yet it is not a

term well defined [Bar98]. From the top-level, one-liner definition down to the specifics of

component interface structures, there are alternative definitions and representations. This is

not necessarily all bad, since it allows for many uses of software architecture, but it does

allow for a whole lot of confusion. This whole chapter is therefore devoted to presenting

the meaning of software architecture as used in this thesis. In particular, this section con-

siders common definitions of software architecture as well as the definitions employed

herein.

5.2.1 CLASSICAL DEFINITIONS OF SOFTWARE ARCHITECTURE

Some definitions of software architecture have become more cited than others. Below, the

four arguably most cited one-liners are considered.

According Garlan and Shaw, at the Computer Science Department at Carnegie Mellon

University (CMU) [Sha96a],

software architecture involves the description of elements from which systems are built, interactions among

those elements, patterns that guide their composition, and constraints on these patterns.

Bass, Clements and Kazman, at the Software Engineering Institute (SEI) [Bas98] propose

that

the software architecture of a program or computing system is the structure or structures of the system, which

comprise software components, the externally visible properties of those components, and the relationships

among them.

Perry and Wolf, at the AT&T Bell Laboratories [Per92] suggest

a model of software architecture that consists of three components: elements, form, and rationale.

SOFTWARE ARCHITECTURE

55

According to Gacek, Abd-Allah, Clark, and Boehm, at the Center of Software Engineering

at the University of Southern California (USC) [Gac95],

a software system architecture comprises:

• A collection of software and system components, connections, and constraints.

• A collection of system stakeholders’ need statements.

• A rationale which demonstrates that the components, connections, and constraints define a system

that, if implemented, would satisfy the collection of system stakeholders’ need statements.

Although these definitions, under fortunate circumstances, might have referred the same

concept, they do not. Software architecture is among other things concerned with the

structure/form/composition of components/entities. General consensus, unfortunately,

seems to end with this diplomatic (and permutable) statement. It is not generally agreed

upon what a component or entity is, it is not generally agreed upon what a structure is, or

even if it is to be called structure, and it is not generally agreed upon what else comprises

software architecture. There is also a debate on whether software architecture is restricted

to project-early, high-level abstractions [Sha89] or not [Rie99].

Perhaps the clearest division in the world of software architecture is between formalists

and practitioners. Also software engineering in general displays this division between hard

[Ala98] [Boy99] [Cla96] [Hut00] [Par83] [Rey98] [Sch86] [Spi89] and soft [Foi85] [Gam98]

[Jac99] [Roy70] [Wal01] approaches. The formalistic approach, primarily represented by the

architectural description language community (e.g. [Mor97b] and [Luc95a]), is based on

precise specifications of architectures and deduction-based reasoning applied to these

specifications. The formalistic approach is based on a number of fundamental assumptions,

such as correct refinement [Mor95] between related specifications. When these assump-

tions are true, the formalistic approach is often able to produce convincing results. When

the assumptions are questionable, the practitioners (e.g. [Bas98]) enter the arena, confront-

ing the uncertainties of the real world, generally with less conclusive results.

The above distribution of definitions already on the one-liner stage leaves the discipline of

software architecture in an awkward position. In many senses it might therefore have been

more informative to speak of individual authors rather than of software architecture in

general. Surprisingly and fortunately, however, it seems that the definition debate of soft-

ware architecture in some senses highlights the differences rather than the similarities of

the area. Most involved parties accept that at least a few precisely defined architectural

description languages indeed belong to the discipline; for instance, overviews of software

architecture such as [Ves93], [Cle96], [Med97], [Gar98], [Med00] and [Abd96] all agree on

MetaH [Ves98] and Rapide [Luc95a] as architecture description languages. Both of these

languages define software architecture precisely. There are more common grounds within

the software architecture discipline, for instance, architectural styles are generally consid-

ered to belong to the core concerns. Moreover, a number of shared assumptions permeate

the architectural community. There is a common belief that a description of the relations

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

56

between the entities of a software system is beneficial. It is furthermore generally believed

that an architectural description can be used as a base for reasoning about certain proper-

ties of the depicted system; the architecture is considered closely related to requirements,

and in particular to extra-functional, emergent or quality requirements. Considering the

authors of the above definitions, work at the CMU on the architecture description language

Wright involves analysis of run-time properties of software architectures [All97]. As the

name indicates, the Architecture Trade-off Analysis Method (ATAM), developed by SEI, is

concerned with architecture-based analysis of multiple quality attributes [Kaz98]. The USC

has analyzed software architectures for architectural mismatches [Abd96] [Gac98]. In

[Hei01a], Wolf highlights the use of architectures for analysis of extra-functional attributes.

Thus, although the exact nature of software architecture is debated, there is a fairly general

consensus that an architectural description can be used as a base for reasoning about cer-

tain properties of the underlying system. Furthermore, there is agreement on some exam-

ples of precise architectural formalisms.

5.2.2 EMPLOYED DEFINITIONS

This section, and much of this chapter, elaborates on what the term software architecture

denotes in the presented research. This thesis is mainly based on the definition of software

architecture found in [Sha96a]:

Software architecture involves the description of elements from which systems are built, interactions among

those elements, patterns that guide their composition, and constraints on these patterns.

Considering this definition, we find a number of key terms that require further elaboration.

The main elements referred to are, according to [Sha96a], components, while the interactions

are modeled with connectors. Patterns of composition and pattern constraints are mainly

related to architectural styles. These concepts are considered below. Furthermore, a number

of issues are ignored by this definition, including stakeholders’ needs and design rationale.

These are, arguably, important and closely related concerns, but are in this text not treated

as part of the definition of software architecture.

When deviations from the definitions of this section are made, this will be pointed out. In

particular, the term enterprise software architecture, differing in some significant ways from

software architecture, will be elaborated on below. Furthermore, when reviewing architec-

tural approaches proposed by others, their respective definitions will be employed. Finally,

as has been pointed out earlier, the software architecture community is divided into a for-

malist and a practitioner’s camp. Although formal methods are considered, the origins of

this text is closer to those of the practitioner.

SOFTWARE ARCHITECTURE

57

5.3 VIEWS, COMPONENTS AND CONNECTORS

Since the definition of components and connectors are dependent on the chosen view,

these three concepts are considered jointly. In the next section, architectural styles are

discussed.

Architectural views. The concept of architectural views is closely related to the concepts

of components and connectors. A component may represent a process or a source code

file or some specific functionality, for instance. All of these component types may be useful

to the software developer and might be used as a meaningful base for reasoning about the

system. By rigidly defining the meaning of the term component once and for all, many uses

of software architecture would be lost. The concept of architectural views has therefore

been proposed [Kru95]. A view is a set of definitions of what components and connectors

represent in a specific model. Views suggested by Kruschten [Kru95] (albeit for an object-

oriented context) include the logical view, where a component typically is an object or a class,

the process view, where a component is a process or a thread, the physical view, where a compo-

nent typically represents a processing node, and the development view, where a component

may be a library or other source code entity.

The concept of views is based on the idea of separation of concerns [Dij76], where a view

is intended to address certain aspects of the system while ignoring others. For example, the

process view is considered suitable for matters relating to performance, while the develop-

ment view may be employed for reasoning about reuse and maintainability [Kru95].

Not all researchers employ the architectural view concept. Firstly, some researchers seem

to be particularly interested in a certain view; there seems to be a greater general interest in

the logical and process views, for instance in [All97], [Sha96], [Luc95a], [Abd96], [Gac98],

[Mor97]. Secondly, in some senses the view concept overlaps with architectural styles,

discussed below. As views, styles allow for several definitions of components and connec-

tors.

Components. The word component is as vague as the word system. It could mean almost

anything, depending on the context. Also when reducing the context to software engineer-

ing, or even software architecture, component denotes a number of different entities.

According to Garlan and Shaw [Sha96a], a component is a locus of computation and state, ex-

emplified by subroutines, interpreters, databases, etc. These components display their ex-

ternal behavior in their ports (or interfaces). The ADL Wright describes a component

mainly as a computational process (including states) linked to port processes [All97]. Bass

et al. at the SEI [Bas98] are more liberal in their interpretation of component, allowing

processes, computational components, active and passive data components, classes, object

methods, processors, processor groups, and systems. Examples of components, according

to Bass et al., include web servers, operating systems, object request brokers, databases,

functions such as target tracking, human-computer interfaces, and machines, such as work-

stations.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

58

Extending into related fields, in the component framework area [Cha96] [Obj01] [Pri99], a

component is mainly defined by its interfaces. A CORBA object specifies its interfaces in

an Interface Definition Language (IDL) and incorporates stubs or skeletons to allow exter-

nal interaction with its methods. When dealing with commercial off-the-shelf (COTS)

products, components are to a large extent determined by vendors and their products.

Microsoft Office might be considered a component since it is provided as a package by a

vendor. In the COTS area, black-boxing constitutes another natural component boundary.

A chunk of functionality that the developer cannot decompose may be considered a “de

facto” component. Decomposition may be hindered by legal agreements, by an inability to

access the source code, or by the lack of interest in the structure of the component. Ac-

cording to [Wal01], a commercial software component is released by a vendor in binary

form with an interface for integration.

In this thesis, we allow different definitions of components depending on the context. In

general, the context is defined by the architectural view, which in turn is determined by the

concern at hand, i.e. what aspects we are interested in reasoning about. In Paper C, we

strictly adhere to the definitions of Wright [All97]. In Paper A, Paper B and Paper D, the

definitions presented in Section 4.6 are employed.

Connectors. Whatever components are, they seem more tangible than connectors. A connec-

tor is, according to [Sha96a] a locus of relations6, and as such it does not represent a process, a

processor, a library, or something else that in some sense is localized. Examples of connec-

tors are method invocations, UNIX pipes, interprocess communication mechanisms, etc.

Relating to architectural views [Kru95], connectors have primarily been defined for the

logical and/or process views. A connector, such as a remote method invocation (RMI),

includes the interaction between the client and its stub, the stub and an operating system,

the operating system and the middleware (if middleware supports the RMI), internal proc-

esses in the operating system and/or middleware, perhaps network communication, inter-

action between the server skeleton and an operating system, the server and its skeleton, etc.

A connector crosscuts all of the processes, libraries, and processors that support it. In this

sense, a connector is, maybe more obviously than a component, a construction of the

mind.

Perhaps because of this potential overlap– where a connector, to a large extent, is com-

posed of components – the connector is a debated abstraction. Many definitions of soft-

ware architecture do not include connectors, but settle for less prominent concepts, such as

relations, or interactions, where the interaction issues are primarily specified in the compo-

nents interfaces.

Where applicable in this work, connectors are used explicitly. The benefits of software

architecture are, arguably, more dependent on the contents of interface, port and connector

6 According to [All94a], protocols that capture the expected patterns of communication.

SOFTWARE ARCHITECTURE

59

descriptions, than on their mere existence. Nevertheless, the introduction of the connector

allows many issues related to the context, such as communication-related parts of operating

system, to be explicitly considered.

5.4 ARCHITECTURAL STYLES

Arguably one of the main concepts behind software architecture as a discipline, assessment

of the “goodness” of an architecture description is nevertheless difficult. The complexity of

the underlying system, the complexity of the development process, together with the poor

understanding of the relation between goodness and software structure turns architectural

assessment into a formidable quest. Perhaps as a result of the problems of deduction-based

prediction of system quality, an alternative approach has evolved, namely architectural

styles. Instead of deducing the properties of an architecture, these properties are with styles

induced. In other words, instead of attempting to determine the properties by applying a

set of evaluation criteria on the architecture and its entities, the qualities of the architecture

is assessed by comparison to other architectures with well-known properties.

Architectural styles are proven solutions to common problems [Gam98]. Typical styles are

the pipes-and-filters, blackboard, client/server, layered, and main-program-and-subroutine

styles [Sha96a] [Bas98]. These are all common ways of building software systems. As such

they have, arguably, through evolutionary selection proven their value. A main argument is

that there is little reason to be creative when approaching problem areas for which ac-

cepted solutions already exist. The whole point of architectural styles is thus that they are

not new; contrary to many software engineering research products, the older an architec-

tural style gets, the better.

Architectural styles are the same thing as high-level design patterns, although design pat-

terns [Bec87] [Vli98] are usually found in an object-oriented context7. As is the rule in

software architecture, there are diverging opinions on what one-liner best define the con-

cept of architectural style (or patterns). The Gang of Four, generally considered the main

reference of design patterns for software systems, define patterns as “descriptions of com-

municating objects and classes that are customized to solve a general design problem in a

particular context” [Gam98]. In this definition, objects and classes need to be extended to

architectural entities to make patterns equivalent with architectural styles. Garlan and Shaw

[Sha96a] (representing a more formalistic approach to styles) define architectural style in

terms of vocabulary (component and connector types), configuration rules (or topological

constraints), and possibly semantic interpretations (whereby compositions have well-

defined meanings), and analyses [Gar95a]. The definition of the SEI [Bas98] is similar,

including component and connector types, topology, and semantic constraints.

7 According to [Bas98], architectural style is another name for system patterns. System patterns and design patterns are
subcategories to architectural patterns. According to [Mon97], styles can (more or less) be viewed as patterns.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

60

There is also an ongoing discussion on what descriptions of architectural styles, or patterns,

should contain. This discussion has to a large extent focused on the format of the style

description; popular style formats include the Alexandrian form (cf. [Ale74]) and the GoF

format (GoF denotes the Gang of Four, the authors of [Gam98]). Disregarding the format,

certain information is considered necessary to represent a pattern or style, including name;

problem to which the pattern is applicable; context in which the pattern is relevant;

“forces”, i.e., constraints and/or trade-offs; the solution that constitutes the actual pattern;

examples, consequences of applying the pattern; rationale or justification; related patterns;

and finally known uses [App00].

Styles as a base for architectural analysis are further elaborated on in the next chapter as

well as in Paper D.

5.5 ARCHITECTURE DESCRIPTION LANGUAGES

According to the myth, software architecture was conceived in practice. Software develop-

ers, wishing to convey the structure of their system, depicted it with box-and-line diagrams,

where a box constituted some kind of software component, and a line some kind of rela-

tion between the components. In this sense, software architecture has graphical origins. In

the search for more stringency, these diagrams have been formalized in different ways. An

architectural description language (ADL) is a graphical or textual language, with more or

less formalized syntax and semantics, for describing these software architectures.

As usual, exactly what is to be considered an ADL is not agreed upon [Med00] [Cle96]

[Cat95] [Kog95]. Generally, ADLs should support modeling of components and their

communication via interfaces. Furthermore, communication integrity (i.e. that components

only may communicate with connected components) [Luc95b], support for hierarchical

composition [Sha96a], the ability to model dynamic architectures [Luc95b], property asser-

tions [Sha96a], and analysis support [Sha96a] are considered desirable properties.

ADLs normally consist of sets of sub-languages addressing different concerns (cf. views).

For a language to be classifiable as architectural, a structural sub-language is typically re-

quired, enabling the description of entities (components and possibly connectors) and their

relations. Oftentimes, type sub-languages are also included, enabling the description of

types of entities. Constraint sub-languages enable the description of e.g. style constraints.

Finally, behavioral languages describe the temporal workings of the architectural entities,

such as event sequences and synchronization. Evidently, ADLs are mainly the domain of

the formalistic software architects, allowing stringent inferences based on explicit models.

As such, they are a locus of the deduction-based analysis approach. In Chapter 6, ADLs

and their analysis potential are covered in more detail.

SOFTWARE ARCHITECTURE

61

5.6 ARCHITECTURE IN THE SOFTWARE PROCESS

The software development process became a topic of research in 1970, when Winston

Royce wrote an article on the management of the development of large software systems,

describing the well-known Waterfall method [Roy70]. Still constituting the basic process

model of software development, the Waterfall model specifies a number successive phases,

including system requirements, software requirements, analysis, program design, coding,

testing, and operations. This model has, however, since its inception been much criticized,

among other things, for its rigidity [Boe88] [Boo99]. Improvements that have been sug-

gested include iterative development, prototyping, concurrent development, incremental

development, and many more.

The architectural design phase is generally considered to be located in the early parts of the

design phase or possibly the late parts of the analysis phase. According to Hofmeister et al.

[Hof99], representing the Rational Unified Process (RUP) standpoint, the software archi-

tecture phase comes after domain analysis, requirements analysis, and risk analysis, and

before detailed design, coding, integration, and testing. In some texts, however, the role of

software architecture seems surprisingly prominent (Figure 4).

Figure 4. Software architecture in the software process, according to [Gar00].

A main idea of software architecture is to mitigate different kinds of technical problems

and risks early on in the software process. Problem identification is typically performed by

some kind of reasoning based on the architectural description, ranging from gut feeling to

formal analysis. An often-cited architectural analysis process is the Architecture Tradeoff

Analysis Method (ATAM) [Kaz98] [Kaz99]. The name is slightly misleading, since the

ATAM per se does not contain specific analysis methods or techniques, but rather pro-

poses an engineering process in which the analyses may be performed. The most promi-

nent feature of the ATAM is its scenario-based approach, where scenarios are elicited and

subsequently analyzed by some appropriate analysis technique. Similar methods have been

proposed by other authors [Ben00] [Las02]. A benefit of the scenario-based approach is

that the need for universal definitions of extra-functional requirements are substituted by

concrete situations. For instance, soft requirements (e.g. modifiability), well-known for

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

62

their unquantifiable nature, do not require specific metrics but can instead be operational-

ized in the form of change scenarios8.

As most processes, the ATAM is presented in sequential activities, or steps. These include

1) scenario collection, where potential usage and change scenarios are elicited from in-

volved stakeholders; 2) architecture representation, where the current architecture is de-

scribed; 3) property-specific analysis, where, by available means, the potential impact of the

scenarios on the architecture is assessed; 4) trade-off analysis, where sensitive architectural

elements are identified by their frequency in the property-specific analyses; and finally 5)

propose modifications, where the analysis results are used as a base for architectural im-

provement.

Although software architecture may be relevant in other situations, such as software modi-

fications, reengineering, etc., this thesis in focused on the above considered, process-early,

phase. The analysis process is further considered in Paper B, where scenario-based analysis

processes are considered in the light of enterprise software system integration.

5.7 ENTERPRISE SOFTWARE ARCHITECTURE

Traditional software architecture has mainly been preoccupied with green-field develop-

ment of systems typically developed by a single vendor. For example, the standard refer-

ence on the subject, by Shaw and Garlan [Sha96a], includes case studies on Parnas’s KWIC

system [Par72], an oscilloscope instrumentation system, a hypothetical robot controller, a

cruise-control system, and a chemical process control system. Hofmeister et al. [Hof99]

includes case studies on an image acquisition and processing system, an instrumentation

and control system, an embedded real-time patient monitoring system, and a central patient

monitoring system. All of these systems are developed by (at most) a single vendor, and are

reasoned about with the implicit assumption that the system can be developed from

scratch, or at least that all of the source code is available. For many software developers,

the green-field assumption may be viable, but for many others, management of legacy

systems and COTS constitutes a major part of the development process. In particular, user

(or customer) organizations face a management process focused on procurement and inte-

gration, and with little in-house development. In this thesis, the term enterprise software system

refers to the systems of these organizations. The architecture of these systems is here de-

noted enterprise software architecture.

In this section, the characteristics of enterprise software systems and architectures are

elaborated on. Systems and their architectural descriptions are considered jointly, as an

architectural vocabulary is employed to describe the systems. The relations to the (acro-

nymified) areas of enterprise application integration (EAI) [Lin00], component-based soft-

8 Similarly, usage scenarios have been proposed for operationalizing usability [Bas01b].

SOFTWARE ARCHITECTURE

63

ware engineering (CBSE) [Hei01a] and commercial off-the-shelf (COTS) systems [Wal01]

are also considered.

5.7.1 ENTERPRISE SOFTWARE SYSTEM EVOLUTION

Considering the software systems of typical medium-sized to large enterprises in the indus-

trialized world, they are surprisingly similar. Most enterprises need software systems to

manage their economy, their employees, their customers, and their subcontractors. They

may have customer information systems, call-centers, time management systems, and pay-

roll systems. They require software systems to track inventories, to manage billing, to man-

age their assets. They may employ systems for analysis and forecasting. If they are produc-

ing companies, they may need systems for product design, systems to develop, to plan, to

track, and to supervise and control the production. If they have a geographically distributed

operation, they may employ geographical information systems. The list goes on. There are

generic systems relevant for most enterprises, there are industry-specific systems, and per-

haps, in some cases, there is a need for a few company-specific systems.

