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Abstract. Let [a, b] be a bounded interval with oäO. Under what conditions on
the sequence of exponents {A„} can every function in L"[a, b] or C[a, b] be approxi-
mated arbitrarily closely by linear combinations of powers xAn? What is the distance
between xA and the closed span S^x*")"? What is this closed span if not the whole
space? Starting with the case of L2, C. H. Müntz and O. Szász considered the first two
questions for the interval [0, 1]. L. Schwartz, J. A. Clarkson and P. Erdös, and
the second author answered the third question for [0, 1] and also considered the
interval [a, b]. For the case of [0, 1], L. Schwartz (and, earlier, in a limited way,
T. Carleman) successfully used methods of complex and functional analysis, but
until now the case of [a, b] had proved resistant to a direct approach of that kind.
In the present paper complex analysis is used to obtain a simple direct treatment for
the case of [a, b]. The crucial step is the construction of entire functions of exponential
type which vanish at prescribed points not too close to the real axis and which, in a
sense, are as small on both halves of the real axis as such functions can be. Under
suitable conditions on the sequence of complex numbers {A„}, the construction leads
readily to asymptotic lower bounds for the distances dH = d{xK*, Sc(xÁ", n^k)}.
These bounds are used to determine 5c(jcai) and to generalize a result for a boundary
value problem for the heat equation obtained recently by V. J. Mizel and T. I.
Seidman.

1. Introduction.    Let {A„} be a sequence of distinct complex numbers not too
close to the imaginary axis: we require that, for some constant S > 0 and all large n,

(1.1) |ReA„| ^ S|An|.

Problems of approximation by linear combinations of powers xA» (we will always
take the principal values) on a bounded interval [a, b] with a>0 led us to the
following questions. How rapidly can an entire function f(z) of exponential type
t>0 tend to zero on both halves of the real axis, and what zeros (we are thinking
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24 W. A. J. LUXEMBURG AND J. KOREVAAR [June

of the points i\n) can it have outside small angles containing those halves? Separate
answers to the two questions can be found in the literature, but not in a form that
makes them easily applicable to problems such as that of determining the distance
in Lp[a, b] (1 ^p<co) between xh* and the closed span Sc(x\ n^k) of the other
powers xV One has the following

Theorem. Let t>0 be given, let to(t) be a nonnegative increasing function defined
for t^O, and let {An} be a sequence as above. Then there exists an entire function f{z)
of exponential type r such that

(1.2) \f{x)\ Ú exp{-^([x|)},        -co < x < co,

and

(1.3) /(/An) = 0,       «=1,2,...,

if and only if both

(1.4) [^dt<^

and

™ 2'îT . < co.
AI

(Here and in the following, 2' and YY denote sums and products including all
terms or factors of the form indicated with nonvanishing denominator.)

In view of (1.1), the necessity of conditions (1.4) and (1.5) follows readily from
standard results (see §2, and cf. [1, pp. 85, 86], [3, p. 38], [11, p. 28]) that are
usually derived from T. Carleman's theorem [2]. In the other direction, several
authors have noted the existence of "finite" Fourier transforms/(x) not identically
zero (hence, restrictions of entire functions of positive exponential type) which
satisfy conditions of smallness closely related to (1.2), (1.4). They include R. E.
A. C. Paley and N. Wiener [15, pp. 16, 24], A. E. Ingham [5], A. Wintner [18],
[19], [20], [21], B. Jessen and A. Wintner [6], N. Levinson [10], [11, p. 81], T.
Kawata [7], and S. Mandelbrojt [12]. However, only S. Mandelbrojt looked at
these functions also as entire functions.

Forgiven t>0 and given w(t)and{\n} suchthat (1.4) and (1.5) hold we construct
an entire function/(z) of exponential type t satisfying (1.2) and (1.3) in the form

(1.6) /(z) = cz YT (l + S) fi cos (^)-
Products of the second kind were introduced by A. Wintner (loc. cit.) for real
z = x.

