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Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

(November 10, 2018)

Proofs that Fredholm determinants of transfer operators for hyperbolic flows are entire can be ex-
tended to a large new class of multiplicative evolution operators. We construct such operators both
for the Gutzwiller semi-classical quantum mechanics and for classical thermodynamic formalism,
and introduce a new functional determinant which is expected to be entire for Axiom A flows, and
whose zeros coincide with the zeros of the Gutzwiller-Voros zeta function.

It has been established recently [1,2,3] that the
Gutzwiller-Voros zeta function [4] derived from the
Gutzwiller semi-classical trace formula [5] is not an en-
tire function. In this letter we construct a new classical
evolution operator (6) whose Fredholm determinant (10)
is entire for Axiom A flows, and whose spectrum contains
the semi-classical Gutzwiller spectrum. Many physically
realistic chaotic scattering systems [6,7] are of Axiom A
type, and for them the new determinant has much bet-
ter convergence properties than the Gutzwiller-Voros and
Ruelle type zeta functions utilized previously [7,8].
The main idea, extending the dynamical system to the

tangent space of the flow, is suggested by one of the
standard numerical methods for evaluation of Lyapunov
exponents [9]: start at x0 with an initial vector ξ(0),
and let the flow transport it to ξ(t) along the trajectory
x(t) = f t(x0). The growth rate of this vector is multi-
plicative along the trajectory

|ξ(t+ t′)|

|ξ(0)|
=

|ξ(t+ t′)|

|ξ(t)|
×

|ξ(t)|

|ξ(0)|
, (1)

and can be represented by the trajectory of a “unit” vec-
tor u(t) multiplied by the factor |ξ(t)|/|ξ(0)|. For asymp-
totic times and for almost every initial (x0, ξ(0)), this fac-
tor converges to the leading eigenvalue of the linearized
stability matrix for the flow.
We implement this multiplicative evaluation of stabil-

ity eigenvalues by adjoining [10] the d-dimensional trans-
verse tangent space ξ ∈ TUx, ξ(x) · v(x) = 0, to the
(d+1)-dimensional dynamical evolution space x ∈ U ⊂
R

d+1. The dynamics in the (x, ξ) ∈ U × TUx space is
governed by the system of equations of variations [11]:

ẋ = v(x) , ξ̇ = Dv(x)ξ .

Here Dv(x) is the transverse derivative matrix of the
flow. We write the solution as

x(t) = f t(x0) , ξ(t) = J
t(x0) · ξ0 , (2)

with the tangent space vector ξ transported by the trans-
verse stability matrix J

t(x0) = ∂x(t)/∂x0. In order to de-
termine the length of the vector ξ we introduce a signed

norm, a differentiable scalar function g(ξ) with the prop-
erty g(Λξ) = Λg(ξ) for any number Λ. While in general
such norm is a space dependent function g(ξ, x), we shall
assume here for reasons of notational simplicity that g is
a function of ξ only. An example is the function

g









ξ1
ξ2
· · ·
ξd









= ξd . (3)

Any vector ξ ∈ TUx can now be represented by the prod-
uct ξ = Λu, where u is a “unit” vector in the sense that
its signed norm is g(u) = 1, and the factor

Λt(x0,u0) = g(ξ(t)) = g(Jt(x0) · u0) (4)

is the multiplicative “stretching” factor introduced in (1)

Λt′+t(x0,u0) = Λt′(x(t),u(t)) Λt(x0,u0).

The u evolution constrained to ETg,x, the space of unit
tangent vectors transverse to the flow v, is given by
rescaling of (2):

u
′ = Rt(x,u) =

1

Λt(x,u)
J
t(x) · u . (5)

Eqs. (2), (4) and (5) enable us to define a multiplicative

evolution operator on the extended space U × ETg,x

Lt(u′, x′;u, x) = eh(x)δ(x′ − f t(x))
δ(u′ − Rt(x,u))

|Λt(x,u)|β−1
,

(6)

where h is a function additive along the trajectory, and
β is a number. This should be contrasted to “thermody-
namic” [12,13,14] operators of form
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Lt(x′, x) = eh(x)δ(x′ − f t(x))
1

|Λt(x)|β−1
,

with Λt(x) an eigenvalue of Jt(x). Such operators are
not multiplicative in two or more transverse dimensions,
for the simple reason that the eigenvalues of successive
stability matrices are in general not multiplicative

Λab 6= ΛaΛb.