The evolution of these systems of systems can be described in four eras. First, there were

the “stovepipe” systems; isolated systems that had little need to communicate with their

neighboring systems and where unprepared to do so. If the output from one system occa-

sionally was needed in another, the information transfer could be manually accomplished.

As the companies automated their business and more information was digitalized, this

approach, however, became inefficient. Those systems that needed to communicate where

then integrated if possible, but since the systems generally were independently developed,

with no provisions for future integration, expensive customized solutions between in-

house interfaces were the typical result. This was the point-to-point era. As the point-to-

point approach was adopted, however, it became clear that the cost for system integration

was high, in many cases too high to justify the integration. Furthermore, the emerging

enterprise software system became difficult to manage with many customized connections

between systems. With the point-to-point approach, the introduction of one new system

typically requires many specialized connections to the existing systems.

In an attempt to reduce the complexity of the enterprise software system, the Enterprise

Resource Planning (ERP) systems were introduced. Exploiting the similarities of most

companies of the computerized world, vendors such as SAP [Sap02] and Baan [Baa02]

offer giant systems, covering many of the functions that previously needed to be procured

separately. A main benefit of the ERP systems, from an architectural point of view, was

that the components/systems were developed by one vendor, and prepared for integration

with each other. Communication between the pay roll system and the accounting system

was thus prepared, and cost little, if anything, for the customer. This was the ERP era.

During recent years, however, more and more failed ERP implementation projects have

been reported. This has been attributed to several causes, including poor organizational fit,

an unhealthy dependence on the vendor, and too extensive customizations [Hon01]. ERP

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

64

vendors have also been criticized for providing non-standardized in-house interfaces,

thereby allowing integration only with their own products, hindering their customer from

picking the best components from different suppliers [Lin00].

Now the hype is for Enterprise Application Integration (EAI) solutions, including message

brokers, application servers and the like. These products are specifically designed for facili-

tating the integration of legacy systems, ERP systems, and other COTS systems that are

notoriously difficult to access. This is thus the EAI era. It may be worth noting that very

few companies have managed to fit themselves into one specific era; most enterprises have

elements of all eras in their enterprise software architecture.

In parallel with the evolution described above, enterprises have moved from custom-

developed software projects to COTS procurement. The costs of developing the desired

systems are generally higher than a single company can afford, and the time from the in-

vestment decision to a working system is too long. By procuring off-the-shelf software, the

enterprises loose control over the software, but hope to gain in economy and time. How-

ever, few are the procured COTS systems that are not customized to a smaller or larger

extent in the implementation phase.

The remaining part of this section considers what characterizes today’s enterprise software

systems and architectures and how they compare to the traditional notion of software

architecture. Chapter 3 briefly describes the typical enterprise software system of electric

utilities on the deregulated Scandinavian electricity market, the primary empirical base of

the present text.

5.7.2 CHARACTERISTICS OF ENTERPRISE SOFTWARE ARCHITECTURE

In traditional software architecture, a component may be a procedure, a process, and ob-

ject-oriented object, etc (cf. section 4.3). These kinds of components are, however, difficult

to employ to describe the enterprise software system for several reasons. Firstly, the sheer

size of the enterprise software system in terms of processes or objects is overwhelming.

The use of architecture as a high-level abstraction would thus be lost. Secondly, in most

enterprise software systems, it is not possible to discover components of this granularity.

This is due to what could be called “organizational encapsulation”, i.e., much software

employed by a user organization is not accessible for modifications or even for inspection.

There are several reasons for this encapsulation. In the (common) case of procurement of

externally developed systems, the source code is often not available, nor are any design

specifications. Even if this information were available, chances are that access would be

legally restricted by the developing organization. In the case of legacy systems, relevant

documentation is often lacking, and the people who developed the systems are often no

longer available. This results in an involuntary encapsulation of software into “atoms”,

“indivisibles”, or “components”. In many cases, the boundaries of these components are

thus set by what chunks of software the vendor decides to provide as a product; in other

cases, the boundaries are set by tradition. Below, the characteristics of enterprise software

SOFTWARE ARCHITECTURE

65

systems are further elaborated on, considering components, connectors, and system-level

properties.

Components are not modifiable. The determinants of what are components in the enterprise

software system have a number of effects. One such effect is that components oftentimes

cannot be modified. Without access to source code and documentation, and possibly with

legal hindrances, commercial components become black-boxes. For all practical purposes,

so do poorly understood legacy components. Therefore, changes to the system are prefera-

bly handled indirectly, either by influencing the software vendor to adapt its packaged

product in coming releases, or by implementing non-intrusive modifications, e.g. by wrap-

ping a component in order to change its external behavior.

Components are heterogeneous. In traditional software architecture, components are homogene-

ous. This means that all components are based on a number of common assumptions. In

an object-oriented system, for instance, all components are objects. They have the same

fundamental structure with data and behavior separated, with private and public attributes

and methods, they are created and destroyed in the same manner, they interact with the

operating system in the same manner, they probably even execute on the same platform (or

at least on platforms providing common services). In the enterprise software system con-

text, however, components are heterogeneous. The buyer of a COTS system does not

normally decide how many processes are running in parallel in the procured component,

nor does the buyer typically determine whether the component features a CORBA inter-

face or not. Furthermore, today’s enterprise architect did not determine the properties of

yesterday’s legacy systems. Thus, in an enterprise software system that to a large extent is

composed of the combination of packaged and legacy components from a wide range of

vendors, epochs, and intended purposes, uniform system components normally proves

hard, costly, and probably even inappropriate to realize.

Components are large-grained. The enterprise software system is a “system of systems” in the

sense that the components of the enterprise system are normally considered as systems in

the (developer-oriented) traditional software architecture. Using any measure, (e.g. number

of objects, number of processes, number of filters), the enterprise components become

large-grained. For instance, complete systems such as customer information systems and

geographical information systems might be considered as components in enterprise soft-

ware architectures.

The supply of packaged components is limited. Traditional development allows the specification

and development of any technologically feasible component. The software architect thus

distributes requirements over a set of components, and makes sure that the required func-

tions and properties are implemented according to the architectural specification. In the

enterprise software context, this is not a viable option. Green-field development is gener-

ally a far too expensive undertaking, and the component options then become those avail-

able on the market. Unfortunately, the number of large-grained components available on

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

66

the market is limited. Often components with the desired functionality do not exist, forcing

enterprises to combine packaged software to fulfill the requirements.

Connectors are heterogeneous. In traditional software architecture, connectors are preferably

determined once and for all when the developer selects the architectural style. If a pipes-

and-filter style is selected, then the connectors must be pipes. If only the components are

filters, this presents no problem since the two are compatible. In most enterprises, how-

ever, the choice of connectors is influenced by the interfaces provided by the acquired base

components. Unfortunately, the probability that two independently developed components

will feature compatible interfaces is annoyingly small. There is a great number of different

kinds of interfaces (e.g. remote object interfaces), and for each kind, there are typically

competing standards (e.g. CORBA and COM). Furthermore, although the situation argua-

bly has ameliorated during the latest decade, many components follow no interface stan-

dard at all. And it is not enough that only two components provide the same interface, for

typically, a new component requires integration with a number of existing ones. The con-

sequence of this interface disharmony is heterogeneous connectors. Connectors in an en-

terprise software system are thus by nature diverse since their main purpose is to glue het-

erogeneous component interfaces together. Moreover, connectors do not only interface

with components within the same enterprise software system, they also provide interfaces

to other organizations’ software systems bringing even more heterogeneity into the enter-

prise’s total battery of connectors.

The enterprise software system may contain both data and functional redundancy. In a system con-

trolled by a single developer, one piece of information is typically stored in one place and

one piece of user functionality is only coded once. The integration of packaged compo-

nents, however, increases complexity since those components rarely correspond completely

to the organization’s requirements. In order to grasp the bulk of the requirements, different

packaged components are typically combined, often resulting in both functional and data

redundancy. Data redundancy is typically the result of the integration of several related

components including their own databases. An electricity metering system, for instance,

may hold information on the type and identification of metering equipment. This informa-

tion may also be present in an asset management system. More or less by default, data

redundancy is subject to the risk of inconsistency. Similarly, for instance in the case of a

company merger, if two different asset management systems are integrated on the database

level, duplicate functionality may operate on the common data. Ignoring potential concur-

rency problems, functional redundancy is normally not a problem if the functions are in

fact identical, but if they are slightly different, they may cause data inconsistency as well as

inconsistent behavior.

The legacy architecture constitutes the starting point of the enterprise software system development effort.

Although it is not always the case, traditional software architecture often assumes the pos-

sibility of development from scratch. Occasionally, this is the case for software developing

organizations, and in these cases, the design latitude is fairly unrestricted. In the context of

SOFTWARE ARCHITECTURE

67

enterprise software systems, the legacy is often huge and the legacy components often

constitute a significant asset that may not be easily replaceable without severe disturbances

to business operations. Enterprise software system development is thus rather a modifica-

tion activity than a clean-slate development project.

It is fairly clear that these characteristics of the enterprise software system affect the task of

architectural design and analysis. The design space [Lan90] becomes discrete, component

are selected rather than designed, and integration becomes a primary activity. The implica-

tions are many. These issues are further elaborated on in Paper A, Paper B, and Paper D.

5.7.3 CBSE AND COTS

The industrial revolution was characterized by “the transition from cut-to-fit craftsmanship

to the automated mass-production of goods from interchangeable parts” [Cza00]. The

fundamental idea of component-based software engineering (CBSE) is to revolutionize the

software industry in the same manner. This is at least one interpretation of component-

based software engineering. A second interpretation is the commercial-off-the-shelf view

of component-based software engineering, which rather focuses on “the manual produc-

tion of software systems from components that typically need to be modified to be inter-

changeable.” Although admittedly less visionary, this second view is perhaps more applica-

ble to today’s software milieu. Generalizing, there are thus two major interpretations of the

term “component” in CBSE: component-framework component [Lon01], and COTS

(commercial-of-the-shelf) component [Obe98]. Component-framework components are

standardized with respect to (at least) their interfaces and are exemplified by CORBA,

COM and EJB components. Referring to the categorization of Chapter 4, the integration

approach is thus monarchical or oligarchical. COTS components, on the other hand, are

not necessarily standardized at all, placing COTS component-based software engineering in

the anarchical integration category.

From the perspective of this text, the views on and methods for software development

represented by the component-framework CBSE area (e.g. as represented by [Szy98],

[Hei01b] and [Lon01]) differ little from traditional software architecture. Although the

differences may be significant from other viewpoints, most of the differences between

enterprise software architecture and traditional software architecture discussed above are

equally applicable to the differences between enterprise software architecture and compo-

nent-framework CBSE. In particular, enterprise software systems allow heterogeneous

connectors. This is exactly what component frameworks attempt to overcome by stan-

dardization.

COTS development, in particular as considered by Kurt Wallnau et al. [Wal01], is much

closer to the enterprise software systems discussed herein. For instance, the components

considered by the COTS field are often unmodifiable, connectors may very well be hetero-

geneous, and sufficient component information is often lacking. In relation to the perspec-

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

68

tive of the present text, the COTS field does, however, not focus on the software architec-

ture of these systems.

Both of these component-based perspectives on software engineering are affecting the

views of software architecture. Traditional software architecture is now moving from the

green-field assumption towards the explicit recognition of component-based software

engineering as a main influence on the architectural design process (cf. e.g. the reuse con-

siderations of product-lines [Bos00] [Bas98] [Jaz00]).

5.7.4 EAI

As the name indicates, enterprise application integration (EAI) [Lin00] [Lin01a] [Lin01b]

[Mor01] [Ruh01] concerns the integration of enterprise applications. This field is covered

in greater detail in section 4.5. The purpose of this section is to highlight the similarities

and differences between the enterprise application integration field and enterprise software

architectures. Firstly however, there is a distinction to be made between EAI as a practice

and EAI as a technology. As a technology, EAI typically refers to non-intrusive application

integration techniques aimed at creating loosely coupled enterprise software systems. Mes-

sage brokers, adapters, process automation tools, and similar modern products are hall-

marks of the EAI technology. As a practice, however, EAI is basically concerned with the

integration of systems that were not developed for integration (anarchical integration in the

terminology of Chapter 4).

The addressed problem area is thus similar to that of enterprise software architecture inte-

gration, considering the integration of software systems based on legacy and externally

developed, packaged components. All of the characteristics of enterprise software systems

are also generally applicable to enterprise application integration. Generally, however, en-

terprise application integration is not particularly concerned with software architecture.

Neither is it concerned with structured forms of analysis of architectures or systems. The

focus is rather on specific practical approaches for integration, as presented in Section 4.5.

5.8 SUMMARY

This chapter has presented the concepts of software architecture and enterprise software

architecture. There are currently several competing definitions of software architecture. In

particular, there is a division between formal, theory-oriented, or deduction-based software

architecture on the one hand, and informal, practice-oriented, or induction-based software

architecture on the other. Most authors do however agree that important concepts in soft-

ware architecture include components, connectors, views, and styles, typically represented

in an architectural description language. It is also generally agreed that architecture may be

relevant in a number of places in the software process, but a particular focus is typically

placed on the project-early phases. This chapter has considered these central concepts as

well as alternative interpretations of them.

SOFTWARE ARCHITECTURE

69

The chapter also proposes the concepts of enterprise software systems and architectures.

These are characterized by a limited supply of unmodifiable, heterogeneous, large-grained

components linked by heterogeneous connectors. The enterprise software system may

contain both functional and data redundancy, and the legacy architecture constitutes the

starting-point of the system development effort.

Papers A and B contain supplemental descriptions of the enterprise software architecture.

Deduction-based architectural analysis of enterprise software system integration is further

considered in the next chapter. The software process aspects of architectural analysis (con-

sidered in this chapter) are further explored for the context of enterprise software systems

in Paper B. Paper D considers architectural styles for enterprise software systems.

71

Chapter 6

Architectural Analysis

6 ARCHITECTURAL ANALYSIS

6.1 INTRODUCTION

There are many questions that a software developer would like to know the answer to

before a system is developed. Will the system be sufficiently fast? Will it be reliable? What

happens if the user behaves unexpectedly? Will the system be secure? Will it be difficult to

port it to a new platform?

In this chapter, two conceptually different approaches for assessing these properties are

reviewed, induction-based and deduction-based architectural analysis. Deduction-based

architectural analysis is a reductionistic method, attempting to calculate the attributes of the

modeled system by analyzing how its constituents and their interactions jointly display

certain system-wide properties, such as reliability. This approach is the same as is used

when attempting to predict the behavior of a molecule by analyzing the properties and

interactions of the nuclei and electrons of which it is composed. In software architecture,

the deduction-based analysis approach is most prominently represented by the formally

established methods. These are methods based on well-defined architecture description

languages with associated formal analyses, such as Wright [All97], Darwin [Mag95], Rapide

[Luc95a], and more.

Induction-based analysis is based on a statistical argument, attempting to, based on certain

criteria, classify a specific system into a category and predict further characteristics of the

system based on the category to which it belongs. In the molecular analogy, as soon as a

molecule has been classified as ethanol, it can be predicted flammable, since all other etha-

nol molecules are flammable. In software architecture, the induction-based approach is

most prominently represented by the architectural style community [Bus96] [Sch00]. Styles,

representing classes of systems found in the real world, are typically defined by their

architectural traits and associated with certain properties (such as modifiability), implying

that any system belonging to a certain style, will display those properties that are generic for

the style.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

72

The chapter begins with a general discussion on induction-based approaches, but since

Paper D discusses architectural styles in some detail, the main focus of the chapter is on

deduction-based approaches. In line with the thesis objectives, the deduction-based sec-

tions are particularly concerned with the analysis of integrability. Section 5.4 presents an

evaluation of the applicability of current approaches to this problem. Section 5.5 concludes

the chapter with a discussion on the appropriateness of these methods in the context of

enterprise software systems.

6.2 INDUCTION-BASED ANALYSIS METHODS

The software engineering world is full of more or less established relations between the

software design and the qualities of the implemented system. For instance, a modularized

system is considered more flexible and comprehensive than a monolithic system [Par72].

The more go to statements a program contains, the messier it is, according to Dijkstra

[Dij68a]. A conceptually integrated system is arguably faster to build and to test than it’s oppo-

site [Bro75]. Nested factorization of a program is believed to improve the correctness. The

simpler the composition scheme is, the more intellectually manageable is the program

[Wir74]. A hierarchical software structure aids design verification, thereby improving the cor-

rectness [Dij68b]. Low coupling improves understandability, correctness and changeability

and high cohesion improve ease of development, maintainability, reusability, and reduces

fault-proneness [Ste74]9. Pipe-and-filter systems support reuse and are easy to maintain

[Sha96a].

Many of the relations presented above refer to the organization of software components,

be they layers, modules, or other. Not surprisingly, a software architecture description

depicts this: the organization of software components. According to the relations pre-

sented, then, some architectures are more reusable, maintainable, manageable, etc. than

others. In this spirit, induction-based architectural analysis is the attempt to evaluate the

“goodness” of a software system’s architecture. As mentioned, this section focuses on

architectural styles as prime example of induction-based analysis. Architectural styles were

introduced in Section 5.4.

Induction-based methods address the task of architectural analysis quite differently from

their deduction-based relatives, drawing conclusions by analogy to similar architectures

rather than based on formally expressed rule sets. Causation is thus substituted by associa-

tion, in the sense that the main concern no longer is why an architecture demonstrates

certain properties, only that the properties appear when the architecture takes on a particu-

lar form (i.e., style). Induction-based analysis methods are thus based on empirical relations

rather than theoretical constructs. The only theory relevant for an architectural style is the

relation between the style and the system properties that are associated with the it, e.g. the

9 [Ste74] according to [Bri99].

ARCHITECTURAL ANALYSIS

73

relation between the black-board style and the extra-functional property modifiability.

Because the underlying theory is so meager, there are few restrictions on the employed

abstractions. Similarly, induction-based methods do per se not make extensive assumptions

about the considered system. The only characteristics of the system that are explicitly as-

sumed are those that define the style description. Because of their statistical nature, induc-

tion-based methods are generally related to externally measurable properties, e.g. integra-

tion cost or throughput.

6.2.1 EXTRA-FUNCTIONAL PROPERTIES

“Goodness” is often measured in quality attributes [Bar95a], also known as emergent prop-

erties, non-functional properties, “ilities”, extra-functional properties or simply qualities.

This multitude of terms is not a coincidence, for quality attributes are difficult to define.

The term “non-functional” is devised as an antonym to functional requirements. Most

requirements specifications describe functionality in a standardized way, for instance by

using use cases. Non-functional requirements are in this context all those requirements that

cannot be specified by use cases. The proposition of the term “extra-functional properties”

is an attempt to nuance the relation between function and quality, indicating that these

qualities are not the opposite to functional properties, but rather something beyond them.

“Emergent properties” indicate those properties of a system that are not directly related to

the components or functions, but emerge when they are composed into a system. “Ilities”

refers to all properties that end with the suffix “ility”. “Quality attribute” indicates that the

property is related to the quality, or “goodness,” of the system.

One way of defining quality attributes is by examples (cf. Table 4). Typical quality attributes

of software systems are performance, scalability, maintainability, portability, interoperabil-

ity, and reliability. These properties of the system are typically not satisfied by the introduc-

tion of a singular function or component, so they are extra-functional and emergent. Five

of six of them end with the suffix “ility”, and they are all aspects of goodness.

Quality attributes are often categorized into run-time (or operational) quality attributes, and

design-time (or developmental) quality attributes [Bos99]. Run-time attributes are observ-

able when executing the system, such as performance or reliability. Design-time attributes

are typically related to the software process, e.g. modifiability, portability, etc.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

74

Accuracy The precision of computations and control.

Audibility The ease with which conformance to standards can be checked

Availability The probability that the system functions correctly.