Using the above theorem we prove very simply that the sequence of powers
{**»} spans one (and all) of the spaces C[a, b] and Lp[a, b] (1 ̂ p<co) if and only if

(1.7) 2'¿[ = --

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971]        ENTIRE FUNCTIONS, MÜNTZ-SZÁSZ TYPE APPROXIMATION 25

For the sufficiency of (1.7) when Re |An| ̂ 8|A„| (cf. B. Ja. Levin [9, p. 416]); the
more difficult part is to prove that (1.7) is necessary. For real An the complete
result was obtained by L. Schwartz [16]; cf. also the closely related work by
J. A. Clarkson and P. Erdös [4] and the second author [8]. The methods used by
these authors would also work for nonreal A„. However, they compare approxima-
tion on [a, b] with approximation on [0, 1]; our method is much more direct.
Corresponding results for C[0, 1] and L"[0, 1] (1 áp <co) are much older and due to
C. H. Miintz [14] and O. Szász [17]; T. Carleman [2] was the first to give a complex-
analysis proof for the interval [0, 1] (cf. also [15, p. 32]).

Suppose, finally, that the sequence {A„} satisfies (1.1), (1.5) and the separation
condition

(1.8) |Am-An| 2: \m-n\P

where p>0. All we need of (1.8) is the conclusion that there exists a constant A
such that no disc in the plane contains more than 1 +AR points A„ where R is the
radius of the disc. Under these conditions our construction gives immediately the
following asymptotic inequalities for distances in C[a, b] and Lp[a, b]: for every
£>0,

dk = d{xA*, Sc(x\ n ¿ k)} ä (b-e)****   as Re Xk -+ +oo,

;> (a + e)ReÁ*   as Re A*.-* -co.

These estimates can be used to determine the closed span Sc(x**, «=1,2,...)
under conditions (1.1), (1.5) and (1.8) (cf. [16], [4] and [8] for the case of real An).
Recently, inequalities of the form (1.9) have proved useful in the discussion of
certain interesting boundary-value problems (see the work of V. J. Mizel and
T. I. Seidman [13] for the heat equation where An=«2, and cf. §8).

2. Necessity of (1.4) and (1.5). Let /(z) be an entire function of exponential
type t such that (1.2) holds with a nonnegative increasing function œ(t). Then
\f(x)\ is bounded by one on (-co, oo); hence for all z = x + iy (cf. Boas [1, p. 82]),

(2.1) \f(z)\ = \f(x + iy)\ í e*".
Lemma 2.1 (cf. [3, p. 38]). Let f(z) as above satisfy (1.2) with a nonnegative

increasing function m{t) such that

(2.2) f#*-°°.
Thenf=0.

Proof. We consider the auxiliary function

(2.3) g(z) = e^f(z),       Im z = 0.

Clearly
log|g(z)|á0, \0g\g(x)\í   -œ(\x\).
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26 W. A. J. LUXEMBURG AND J. KOREVAAR [June

We would like to conclude that the subharmonic function log \g(z)\ is bounded
by the Poisson integral of — co(|i|). However, the latter integral diverges! To get
around the difficulties we set

wp(t) = a>(t)   for 0 ^ t < p,

= 0        for t > p,

and we introduce the harmonic function

(2.4) up(x + iy) = - J"^ {x_ty+y2{-"Á\t\)} dt,       y>0.

Suitably normalizing o)p(t) at points of discontinuity we will have up(x + i0)
= — ojp(\x\); we will set up(x) = up(x + i0). Also up(z)->0 uniformly as z^co in
the upper half-plane. Thus for every e>0, log \g(z)\^up(z) + e both on the real
axis and on large semicircles with center 0; by the maximum principle the inequality
will hold throughout the upper half-plane. Letting e j 0 one finds that

(2.5) log | g(z) | ^ up(z),       Imz > 0.

By (2.2) wp(z)-3* -co as p-^co.  Letting p^ao in (2.5) one concludes that
log \g{z)\ = -co. Thus g(z) = 0 for Im z>0, and hence f=0.