Here Jab = JaJb is the stability matrix of the trajectory
consisting of consecutive segments a and b, Ja and Jb are
the stability matrices for these segments separately, and
Λ’s are their eigenvalues. In particular, this lack of mul-
tiplicative property for Λ’s had until now frustrated at-
tempts [15] to construct evolution operators whose spec-
trum contains the semi-classical Gutzwiller spectrum.
In order to derive the trace formula for the operator (6)

we need to evaluate TrLt =
∫

dxduLt(u, x;u, x). The
∫

dx integral yields [16] a weighted sum over primitive
periodic orbits p and their repetitions r:

TrLt =
∑

p

Tp

∞
∑

r=1

erhpδ(t− rTp)

| det(1− Jr
p) |

∆p,r,

∆p,r =

∫

g

du
δ(u−RTpr(xp,u))

|ΛTpr(xp,u)|β−1
, (7)

where Jp is the prime cycle p transverse stability matrix.
As we shall see below, ∆p,r is intrinsic to cycle p, and
independent of any particular cycle point xp.
We note next that if the trajectory f t(x) is periodic

with period T , the tangent space contains d periodic so-
lutions

ei(x(T + t)) = ei(x(t)) , i = 1, ..., d,

corresponding to the d unit eigenvectors {e1, e2, · · · , ed}
of the transverse stability matrix, with “stretching” fac-
tors (4) given by its eigenvalues

Jp(x) · ei(x) = Λp,i ei(x) , i = 1, ..., d.

The
∫

du integral in (7) picks up contributions from these
periodic solutions. In order to compute the stability of
the i-th eigendirection solution, it is convenient to expand
the variation around the eigenvector ei in the stability
matrix eigenbasis δu =

∑

δuℓ eℓ . The variation of the
map (5) at a complete period t = T is then given by

δRT (ei) =
J · δu

g(J · ei)
−

J · ei
g(J · ei)2

(

∂g(ei)

∂u
· J · δu

)

=
∑

k 6=i

Λp,k

Λp,i

(

ek − ei
∂g(ei)

∂uk

)

δuk . (8)

The δui component does not contribute to this sum since
g(ei + duiei) = 1 + dui implies ∂g(ei)/∂ui = 1. Indeed,
infinitesimal variations δu must satisfy

g(u+ δu) = g(u) = 1 =⇒
d
∑

ℓ=1

δuℓ
∂g(u)

∂uℓ
= 0 ,

so the allowed variations are of form

δu =
∑

k 6=i

(

ek − ei
∂g(ei)

∂uk

)

ck , |ck| ≪ 1 ,

and in the neighborhood of the ei eigenvector the
∫

u

integral can be expressed as
∫

g

du =

∫

∏

k 6=i

dck .

Inserting these variations into the
∫

du integral we obtain
∫

g

du δ(ei + δu−RT (ei)− δRT (ei) + . . .)

=

∫

∏

k 6=i

dck δ ((1− Λk/Λi)ck + . . .)

=
∏

k 6=i

1

|1− Λk/Λi|
,

and the
∫

du trace (7) becomes

∆p,r =

d
∑

i=1

1

| Λr
p,i |

β−1

∏

k 6=i

1

| 1− Λr
p,k/Λ

r
p,i |

. (9)

The corresponding Fredholm determinant is obtained by
observing [16] that the Laplace transform of the trace

TrL(s) =

∫ ∞

0+

dt est Tr L(t)

is a logarithmic derivative TrL(s) = − d
ds logF (s) of the

Fredholm determinant:

F (β, s) = exp

(

−
∑

p,r

e(hp+sTp)r

r | det(1 − Jr
p) |

∆p,r(β)

)

. (10)

This determinant is the central result of this paper. Its
zeros correspond to the eigenvalues of the evolution op-
erator (6), and can be evaluated by standard cycle ex-
pansion methods [3,17].
In the “thermodynamic” formalism [12,13,14] for clas-

sical chaotic systems, and in the Gutzwiller semi-classical
description of systems with chaotic classical counterpart
[5], β is a parameter which plays the role of “inverse tem-
perature”, and hp is the integral of some weight function
h(x) evaluated along the prime periodic orbit p. In the
semi-classical quantization case [5]

β = 1/2, hp = iSp/h̄+ iνpπ/2, s = 0 , (11)

where Sp is the action of the periodic orbit, and νp its
Maslov index. The classical correlation spectra are given
by β = 1 and hp = 0.
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The simplest application of (10) is to 3-dimensional hy-
perbolic Hamiltonian flows (higher dimensions need fur-
ther evolution operators, for outer products of vectors
rather than single vectors). In this case Λ1 = 1/Λ2 = Λ,
and the Fredholm determinant is given by

Fσ(β, s) = exp

(

−
∑

p,r

σr
p

r | Λr
p |

er(hp+sTp)

(1 − 1/Λr
p)

2
∆p,r(β)

)

∆p,r(β) =
| Λr

p |−β+1

1− 1/Λ2r
p

+
| Λr

p |β−3

1− 1/Λ2r
p

. (12)