Communication commonality The degree to which standard interfaces, protocols, and bandwidth are used.

Completeness The degree to which full implementation of required function has been achieved.

Conciseness The compactness of the program in terms of lines of code.

Consistency The absence of contradictory data in the system.

The use of uniform design and documentation techniques throughout the software development project.

Correctness The extent to which a program satisfies its specification and fulfills the customer's mission objectives.

Data commonality The use of standard data structures and types throughout the program.

Ease of creation The difficulty of constructing the system. This is often measured in labor hours.

Efficiency The amount of computing resources and code required by a program to perform its function.

Error tolerance The damage that occurs when the program encounters an error.

Execution efficiency The run-time performance of a program.

Expandability The degree to which architectural, data, or procedural design can be extended.

Flexibility The effort required to modify an operational program, or,

the ease with which the systems can be adapted to changes.

Generality The breadth of potential application of program components.

Hardware independence The degree to which the software is decoupled from the hardware on which it operates.

Instrumentation The degree to which the program monitors its own operation and identifies errors that do occur.

Integrability The ability to make the separately developed components of a system work correctly together.

The ability to make the separately developed systems work correctly together

Integrity The extent to which access to software or data by unauthorized persons can be controlled.

Interoperability The effort required to couple one system to another.

The ability of a system to work with another system

Maintainability The effort required to locate and fix an error in a program (this is a very limited definition).

Modifiability The ability of a system to be extended to accomplish additional functionality.

Modularity The functional independence of program components.

Operability The ease of operation of a program.

Performance The measure of how well the computer system responds to its inputs. Common measures are response time, resource
utilization, and throughput.

Portability The effort required to transfer the program from one hardware and/or software system environment to another.

The ability of a system to execute on different hardware and software platforms.

Reliability The extent to which a program can be expected to perform its intended function with required precision.

Reliability The ability of he system to sustain operations. A common measure is mean time between failures.

Reusability The extent to which a program [or parts of a program] can be reused in other applications.

Scalability The ability of a system to support modifications that dramatically increase the size of the system.

Security The availability of mechanisms that control and protect programs and data.

Self-documentation The degree to which the source code provides meaningful documentation.

Simplicity The degree to which a program can be understood without difficulty.

Software system independence The degree to which the program is independent of nonstandard programming language features, operating system
characteristics, and other environmental constraints.

Testability The effort required to test a program to ensure that it performs its intended function.

Traceability The ability to trace a design representation or actual program component back to requirements.

Training The degree to which the software assists in enabling new users to apply the system.

Usability The effort required to learn, operate, prepare input, and interpret output of a program.

Table 4. Quality attributes, "ilities", non-functional properties, or emergent properties according to [Bos99]
[Kaz94a] [Kaz94b] [Las99] [McC77].

There are few, if any, software quality attributes that are well defined in the sense that they

have a single generally agreed upon measurement. Availability could be measured as up-

time per year in percent, number of failures per year, down-time per day, up-time per year

in percent weighted according to function usage frequency, the probability that the system

functions correctly at time t, as t approaches infinity [Bar95a], and so on. Furthermore,

ARCHITECTURAL ANALYSIS

75

several properties are qualitative and subjective to their nature. It is for instance difficult to

imagine that usability would be universally and objectively quantifiable.

6.2.2 ARCHITECTURAL STYLES AND EXTRA-FUNCTIONAL PROPERTIES

One of the main reasons for employing architectural styles is thus that their application is

considered to result in particular qualities of the system. To propose some further exam-

ples: according to Schmidt et al. [Sch00], application of the interceptor architectural pattern

enhances extensibility, flexibility, and reusability. Buschmann et al. [Bus96] argue that the

layers architectural pattern results in reusability and exchangeability. The Gang of Four

[Gam98] claims that the consequences of the interpreter design pattern include changeability,

extensibility, and ease of implementation. The list goes on, for every architectural style in

literature, affected quality attributes are listed.

So is there any reason to believe that architectural styles actually do what they claim? Per-

haps the strongest argument is the general community agreement on induction-based rules

as those proposed by Dijkstra, Parnas, and Wirth (presented in the introduction to this

section). The large acceptance that styles have found in the software community is a related

indication; the Amazon.com internet book shop lists over 40 books on the subject10 and

dedicated international conferences are held, mainly concerned with the presentation of

new patterns [Plo02]. Furthermore, although the main approach is clearly induction-based,

the relations between quality attributes and architectural style are normally supplemented

by more deduction-based arguments (in some cases, formal approaches are combined with

styles or patterns [Mik98]). To some extent, these arguments strengthen the credibility of

the styles11. However, few statistical surveys have been conducted on the relations between

styles and qualities. Moreover, architectural styles are typically defined as proven solutions

to common problems. As software is an artificial science, one might argue that this defini-

tion lends itself to self-fulfillment. A developer determined to build a modifiable system

will probably choose an architectural style that is generally considered modifiable, but he or

she will also make a number of other design choices to this effect. The relation between

styles (or patters) and qualities might thus be spurious. This argument is tightly linked with

the ongoing discussion on the possibilities of codifying knowledge [Add02]; to apply a style

successfully, expertise may be required, and if expertise is available anyways, its codification

in styles is unnecessary and perhaps even unsuccessful. The relation is further complicated

by the fact that few researchers, if any, argue that architectural style is a sole determinant of

any quality attribute. Even the most robust architecture can be thwarted by a malicious

implementer. This means that the relation “good architectures yield good systems” is not

10 Styles and design patterns.
11 Perhaps somewhat surprisingly, the architectural formalists primarily consider styles from a deduction-based
perspective. Styles are in this approach specified formally to guarantee certain properties. Specific architectures are
then checked for style-conformance. These styles are thus deduction- rather than induction-based. When this text
speaks of styles, it primarily refers to the induction-based kinds, i.e., empirically, rather than theoretically, proven
solutions to common problems.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

76

generally valid. Instead one must settle for weaker positions like “bad architectures yield

bad systems” or “good architectures permit good systems”.

Summarizing, although the relation between styles and qualities is not proven beyond

doubt, and although there are obvious limits to the effects styles may have on system char-

acteristics, there is a fairly strong case for a link between the concepts. Architectural styles

applied to enterprise software systems are further elaborated on in Paper D.

6.3 DEDUCTION-BASED ANALYSIS METHODS

In this section, a number of architectural deduction-based analysis methods are presented

on a conceptual level. In the subsequent chapter, the abilities of these methods to address

software integration issues are considered. In the final section, the applicability in the en-

terprise software system context is considered.

There are several reviews of (formal) architectural description languages (architectural

description languages are introduced in Section 5.5), including [Cle96] [Cat95] [Kog95] and

[Med00]. These reviews consider slightly different sets of languages. The present review is

contains a language set similar to that found in [Med00], and includes Aesop [Gar94b]

[Gar95b], C2Sadel [Med96] [Med98] [Med99] [Rob98], Darwin [Mag95] [Mag96] [Mag97a]

[Mag97b], MetaH [Ves98], Rapide [Luc95a] [Luc95b], SADL [Mor95] [Mor97a] [Mor97b]

[Rie99], UniCon [Sha95b] [Sha96b] [DeL99] [Zel96], and Wright [All97]. Note that several

of the analyses performed using one language could be performed with some other lan-

guage as a base. Here, the languages are mainly used as a convenient categorization of

research efforts; the potential of the languages per se is considered only to a limited extent.

In addition to the approaches considered by [Med00], we also include the architectural

mismatch analysis presented by Abd-Allah and Gacek [Abd96] [Gac98], since this is a

similar architectural deduction-based approach of a novel issue.

6.3.1 C2SADEL

Based on type theory and particularly directed at applications with a graphical user interface

aspect, C2SADEL (Chiron-2 Software Architecture Description and Evolution Language) is

an architectural description language constructed in conjunction with the C2 architectural

style [Med98] [Med99]. The base constructs of the language are component types, connector types

and topology. Components have names, interface elements, behavior, and possibly an implementation.

Interface elements are either provided or required by the component, they have names, parame-

ter sets, and possibly a result. The behavioral semantics are described by component invari-

ants and provided or required operations with pre- and postconditions. The language is formal-

ized using the Z notation [Spi89].

With this formalism it is possible to specify type-checking predicates. Specifically, a service

provided by component will satisfy the service required by another component if their

interfaces match as well as the pre- and postconditions of the involved operations. In anal-

ARCHITECTURAL ANALYSIS

77

ogy with Moormann Zaremski and Wing [Moo95] [Moo97], these matches may be more or

less relaxed.

Figure 5. Sample component type specified in C2SADEL [Med99].

For C2SADEL, consistency checks are also possible, determining whether components and

connectors are properly specified, instantiated, and connected, whether component inter-

faces are correctly mapped to operations, and so on. Also constraint checks are available,

e.g. ensuring that the system adheres to a specific style.

From a C2SADEL specification, skeleton code may be generated (currently in C++, Ada

and Java), where pre- and postconditions are commented into the program text in appro-

priate places. In fact, C2SADEL provides a framework of abstract classes for its compo-

nents, connectors, etc. in the supported languages. Several off-the-shelf middleware tech-

nologies have been integrated with the framework to enable interactions between C2 com-

ponents in different languages.

6.3.2 SADL

The Structural Architecture Definition Language (SADL) is built on logic – specifications

can be systematically translated into logical theories of (an extended) first-order logic – and

bases its analysis capabilities on theorem proving. A software architecture in SADL is repre-

Component DeliveryPort is
Subtype CargoRouteEntity (int \and beh) {

State {
Cargo: \set Shipment;
Selected: Integer;
…

}
invariant {

(cap >= 0) \and (cap >= max_cap);
}
interface {

prov ip_selshp: Select (sel: Integer);
req ir_clktck: ClockTick();
…

}
operations {

prov op_selshp: {
let num : Integer;
pre num <= #cargo;
post ~selected = num;

}
req or_clktck: {

let time : STATE_VARIABLE;
post ~time = time + 1;

}
…

}
map {

ip_selshp -> op_selshp (sel -> num);
ir_clktck -> or_clktck ();
…

}
}

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

78

sented by components with types and an interface of ports, connectors, configurations,

mappings, and architectural styles. Connectors are, as components, typed and treated as

first-class entities (refineable). Accepted data types of connectors are specified. Ports have

direction, type, typed parameters and return values. Configurations contain connections

between connectors and ports and constraints. Mappings, a central element to SADL, de-

fine the relation between abstract and more concrete architectures. Styles include defined

types, constraints, and connector semantics. These basic entities constitute the core struc-

tural model. On top of this model, arbitrary semantic layers may be introduced for repre-

senting behavioral or non-behavioral aspects of the design, such as latency, or dataflow.

The main concern of the developers of SADL is correct architecture refinement [Mor95],

but also architectural analysis is central.

Figure 6. Sample component type specified in SADL [Mor97b].

General consistency and type checking12 is employed to ensure the well-formedness of the

architecture. Further analysis of architectures is typically performed by applying proofs of

property constraints. Because of the extensible semantic layer structure, the number of

potential analyses is unlimited and the potential for analysis of specific properties is case-

dependent. Security [Mor97a] analyses have been performed for specific architectural

12 Type checking is a matter of showing that type constraints are satisfied.

compiler_L1: ARCHITECTURE
[char_iport: SEQ(character) -> code_oport: code]

IMPORTING character, code, token, binding, ast FROM compiler_types
IMPORTING Function FROM Functional_Style
IMPORTING Dataflow_Channel, Connects FROM Dataflow_Style

BEGIN
COMPONENTS

lexical_analyzer: Function
[char_iport: SEQ(character)

-> token_oport: SEQ(token), bind_oport: SEQ(binding)]
parser: Function

[token_iport: SEQ(token) -> base_ast_oport: ast]
analyzer_optimizer: Function

[base_ast_iport: ast, bind_iport: SEQ(binding)
-> full_ast_oport: ast]

code_generator: Function [full_ast_iport: ast -> code_oport: code]
CONNECTORS

token_channel: Dataflow_Channel<SEQ(token)>
bind_channel: Dataflow_Channel<SEQ(binding)>
base_ast_channel: Dataflow_Channel<SEQ(ast)>
full_ast_channel: Dataflow_Channel<SEQ(ast)>

CONFIGURATION
token_flow: CONNECTION

= Connects(token_channel, token_oport, token_iport)
bind_flow: CONNECTION

= Connects(bind_channel, bind_oport, bind_iport)
base_ast_flow: CONNECTION

= Connects(base_ast_channel, base_ast_oport, base_ast_iport)
full_ast_flow: CONNECTION

= Connects(full_ast_channel, full_ast_oport, full_ast_iport)
END compiler_L1

ARCHITECTURAL ANALYSIS

79

styles. In a more ambitious continuation, assessment “intrusion tolerance” is under investi-

gation [Sta01].

The security analysis of SADL performed by proving that the Bell-LaPadula [Mor97a]

multilevel security (MLS) policy is not violated. Briefly, the policy allows read and write

access only to subjects with the proper clearance level, thus all inappropriate data flows in

the architecture are forbidden. The analysis is carried out by matching mechanisms (i.e. the

Bell-LaPadula policy) to the general security property, thus decomposing the main property

into simpler and verifiable architectural properties13 (the Bell-LaPadula policy is presented

as two verifiable properties14) [Sta01]. An important limitation of this work is that the Bell-

LaPadula policy is not a definition of security, but an example. Thus, an implementation of

the Bell-LaPadula policy may be deemed secure, but employing solely Bell-LaPadula as

evaluation criterion for the security property of unknown systems will undoubtedly rule out

many perfectly secure architectures. Furthermore (and related), whether the Bell-LaPadula

policy is in fact enforced in an implemented system does of course depend on a number of

unconsidered factors, including how access is to be prohibited in components and connec-

tors.

6.3.3 DARWIN

Darwin is, according to its authors, a declarative binding language (or configuration lan-

guage) with a precise operational semantics defined in π-calculus [Mag95], and providing

multiple views. On top of the basic structural view, a behavioral and a construction15 view

have been elaborated.

The structural view is based on components as first-class, typed and named entities, pro-

viding services to the environment using interfaces. Component services interact via bind-

ings, which are less than connectors, without types, names or semantics. The behavioral

view employs Finite State Processes16 (FSP) to specify the behavior of components. As

opposed to the construction view, no commitment is made as to the location of the im-

plementation, the calling direction (requires or provides), or the data type of the communi-

cation. FSP is a textual notation of Labeled Transition Systems (LTS). Components com-

municate with each other by synchronizing on shared actions and composite components

are constructed by parallel composition of LTS’s. The communication semantics is thus

similar to that used in CSP [Che94]. In the construction view, components are adorned

with typed service interfaces that are either provided or required. The main purpose of this

view is to allow code generation.

13 More concretely, component interface ports are augmented with a parameter for clearance level. Constraints,
relating calling and receiving clearance levels according to the policy, are stipulated.
14 The Simple Security Property and the *-Property.
15 In the construction/implementation/service view, components provide and require services at their interfaces
and implementations are defined for the primitive components.
16 A CSP-like notation [Mag97a].

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

80

Figure 7. Sample component specified in Darwin [Mag97a].

Analysis of the construction view is susceptible to type checking. Thus, the Darwin com-

piler checks the compatibility of bound required and provided service interfaces [Mag97b].

As mentioned, behavior of Darwin systems is specified in LTS; it is accordingly analyzed

using the Labeled Transition System Analyzer (LTSA). Specifically, certain safety17 and

liveliness18 properties may be analyzed in the considered systems19 by specifying the prop-

erties as automata (using LTS) and composing them with the system. Furthermore, exhaus-

tive state space exploration may detect deadlocks and error states. Finally, specific test cases

may be traced for manual evaluation.

6.3.4 METAH

Developed at Honeywell Technology Center, the MetaH architectural description language

is focused on automatic development as well as architectural analysis [Ves98]. To maximize

the analytic and code generating capabilities, the context in which the language and associ-

ated tool set may be employed is restricted. In particular, the preferred programming lan-

guage is Ada (although there is support also for C), and the set of accepted components

and connectors is pre-defined. Hard- and software entities are specified in the language,

and they are used for analysis as well as deployment. Components include subprograms,

processes, processors and devices, while ports and channels exemplify connectors. Entities

are associated with predefined semantics and may be detailed using (predefined) properties.

The above are entities in the structural view of MetaH; behavioral aspects maybe specified

using paths for sequencing behavior, events for triggering purposes, and a number of entity

attributes for other aspects (e.g. time between process dispatches, computation deadline,

etc.).

The basic software components are programmed in Ada (or C) and must abide by certain

rules for inclusion in the architecture20. The tool set consists of a syntactic analyzer, a

17 Something bad will never happen
18 Something good will eventually happen
19 As for Wright, analysis requires finite state models while the notation allows infinite ones (using parame-
ters/action subscripts).
20 E.g. for the scheduling to function, all processes code modules must contain a master loop yielding control to
the MetaH executive by calling the subroutine MetaH.Await_Dispatch.

component SENSOR {
portal command; cancel; ack; sight;

inst TX; RX;
bind

command –- TX.command;
cancel -- TX.cancel;
ack -- TX.ack;
sight -- RX.sight;

}

ARCHITECTURAL ANALYSIS

81

hardware/software binder, a code generator and application builder, and a number of ana-

lyzers.

Figure 8. Sample interface and implementation specified in MetaH [Ves98].

The analyses performed by the MetaH tool set include schedulability/performance, reliabil-

ity and safety/security. The schedulability analysis of MetaH is based on so called compute

paths and source time attributes. Paths define the sequencing behavior of entities. For in-

stance, a thread of execution may sequence through a set of subprogram components in a

process. The source time attributes specifies the execution time for the code in the code

module. Together with additional information, such as the time between dispatches of

processes and the execution time budget, the schedulability analysis calculates whether an

application can be feasibly scheduled.

The reliability analysis proposed for MetaH is based on error models, i.e., models of com-

ponent responses to errors and subsequent. Error models specify fault events and error

states. Together with error arrival rates, propagation rates, error paths, and a number of

other attributes, the error model constitutes the input to the reliability analysis. Results

typically allow specification of mission duration and solve for the probability of being in

each particular application error state [Ves98].

Finally, safety/security analysis is based on the assignment of safety levels and security

classes. Briefly, an entity with a lower safety level should, according to the MetaH policy,

not be allowed to affect the operation of any entities with higher safety levels. Similarly,

entities may only receive information from other entities if they have the proper security

classification. MetaH thus defines safety and security policies to which applications must

abide (c.f. the SADL security analysis). The analysis per se operates as a semantic check,

declaring whether an application is safe/secure or not.

6.3.5 RAPIDE

Rapide is by its inventors described as an event-based, concurrent and object-oriented

language for system architectures [Luc95a]. As such, it is a combination of five sub-

languages aimed at different concerns. The types language describes the component interfaces

as data types, the architecture language describes the flow of events between components, the

specification language specifies abstract constraints on component behavior, the executable

with type package DOMAIN_TYPES;
process P1 is

FROM_P2 : in port DOMAIN_TYPES.INTEGER_TYPE;
TO_P2 : out port DOMAIN_TYPES. INTEGER_TYPE;

end P1;

periodic process implementation P1.SIMPLE is
attributes

self’SourceTime := 100 us;
self’Period := 1 sec;
self’SourceFile := “p1.a”;

end P1.SIMPLE

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

82

language is used for module programming, and the pattern language describes patterns of

events.

Architectures in Rapide consist of first-class interfaces and second-class connections. De-

fining types, interfaces contain typed functions and actions, constraints and behavior, and

they are satisfied by (executable code) modules. Connections, belonging to the architecture

language, bind different interface functions (synchronous) or actions (asynchronous) to

each other.

Figure 9. Sample architecture specified in Rapide [Luc95a].

Behavioral aspects are specified using posets (partially ordered event sets), which are event

sequences with both a temporal and a causal ordering. This allows a differentiation be-

tween “a caused b” and “a occurred before b”.

Figure 10. Sample interface type specified in Rapide [Luc95a].

The type language allows type checking. In particular, code modules written in the execu-

tion language may be checked for conformance to interfaces using static semantic analysis.

Similarly, in an architecture, bound functions and actions may be type checked for com-

patibility in communication.