Lemma 2.2 (cf. [11, p. 28]). Let f(z) be an entire function satisfying (2.1), and
suppose that its zeros zlt z2,... are such that

(2.6)

Thenf^O.
I iml CO.

Proof. Introduce g(z) as in the beginning of the preceding proof. Letting nH
denote a product over the zeros zn in the upper half-plane, the function

*)Oï1-Z/Zn
-z/z«

will also be analytic for Im z ä 0 and bounded by 1. It follows that for each p,

l-iy/Zn\\g(iy)\ = IT
Now for fixed y and large zn in the upper half-plane,

l-*>/z„
l-iyfin

Thus if
00    I II

\r^* I .        II = »,

y > 0.

r
n = l

< \-y Im I
Zn

Im-
Zn

then g(iy) = 0 and hence/=0. Similarly for the zeros zn in the lower half-plane.
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Corollary. For the zeros wn = i\n off(z) such that \lmwn\^S\wn\, one has

Im-L
Wn A.

Thus if the series in (1.5) diverges so does the series (2.6) and hence f=0.

3. Construction of functions satisfying (1.2). It will be sufficient if we can
construct a function /(z) of exponential type less than a given number 8 > 0 which
satisfies (1.2) for all large \x\. Indeed, given/(z) one can multiply it by a function
c cos fj.z to obtain a function/(z) of prescribed type t>0 which satisfies (1.2) for
all x.

Using an idea of A. Wintner [20] we try for/(z) a product of the form

00

(3.1) ~[œs(enz).
n = l

Here we take en j 0 and such that

(3.2) 2 en < 8.
i

Then the product will converge to an entire function/(z) such that

|/(x+i»| á exp|íj£nj|j|

hence/(z) will be of exponential type <S.
For real x we will have the inequality

(3.3) |/(*)|^(cosy)**>

where y is any given number between 0 and %n and v(x) is the number of positive
integers n such that |cos (enx)\ 5= cos y.

We will take y < 1 and x>0 (/is even), and count only those « for which

(3.4) y â A* S 1.
Taking

(3.5) cos y = 1/e

we want to make v(x) 2: co(;c) as x -*■ co.
Condition (3.4) may be rewritten as

(3.6) x = IK = px,       p= l/y.

It will be convenient to represent l/en as <p(ri) where tp(y) is a positive increasing
function defined for y^O. Introducing the inverse function </i of <p we can then
write (3.6) as <¡j(x) á « S ̂ (px). It follows that

(3.7) K*) = *{px)-<Kx),
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28 W. A. J. LUXEMBURG AND J. KOREVAAR [June

and we will assure that v{x) g; w(x) by defining

(3.8) ^.jjLpßU       a>0.

We need a strictly increasing function i/>(x), hence for (3.8) to work we have to
assume that w(t) is positive for t>a. This is no restriction: if a>(t) = Q for all t we
could simply take/(z)=l. We will impose a further condition on a later. Since
w(t) is increasing, (3.8) implies that

(3.9) <Kpx)-m = ¿ ¡"J ^dt^ o,(x),       x^a.

Hence by (3.3), (3.5) and (3.7),

(3.10) |/(x)| ¿ (cosy)v(*> ú e-°>«x,\       \x\ ä a.

We still have to make sure that the series 2f en converges and has sum < 8.
Clearly

,.n   ^    ^ i    f* i  .    roniM/\    i  r<w)«(jc),
(3.11)   ?^-?^<J0ä55*-J.   ï«w-Et;J.   ^Ä-
Thus when the integral in (1.4) converges, so does the series 2? en> and its sum
will be bounded by (1/log p) J" (<u(x)/x2) i/x. Taking a sufficiently large we can
guarantee (3.2).

Summarizing we have the following

Theorem 3.1. Let r be an arbitrary given number >0 and let w(t) be any non-
negative increasing function such that (1.4) holds. Then there exists an entire function

GO

(3.12) f(z) = c cos fizf(z) = c Y\ cos (enz)
71 = 0

of exponential type t which satisfies the inequality (1.2) everywhere on the real axis.