The extra multiplicative factor is set to the eigenvalue
sign σ = Λ/|Λ| for F−, and to σ = 1 for F+; this will be
used below.
The Gutzwiller-Voros zeta function corresponds to set-

ting ∆p,r = |Λr
p|

1/2(1 − 1/Λr
p), and the “quantum Fred-

holm determinant” [2] is obtained by setting ∆p,r =
|Λr

p|
1/2 in (12). The practical advantage of (10) over

the more familiar Gutzwiller-Voros and Ruelle type zeta
functions was demonstrated by detailed numerical stud-
ies [3] of the related quantum Fredholm determinant [2].
In the systems studied, the quantum Fredholm determi-
nant appeared to be entire for all practical purposes; only
the most recent numerical investigations [18] reveal poles
absent in (10), see fig. 1.
It can be shown [18] that the Fredholm determinant

obtained by keeping only one of the terms in the sum in
(9) is entire. This enables us to show that the Gutzwiller-
Voros zeta function Z(E) for Axiom A flows is meromor-
phic in the complex E plane, as it can be written as a
ratio of entire functions; for 2-dimensional Hamiltonian
systems

Z(E) =
F+(

1
2 , E)F−(

7
2 , E)

F−(
3
2 , E)F+(

5
2 , E)

, (13)

where Fσ includes only the first term in the ∆p,r sum
(12). The zeros of the Gutzwiller-Voros zeta function
coincide with the ones obtained from F+(

1
2 , E). Such

relations follow by inserting into ∆p,r identities like

1 =
1

1− 1/Λr
−

1

Λr

1

(1− 1/Λr)
.

(σ weight in (12) is needed to account for the 1/Λ = σ/|Λ|
term in the above indentity).
We illustrate a choice of the g(ξ) function and construc-

tion of the R dynamics (5) by a simple explicit exam-
ple: 2-dimensional Hamiltonian dynamics reduced to a
2-dimensional Poincaré section return map xi+1 = f(xi).
The stability matrix of cycle p is a product of the [2× 2]
stability matrices

Jj =

(

Aj Bj

Cj Dj

)

,

where Aj = ∂f1(xi)/∂x1, and so on. Assume the signed
norm (3) and multiply an initial unit vector by the first

stability matrix in the product. The resulting vector can
be written as

J1

(

κ1

1

)

= (C1κ1 +D1)

(

A1κ1+B1

C1κ1+D1

1

)

.

Hence the dynamics acts on the unit vectors as a rational
fraction transformation

κk+1 = R(xk, κk) =
Akκk +Bk

Ckκk +Dk
, (14)

with the signed norm (4) of the iterated vector given by

Λnp(x1, κ1) =

np
∏

i=1

(Ciκi +Di) .

(In the case of 2-dimensional billiards, κ is the
Bunimovich-Sinai curvature [19]). For a periodic or-
bit κnp

= κ0, the unit vector is an eigenvector of the
stability matrix, and the corresponding eigenvalue is
Λp =

∏

(Ciκi +Di). For 3-dimensional hyperbolic flows
there are two distinct κp,i values, one for the expand-
ing, and the other for the contracting eigenvalue. The
derivative of Rnp is easily evaluated;

∂

∂κ
Rnp(κ1, x1) =

np
∏

i=1

R′(κi, xi) =

np
∏

i=1

1

(Ciκi +Di)2
,

(we have used det(Ji) = 1) and we again obtain the trace
formula (12).
In conclusion, we have constructed a classical evo-

lution operator for semi-classical quantization, and de-
rived a new determinant for periodic orbit quantization
of chaotic dynamical systems. The main virtue of the de-
terminant (10) is that the theorem of H.H. Rugh [20], ap-
plicable to multiplicative evolution operators such as (6),
implies that this determinant should be entire for Axiom
A flows, ie. free of poles in the entire complex s or com-
plex energy plane. One consequence of this general result
is that the cycle expansions of the new Fredholm deter-
minant should converge faster than exponentially. Our
numerical tests support above claims [18]; one example
is given in fig. 1 which demonstrates that the new de-
terminant is analytic to the limit of numerical precision
of current cycle expansions, and well beyond both the
Gutzwiller-Voros zeta function and the quantum Fred-
holm determinant.
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FIG. 1. The leading semi-classical resonances in the k com-
plex wave-number plane (×) for the determinant (10), com-
pared with (✷) the zeros of the “quantum Fredholm deter-
minant” [2,3]. While the quantum Fredholm determinant
has a finite region of analyticity (the bottom line of zeros
reflects a pole expected at Im(k) = −4.559843 . . ., indi-
cated by the dashed line labeled “QF”), the new determi-
nant shows no numerical indication of any poles, and en-
ables us to reach resonances deeper down in the complex
plane. The Gutzwiller-Voros determinant is reliable only
down to the line labeled “GV”, Im(k) = −2.491905 . . ., the
upper bound on the poles of determinant F−(

3

2
, E) in (13).

The dynamical system tested is the Hamiltonian Hénon map
xk+1 = 1 − ax2

k − xk−1 at a = 20, with cycle expansions
truncated to cycles up to period 18. We take as action
Sp/h̄ = knp, and as the Maslov phase νp = 2np (this is a
normal-form model of a 3-disc repeller, see ref. [3]).
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