If modules are implemented in the executable language, run-time analysis (or simulation) is

possible. Simulation in combination with conformance analysis allows architectures to be

checked for interface and connector consistency as well as concurrency, resource and tim-

ing issues. Furthermore, conformance of modules to interfaces and architectural (commu-

nication) constraints may be checked. According to [Luc95a], code generation in C++,

Verilog and Ada constitute further research. Whether modules implemented in these lan-

guages will be checkable by the above means is not clear.

type Resource is interface
public action Receive(Msg: String);
extern action Results(Msg: String);

constraint
match

((?S in String) (Receive(?S) ->Results(?S)))^(*~);
end Resource;

architecture X/Open_Architecture()
return X/Open is

AP: Application;
RM: Transaction_Manager;
...

connect
AP.TX to TM.TX;
...

end architecture X/Open_Architecture;

ARCHITECTURAL ANALYSIS

83

The assessment of the extra-functional property atomicity is considered in [Luc95a]. Atomic-

ity is related to distributed transactions and means that after a transaction executes, either

all or none of its operations take effect. Similar to SADL’s treatment of security, Rapide’s

assessment of atomicity is performed by specifying a system type that guarantees the prop-

erty and checking the conformance of instances to the type. In [Luc95a], the X/Open

distributed transaction processing (DTP) standard is specified and, coarsely, if an architec-

ture conforms to the standard, then it preserves transaction atomicity (in the SADL case,

the Bell-LaPadula multi-level security policy is employed). This approach is, of course, in

many ways unsatisfactory, since it rather specifies a solution than a requirement. Many

good architectures would not pass the atomicity check of [Luc95a] or the security check of

[Mor95].

6.3.6 UNICON

UniCon, developed by the Carnegie-Mellon University, is primarily concerned with glue

generation for integration of existing components [Sha95b] [Sha96b] [DeL99] [Zel96]. The

view supported by the language is primarily the structural view, specifying components,

connectors and their relations. As most of the CMU ADLs, connectors as well as compo-

nents constitute first class entities, with types, names, etc. Connectors (defined by their

protocols) have roles and the component ports are called players. All entities are adored with

properties. In the current version, UniCon provides a fixed set of component types. The

semantics of these are to a certain extent implicit in the UniCon tool set implementation

[Abd96]. As such, the UniCon language is tightly linked to the tool set and underlying

platform.

Figure 11. Sample component specified in UniCon [Sha95b].

The (explicit) non-structural information is specified in properties of components, connec-

tors, players and roles. Properties are either required or optional. Required properties are

component Real_Time_System
interface is

type General
end interface

implementation is
uses client interface rtclient

PRIORITY(10)
ENTRYPOINT (CLIENT)
end client

...
establish RTM-realtime-sched with

client.application1 as load
client.application2 as load
server.services as load
ALGORITHM (rate_monotonic)
PROCESSOR (“TESTBED.XX:EDU”)
...
end RTM-real-time-sched

...
end Real_Time_System

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

84

those necessary for glue generation, while optional may include any information of interest

to for instance architectural analysis. The basic architectural analysis is thus primarily based

on the structural view, allowing e.g. type checking and (limited) compatibility checking.

However, any additional analyses may be performed if their required information is ex-

pressible in the form of properties. As such, two analyses are considered here. Firstly, real-

time schedulability analysis has been implemented according to a set of techniques devel-

oped at the Software Engineering Institute, called rate monotonic analysis (RMA) [Kle91].

Secondly, performance analysis has been implemented using queuing network theory

[Spi98].

Figure 12. Sample connector specified in UniCon [Sha95b].

Real-time schedulability analysis has been implemented for UniCon specifications accord-

ing to a set of techniques developed at the Software Engineering Institute, called rate

monotonic analysis (RMA). Input to the analysis includes execution times, periods, relative

priorities, and event tracks. The analysis predicts whether all processes will meet their dead-

lines or not. The analysis assumes pre-emptive, fixed-priority systems, and the UniCon tool

set is restricted to the Real-Time Mach operating system [Tok90]. The allowed UniCon

components are processes.

6.3.7 AESOP

Aesop [Gar94b] [Gar95b] is more a development environment than an architectural de-

scription language. However, developed by the CMU, Aesop shares several of the features

of Wright and other CMU languages (e.g. ACME). Basic entities are components with

ports, connectors with roles, configurations, and representations and bindings. In the Ae-

sop system, these generic entities are sub-typed to form specific architectural styles. The

Aesop system is currently not under development as focus of the CMU people has shifted

to ACME. Aesop does provide several analysis tools, including type checkers and sched-

ulability analyzers. Here, the presentation is restricted to the performance analysis of

Spitznagel et al. [Spi98].

Performance analysis, based on queuing network theory, of architectures described in the

Aesop ADL is proposed by Spitznagel and Garlan [Spi98]. Queuing network theory is

based on queues (or buffers) and service centers. [Spi98] presents an initial adaptation of

the theory to the context of software architecture. Input to the analysis is job service time

connector RTM-realtime-sched
protocol is

type RTScheduler
role load is load

end protocol

implementation is builtin
end implementation

end RTM-realtime-sched

ARCHITECTURAL ANALYSIS

85

(how long it takes for a component to complete a job) and time between job arrivals distri-

butions for each component. Output includes component utilization, queue length, latency,

throughput, and more. The presented example is only applied to the distributed message

passing style, which is similar to queuing networks; extension of the theory to other styles

constitutes further work. Furthermore, in the current state, there is no differentiation be-

tween types of messages (or jobs). Also, processes are considered as primitive components,

disallowing concurrent processing within one component.

6.3.8 WRIGHT

Wright [All94b] [All97] [All98] is concerned with the static structure of software compo-

nents as well as their interactions. In a Wright specification, a system consists of compo-

nents using connectors for communication. The behavior of the system entities is de-

scribed as processes and the interactions between entities thereby becomes the interactions

of communicating processes. Fortunately, a well-known formalism for describing commu-

nicating processes already exists, suitably named Communicating Sequential Processes

(CSP) [Hoa85]. CSP is thus incorporated in Wright for the description of behavior.

Figure 13. Sample component type specified in Wright [Eks02].

Components contain a computation and one or several ports (interfaces), while connectors

contain one or more roles and glue. Computations describe the component behavior, ports

describe the components externally visible behavior and assumptions about the environ-

ment, roles are connected to ports, and glue specifies the relations between roles. Compu-

tations, ports, roles and glue are all viewed as processes and specified in a slightly modified

CSP. A CSP process is a sequence of observed and initiated events and external or internal

choices. CSP also supports states.

Figure 14. Sample connector type specified in Wright [Eks02].

Wright specifications may be analyzed by performing a number of generic tests. These

include port/computation consistency, port/role compatibility, connector deadlock-

ConnectorConnectorConnectorConnector MethodInvocation(E : ℙ Σ)

 RoleRoleRoleRole Definer = DefineSetE

 RoleRoleRoleRole User = UseSetE

 GlueGlueGlueGlue = NameMatchDefiner, User

ComponentComponentComponentComponent Server-type

PortPortPortPort Client = DefineSetoa, ca

 PortPortPortPort Admin = DefineSetna, ra

 ComputationComputationComputationComputation = StateNoAccount

 wherewherewherewhere StateNoAccount = (DSSTna, AnAccount DUSTra DUSToa DUSTca) §

 StateAnAccount = (DUSTna DSSTra, NoAccount DSSToa, OpAccount DUSTca) §

 StateOpAccount = (DUSTna DUSTra DUSToa DSSTca, AnAccount) §

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

86

freedom21, initiator commits, single initiator. Briefly, a port is consistent with a computa-

tion if it allows the computation to initiate the events that it might want to initiate. A com-

putation is consistent with a port if it always is prepared to observe those events that the

port may observe. In other words, port/computation consistency ensures that the computation

won’t do anything that the port won’t allow, and that the port won’t allow anything from

the environment that the computation can’t do. Role/port compatibility is similar to the

port/computation consistency in that it ensures that the role only initiates those events that

the port can accept and that the port only initiates those events that the role can accept.

Connector-deadlock-freedom guarantees that the roles always will agree on the next event. Initia-

tor commits ensures that a process that initiates an event does not simultaneously allow the

environment to affect its execution. Single initiator, finally, guarantees that an event in a

connector is initiated by a single role (all other roles engaged in the event need to be ob-

servers).

6.3.9 ABD-ALLAH AND GACEK

Although not viewed as an architectural description language in its own right, the Z-based

[Spi89] formalism of Abd-Allah [Abd96] and Gacek [Gac98] is used to specify and analyze

architectures. Architectures according to Abd-Allah and Gacek are composed of control

and data components, control and data connectors, component ports, triggers, objects and

systems. These base entities are further specified by a set of attributes and constraints,

including their data types, network nodes, and resource usage, arguments, buffer sizes,

platforms, class belongings, and a number of constraints.

The work is primarily concerned with detecting “architectural mismatches”. Architectural

mismatch is defined as “logical inconsistencies between constraints of different architec-

tures being composed,” which (coarsely interpreted) are the integration problems that can

be detected by means of architectural style analysis. At the basis of the mismatch detection

scheme lays the concepts of architectural styles. An architectural style defines a family of

systems based on a common structural organization [Sha96a]. Typical architectural styles

are for instance implicit invocation, pipes-and-filters, black-board, interpreter, main-

program-and-subroutine, and layered architectural styles [Bas98]. Abd-Allah and Gacek

attempt to characterize some common architectural styles using what they call conceptual

features. Conceptual features are considered as more fundamental constructs than architec-

tural styles and are exemplified by the following list: concurrency, distribution, encapsula-

tion, layering, triggering capability, and preemption.

21 The definition of deadlock in [All97] and [Hoa85] is “when participants in an interaction cannot agree on the
next appropriate event” or differently, a “process is said to deadlock when it may refuse to participate in all
events, but has not yet terminated successfully.” This is broader than the traditional definition of deadlock as a
state where actors sharing the same resources are mutually preventing each other’s resource access. The deadlock
tests suggested by [All97] include port/computation consistency and port/role compatibility.

ARCHITECTURAL ANALYSIS

87

Before introducing the actual architecture mismatch detection scheme, it is necessary to

present the different types of component interactions that are treated by the authors. Ac-

cording to Abd-Allah, components and systems may have bridging connectors of the following

kinds: call, spawn, data connector, shared data, triggered call, triggered spawn, triggered

data transfer, shared resources, statically declare, dynamically declare, import, export. Of

these, Gacek and Abd-Allah are only concerned with call, spawn, data connector, shared data,

trigger, and shared resources.

Architectural mismatch can arise when two systems with certain conceptual features are

joined with a specific bridging connector. For instance, two concurrent (conceptual feature)

systems share data (bridging connector), with potential synchronization problems. Or, a

trigger (bridging connector) refers to a system which forbids explicit or implicit data connectors

(conceptual feature), hence triggering may never occur. The list of architectural mismatches

detected by this scheme consists of 46 possible errors [Gac98].

6.4 DEDUCTION-BASED INTEGRABILITY ANALYSIS

In this section, the above described deduction-based architectural analysis approaches are

considered explicitly in the light of integrability. In practice, the approaches are evaluated

for their capabilities of predicting potential integration problems. The integration issues

elicited in Chapter 3 are employed as a base for the evaluation. The main question consid-

ered in Chapter 3 for each technology was whether the platform/technology or the devel-

oper was responsible for the issue, or if it was managed jointly. In this evaluation, we ask

whether the reviewed architectural analysis methods are capable of detecting if the issue is

managed or not in a given architectural specification. As an example, a data representation

issue managed by an application integration adapter is component operation signature

transformation, e.g. by renaming a procedure call into the expected name. If given an archi-

tectural description of a component requesting an operation with one name and another

providing an operation with another in the C2SADEL language, the associated type checking

mechanism (as implemented in DRADEL [Med99]) will generate a warning. The results of

the evaluation are compiled in Table 5 and Table 6 at the end of this section.

6.4.1 DATA REPRESENTATION

Data representation refers to syntactic issues. In the context of integration analysis, this

particularly concerns data representation compatibility. A complete analysis of the data

representation issue captures all syntax incompatibilities between components to be inte-

grated. Data representation is typically an issue on several layers of abstraction. In the (re-

mote) procedure call, number representation may be big- or little-endian. On top of this, a

procedure call may require that variables are separated by commas and enclosed within

parentheses. On the next level, the developer may specify that the parameter age should

come before the parameter beauty. If the communication takes place over a network, fur-

ther data representation issues are introduced in the network protocol. All of these repre-

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

88

sentations must match between procedure caller and definer. Furthermore, higher-level

data representations need to be considered, including data records and schemas. In most

examples, only one level of data representation (e.g. procedure signatures) is specified,

whereas the underlying levels (e.g. network protocol) are left unconsidered.

Several architectural description languages address data representation issues by typing and

type checking data. Typically, the type of the data of ports, roles and connectors may be

specified and checked. C2Sadel specifications, for instance, include typed provided and

requested procedure signatures with typed parameters and return variables which, when

bound, may be checked for type compatibility. Normally, the types are simply defined by

tags (e.g. “integer” or “char”). Code generating environments, such as the MetaH toolset,

require the specification of types in the underlying programming languages, thus relying on

their typing facilities for allowing the definition of complex data structures. Excluding

associated programming languages, the definition and checking of complex data structures

is not possible.

Languages tightly linked to a development environment may allow only certain types of

interactions, thereby limiting the possible data exchange formats. For instance, C2Sadel is

based on a specific architectural style, and therefore limits these exchange options (as styles

are intended to do). Some languages, such as Wright, do not type data. Of course, in these

languages, data representation compatibility cannot be checked.

6.4.2 DATA SEMANTICS

Data semantics refers to the meaning of data. If the data semantics issue is not managed,

the data may be readable, but it will be interpreted incorrectly. Data semantics compatibility

checking should thus detect whether the data will be interpreted in the same manner in the

both the providing and receiving ends. This issue cannot be managed completely, as the

possibilities for misunderstandings are endless. Data typing does however provide a rudi-

mentary support. By defining the types of data allowed in different operations, the risks for

misinterpretations are arguably reduced. Meta-data (c.f. XML), describing and relating data

items to each other, provides further support.

As mentioned, in many languages, communicated data is typed. No languages do, however,

provide constructs for more extensive meta-data specification or compatibility checking.

Some languages (e.g. Rapide) allow the specification of data manipulation (primarily rout-

ing). While this does allow certain reasoning about a component’s or system‘s interpreta-

tion of the data, it is difficult to imagine automation of this kind of analysis.

In general, data compatibility is not considered the primary domain of software architec-

ture, so it is not remarkable that the subject is only superficially treated. However, in this

text, the concern becomes relevant since we are interested in integration issues.

ARCHITECTURAL ANALYSIS

89

6.4.3 CONNECTOR SEMANTICS

Connector semantics refers to the behavior of connectors, i.e., synchronization and se-

quencing of interactions between components. Typical results of failure to manage connec-

tor semantics include deadlock and starvation. Connector semantics are, as data representa-

tion issues, defined on several layers. For instance, in a remote procedure call, the platform

ensures that the server responds to the client. The remote call may, however, on a lower

level be communicated with TCP/IP, which in itself contains and manages a number of

synchronization issues between peers. On top of the remote procedure call, the developers

may have implemented additional sequencing or synchronization rules. Analyses of con-

nector semantics should detect sequence incompatibilities between ports (and in applicable

cases between ports and roles, and between roles within connectors) as well as system-level

effects such as deadlock.

There is an often-spoken-of difference between those languages that support explicit con-

nectors and those that do not. This distinction does, however, not seem to influence the

types of connector-semantic analyses possible. Detailed modeling of concurrent processes

is supported by several languages (e.g. Darwin, Rapide, Wright) and well-known formalisms

are available (e.g. process algebras and finite state automata), therefore many common

issues related to timing and synchronization may be analyzed, including safety properties

(such as deadlock-freedom), liveliness properties (such as starvation- and livelock-

freedom), and architecture-specific constraints. C2Sadel employs pre- and postconditions,

which also may be employed to specify connector semantics [Med99]. For these languages,

matching of processes according to different systems allows for more or less relaxed com-

patibility checks.

Surprisingly often, the level of abstraction in the behavioral descriptions is low. The em-

ployed abstractions are completely based on existing abstractions (e.g. the call sequence of

a remote procedure call, hiding the underlying sequencing in e.g. the network protocol),

which are typically on the programming language level.

6.4.4 COMPONENT SEMANTICS

Component semantics refer to the behavior of components. If the component semantics

issue is not managed, a component invoked by another will not behave as expected by the

invoker, even though the invocation was syntactically impeccable. There is a close relation-

ship between component semantics and connector semantics, since the external behavior

of components is manifested in its interfaces, which in turn are bound to connectors. Con-

nector semantics, however, is not concerned with the internal workings of components, or

potential side-effects (when the component influences the environment, e.g. by printing to

a screen, launching a rocket, etc.). These internal states or side-effects may however be

primary criteria for integration, (as, presumably, is the case for a call to the

“launch_rocket_procedure”).

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

90

Several of the reviewed ADLs consider component semantics. C2Sadel matches pre- and

postconditions of requested and provided services. This approach allows full component

semantic analysis, since the requestor describes the results it is seeking. Wright, Rapide and

Darwin check that process algebra component port specifications match. This approach

thus concerns the part of component semantics that is in common with the connector

semantics, and ensures that those aspects of a components behavior that are visible in the

interface are the requested ones. Internal states and other interfaces22 are, However, also

represented in different manners in these languages and could be used as a basis for con-

nection constraints.

6.4.5 ERROR CONTROL

Error control refers to the mitigation of undesired behavior. If error control is not imple-

mented, everything will work fine under optimal circumstances, but once a disturbance is

introduced, the system execution is in danger. Architectural analysis of errors is normally

performed as reliability analysis. The purpose of the analysis is to predict how the system

will react to some set of (expected) errors. Since many things in life may go wrong in many

ways, error control cannot be completely managed. Also, error control and reliability are

closely related.

Darwin and MetaH provide specific constructs for error control. Darwin does this by pro-

viding special error states, while MetaH defines error models, describing error states, error

state transitions and error propagation. MetaH further allows for the analysis of the error

model by introduction of fault event probability distributions (cf. Reliability below). In

other languages providing behavioral modeling, such as Wright, error control is not sub-

jected to special treatment, but error states may be defined by the user.

6.4.6 LOCATION

Location refers to the identification, location, addressing and routing of communicating

parties. If the location issue is not managed, a message sent by one party might reach some

recipient, but not the intended. Analysis of location issues should detect whether there is a

recipient at all, and if so, whether this recipient is the intended. In the case of routing, the

analysis would need to consider several consecutive senders and recipients.

A major benefit of software architecture is the explicit consideration of component rela-

tions. As such, architectural descriptions highlight location issues. It is easy to detect if a

component port is bound or not to a connector. Component semantic analysis may further

aid in determining whether the communicating party is the intended one. However, a prob-

lem of several languages is their static nature. Component semantics are specified and

checked in advance, but if a component run-time attempts to find and interact with a new

22 It is an issue of system boundaries whether a (physical) rocket launch should be considered an internal compo-
nent state, a side-effect, or an event in the components “rocket” interface.

ARCHITECTURAL ANALYSIS

91

component (as is the purpose of web services), this cannot always be described. Darwin,

Rapide, and Wright (in a revised version, cf. [All98]) supports constrained dynamism,

which briefly means that all potential interactions must be known in advance. C2Sadel

supports unconstrained dynamism.

Furthermore, none of the languages consider addressing issues. In dynamic systems, com-

ponents may find addresses to other components via directory services, they employ bro-

kers or routers for relaying, etc. Possibly, these solutions could be considered as architec-

tural styles, and much in the way that security properties are analyzed in SADL (below),

these location issues might be specifically modeled and analyzed for different solutions.

This has, however, not been done. Finally, none of the languages explicitly consider the

availability of communicating parties.