For related results, cf. [15, pp. 16, 24], [5], [18], [19], [20], [21], [6], [10], [11,
p. 81], [7] and [12].

4. Functions which vanish on a given sequence. Let {wn} be an arbitrary finite or
infinite sequence of complex numbers (not containing infinitely many naughts)
such that

(4-d Tie < co;
w.\

it is no restriction to assume that 0= |w?i|=' • • • = \wm\ < |wm+1| ̂  • • •. The simplest
entire function that vanishes on the sequence {wn} is

n('-0
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1971]        ENTIRE FUNCTIONS, MÜNTZ-SZÁSZ TYPE APPROXIMATION 29

but unless the wn are on or very close to the imaginary axis, this function is larger
on the real axis than we want it to be. We therefore form the function

(4.2) ^) = rn(i-á);
we will investigate its growth.

For ? = 0, let

«(0 =     2    L
0<\wn\it

Observe that n(t) = 0 for / near 0 and that «(?)/?-> 0 as t—>-oo (if there are
infinitely many wn, (4.1) implies that n/\wn\ -*■ 0). It follows that the integral

(4.3, ff*   (Jjpäa.jjUJO       t \       Jo t n>m  \Wn\/

converges.
We now estimate F(z) :

log \F(z)\ = m log+ \z\ + 2 log (l +Ä
n>m \ \W*\  I

f°° / |z|2\(4.4) = m log+ \z\ +\    log 11 +l-t) dn(u)

,     . -,  ,     rœ n(u)     \z\2      ,

Denoting the last member by 6(\z\), it is easy to see that 6(t)¡t ->■ 0 as t -> oo,
hence F(z) is an entire function of exponential type 0. More precisely, 6(t) is a
nonnegative increasing function for i = 0 such that

f> Í—H"%*)<   CO.

Theorem 4.1. Let {wn} be any sequence of complex numbers {not containing
infinitely many naughts) that satisfies condition (4.1). Then formula (4.2) defines an
entire function F(z) of exponential type 0 such that the wn occur among its zeros, and
for which

(4.6) \F(x)\ = exp (0(|;t|)},        -co < x < oo,

with a nonnegative increasing function 8(t) satisfying (4.5).

5. The principal result.    Combining Theorems 4.1 and 3.1 we obtain

Theorem 5.1. Let t be an arbitrary given positive number, let {wn} be any sequence
of complex numbers (not containing infinitely many naughts) that satisfies condition
(4.1), and let w(t) be any increasing function defined for /âO such that (1.4) holds.
Let F(z) be the function defined by (4.2), 6(t) the function defined just below (4.4).
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Letf(z) be as in §3, except thatf{z) should correspond not to the given to(t) but to the
admissible increasing function a>(t) + 8(t). Then the product

(5.1) G(z) = F(z)f(z)
is an entire function of exponential type t such that the wn occur among its zeros
while
(5.2) |G(x)| ^ exp{-íü(|x|)},        -co < x < co.

Suppose now that exp{ —cu(x)} belongs to L2(0, co). Then G(x) belongs to
L2(—co, co), hence by the Paley-Wiener theorem ([15, p. 13], cf. [1, p. 103]) one
can represent G(z) as a Fourier transform

(5.3) G(z) = j^g(t)e

with g(t) in L2(—t, t). Since \G(z)\ is even, the supporting interval of g(t) is the
whole interval [— t, t] (cf. [1, p. 108]). When exp{ —to(x)} tends to zero faster
than any power of 1/x as x-^oo (as is the case when a>(x) = x1'2), the inverse
Fourier transform g(t) of G(x) will be of class C00 on (-co, co). Multiplying G(z)
by a suitable exponential e'iaz we thus obtain

Theorem 5.2. Let {wn} be an arbitrary sequence of complex numbers (not con-
taining infinitely many naughts) that satisfies condition (4.1), and let [a, ß] be an
arbitrary bounded interval. Then there exists a C°° function g(t) on (-co, co) with
supporting interval [a, ß] whose Fourier transform

(5.4) G(z) =  f g{t)e-lztdt
Ja

has the form

i-Si •<*"•" n *»(**)Wnl ,7=0

With en>0, en jO/or «al, 2" £„ = t<00, o-t = <x, a+T = ß.

6. Müntz-Szász type theorems for [a, b]. Lemma 2.2 and Theorem 5.2 enable
us to give a relatively simple proof of

Theorem 6.1. Let [a, b] be a closed bounded interval such that a>0, and let {A„}
be a sequence of distinct complex numbers such that (1.1) holds for all large n.
Then the sequence of powers {xA«} spans one (and all) of the spaces C[a, b] and
Lp[a, b] (1 ̂ p < co) if and only if(\.T) is satisfied.

For Re An^S|An| the sufficiency of (1.7) was noted by B. Ja. Levin [9]; for real
A„ the theorem was proved by L. Schwartz [16].

Proof, (i) Suppose that (1.7) holds. It will be sufficient to show that the powers
xA» span C[a, b]. Assuming they do not, there must be a measure dfj. of total mass 1
on [a, b] such that

Íb
xA» d[j,(x) = 0,       n = 1,2,
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1971]        ENTIRE FUNCTIONS, MÜNTZ-SZÁSZ TYPE APPROXIMATION 31

We now introduce the function

/(z) =  fVte<fr(*)=  f e-^dvHé);
Ja Ja

a = loga, ß = \ogb. Clearly/(z) is entire and of exponential type, bounded by
Ja I^mI = 1 for real z, and such that/(/An) = 0. However, summing over all sufficiently
large «, so that An#0 and (1.1) is satisfied, and using (1.7),

2>¿ =2 *4 ^s2
Thus by Lemma 2.2, /=0 and hence dp, = 0, a contradiction.

(ii) Suppose now that (1.5) holds. In this case it will be sufficient to show that
the powers xA» fail to span L[a, b]. That is, we want to prove the existence of a
bounded integrable function h(x) on [a, b] different from the zero function and
such that

(6.1) f x"»h(x) dx = 0,       «=1,2,....
Ja

Setting x = el, equation (6.1) requires that the function

(6.2) G(z) =  f x~izh(x) dx =  f e-™h(ê)el dt
Ja Ja

vanish on the sequence {/AJ. We can satisfy this condition by setting h(et)et=g(t)
with g(t) as in Theorem 5.2, taking wn = i\n.

Remark. In part (ii) we have not used (1.1). A slight modification of part (ii)
will show that under condition (1.5), no power Xa* is in the closed span of the other
powers xA». In fact, one need only replace h(x) and G(z) by hk(x) and Gk(z) as
defined in (7.3), (7.4). To obtain estimates for the distance dk between xA* and
Sc(xK", n^k) other than the trivial one, dk > 0, we have to impose further conditions
on the sequence {An}.

7. Inequalities.    We will now prove the asymptotic estimates (1.9):

Theorem 7.1. Let [a, b] be a closed bounded interval such that a>0, let {An} be a
sequence of complex numbers satisfying (1.1) (for all large «), (1.5) and (1.8), and
let e be any given positive number. Then the distances

(7.1) dk = d{x\ Sc(x\ n ft k)}

in C[a, b] and L"[a, b] satisfy the asymptotic inequalities (1.9).

Proof. It will be sufficient to consider the case of L[a, b]. Also, we need only
consider the case where Re Ák -> +co; the other case will follow by the change of
variable x= \\y in appropriate integrals for distances in L[a, b].

For every bounded integrable function hk(x) such that
rb

xx'hk(x) dx = 0,       « # k,S
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one has

(7.2)

We will take

(7.3)

where

(7.4)

W. A. J. LUXEMBURG AND J. KOREVAAR [June

|J>*hk(x) dx 4 sup \hk(x)\.

i x~izhk(x) dx =  f  e'^h^Y dt = Gk(z),
Ja Ja

Gk(z) = z n<k) (l +Ç)e-ia* ft cos (enz),
\        An/ n = 0

with en>0, 2o° £n = T, ° — T = œ = loga, <7+T = j8 = logè. Here ri<w denotes a
modified product over n defined as follows: there is no factor with An = 0, the
factor 1 + z2/Xk is replaced by 1 + z/iXk, and if there is a positive integer p=pk such
that — A„ is within distance \p of Xk, the factor 1 + z2/A2 is replaced by 1 — z/iXp.