6.4.7 EXTRA-FUCTIONAL PROPERTIES

Extra-functional properties, or quality attributes, refer to an array of “ilities” that often

need explicit consideration in software integration projects. These include security, data

consistency, performance, reliability, and more. Extra-functional properties are in the prac-

tical case often tightly linked to functionality. For instance, reliability is enhanced with

mechanisms for error control and performance is increased with load balancing and con-

nection pooling. The set considered herein is determined by the individual properties

prominence in the reviewed literature.

PERFORMANCE

Performance analysis, based on queuing network theory, of architectures described in the

Aesop ADL is proposed by Spitznagel and Garlan [Spi98]. Queuing network theory is

based on queues (or buffers) and service centers. Spitznagel and Garlan present an initial

adaptation of the theory to the context of software architecture. Input to the analysis is job

service time (how long it takes for a component to complete a job) and time between job

arrivals distributions for each component. Output includes component utilization, queue

length, latency, throughput, and more. The presented example is only applied to the dis-

tributed message passing style, which is similar in structure to queuing networks; extension

of the theory to other styles constitutes further work. Furthermore, in the current state,

there is no differentiation between types of messages or types of jobs. A similar approach

to performance analysis using queuing network theory is presented in [Aqu01].

Closely related to performance is real-time schedulability analysis, which has been imple-

mented for UniCon specifications according to a set of techniques developed at the Soft-

ware Engineering Institute, called rate monotonic analysis (RMA) [Kle91]. Input to the

analysis includes execution times, periods, relative priorities, and event tracks. The analysis

predicts whether all processes will meet specified deadlines or not. The analysis assumes

pre-emptive, fixed-priority systems, and the UniCon tool set is restricted to the Real-Time

Mach operating system [Tok90]. The allowed UniCon components are processes.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

92

MetaH also features a schedulability analysis, based on so-called compute paths and source

time attributes. Paths define the sequencing behavior of entities. For instance, a thread of

execution may sequence through a set of subprogram components in a process. The source

time attributes specifies the execution time for the code in the code module. Together with

additional information, such as the time between dispatches of processes and the execution

time budget, the schedulability analysis calculates whether an application can be feasibly

scheduled.

CONCURRENCY ISSUES

Several languages contain sub-languages for describing behavior. Darwin uses labeled tran-

sition systems; Rapide and Wright employ process algebras. These formalisms are not new,

and have been explored in depth prior to the dawn of software architecture (cf. e.g.

[Hoa85]). Properties such as safety (including deadlock-freedom) and liveliness (e.g. live-

lock and starvation) are typically possible to assess for finite state models. Rapide also

incorporates clock time as an explicit parameter, and supports simulation, to allow analysis

of timing issues.

RELIABILITY

The reliability analysis proposed for MetaH is based on error models, i.e., models of com-

ponent responses to errors and subsequent state transitions. Error models specify fault

events and error states. Together with probability distributions of the error arrival rates,

propagation rates, error paths, and a number of other attributes, the error model consti-

tutes the input to the reliability analysis. Results typically allow specification of mission

duration and solve for the probability of being in each particular application error state

[Ves98].

SECURITY

The security analysis of SADL performed by proving that the Bell-LaPadula [Mor97a]

multilevel security (MLS) policy is not violated. Briefly, the policy allows read and write

access only to subjects with the proper clearance level for a specific resource; all other data

flows in the architecture are forbidden. The analysis is fundamentally different from the

previously described. It is based on the idea of matching specific security mechanisms (i.e.

the Bell-LaPadula policy) to the general security property, thus decomposing the main

property into simpler and verifiable architectural properties. In this specific example,

component interface ports are augmented with a parameter signifying clearance level.

Constraints, relating calling and receiving clearance levels according to the policy, are then

stipulated and their conformance is subsequently proven [Sta01]. The Bell-LaPadula policy

is presented as two verifiable properties23.

23 The Simple Security Property and the *-Property.

ARCHITECTURAL ANALYSIS

93

An important limitation of this work is that the Bell-LaPadula policy is not a definition of

security, but an example. Thus, an implementation of the Bell-LaPadula policy may be

deemed secure, but employing solely Bell-LaPadula as evaluation criterion for the security

property of unknown systems will undoubtedly rule out many perfectly secure architec-

tures.

Furthermore (and related), whether the Bell-LaPadula policy is in fact enforced in an im-

plemented system does of course depend on a number of unconsidered factors, including

how access is to be prohibited in components and connectors.

ATOMICITY

The assessment of the extra-functional property atomicity with Rapide is considered in

[Luc95a]. Atomicity is related to distributed transactions and means that after a transaction

executes, either all or none of its operations take effect. Similar to SADL’s treatment of

security, Rapide’s assessment of atomicity is performed by specifying a system type that

guarantees the property and checking the conformance of instances to the type. In

[Luc95a], the X/Open distributed transaction processing (DTP) standard is specified and,

coarsely, if an architecture conforms to the standard, then it preserves transaction atomicity

(in the SADL case, the Bell-LaPadula multi-level security policy is employed). This ap-

proach is, of course, in many ways unsatisfactory, since it rather specifies a solution than a

requirement. Many good architectures would not pass the atomicity check of [Luc95a] or

the security check of [Mor95].

A compilation of the above is presented in Table 5 and Table 6.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

94

 C2 Wright SADL Darwin MetaH Rapide UniCon Abd-Allah

& Gacek

Aesop

Data

representation

Communicated

data is typed.

Employs type

checking,

matching

providing and

requesting

component

names,

operation

names, and

parameter

names and

types. Limits

ports to

procedure

calls. No

possibility to

specify or

check data

structures

such as

schemas.

Passed data

is not typed.

No possibility

to specify or

check data

structures

such as

schemas.

Port

parameters

(passed

data) also

have data

types. Allows

port type

compatibility

checking.

Seems to

limit ports to

procedure

calls? No

possibility to

specify or

check data

structures.

Service

interface

data type is

specified.

Allows

service

(data) type

compatibility

checking.

No

possibility to

specify or

check data

structures.

Ports are

typed in

underlying

programming

language

(Ada). As

such, data

structures

may be

declared as

e.g. records.

Functions

and actions

are typed.

Data either

as function

or action

parameters.

No

possibility to

specify or

check data

structures.

Some players

and roles

specify

allowed data

type in the

form of

arguments.

Some do not.

No possibility

to specify or

check data

structures.

Ports, data

components

and data

connectors

specify

allowed

data types.

These could

be, but are

not,

checked.

Data

structures

could be,

but are not,

specified or

checked.

Style-specific.

Data

semantics

Variables and

parameters

have

predefined

types.

Developer is

responsible for

additional

semantics.

No data

types. To a

small extent,

the transport

of data may

implicitly be

specified in

component

semantics.

Port and

connector

parameters

have data

types.

Component

semantics

and system

constraints

may implicitly

further define

data

semantics

(e.g. security

clearance),

and analyzed

for

conformance.

Service

interfaces

have data

types.

Component

semantics

may

implicitly

define data

semantics.

Ports are

typed in

underlying

programming

language

(Ada). Data

does not

appear in

component

semantics

(except in

programming

code).

Function

and action

parameters

are typed.

Data

semantics is

further

implicitly

defined by

component

(interface)

behavior

and

constraints.

Players and

roles specify

allowed data

types.

Ports, data

components

and data

connectors

specify

allowed

data types.

Style-specific.

Connector

semantics

To small

extent implicit

in component

semantics (pre

and postcondi-

tions could be

employed to

specify

operation

invocation

sequencing.

Ports and

connectors

have

operational

semantics.

Employs

compatibility

checks on

port, role and

glue

specifications,

Connectors

have no

semantics

No

connectors,

but

interaction

semantics is

defined

using

parallel

composition

of LTS’s

with shared

actions.

Not implicit

in compo-

nent

semantics.

Only present

in underlying

programming

language

specification

of compo-

nents.

Implicit in

interface

definitions.

Interfaces

are

compatibility

checked

both

statically

and run-

time.

Connectors,

ports and

roles have

some

(sometimes

implicit)

predefined

semantics.

Any additional

may be added

as properties.

Predefined

composition

rules for the

available

entities that

may be

checked.

No

behavioral.

Style and

type

restrictions.

Style-specific

(CSP

suggested for

pipe-and-

filter).

Component

semantics

Employs type

checking,

matching pre-

and postcondi-

tions of

operation

specifications.

CSP

component

port

specification

must match

connector

role

specification.

Specified in

logic.

Specified in

LTS or π-

calculus.

Paths,

events and

several

predefined

properties.

Specified

using

posets as

well as

execution

language.

Only as

property list

(possibly

uninterpreted).

Specifically for

schedulability

analysis.

No

behavioral.

Style and

type

restrictions.

Style-specific

and implicitly

specified in

corresponding

Aesop class.

Table 5. Integration issues addressed by reviewed analyses.

ARCHITECTURAL ANALYSIS

95

 C2 Wright SADL Darwin MetaH Rapide UniCon Abd-Allah

& Gacek

Aesop

Error control No explicit

provisions.

No explicit

provisions.

No explicit

provisions.

Explicit error

states

allowing

state

exploration

for checking.

Explicit

modeling of

error states

and error

propagation.

No explicit

provisions.

No explicit

provisions.

No explicit

provisions.

No explicit

provisions.

Location “Unanticipated”

dynamism.

Checks style

conformance

(typically

includes

correct

component-

connector

attachments)

Constrained

dynamism.

Allows style

conformance

checks

(typically

includes

correct

component-

connector

attachments)

Constrained

dynamism.

Checks

correct

provider-

requester

interface

bindings.

A Darwin

specification

declares

how

components

are bound,

and these

bindings are

automatically

generated

into the

code.

Provisions

for

constrained

dynamic

architectures

(all runtime

changes

must be

known a

priori).

No dynamism. Constrained

dynamic

architectures

(all runtime

changes

must be

known a

priori).

No

dynamism.

No

dynamism.

Checks style

conformance.

No

dynamism.

Extra-

functional

properties

- Deadlock. Certain

support for

security

analysis.

Potential

(limited)

future

support for

intrusion

tolerance.

Safety and

liveliness by

including

property

automata.

Deadlock

and error

states by

exhaustive

state space

exploration.

Reliability

analysis,

safety/security

analysis, and

schedulability

analysis.

- Schedulability

analysis.

Architectural

mismatch

detection.

Performance

analysis.

Critical

assumptions

Connectors

are (specifiable

as) procedure

calls. Detail is

available.

Low-level

detail is

available.

Complete

formal

specifications

of (COTS)

components

(detail is

available).

Tightly

bound to

development

environment.

Low-level

detail is

available.

Tightly linked

to program-

ming in Ada

or C. Full

access to

programming

code. Low-

level detail is

available.

Module

specifications

in execution

language for

several

analyses.

Low-level

detail is

available.

RT Mach

operating

system, code

generation

according to

UniCon

system. Only

entities as

coded by

system.

Detail is

available.

Systems are

reducible to

conceptual

features.

Connections

are

reducible to

connectors.

Certain

detail is

available.

Style-

specific.

Table 6. Integration issues addressed by reviewed analyses (continued).

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

96

6.5 APPLICABILITY TO ENTERPRISE SOFTWARE SYSTEMS

Obviously, some issues are analyzable using existing formalisms and methods, while others

are not. This section summarizes the findings and considers them in the light of enterprise

software systems. In particular, the section considers 1) large components, 2) unmodifiable

black-box components, and 3) heterogeneous (independently developed) components and

connectors.

The main method for analysis of data representation issues is by type checking. The checks

rely on either the assumption of a common understanding of data types between interact-

ing components, or checks of explicit type specifications. The reviewed approaches rely on

the assumption of a common understanding, which may be viable for small systems di-

rectly generated from the architectural specification. In the context of enterprise software

systems, where components typically are independently developed, it is, however, unlikely

that this assumption is valid. Therefore, explicit type specifications checks seem necessary.

However, due to the size and black-box nature of an enterprise software system, the in-

formation-gathering task associated with such an undertaking is liable to become extremely

cumbersome. This presumably inherent trade-off problem between analysis reliability and

effort makes the type checking approach to the data representation issue, which in princi-

ple is workable, of limited applicability in practice.

The data semantic issue is, broadly speaking, not supported by the reviewed approaches. As

mentioned, these kinds of analyses may, for instance, be undertaken based on meta-data

models. In the reviewed work, only the semantics implicit in the data representation is

checkable. In enterprise software systems, these issues are often of great importance due to

the heterogeneity of components. Different system developers as well as system users often

define data in slightly different ways, making it important to understand the intended se-

mantics of the different entities. A situation where these problems are clearly manifested is

the integration of databases from different vendors and users.

The connector semantics issue is perhaps the most considered issue in the reviewed approaches

(e.g. Rapide, Darwin and Wright). In principle, these approaches are appropriate for analyz-

ing connector semantics. However, with current levels of abstraction (programming lan-

guage levels) much detailed information is required for each component and connector.

Moreover, for independently specified components and connectors, an important task is

the mapping between port and role processes. It is probable that the communication event

a in a component port is called b in its associated connector role. These symbols, denoting

the same event, need to be bound to each other. Furthermore, as with data representation,

there is often a layering of communication protocols, and a trade-off exists between the

depth of the analyzed interaction and the effort spent on information gathering. In com-

parison to the data representation issue, however, interaction protocols are more standard-

ARCHITECTURAL ANALYSIS

97

ized, thereby in principle allowing better reuse of their formalizations (although there is

little evidence of such reuse in current practice).

The component semantics issue is considered by several approaches. In particular, C2Sadel

employs pre- and postcondition matching between requesting and providing components.

In addition to the information required for the connector semantics, internal states and side

effects also need to be specified and understood by both components. As for connector

semantics, the analysis effort grows rapidly with the complexity of the system (in particular

system size, heterogeneity, and information unreliability).

The error control issue is explicitly considered by two of the reviewed approaches and is

implicitly allowed by several others. Developing error models is not significantly different

from developing component or connector semantics models. It is possible in principle, but

cumbersome in practice.

The location issue is not explicitly considered by the reviewed approaches. Firstly, most archi-

tecture description languages are static to their nature. For interesting location concerns to

be considered, dynamic architectures are necessary. Although several languages support a

constrained type of dynamism, only C2Sadel allows unanticipated dynamism. For these

languages, no location analyses have been attempted, although technology-specific ones are

imaginable. In the context of enterprise software systems, the location issue may be the one

least affected by the size of the components, since their data or behavioral complexities are

unrelated to the concern.

Extra-functional properties are analyzable to a varying degree. The reviewed literature consid-

ers analyses of performance (including schedulability), concurrency issues (e.g. safety and

liveliness properties), reliability, security, and atomicity. Firstly, many important properties

are not considered, including data and functional consistency, modifiability, isolation, and

durability. Secondly, several of the analyzed properties are considered in a restricted con-

text: the security analysis is only applicable to Bell-LaPadula-compliant systems, the atomic-

ity analysis is only applicable to X/Open-compliant systems, the schedulability analyses are

only applicable to real-time, fixed priority, pre-emptive platforms. Nearly all of the consid-

ered property analyses require models of a detail that may be hard to attain in the context

of enterprise software systems. Finally, many of the analyses rely on assumptions that

hardly are fulfilled by the enterprise software system, e.g. real-time, preemptive scheduling.

As an endnote, one of the most difficult problems when applying deduction-based archi-

tectural analysis methods to enterprise systems is to find a reasonable level of abstraction.

Even for traditional systems, this is a trade-off between viability of the assumptions on

which the abstractions are based and effort spent in information gathering (as discussed

elsewhere in this thesis, few assumptions are unquestionable in an artificial world). In the

case of enterprise software systems, these difficulties increase. Many assumptions of ho-

mogeneity, reasonable in the context of traditional systems, are not credible in enterprise

software systems, due to the independence of component and connector development.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

98

Furthermore, components are comparatively large. If the level of detail even comes close

to those considered in the reviewed approaches, the amount of information and work

necessary for a reasonable analysis will undoubtedly require collaboration between devel-

opers and users, agreements on specification standards, and completely new processes for

software management.

99

Chapter 7

Summaries of Included Papers

7 SUMMARIES OF INCLUDED PAPERS

PAPER A:

IT Infrastructure Architectures for Electric Utilities:

A Comparative Analysis of Description Techniques

Jonas Andersson and Pontus Johnson

In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000.

This paper was our first explicit attempt to apply architectural concepts to enterprise soft-

ware system concerns. The paper proposes explicit modeling of enterprise software archi-

tectures employing established modeling notations as an approach for the management of

the enterprise software system. In an exploratory case study of four companies in the

Swedish electricity market, three problematic characteristics resulting from the integration

of software systems in electric utilities are identified: overlapping data, overlapping func-

tionality, and interfaces and connectors.

The suitability of a number of common modeling notations, including class diagrams, en-

tity diagrams, entity-relationship diagrams, Jackson system development and deployment

diagrams are evaluated for modeling the three problem areas. The results of the evaluation

indicate that several notations may be employed for modeling enterprise software systems,

but they lack explicit consideration of certain aspects highlighted in the article. For in-

stance, it is noted that explicit modeling of connectors is desirable but poorly supported by

the notations. Additionally, the paper stresses the need for an explicit software design

process in software-owning organizations such as electric utilities. A section on the enter-

prise software architecture management process is also included in order to set the context.

Summarizing, the paper empirically identifies three architectural problem areas, and pro-

poses and evaluates modeling notations as a means for managing the problems.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

100

PAPER B:

Extending Attribute-based Architectural Analysis to

Enterprise Software Systems

Jonas Andersson and Pontus Johnson

In Proceedings of the Third Australasian Workshop on Software and Systems Architecture, 2000.

This paper explores the applicability of traditional architectural analysis processes on enter-

prise software systems. The central part of the paper elaborates on the issues that distin-

guish analysis of enterprise software systems from traditional software systems and de-

scribes a proposed modified analysis process in generic terms. The modified process is

subsequently presented in the context of an acquisition project in a mid-sized Swedish

electric utility. Enterprise software systems are distinguished from traditional systems in

several areas. These differences are also considered in Paper D.

The enterprise software architecture adaptations of the traditional analysis process are

summarized in seven points: 1) harsher constraints on the design space caused by legacy

systems, usage of COTS components, and limited availability and modifiability of compo-

nents necessitates a higher focus on the constraints and context description, 2) heterogeneity of

components and middleware makes integration a prime design issue during architectural

representation, 3) limited availability and modifiability of COTS components results in dis-

crete design alternatives during architectural representation, 4) higher architectural abstractions

containing less details may result in higher uncertainty of analysis results, 5) system proper-

ties not encountered in traditional software systems may require new attribute analyses, such

as identification of overlapping data and functionality, 6) dependence on software vendor

organizations shifts some of the focus from technological to organizational and contractual

issues, that to some extent also may be subject to architectural analysis, considering issues

such as upgradeability, modifiability of components, etc., 7) complex components with an

abundance of interfaces results in high abstractions and high selectivity in the information

contained in architectural descriptions throughout the process.

SUMMARIES OF INCLUDED PAPERS

101

PAPER C:

Exploring Architectural Analysis Credibility

from a Developer Perspective

Mathias Ekstedt and Pontus Johnson

In Proceedings of the Fourth Australasian Workshop on Software and Systems Architecture, 2002.

This paper explores the credibility of deduction-based analysis methods when assumptions

of correct inter-specification transformations are relaxed. Recognizing the limited success

of formal methods for program transformation and architectural refinement, the article

considers how informally devised transformations between specification languages may

invalidate the results of architectural analyses. It is assumed that the use of deduction-based

analysis methods may be justified also in cases where the relation between the architectural

description, the underlying specifications and the implemented system is not formally

proven. However, when this relation is not ensured, transformations between specifica-

tions may become subject to distortions. The paper considers a number of transformation

distortions, their effects, and explores to what extent existing development tools, such as

compilers and analyzers, may be employed to validate transformations.

An included example is based on a simple system specified in UML and is composed of

several steps. Firstly, the usefulness of architectural analysis with informally devised trans-

formations is demonstrated by a transformation of the UML specification to the architec-

ture description language Wright and a subsequent analysis. Secondly, the employed infor-

mal transformation is demonstrated applicable only to a limited set of specifications.

Thirdly, it is argued that the set of specifications for which an informal transformation is

applicable is generally unknown. Fourthly, the propagation of transformation distortions is

exemplified by a transformation to C++. Fifthly, transformation distortions introduced by

black-box components are exemplified.

Consequences of the findings include a need for harmonization of software abstractions

used in the same development project, including component technologies, programming

languages and modeling languages. Component certification is suggested as a means for

increasing the trust in the architectural specification, and thereby the architectural analysis.

Another suggested means for increasing the trustworthiness of the architectural analysis is

certification or other kinds of validation of automated transformers, such as code genera-

tors or compilers. Finally, assessment of the input data sensitivity of architectural analysis

methods is suggested as a way to increase the credibility of the analysis results.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

102

PAPER D:

Architectural Integration Styles for Large-Scale

Enterprise Software Systems

Jonas Andersson and Pontus Johnson

In Proceedings of the Fifth IEEE International Enterprise Distributed Object Computing Conference,

2001.

This paper considers induction-based analysis and design using architectural integration

styles, i.e., architectural styles describing software structures of integration solutions for

enterprise software systems. The article proposes an approach for selection of integration

solutions based on these integration styles.

Enterprise software systems are distinguished from systems traditionally considered by the

architecture community by seven points: 1) components are large-grained, 2) the supply of

packaged components is limited, 3) the legacy architecture constitutes the starting point of

the system development effort, 4) the enterprise software system may contain both data

and functional redundancy, 5) components are not modifiable, 6) components are hetero-

geneous, 7) connectors are heterogeneous. These differences constitute a base for the use

of architectural styles on the enterprise level.

A number of styles are presented, including the mediator styles, the gateway style, the desk-

top integration style, the message router style, the database federation style, the point-to-

point style, and the adapter style. The styles are defined, the quality attributes they are con-

sidered to impact are described, and requirements on the involved components are pre-

sented.

An example of the use of architectural integration styles as a means for designing integra-

tion solution selection is presented, based on data gathered in a participatory case study in a

mid-sized electricity retailer.

SUMMARIES OF INCLUDED PAPERS

103

RELATED PUBLICATIONS NOT INCLUDED IN THE THESIS

ANDERSSON, J., P. JOHNSON, “Procurement of Integrated IT Systems for the Deregulated

Electric Utility, ” Proceedings of CIRED’99, 1999.

JOHNSON, P., “Control and Information System Procurement at Vattenfall.” In JOHNSON,

P, SUNDSTRÖM, M., Deregulation of the Electricity Market: Effects on Inter-Firm Relations,

Arbetsnotat 8, Program Energisystem, Linköping University, 1999.

BÄCKLUND, M., M. ERIKSSON, P. JOHNSON, M. SILWER, “New markets, new business

opportunities: Alternative scenarios and strategies for providing services based on

communication,” Proceedings of Distribution Automation and Demand Side Management

(DA/DSM) Europe, 1998.

ANDERSSON, J., P. JOHNSON, Fallstudie av projekt Blondie: En funktionell upphandling av ett

integrerat system för nät- och balansavräkning, Internal Report, Department of Industrial

Information and Control Systems, Royal Institute of Technology (KTH), 1998.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

104

105

Chapter 8

Conclusions

8 CONCLUSIONS

The primary raison d’être of software architecture as a discipline is its ambition to address

issues of large-scale software system structures. Software architecture is concerned with the

modeling of these systems and, of particular importance to the present text, analysis of

their properties, such as reliability, security and modifiability. For several types of large-

scale systems, the discipline has had considerable academic and industrial success; however,

there is a broad category of systems that to a large extent have been neglected, here re-

ferred to as enterprise software systems. In recognition of this, the present thesis has ad-

dressed the extent to which traditional software architecture analysis is applicable to enter-

prise software system integration. Integration has been focused upon for its considerable

importance in the context of enterprise software systems.

In order to address this problem, four subjects have been considered. Firstly, enterprise

software systems have been distinguished from the systems traditionally considered by the

software architecture discipline. Secondly and thirdly, deduction-based and induction-based

methods employed for analysis of traditional systems have been assessed for their applica-

bility to enterprise software system integration. Fourthly, the process employed for analysis

of traditional systems has been assessed in the context of enterprise software system inte-

gration. A distinction has thus been made between methods and processes, where method

denotes the means by which conclusions are drawn from architectural descriptions, and

process denotes the engineering context in which these conclusions are drawn.

ENTERPRISE SOFTWARE SYSTEMS

Enterprise software systems are those systems that are managed by organizations primarily

interested in using them, as opposed to those developed by organizations primarily inter-

ested in selling them. Elaborating briefly, the purpose of these systems is thus to support

an enterprise’s overarching operations as efficiently as possible, today including most areas

of concern to a company, such as production, planning, billing, distribution, external com-

munication, finance, personnel, and more. In contrast to these systems are the systems of

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

106

singular vendors, typically considered by the traditional software architecture discipline.

One might expect the differences of the two system types to be significant, and in the

present context it has been justified to consider these differences in greater detail (as pre-

sented in Section 5.7, Paper A, and Paper B).

Architectural descriptions of software systems are typically described by their constituent

components and connectors, as well as by their system-level characteristics. Approaching

enterprise software systems with the same terminology, the present research has identified

a number of distinct characteristics. Considering the components of enterprise software

systems, their most important distinguishing features are their black-box nature, their het-

erogeneity and their large-grainedness. The black-box nature is typically a result of third-

party development as well as software legacy, and implies that the components are difficult

(if at all possible) to modify, and that information about their structure and characteristics

is often incomplete. Heterogeneity is measured by the consistency of designs between

components. The enterprise software system suffers from considerable component hetero-

geneity as a result of uncoordinated development by many actors under a long time period.

Few are the standards to which all components comply in an enterprise software system.

Additionally, components in enterprise software systems are large-grained, often consti-

tuted of complete single-vendor systems.

Considering the connectors of enterprise software systems, their most significant trait in

comparison with the connectors of systems traditionally considered by the software archi-

tecture discipline is their heterogeneity. Connector types of traditional systems are typically

limited to one or a few, such as procedure calls or pipes. In contrast, enterprise software

systems in the general case contain a significant number of conceptually different connec-

tors, such as remote procedure calls, messaging technologies, file transfer mechanisms, and

more.

Considering the overarching characteristics of the enterprise software system, including

process-related aspects, three issues of particular importance have been identified. Firstly,

the supply of components is limited, and secondly, there is always a considerable legacy to

take into account. Whereas traditional software system development generally assumes the

possibility of green-field development of custom-made components, enterprise software

system development is normally limited to market procurement of components. Further

limitations are introduced by the legacy of components (as well as connectors). An impor-

tant consequence of this restriction is that the design space of the architect goes from a

continuum of potential architectures to a discrete set, limited by the available components.

Thirdly, a system composed of prefabricated entities is liable to contain a considerable

redundancy, with respect to data as well as functionality.

To summarize, when attempting to describe enterprise software architectures, several im-

portant characteristics appear. Firstly, they are characterized by a size that makes the in-

formation required to completely describe them overwhelming. Secondly, this information

is often both difficult to find and unreliable. Thirdly, the systems are heterogeneous, which

CONCLUSIONS

107

makes it difficult to generalize over them. Most generalized assumptions (e.g. about com-

ponent behavior) are therefore questionable in the context of enterprise software systems.

Finally, arguably as a combination of their complexity and short history, they are not well

understood; there are few known laws governing the properties of enterprise software

systems.

DEDUCTION-BASED ARCHIECTURAL ANALYSIS METHODS

As mentioned, the thesis has considered both methods and processes for software architec-

ture analysis. Two conceptually different kinds of methods are distinguished in the present

work, deduction-based and induction-based approaches.

Deduction-based architectural analysis methods are based on a paradigm of reductionistic

rationality, where properties of a system are inferred from underlying models of compo-

nent and connector behavior and structure. For instance, models of inter-component

communication may be employed for identifying potential deadlocks in a system. Typically,

deduction-based analysis methods are based on formal specifications of the architectures,

as well as formal theories for generating predictions of system properties. Although deduc-

tion-based architectural analysis methods have been successfully applied to a significant

number of systems, this thesis indicates that considerable problems are encountered when

addressing enterprise software system integration (cf. Section 6.5 and Paper C).

In the context of enterprise software systems, there are some properties of deduction-

based analysis methods that are of particular importance. Firstly, because deduction-based

methods are based on (formal) theories, they can only be applied to systems described by

abstractions appropriate for the given theory; presently, these abstractions are generally on

the conceptual level of programming languages (or below). Secondly, the theories underly-

ing the deduction-based methods make fairly extensive assumptions about the analyzed

system (for instance that the components are implemented on real-time platforms).

Thirdly, the deduction-based architectural analyses reviewed in the thesis are particularly

concerned with certain architectural issues, such as behavioral aspects.

When assessing the applicability of these deduction-based methods on enterprise software

system integration, the thesis has identified a number of problems that schematically can be

explained with the above characteristics of the methods and enterprise software systems.

Firstly, the programming-language abstractions provided by the deduction-based methods

are not well suited for the richness of information present in an enterprise software system.

The present deduction-based abstractions are thus insufficiently abstract. Secondly and

related, analyses based on programming-language abstractions often yield unreliable results,

as low-level information on enterprise software systems may be both difficult to find and

(if found) flawed. For instance (as considered in Section 6.5), when attempting to model

the behavior of components and connectors, as well as error behavior, these problems

becomes visible.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

108

Thirdly, in the cases when deduction-based abstractions are on a satisfactory level, they are,

as mentioned, often based on fairly extensive assumptions about the system. These as-

sumptions are typically of a generalized nature, presupposing homogeneity of, for instance,

component behavior. Enterprise software systems, however, are heterogeneous to their

nature. It is rarely safe to assume, for instance, that all components are implemented on

real-time platforms, or that all components comply with a certain rule set. Chapter 6 of the

thesis presents several cases where this conflict becomes problematic, including the deduc-

tion-based analysis of extra-functional properties, such as security, reliability, atomicity and

performance as well as the analysis of data syntax and semantics incompatibilities.

The fourth issue concerns the sensitivity of deduction-based methods to minor inconsis-

tencies between the architectural description and the actual system. If, as considered above,

the architectural description is not completely accurate, will the analysis be completely

useless? Presently, as discussed in Paper C, the sensitivity of analysis methods is more or

less unexplored. It is thus not known whether minor misrepresentations will completely

invalidate the analysis or not. Paper C indicates that such analysis incorrectness may in fact

occasionally be the result of minor representational inaccuracies.

INDUCTION-BASED ARCHITECTURAL ANALYSIS METHODS

Architectural styles (or patterns) are typically defined as proven solutions to recurring prob-

lems. In the present work, architectural styles have been used as representatives of the

induction-based approach. Induction-based methods address the task of architectural

analysis quite differently from their deduction-based relatives, drawing conclusions by

analogy to similar architectures rather than based on formally expressed rule sets. Causation

is thus substituted by association, in the sense that the main concern no longer is why an

architecture demonstrates certain properties, only that the properties appear when the

architecture takes on a particular form (i.e., a particular style).

In the context of enterprise software systems, there are some properties of induction-based

analysis methods that are of particular importance. Firstly, they are based on empirical

relations rather than theoretical constructs. The only theory relevant for an architectural

style is the relation between the style and the system properties that are associated with it,

e.g. the relation between the black-board style and the extra-functional property modifiabil-

ity. Secondly, because the underlying theory is so meager, there are few restrictions on the

employed abstractions. Recall that deduction-based approaches in this respect are limited

to the abstractions acceptable to the (formal) theories on which they are based. Thirdly and

related, induction-based methods do per se not make extensive assumptions about the

considered system. The only characteristics of the system that are explicitly assumed are

those that define the style description. Fourthly, induction-based methods are suitable for

assessing externally measurable properties, e.g. integration cost or throughput (while deduc-

tion-based assessments are derived from the internal workings of the considered system).

CONCLUSIONS

109

These characteristics of induction-based methods have several consequences for their

applicability to enterprise software system integration. Firstly, the description of styles is

facilitated by lenient requirements on acceptable abstractions. Abstractions suitable for the

enterprise software system context – rather than for program-level theories – may thus be

employed.

Secondly, because the requirements on underlying theory are limited, the proposition of

styles and their relations to system properties becomes fairly straight-forward. Paper D

exemplifies these two issues by describing a number of styles for enterprise software sys-

tem integration as well as their expected impact on a number of extra-functional properties

of the system. However, since there is little underlying theory, other validation means than

deduction are required. Since the concept of induction is closely related to statistics, sur-

veys over the relations between styles and system properties should arguably fill this vali-

dating function.

Thirdly, induction-based approaches are not explicitly based on extensive assumptions

about the modeled system in the way deduction-based approaches are. If a strong correla-

tion between e.g. reliability and a certain architectural style has been statistically determined,

then this relation is valid whether the operating system is implemented on a real-time plat-

form or not. Because generalized assumptions about enterprise software systems often are

questionable due to the heterogeneity of the systems and the unreliability of available in-

formation, this becomes a major benefit of induction-based methods. However, unin-

tended assumptions may be introduced in the relations between styles and system proper-

ties as a result of an unrepresentative statistical selection when validating styles. In other

words, all the systems used to (statistically) determine the relationship between a certain

style and a certain system property may be similarly constructed, thus introducing unin-

tended assumptions.

ARCHITECTURAL ANALYSIS PROCESS

The analysis process, in contrast to the above considered analysis methods, is the engineer-

ing process surrounding the actual analysis of architectural descriptions. The traditional

analysis process typically contains the following activities: 1) Objectives, requirements,

constraints, and context elicitation; 2) Scenario construction; 3) Architectural representa-

tion; 4) Actual architectural analysis; and 5) Architectural modification. The analysis meth-

ods considered above are typically employed in the fourth activity (actual architectural

analysis). Paper B considers to what extent this process is extensible to enterprise software

system integration analysis. Considering the characteristics of the enterprise software sys-

tem, the paper proposes a number of modifications to this process. Three of the most

important consequences of the move to enterprise software systems are considered here.

Firstly, the legacy of enterprise software systems is normally significant and there is a mar-

ket from which to select predefined components. In comparison with the traditional analy-

sis scenario, these two enterprise software system characteristics require a considerable

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

110

effort for context description, gathering information about the present system and any

considered new components to be procured. Secondly and related, the legacy and the lim-

ited availability of components introduce substantial constraints on the design space.

Whereas the traditional process presupposes a considerable freedom in modifications to

the architecture, the design alternatives for the enterprise software system are typically few.

Thirdly, the heterogeneity of both components and connectors makes integration a prime

issue during architectural representation. Common assumptions, such as standards compli-

ance, cannot be assumed for enterprise software systems, while any new functionality is

typically already present either in the legacy or in components available on the market.

Analysis of the integration aspects of enterprise software systems thus become a key focus.

SUMMARY

The application of software architecture analysis in the context of enterprise software sys-

tem integration is far from straightforward. In many respects, the increase in complexity is

similar to the move from chemistry to biology, where the low-level theories are insufficient

to explain and predict the high-level phenomenon. To understand the workings of the

higher-level systems, it is necessary to explore their behavior empirically and devise new

models from observations. In most disciplines, however, a synthesis is desired between

empirical induction-based and theoretical deduction-based approaches. For instance, a

deduction-based approach may be employed for generating hypotheses, which are then

tested by induction-based approaches.

In the introduction to this thesis, the research area was partially motivated by a growing

realization at our department of the need for software engineering methods for enterprise

software system management. At the same time, there seems to be a growing realization in

the software engineering community of the “enterprise software” nature of traditional

systems. Component-based engineering is more popular now than ever, even simple sys-

tems employ unmodifiable commercial-of-the-shelf software, and concepts such as prod-

uct-line architectures challenge the traditional assumption of software development from

scratch. In this sense, the distinction between traditional software systems and enterprise

software systems is already blurring. From the perspective of the author, this convergence

is a good thing.

111

Chapter 9

Further Works

9 FURTHER WORKS

The conclusions of this thesis unavoidably lead to suggestions for further works. This

section suggests two areas of particular interest, related to induction-based and deduction-

based analysis respectively.

Architectural integration styles. The present work concludes by highlighting the possibilities of

induction-based architectural analysis. The area has, however, only been subjected to a

superficial exploration. Further works within the area include additional documentation of

architectural integration styles as well as empirical validation of their impact. As of yet,

styles and patterns have primarily been validated in two ways: theoretically and pseudo-

empirically. Theoretical validation of styles is based on the deduction-based method of

formal specifications combined with extensive assumptions about the underlying system.

The pseudo-empirical validation has mainly been limited to individual reports of successful

style application. In general, when complexity increases and the credibility of the assump-

tions become dubious, statistical methods are employed as a complement in the validation.

Also for architectural styles, this method appears reasonable for determining whether styles

actually have the expected effects.

Deduction-based analysis. Paper C explores some of the fundaments of deduction-based archi-

tectural analysis. Further investigation into the reliability of these methods for early predic-

tion of enterprise software system properties is proposed as further work. Deduction-based

analysis is based on fairly extensive assumptions that rarely are known to be true, e.g. per-

fect transformations from architectural specification to implementation, homogeneity of

components and connectors, simplifications, etc. The effects of relaxations of these as-

sumptions on the credibility of the analysis results are currently poorly understood. Both

theoretical and empirical studies exploring these effects belong to the suggested further

works.

112

113

References

REFERENCES

[Abd96] Abd-Allah, A., Composing Heterogeneous Software Architectures (Ph.D. Thesis), University of
Southern California, 1996.

[Add02] d’Adderio, L., R. Dewar, A. Lloyd, P. Stevens, “Has the Pattern Emperor any Clothes? A
Controversy in Three Acts,” Software Engineering Notes, 2002.

[Aho86] Aho, A., R.Sethi, J., Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley,
1986.

[Ala98] Alagar, V., K. Periyasamy, Specification of Software Systems, Springer, 1998.

[Ale74] Alexander, C., Notes on the Synthesis of Form, Harvard University Press, 1974.

[All94a] Allen, R., D. Garlan, ”Beyond Definition/Use: Architectural Interconnection,” Proceedings
of the Workshop on Interface Definition Languages, 1994.

[All94b] Allen, R., D. Garlan, ”Formalizing Architectural Connection,” Proceedings of the 16th Interna-
tional Conference on Software Engineering, 1994.

[All97] Allen, R., A Formal Approach to Software Architecture (Ph.D. Thesis), Carnegie Mellon Uni-
versity, 1997.

[All98] Allen, R., R. Douence, D. Garlan, "Specifying and Analyzing Dynamic Software Archi-
tectures," Proceedings of the 1998 Conference on Fundamental Approaches to Software Engineering,
1998.

[All99] Allamaraju, S., "Nuts and Bolts of Transaction Processing", White Paper,
http://www.subrahmanyam.com/articles/transactions/NutsAndBoltsOfTP.html, 1999
[Accessed 11 April, 2002].

[And98] Andersson, J., P. Johnson, Fallstudie av projekt Blondie: En funktionell upphandling av ett
integrerat system för nät- och balansavräkning, Internal Report, Department of Industrial
Information and Control Systems, Royal Institute of Technology (KTH), 1998.

[And99] Andersson, J., P. Johnson, “Procurement of Integrated IT Systems for the Deregulated
Electric Utility, ” Proceedings of CIRED’99, 1999.

[And00a] Andersson, J., P. Johnson, “IT Infrastructure Architectures for Electric Utilities: A
Comparative Analysis of Description Techniques,” Proceedings of the 33rd Hawaii
International Conference on System Sciences, 2000.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

114

[And00b] Andersson, J., P. Johnson, “Extending Attribute-based Architectural Analysis to Enter-
prise Software Systems,” Proceedings of the 3rd Australasian Workshop on Software and System
Architectures, 2000.

[And01a] Andersson, J., P. Johnson, “Architectural Integration Styles for Large-Scale Enterprise
Software Systems,” Proceedings of the 5th IEEE International Enterprise Distributed Object
Computing Conference, 2001.

[And01b] Andersson, J., T. Cegrell, K-H. Cheong, M. Haglind, “Strategic Management of
Information Technology in Small and Medium Sized Electric Utilities: Bridging the Gap
Between Theory and Practice,” Proceedings of the Portland International Conference on
Management of Engineering and Technology, 2001.