We observe that for all real u, and all k so large that \\k\ ^ 1 + %p (so that for
P=Pk, |\| >1),

\Gk(u)\ fi \u\ YY (l+rni)(l+ f )(l+ f ) ft |cos(e„«)|
(7.5) niktp   V Kl   M K/\ AP  /  t = 0

á   |«|(1 + \u\)2 YY (l +jfr^ f] ICOS (enu)\  = #(«),
\        |An|  /   „ = o

say. We will choose our numbers en such that H(u) is integrable over (—co, co)
(cf. §§4 and 5). By Fourier inversion,

hence by (7.5),

(7.6)

hk(ê)ê = ^-T   Gk(u)eu« du,

sup   \hk(x)\ <, I¿ r   \Gk(u)\du

S J- r   H(u) du = M,       k^ k0.
lira J _ a,

By (7.2), (7.3) and (7.6),

(7.7) dk ï (l/M)\Gk(iXk)\,       k ^ k0.

For Re Xk > 0 we write
\5> co

exp (a Re Xk) T \ |cosh enXk

(7.8)
i^(/Afc)i = iAfci n<w XI

1_A"
A2

¿ReAt-Ql|1+exp(_2eA)|.

Thus the proof of (1.9) may be completed with the aid of the following lemmas.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971]        ENTIRE FUNCTIONS, MÜNTZ-SZASZ TYPE APPROXIMATION

Lemma 7.2. Under conditions (1.5) and (1.8),

33

\k\ IT AH oo.2; exp(-e[Ak|)   as |Ak|

Lemma 7.3. Under conditions (1.1) (for large n) and (1.5),
00

1 !|l+exp(-2fiA)| 2: exp(-£|Afc|)   as Re Xk -> +co.
n = 0

Indeed, by (7.7), (7.8), the lemmas, and (1.1)

dk 2: (l/M)bRe^ exp (-2e|Ak|) 2: (l/M)6ReA* exp (-(2e/S) Re Ak)

(b-e'r as Re Afc CO.

Proof of Lemma 7.2. (Cf. N. Levinson [11, p. 92]; Levinson proves a closely
related inequality under the tacit assumption that all A„ lie in the right half-plane.)

(i) We begin by proving the corresponding inequality for

I A,,.IT i A*
A„

To do this, we split the product into three parts: a first part where |A„| é"è|Afc|j
a second part where i|Ak| < |A„| <2|Ak|, and the third where |An| 2t2|Ak|. The
factors in the first part have absolute value 2:1 and may be omitted. For those in
the second part, of which there are r with n<k and s with n > k, say, condition (1.8)
gives

A. — At.
(7.9) n >rï(n-k)p >    ,    ,/_g_\r

= 11   2|Afc|    =r-S-\2\\k\)

By (1.5), the sum 2 l/|An| over the An in (7.9), that is, the An such that i|Ak| < |An|
< 2| Ak|, must tend to zero as k -> oo. Now this sum is bounded below by (r + s)/2\ Ak|,
hence r and s are of the form ij| Ak| with small r¡'s. It follows that for large k,

logr! + rlogip-/-log |Ak| « r,\\k\ \og(r¡P/2e) 2; -£|Ak|;

similarly with r replaced by s. Thus (7.9) has a lower bound of the right form. For
the third part, finally,

logfl 1 _^Jf
A.