[And02] Andersson, J., Enterprise Information Systems Management: An Engineering Perspective on the
Aspects of Time and Modifiability, Ph.D. Thesis, Royal Institute of Technology (KTH), 2002.

[App00] Appleton, B., “Patterns and Software: Essential Concepts and Terminology,”
http://www.enteract.com/~bradapp/docs/patterns-intro.html, Modified 2000
[Accessed 2001].

[Aqu01] Aquilani, F., S. Balsamo, P. Inverardi, ”Performance analysis at the software architectural
design level,” Performance Evaluation, Elsevier, 2001.

[Arc01] ARC Advisory Group, “Enterprise Integration Market 20% Annual Growth to $11
Billion by ’06,” ARC Advisory Group,
http://www.arcweb.com/arcweb/aboutarc/arcnews/pressitem.asp?ID=212 [Accessed
December 17, 2001]. Cited in “Företagintegration för 120 miljarder,” ComputerSweden, 31
October, 2001.

[Avg00] Avgeoru, C., ”Information Systems: What Sort of Science Is It?” Omega, 2000.

[Baa02] Baan Website, http://www.baan.com, Baan. [Accessed April 4, 2002].

[Bac87] Bach, M., Design of the Unix Operating System, Prentice-Hall, 1987.

[Bac00] Bachmann, F., L. Bass, G. Chastek, P. Donohue, F. and Peruzzi, The Architecture-Based
Design Method, Technical Report CMU/SEI-2000-TR-01, CMU SEI, 2000.

[Bar98] Baragry, J., K. Reed, “Why is it so hard to define Software Architecture?” Proceedings of the
1998 Asia Pacific Software Engineering Conference, 1998.

[Bar95a] Barbacci, M., M. Klein, T. Longstaff, C. Weinstock, Quality Attributes, Technical Report
CMU/SEI-95-TR-021, 1995.

[Bar95b] Barjaktarovic, M., S-K. Chin, K. Jabbour, “Formal specification and verification of
communicating protocols using automated tools,” Proceedings of the First IEEE International
Conference Engineering of Complex Computer Systems, 1995.

[Bar92] Barry, P., “Abstract syntax notation-one (ASN.1),” IEE Tutorial Colloquium on Formal
Methods and Notations Applicable to Telecommunications, 1992.

[Bas96] Basili, V., “The Role of Experimentation in Software Engineering: Past, Current, and
Future,” Proceedings of the 18th International Conference on Software Engineering, 1996.

[Bas98] Bass, L., P. Clements, R. Kazman, Software Architecture in Practice, Addison-Wesley, 1998.

[Bas01a] Bass, L., “Software Architecture Design Principles,” In Component-Based Software
Engineering: Putting the Pieces Together, Eds. Heineman, G., Councill, W., 2001.

[Bas01b] Bass, L., B. John, “Supporting Usability Through Software Architecture,” IEEE
Computer, 2001.

REFERENCES

115

 [Bec87] Beck, K., W. Cunningham, “Using Pattern Languages for Object-Oriented Programs,”
Proceedings of the OOPSLA-87 Workshop on the Specification and Design for Object-Oriented
Programming, 1987.

[Ben00] Bengtsson, P., N. Lassing, J. Bosch, H. van Vliet, “Analyzing Software Architectures for
Modifiability,” Technical Report, University of Karlskrona/Ronneby, 2000.

[Ben02] Bengtsson, P., Architecture-Level Modifiability Analysis (Ph.D. Thesis), Blekinge Institute of
Technology, 2002.

[Ber00] Bergner, K., A. Rausch, M. Sihling, A. Vilbig, “Adaptation strategies in componentware,”
Proceedings of the Australian Software Engineering Conference, 2000.

[Bir84] Birrell, A., J. Nelson, “Implementing Remote Procedure Calls,” ACM Transactions on
Computer Systems, 1984.

[Bjö82] Björner, D., ”Stepwise Transformation of Software Architectures,” In Formal Specification
and Software Development, Prentice-Hall, 1982.

[Boe81] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981.

[Boe88] Boehm, B., “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, 1988.

[Boo99] Booch, G., J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison-
Wesley, 1999.

[Bos99] Bosch, J., P. Molin, “Software Architecture Design: Evaluation and Transformation,”
Proceedings of the IEEE Conference and Workshop on Engineering of Computer-Based Systems, 1999.

[Bos00] Bosch, J., Design and Use of Software Architectures, Addison-Wesley, 2000.

[Boy99] Boyle, J., R. Resler, V. Winter, "Do you trust your compiler?" IEEE Computer, 1999.

[Bra00] Bray, T., J. Paoli, C. Sperberg-McQueen, E. Maler, Extensible Markup Language (XML) 1.0
(Second Edition), W3C, 2000.

[Bri92] Bright, M., A. Hurson, S. Pakzad, “A Taxonomy and Current Issues in Multidatabase
Systems,” IEEE Computer, 1992.

[Bri97] Briand, L., J.Daly, J. Wust, “A Unified Framework for Cohesion Measurement in Object-
Oriented Systems,” Proceedings of the Fourth International Software Metrics Symposium, 1997.

[Bri99] Briand, L., Daly, J., Wüst, J., “A Unified Framework for Coupling Measurement in
Object-Oriented Systems,” IEEE Transactions on Software Engineering, 1999.

[Bri02] Encyclopædia Britannica Online, "Ockham's razor," Encyclopædia Britannica Online,
http://www.eb.com:180/bol/topic?eu=58133&sctn=1, Accessed April 1 2002.

[Bro75] Brooks, F., The Mythical Man-Month, Anniversary Edition: Essays on Software Engineering, First
published in 1975, Addison-Wesley, 1995.

[Bro00] Brown, A., Large-Scale, Component-Based Development, Prentice-Hall, 2000.

[Bus96] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns, Wiley, 1996.

[But99] Butler Group, Application Integration Management Guide, Butler Direct Ltd, 1999.

[Bäc98] Bäcklund, M., M. Eriksson, P. Johnson, M. Silwer, “New markets, new business
opportunities: Alternative scenarios and strategies for providing services based on
communication,” Proceedings of Distribution Automation and Demand Side Management
(DA/DSM) Europe, 1998.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

116

[Cam86] Campbell, D., “Rationality and Utility from the Standpoint of Evolutionary Biology,”
Journal of Business, 1986.

[Cat95] Cattaneo, F., “An Evaluation of Architecture Description Languages,” Technical Report
96.152, Politecnico di Milano, 1995.

[Ceg86] Cegrell, T., Power Systems Control Technology, Prentice-Hall, 1986.

[Cha96] Chappell, D., Understanding ActiveX and OLE: A Guide for Developers and Managers,
Microsoft Press, 1996.

[Che94] Cheung, S., J. Kramer, “Tractable dataflow analysis for distributed systems,” IEEE
Transactions on Software Engineering, 1994.

[Che97] Cheong, K-H., Distribution Automation: Cost-Effective Introduction Strategies (Licentiate
Thesis), KTH Royal Institute of Technology, 1997.

[Che01] Chester, T., “Cross-Platform Integration with XML and SOAP,” IT Professional, 2001.

[Chi00] Chiang, C., “Wrapping Legacy Systems for Use in Heterogeneous Computing
Environments,” Information and Software Technology, 2000.

[Cim98] Cimitile, A., U. De Carlini, A. De Lucia, “Incremental migration strategies: data flow
analysis for wrapping,” Proceedings of the Fifth Working Conference on Reverse Engineering, 1998.

[Cla96] Clarke, E., J. Wing, et al., “Formal Methods: State of the Art and Future Directions,”
ACM Computing Surveys, 1996.

[Cle96] Clements, P., “A Survey of Architecture Description Languages,” Proceedings of the 8th
International Workshop on Software Specification and Design, 1996.

[Com99] Compare, D., P. Inverardi, A. Wolf, “Uncovering architectural mismatch in component
behavior,” Science of Computer Programming, 1999.

[Cza00] Czarnecki, K., U. Eisenecker, Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[Dag00a] Dagens Industri, ” Vattenfall förvärvar polsk eljätte för 4 mdr,” Dagens Industri, 2000.

[Dag00b] Dagens Industri, ” Klart i dag för Vattenfalls östtyska köp,” Dagens Industri, 2000.

[Dag00c] Dagens Industri, ” Vattenfall blir stor aktör i Norge,” Dagens Industri, 2000.

[Dag00d] Dagens Industri, ” Vattenfall går in i avfallsförbränning,” Dagens Industri, 2000.

[Dag00e] Dagens Industri, ” Vattenfall blir stor aktör i Norge,” Dagens Industri, 2000.

[Dag00f] Dagens Industri, ” Sydkraft gör ny miljardaffär,” Dagens Industri, 2000.

[Dag00g] Dagens Industri, ” Sydkraft köper avfallsbolag,” Dagens Industri, 2000.

[Dag00h] Dagens Industri, ” Franskt kraftbolag stärker greppet om Graninge,” Dagens Industri,
2000.

[Dag01a] Dagens Industri, ”Birka Energi till Fortum för 14,5 miljarder kronor,” Dagens Industri,
2001.

[Dag01b] Dagens Industri, ” Vattenfall köper tyska HEW,” Dagens Industri, 2001.

[Dag01c] Dagens Industri, ” Vattenfall köper Bewag,” Dagens Industri, 2001.

[Dag01d] Dagens Industri, ” Klart i dag för Vattenfalls östtyska köp,” Dagens Industri, 2001.

[Dav93] Davis, A., Software Requirements: Objects, Functions, and States, Prentice Hall, 1993.

[Dei84] Deitel, H., An Introduction to Operating Systems, Addison-Wesley, 1984.

REFERENCES

117

[Del96] Dellarocas, C., A Coordination Perspective on Software Architecture: Towards a Design Handbook
for Integrating Software Components (Ph.D. Thesis), MIT Center for Coordination Science,
1996.

[Del97a] Dellarocas, C., “Towards a Design Handbook for Integrating Software Components,”
Proceedings of the Fifth International Symposium on Assessment of Software Tools and Technologies,
1997.

[Del97b] Dellarocas, C., ”The Synthesis Environment for Component-Based Software
Development,” Proceedings of the Eighth IEEE International Workshop on Software Technology
and Engineering Practice, 1997.

[DeL99] DeLine, R., Resolving Packaging Mismatch (Ph.D. Thesis), Carnegie Mellon University, 1999.

[Dia93] Diaz-Herrera, J., “The importance of static structures in software construction,” IEEE
Software, 1993.

[Dij68a] Dijkstra, E., “Letters to the Editor: Go To Statement Considered Harmful,”
Communications of the ACM, 1968.

[Dij68b] Dijkstra, E., “The Structure of the “THE”-Multiprogramming System,” Communications of
the ACM, 1968.

[Dij69] Dijkstra, E., Notes on Structured Programming, Technical U. Eindhoven, 1969.

[Dij76] Dijkstra, E., A Discipline of Programming, Prentice-Hall, 1976.

[Dun96] Duncan, W., A Guide to the Project management Body of Knowledge, PMI Standards Committee,
1996.

[Ede94] Eder, J., G. Kappel, M. Schrefl, ”Coupling and Cohesion in Object-Oriented Systems,”
Technical Report, Univ. of Klagenfurt, 1994.

[Emm01] Emmerich, W., E. Ellmer, H.Fieglein, ”Tigra – An Architectural Style for Enterprise
Application Integration,” Proceedings of the 23rd International Conference Software Engineering,
2001.

[Ene00] Energimyndigheten, Utvecklingen på Elmarknaden 2000:I - Schablonberäkning,
Energimyndigheten, 2000.

[Ene01] Energimyndigheten, Elmarknaden 2001, Energimyndigheten, 2001.

[Eng99] Engelken, L., A. Gay, H. Tram, ”Development of an Information Technology Strategy
and Architecture for Energy Delivery Utility Mergers,” 1999 IEEE Transmission and
Distribution Conference, 1999.

[Eri93] Ericsson, G., P. Forsgren, E. Gyllenswärd, T. Rahkonen, ”A State of the Art Study of
Commercial Industrial Control Systems,” External Report, Department of Industrial
Control Systems Royal Institute of Technology (KTH), 1993.

[Eri95] Ericsson, G., T. Rahkonen, “Openness in Communication for Power System Control: A
State-of-the-Practice Study,” Proceedings of Stockholm PowerTech, IEEE International
Symposium on Electric Power Engineering, 1995.

[Eri96] Ericsson, G., J. Schubert, “Evolution of Communication in Power System Control.” In
Ericsson, G., On Power System Control, Ph.D. Thesis, Royal Institute of Technology, 1996.

[Fie97] Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and T. Berners-Lee, Hypertext Transfer
Protocol -- HTTP/1.1, RFC 2068, January 1997.

[Foi85] Fogiel, M., Handbook and Guide for Comparing and Selecting Computer Languages, Research and
Education Association, 1985.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

118

[Gac95] Gacek, C., A. Abd-Allah, B. Clark, B. Boehm, “On the Definition of Software System
Architecture,” Proceedings of the ICSE 17 Software Architecture Workshop, 1995.

[Gac98] Gacek, C., Detecting Architectural Mismatch During System Composition (Ph.D. Thesis),
University of Southern California, 1998.

[Gam98] Gamma, E., R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1998.

[Gan00] Gannod, G., S. Mudiam, T., Lindquist, ”An Architecture-Based Approach for
Synthesizing and Integrating Adapters for Legacy Software,” Proceedings of the Seventh
Working Conference on Reverse Engineering, 2000.

[Gar94a] Garlan, D., R. Allen, J. Ockerbloom, “Architectural Mismatch: Why Reuse is so Hard,”
IEEE Software, 1994.

[Gar94b] Garlan, D., R. Allen, J. Ockerbloom, “Exploiting Style in Architectural Design
Environments,” Proceedings of SIGSOFT ’94, 1994.

[Gar95a] Garlan, D. ”What Is Style?” Proceedings of the Dagshtul Workshop on Software Architecture,
1995.

[Gar95b] Garlan, D., “An Introduction to the Aesop System,” 1995.
http://www.cs.cmu.edu/afs/cs/project/able/ www/aesop/html/aesop-overview.ps

[Gar97] Garlan, D., R. Monroe, D. Wile, ”ACME: An Architecture Description Interchange
Language,” Proceedings of CASCON’97, 1997.

[Gar98] Garlan, D., J. Ockerbloom, D. Wile, “Towards an ADL Toolkit,” EDCS Architecture and
Generation Cluster, 1998. http://www-2.cs.cmu.edu/~acme/adltk/index.html.

[Gar00] Garlan, D., “Software Architecture: A Roadmap”, The Future of Software Engineering
(volume published in conjunction with the 22nd International Conference on Software
Engineering), ACM Press, 2000.

[Gla98] Glancer, D., Technical Overview: Foundation Fieldbus, FD-043 Revision 2.0, Fieldbus
Foundation, 1998.

[Gol99] Gold-Bernstein, B., “EAI market Segmentation,” EAI Journal, 1999.

[Hag02] Haglind, M., On Information Systems Planning in Small and Medium-sized Electric Utilities (Ph.D.
Thesis), KTH Royal Institute of Technology, 2002.

[Har94] Hartley, J., “Case Studies in Organizational Research,” In Cassel, C., G. Symon (ed’s),
Qualitative Methods in Organizational Research: A Practical Guide, Sage Publications, 1994.

[Hei01a] Heineman, G., W. Councill (Eds), Component-Based Software Engineering: Putting the Pieces
Together, Addison-Wesley, 2001.

[Hei01b] Heineman, G., W. Councill, “Definition of a Software Component and Its Elements”. In
Heineman, G., W. Councill (Eds), Component-Based Software Engineering: Putting the Pieces
Together, Addison-Wesley, 2001.

[Hel00] Helander, J., Supply Chain Evolution in the Manufacturing Industry (Licentiate Thesis), Royal
Institute of Technology (KTH), 2000.

[Hen92] Henshall, J., Opening up OSI: An Illustrated Introduction, Ellis Horwood, 1992.

[Hit95] Hitz, M., B. Montazeri, ”Measuring Coupling and Cohesion in Object-Oriented
Systems,” Proceedings of the International Symposium on Applied Corporate Computing, 1995.

[Hoa85] Hoare, C., Communicating Sequential Processes, Prentice-Hall, 1985.

[Hof99] Hofmeister, C., R. Nord, D. Soni, Applied Software Architecture, Addison-Wesley, 1999.

REFERENCES

119

[Hon01] Hong, K-K., Y-G. Kim, “The critical success factors for ERP implementation: an
organizational fit perspective,” Information & Management, In Press, Uncorrected Proof,
Available online 28 November 2001.

[Hua98] Huang, Y., Ravishanker, C., ”Constructive Protocol Specification Using Cicero,” IEEE
Transactions on Software Engineering, 1998.

[Huß97] Hußmann, H., Formal Foundations for Software Engineering Methods, Lecture notes in
Computer Science, Springer-Verlag, 1997.

[Hut00] Michael Huth, Mark Ryan, Logic in Computer Science: Modelling and Reasoning About Systems,
Cambridge University Press, 2000

[Här99] Härder, T., Sauter, G., Thomas, J., ”The Intrinsic Problems of Structural Heterogeneity
and an Approach to Their Solution,” The VLDB Journal, 1999.

[IEE00a] IEEE, 802.3: Carrier Sense Multiple Access with Collision Detection, IEEE, 2000.

[IEE00b] IEEE 1076-2000: Standard VHDL Language Reference Manual, IEEE, 2000.

[ILo00] I-Logix, Rhapsody: Reference Guide, I-Logix Inc., 2000.

[Ima00] Imamura, T., H. Maruyama, “Mapping Between ASN.1 and XML,” IBM Research Report
RT0362, 2000.

[Jac99] Jacobson, I., G. Booch, J. Rumbaugh, The Unified Software Development Process, Addison-
Wesley, 1999.

[Jaz00] Jazayeri, M., A. Ran, A., F. van der Linden, Software Architecture for Product Families,
Addison-Wesley, 2000.

[Jep01] Jepsen, T., ”SOAP Cleans Up Interoperability Problems on the Web,” IT Professional, vol.
3, no. 1, 2001.

[Jma00] Jmaiel, M., “A Unified Algebraic Framework for Specifying Communication Protocols,”
Proceedings of the Third IEEE International Conference on Formal Engineering Methods, 2000.

[Joh99] Johnson, P., “Control and Information System Procurement at Vattenfall.” In Johnson,
P, Sundström, M., Deregulation of the Electricity Market: Effects on Inter-Firm Relations,
Arbetsnotat 8, Program Energisystem, Linköping University, 1999.

[Kaz94a] Kazman, R., L. Bass, G. Abowd, M. Webb, “SAAM: A method for analyzing properties
of software architectures,” Proceedings of the 16th International Conference on Software
Engineering, 1994.

[Kaz94b] Kazman R., L. Bass, Toward Deriving Software Architectures from Quality Attributes,
Technical Report CMU/SEI-94-TR-10, 1994.

[Kaz97] Kazman, R., P. Clements, L. Bass, “Classifying Architectural Elements for Mechanism
Matching”, Proceedings of the Twenty-First Annual International Computer Software and
Applications Conference, 1997.

[Kaz98] Kazman, R., M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, “The
Architecture Tradeoff Analysis Method,” Proceedings of the Fourth IEEE International
Conference on Engineering of Complex Computer Systems, 1998.

[Kaz99] Kazman, R., M. Barbacci, M. Klein, J. Carriere, “Experience with performing architecture
tradeoff analysis,” Proceedings of the 1999 International Conference on Software Engineering, 1999.

[Kha95] Khandker, A., P. Honeyman, T. Teorey, “Performance of DCE RPC,” Second International
Workshop on Services in Distributed and Networked Environments, 1995.

[Kim91] Kim, W., J. Seo, “Classifying Schematic and Data Heterogeneity in Multidatabase
Systems,” IEEE Computer, 1991.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

120

[Kin93] King, K., “Modula-3: a threat to Ada?” Proceedings of the Tenth Annual Washington Ada
Symposium on Ada's Role in Software Engineering, 1993.

[Kin94] King, G., R. Keohane, S. Verba, Designing Social Inquiry: Scientific Inference in Qualitative
Research, Princeton University Press, 1994.

[Kle91] M. Klein, J. Goodenough, “Rate Monotonic Analysis for Real-Time Systems,” Technical
Report, 1991.

[Kog95] Kogut, P., P. Clements, ”Features of Architecture Description Languages,” Proceedings of
Software Technology Conference, 1995.

[Kom98] Kompanek, A., AcmeStudio: User’s Manual, Carnegie Mellon University, 1998.

[Kru95] Kruschten, P., “The 4 + 1 View Model of Architecture,” IEEE Software, 1995.

[Lan90] Lane, T., A Design Space and Design Rules for User Interface Software Architecture,
Technical Report CMU/SEI-90-TR-223, 1990.

[Las99] Lassing, N., D. Rijsenbrij, H. van Vliet, “Towards a Broader View on Software
Architecture Analysis of Flexibility,” Proceedings of the Sixth Asia Pacific Conference on Software
Engineering, 1999.

[Las02] Lassing, N., P-O. Bengtsson, H. van Vliet, J. Bosch, “Experiences with ALMA:
Architecture-Level Modifiability Analysis,” Journal of Systems and Software, 2002.

[Lin00] Linthicum, D., Enterprise Application Integration, Addison-Wesley, 2000.

[Lin01a] Linthicum, D, B2B Application Integration: E-business-Enable Your Enterprise, Addison-
Wesley, 2001.

[Lin01b] Lindgren, L., Application Servers for E-Business, Auerbach, 2001.

[Lit01] Litwin, L., "The medium access control sublayer," IEEE Potentials, 2001.

[Lon01] Longshaw, A., “Choosing between COM+, EJB, and CCM” In Heineman, G., W.
Councill (Eds), Component-Based Software Engineering: Putting the Pieces Together, Addison-
Wesley, 2001.

[Luc95a] Luckham, D., L. Augustin, J. Kenny, J. Vera, D Bryan, W. Mann, ”Specification and
Analysis of System Architecture Using Rapide,” IEEE Transactions of Software Engineering,
1995.

[Luc95b] Luckham, D., J. Vera, ”An Event-Based Architecture Definition Language,” IEEE
Transactions of Software Engineering, 1995.

[Luc97] Lucia, A. De, G. Di Lucca, A. Fasolino, P. Guerra, S. Petruzzelli, “Migrating legacy
systems towards object-oriented platforms,” Proceedings of the International Conference on
Software Maintenance, 1997.

[Mag95] Magee, J., N. Dulay, S. Eisenbach, J. Kramer, “Specifying Distributed Software
Architectures,” Proceedings of the 5th European Software Engineering Conference, 1995.

[Mag96] Magee, J., J. Kramer, “Dynamic Structure in Software Architectures,” 4th Symposium on the
Foundations of Software Engineering, 1996.

[Mag97a] Magee, J., J. Kramer, D. Giannakopoulou, ”Analyzing the Behaviour of Distributed
Software Architectures: a Case Study,” Proceedings of the Sixth IEEE Computer Society
Workshop on Future Trends of Distributed Computing Systems, 1997.

[Mag97b] Magee, J., A. Tseng, J. Kramer, "Composing distributed objects in CORBA," 3rd
International Symposium on Autonomous Decentralized Systems, 1997.

[Mal84] Malone, J., Comparative Languages, Chartwell-Bratt, 1984.

REFERENCES

121

[Mal94] Malone, T., K. Crowston, “The Interdisciplinary Study of Coordination,” ACM
Computing Surveys, 1994.

[McC77] McCall J., P. Richards, G. Walters, Factors in Software Quality, Vols I, II, III, US Rome Air
Development Center Reports, 1977.

[McG00] McGoveran, D., “Architected Simplicity,” EAI Journal, 2000.

[Med96] Medvidovic, N., P. Oreizy, J. Robbins, R. Taylor, “Using Object-Oriented Typing to
Support Architectural Design in the C2 Style,” ACM SIGSOFT Software Engineering Notes,
Proceedings of the fourth ACM SIGSOFT symposium on Foundations of software engineering, 1996.

[Med97] Medvidovic, N., D. Rosenblum, “Domains of Concern in Software Architectures and
Architecture Description Languages,” Proceedings of the 1997 USENIX Conference on
Domain-Specific Languages, 1997.

[Med98] Medvidovic, N., D. Rosenblum, R. Taylor, A Type Theory for Software Architectures,
Technical Report UCI-ICS-98-14, University of California, 1998.

[Med99] Medvidovic, N., D. Rosenblum, R. Taylor, “A Language and Environment for
Architecture-Based Software Development and Evolution,” Proceedings of the 21st
International Conference on Software Engineering, 1999.

[Med00] Medvidovic, N., R. Taylor, “A Classification and Comparison Framework for Software
Architecture Description Languages,” IEEE Transactions on Software Engineering, 2000.

[MGr00] McGrath, R., “Discovery and Its Discontents: Discovery Protocols for Ubiquitous
Computing”, Computer Science Technical Report UIUCDCS-R-99-2132, National Center for
Supercomputing Applications, 2000.

[Mik98] Mikkonen, T., “Formalizing design patterns,” Proceedings of the 1998 International Conference
on Software Engineering, 1998.

[Mod91] Modiri, N., “The OSI reference model entities,” IEEE Network, 1991.

[Mon97] Monroe, R., A. Kompanek, R. Melton, D. Garlan, 1997, “Architectural Styles, Design
Patterns, and Objects,” IEEE Software, 1997.

[Mon00] Monson-Haefel, R., Enterprise JavaBeans, 2nd Ed., O’Reilly & Associates, 2000.

[Moo95] Moormann Zaremski, A., J. Wing, “Signature Matching: A Tool for Using Software
Libraries”, ACM Transactions on Software Engineering and Methodology, 1995.

[Moo97] Moormann Zaremski, A., J. Wing, “Specification Matching of Software Components”,
ACM Transactions on Software Engineering and Methodology, 1997.

[Mor01] Morgenthal, JP., Enterprise Application Integration with XML and Java, Prentice-Hall, 2001.

[Mor95] Moriconi, M, X. Qian, R., Riemenschneider, L. Gong, “Correct Architecture
Refinement,” IEEE Transactions on Software Engineering, 1995.

[Mor97a] Moriconi, M., X. Qian, R., Riemenschneider, L. Gong, “Secure Software Architectures”,
Proceedings of the 1997 IEEE Symposium on Security and Privacy, 1997.

[Mor97b] Moriconi, M., R. Riemenschneider, “Introduction to SADL 1.0: A Language for
Specifying Software Architecture Hierarchies”, Technical Report SRI-CSL-97-01, SRI
Computer Science Laboratory, 1997.

[Mou01] Mougin, P., C. Barriolade, “Web Services, Business Objects and Component Models,”
White Paper, Orchestra Networks, 2001.

[MSD01] Microsoft, Microsoft Developer Network Online Library,
http://msdn.microsoft.com/library/default.asp, Microsoft Corporation, 2001.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

122

[Mur99] Murphy, G, R. Walker, E. Baniassad, “Evaluating Emerging Software Development
Technologies: Lessons Learned from Assessing Aspect-Oriented Programming,” IEEE
Transactions on Software Engineering, 1999.

[Obe98] Oberndorf, P., “COTS and Open Systems,” SEI Monographs on the Use of Commercial
Software in Government Systems, 1998.

[Obj01] The Object Management Group, The Common Object request Broker: Architecture and
Specification, Version 2.4.2, The Object Management Group, 2001.

[Ola01] Olavsrud, T., “Report: IT/IS Spendings Bottoms Out,” Internetnews.com, 2001.
http://www.internetnews.com/ent-news/article/0,,7_942311,00.html [Accessed March
31, 2002].

[Par72] Parnas, D., ”On the Criteria to be used in Decomposing Systems into Modules,”
Communications of the ACM, 1972.

[Par83] Partsch, H., R. Steinbrüggen, ”Program Transformation Systems,” ACM Computing
Surveys, 1983.

[Per92] Perry, D., A. Wolf, “Foundations for the Study of Software Architecture,” ACM
SIGSOFT Software Engineering Notes, 1992.

[Pit01] Pittser, T., “Computer Applications in the Electric Utility Industry,” 2001 Rural Electric
Power Conference, 2001.

[Plo02] Witthawaskul, W., “Pattern Languages of Programs Conference,”
http://jerry.cs.uiuc.edu/~plop/, 2002.

[Pol01] Pollock, J., “The Big Issue: Interoperability vs. Integration,” Modulant White Paper, 2001.

[Pos80] Postel, J., User Datagram Protocol, RFC 768, Network Information Center, SRI
International, Menlo Park, Calif., August 1980.

[Pos85] Postel, J., and J. Reynolds, File Transfer Protocol (FTP), RFC 959, ISI, October 1985.

[Pre00] Pressman, R., Software Engineering: A Practitioner’s Approach, 5th ed., McGraw-Hill, 2000.

[Pri99] Pritchard, J., COM and CORBA Side by Side: Architectures, Strategies, and Implementations,
Addison-Wesley, 1999.

[Rap01] Raptis, K., D. Spinellis, S. Katsikas, ”Multi-Technology Distributed Objects and their
Integration”, Computer Standards & Interfaces, Elsevier, 2001.

[Rey98] Reynolds, J., Theories of Programming Languages, Cambridge University Press, 1998.

[Ric94] Rice, M., S. Seidman, “A Formal Model for Module Interconnection Languages,” IEEE
Transactions on Software Engineering, 1994.

[Ric00] Richard, G., “Service Advertisement and Discovery: Enabling Universal Device
Cooperation”, Internet Computing, IEEE, 2000.

[Rie99] Riemenschneider, R., V. Stavridou, “The Role of Architecture Description Languages in
Component-Based Development: The SRI Perspective,” Proceedings of the 1999 International
Workshop on Component-Based Software Engineering, 1999.

[Rob98] Robbins, J., N. Medvidovic, D. Redmiles, D.Rosenblum, “Integrating Architecture
Description Languages with a Standard Design Method,” Proceedings of the 1998
International Conference on Software Engineering, 1998.

[Roy70] Royce, W., “Managing the Development of Large Software Systems: Concepts and
Techniques,” Proceedings of Wescon, 1970. Also available in Proceedings of the 9th International
Conference on Software Engineering, 1987.

REFERENCES

123

[Rud96] Ruddock, D, B. Dasarathy, “Multithreading Programs: Gudielines for DCE Applica-
tions,” IEEE Software, 1996.

[Ruh01] Ruh, W., Maginnis, F., Brown, J., Enterprise Application Integration: A Wiley Tech Brief, John
Wiley & Sons, Inc., 2001.

[San81] Sandewall, E., C. Stromberg, and H. Sorensen, “Software Architecture Based on
Communicating Residential Environments,” Proceedings of the Fifth International Conference on
Software Engineering, 1981.

[Sap02] SAP Website, http://www.sap.com, SAP. Accessed April 4 2002.

[Sch86] Schmidt, D., Denotational Semantics: A Methodology for Language Development, Wm. C. Brown
Publishers, 1986.

[Sch00] Schmidt, D., M., Stal, H., Rohnert, F., Buschmann, Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent and Networked Objects, Wiley, 2000.

[Sea99] Seaman, C., “Qualitative Methods in Empirical Studies of Software Engineering,” IEEE
Transactions on Software Engineering, 1999.

[Sha86] Shahdad, M., “An Overview of VHDL Language and Technology,” Proceedings of the 23rd
ACM/IEEE Conference on Design Automation, 1986.

[Sha01] Shaikh, A., R. Tewari, M. Agrawal, “On the Effectiveness of DNS-based Server
Selection,” Proceedings of IEEE INFOCOM 2001, 2001.

[Sha89] Shaw, M., “Larger Scale Systems Require Higher-Level Abstractions,” Proceedings of the
Fifth International Workshop on Software Specification and Design, 1989.

[Sha95a] Shaw, M., “Architectural Issues in Software Reuse: It's Not Just the Functionality, It's the
Packaging,” Proceedings of the 17th International Conference On Software Engineering, 1995.

[Sha95b] Shaw, M., R. DeLine, D. Klein, T. Ross, D. Young, G. Zelesnik, “Abstractions for
Software Architecture and Tools to Support Them,” IEEE Transactions on Software
Engineering, 1995.

[Sha96a] Shaw, M., Garlan, D., Software Architectures: Perspectives on an Emerging Discipline, Prentice
Hall, 1996.

[Sha96b] Shaw, M., R. DeLine, G. Zelesnik, “Abstractions and Implementations for Architectural
Connections,” Proceedings of the 3rd International Conference on Configurable Distributed Systems,
1996.

[Sim69] Simon, H., The Sciences of he Artificial, 3rd ed., MIT Press, 1996. 1st ed. 1969.

[Sim47] Simon, H., Administrative Behavior, 4th Ed., Free Press, 1997. 1st ed. 1947.

[Smi98] Smith, G., J. Gough, C. Szyperski, C., “A Case for Meta-Interworking: Projecting
CORBA Meta-Data into COM,” Proceedings of Technology of Object-Oriented Languages, 1998.

[Sne96] Sneed, H., “Encapsulating Legacy Software for use in Client/Server Systems,” Proceedings
of the Third Working Conference on Reverse Engineering, 1996.

[Sne97] Sneed, H., “Program Interface Reengineering for Wrapping,” Proceedings of the Fourth
Working Conference on Reverse Engineering, 1997.

[Sne98] Sneed, H., R. Majnar, “A Case Study in Software Wrapping,” Proceedings of the International
Conference on Software Maintenance, 1998.

[Sne01] Snell, J., “Implementing Business Processes with the Web Services Architecture,”
Tutorial, The IEEE Enterprise Distributed Object Computing 2001 Conference, 2001.

[Sou01] Sousa, J., D. Garlan, “Formal modeling of the Enterprise Javabeans™ Component
Integration Framework,” Information and Software Technology, 2001.

ENTERPRISE SOFTWARE SYSTEM INTEGRATION: AN ARCHITECTURAL PERSPECTIVE

124

[Spi89] Spivey, J., The Z Notation: A Reference Manual, Series in Computer Science, Prentice Hall,
1989.

[Spi98] Spitznagel, B., D. Garlan, “Architecture-Based Performance Analysis,” Proceedings of the
1998 Conference on Software Engineering and Knowledge Engineering, 1998.

[Sta01] Stavridou, V., B. Dutertre, R. Riemenschneider, H. Saidi, "Intrusion Tolerant Software
Architectures," Proceedings of the DARPA Information Survivability Conference & Exposition,
2001.

[Ste74] Stevens, W., G. Myers, L. Constantine, “Structured Design,” IBM Systems Journal, 1974.

[Ste98] Stevens, R., R. Brook, K. Jackson, and S. Arnold, Systems Engineering: Coping With
Complexity, Prentice-Hall, 1998.

[SvK02] Svenska Kraftnät, Svensk Elmarknadshandbok, Svenska Kraftnät, 2002.

[Szy98] Szyperski, C., Component Software: Beyond Object-Oriented Programming, Addison-Wesley,
1998.

[Tan81] Tanenbaum, A., “Network Protocols,” ACM Computing Surveys, 1981.

[Tan87] Tanenbaum, A., Operating Systems: Design and Implementation, Prentice-Hall, 1987.

[Tan89] Tanenbaum, A., Computer Networks, 2nd Ed., Prentice-Hall, 1989.

[Tan95] Tanenbaum, A., Distributed Operating Systems, Prentice-Hall, 1995.

[Tho99] Thompson, M., Technology Audit: MQSeries Product Family, Butler Direct Ltd, 1999.

[Tid00a] Tidningarnas Telegrambyrå, ” Sydkraft köper Nora kommuns energiverksamhet,”
Tidningarnas Telegrambyrå, 2000.

[Tid00b] Tidningarnas Telegrambyrå, ” Birka Energi köper Arvika Energi,” Tidningarnas
Telegrambyrå, 2000.

[Tid01] Tidningarnas Telegrambyrå, ” Energiaffär i Norrtälje avbryts,” Tidningarnas Telegrambyrå,
2000.

[Tok90] Tokuda, H., T. Nakajima and P. Rao, “Real-Time Mach: Towards a Predictable Real-
Time System,” Proceedings of USENIX Mach Workshop, 1990.

[Uni02] United Nations, United Nations Directories for Electronic Data Interchange for Administration,
Commerce and Transport, http://www.unece.org/trade/untdid/welcome.htm, United
Nations [Accessed 11 April, 2002].

[Ves93] Vestal, S., “A Cursory Overview and Comparison of Four Architecture Description
Languages,” Technical Report, Honeywell Technology Center, 1993.

[Ves98] Vestal, S., MetaH User’s Guide, Honeywell Technology Center, 1998.

[Vli98] Vlissides, J., Pattern Hatching: Design Patterns Applied, Addison-Wesley, 1998.

[Wad94] Waddington, D., “Participant Observation.” In Cassel, C., G. Symon (ed’s), Qualitative
Methods in Organizational Research: A Practical Guide, Sage Publications, 1994.

[Wal01] Wallnau, K., S. Hissam, R., Seacord, Building Systems from Commercial Components, SEI Series
in Software Engineering, 2001.

[Wan98] Wang, Y., G. King, A. Dorling , D. Patel , I. Court , G. Staples , M. Ross, “A Worldwide
Survey of Base Process Activities towards Software Engineering Process Excellence,”
Proceedings of the 1998 International Conference on Software Engineering, 1998.

[Wir74] Wirth, N., “On the Composition of Well-Structured Programs,” ACM Computing Surveys,
1974.

REFERENCES

125

[Yak99a] Yakimovich, D., J. Bieman, V. Basili, “Software Architecture Classification for
Estimating the Cost of COTS Integration,” Proceedings of the 21st International Conference on
Software Engineering, 1999

[Yak99b] Yakimovich D., G. Travassos V. Basili, “A Classification of Software Component
Incompatibilities for COTS Integration,” Proceedings of the 24th Software Engineering
Workshop, NASA/Goddard Space Flight Center, 1999.

[Yin96] Yin, R., Case Study Research: Design and Methods, 2nd ed., Sage Publications, 1996.

[Zel96] Zelesnik, G., The UniCon Language Reference Manual, http://www-
2.cs.cmu.edu/afs/cs/project/vit/ www/unicon/reference-manual/
Reference_Manual_1.html, Carnegie-Mellon University, 1996.

	Introduction
	Research question
	Research rationale
	Related works
	Contribution
	Outline

	Methodology
	Research in software engineering
	Research methodology
	Research designs
	Research evolution

	Software Milieu of Electric Utilities
	Introduction
	The Swedish electricity industry
	A deregulated industry
	Actors

	Deregulation and software systems
	Mergers and acquisitions
	New business operations
	New business opportunities

	Software systems in the electricity industry
	A need for software integration

	Software Integration
	Introduction
	Integration and integrability
	Monarchical integration approaches
	Process event integration
	In-process procedure integration
	In-process object integration
	Local process integration
	Remote process integration

	Oligarchical integration approaches
	The data link layer
	The network layer
	The transport layer
	The session layer
	The presentation layer
	The application layer

	Anarchical integration approaches
	Access
	Interconnection
	Extra-functional properties
	EAI Technologies

	Consolidating the approaches
	Summary

	Software Architecture
	Brief introduction to software architecture
	Definitions of software architecture
	Classical definitions of software architecture
	Employed definitions

	Views, components and connectors
	Architectural styles
	Architecture description languages
	Architecture in the software process
	Enterprise software architecture
	Enterprise software system evolution
	Characteristics of enterprise software architecture
	CBSE and COTS
	EAI

	Summary

	A
	Architectural Analysis
	Introduction
	Induction-based analysis methods
	Extra-functional properties
	Architectural styles and extra-functional properties

	Deduction-based analysis methods
	c2sadel
	Sadl
	Darwin
	MetaH
	Rapide
	UniCon
	Aesop
	Wright
	Abd-Allah and Gacek

	Deduction-based integrability analysis
	Data representation
	Data semantics
	Connector semantics
	Component semantics
	Error control
	Location
	Extra-fuctional properties

	Applicability to enterprise software systems

	Summaries of Included Papers
	Conclusions
	Further Works
	References