■22 ■21A2 jh ̂  -l^ifc| &> IA

as k -> oo.
(ii) The case of the product in the lemma can be reduced to the above by

arranging the points A„ (with «#&) and — An (with n^pk) in a single sequence
{/4k)} such that

|tf»-A»| S \n-k\p/4.
To see that this is possible, observe that the open disc about Ak of radius R contains
at most 2R/p points An (with n=/=k). The number of points — An in that disc is
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bounded (very crudely) by 1 +4Rjp; however, there is no point — An within distance
\p of the center. It follows that as R increases through the value vp/4, the number
of points ± A„ in the disc can increase to no more than 2v, v= 1, 2,.... The result
now follows.

Proof of Lemma 7.3. Since Re A,,—>- +co, we may assume that Re Afc^S|Afc|.
It is convenient to split the product into two parts: a first part where 2en|Afc| >^,
and a second where 2en\Xk\-i\. For the factors of the first part, Re2EnAfc>^S,
hence

i|l+exp(-2£A)| =? i(l-exp(-Re2£A)) > Hí.-«"*)•

Denoting the number of factors in the first part by v one has 2ev|Afc| >%; since
en j 0 for n S: 1 and 2 £n converges, ev has the form -qjv with small r¡. It follows that
^<4?j|Afc| ; thus the first part has a lower bound of the right form. For \z\ á-l,

log||l+e-*| g log(l-î|z|) ^ -\z\.

Thus the logarithm of the second part is bounded below by — 2|Afc| 2n>v £n> and
the proof of Lemma 7.3 is finished.

8. Applications.    We begin by proving

Lemma 8.1. Let p(x) be a finite sum of the form 2 a„xA». Then in each of the spaces
C[a, b] andLp[a, b] (with a^0,l^p<x>)

(8.1) Ws4-|/<*)I,       A: =1,2,...,
"fc

where dk is the distance between xA* and the closed span of the other powers xV
The inequality holds also when p(x) is the sum of an infinite series 2 önxA« which
converges in the space considered.

ä \ak\dk.

Proof. Indeed,

||Kx)|| = |afc||U-2^-

As a first application we indicate how to determine the closed span

Sc(x\n= 1,2,...)

in the spaces C[a, b] andLp[a, b] (with a>0) under conditions (1.1), (1.5) and (1.8).
Suppose/(x) is a limit of finite linear combinations />/x) = 2 an;XA". Then by (8.1)
the numbers akj,j= 1,2,..., formaCauchy sequence, hence a convergent sequence;
we denote its limit by bk. Since the norms ||/>;|| tend to ||/|| they are bounded by a
constant M. Thus by (8.1) and (1.9), given e>0 there is a constant A such that

Kl, \bk\ Ú M(b-e)-**K .when Re Xk > A,
^ M(a + e)-ReA«   when Re Xk < -A.
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It follows from (8.2) that the series 2f bnxÁ^ is absolutely and uniformly con-
vergent on every closed subinterval [a', b'] of (a, b), and that its sum is the uniform
limit of the p,(x) on such intervals. However, the pj(x) converge to/(x) in C[a, b]
or Lp[a, b]. Hence

oo

(8.3) f(x) = 2 bnx*n,       a < x < b
i

(in an almost everywhere sense in the case of V).
In the other direction one can show that every function f(x) of the form (8.3)

which can be extended to a function in C[a, b], or which is in V\a, b], is in
5c(xA», «=1,2,...). Indeed, writing f=f+ +f~, where/"1" is the sum of the terms
with Re An>0, one may apply to/+ a result of the second author [8, Theorem 2,
p. 751], and similarly for/".

One thus obtains

Theorem 8.2. Let [a, b] be a closed bounded interval such that a>0, and let {An}
be a sequence of complex numbers satisfying (1.1) (for large «), (1.5) and (1.8).
Then the closed span Sc(xA", n=l, 2,...) in C[a, b] or Lp[a, b] is the subspace
consisting of those functions f(x) which for a<x<b have a convergent representation
(8.3).

For the special case of real An, L. Schwartz [16] proved this result and more.
Cf. also [4] and [8].

We finally apply the inequalities (1.9) to a situation which occurs in certain
boundary-value problems. Let S be any bounded set of positive measure in R",
and let {<pn(x)} be a sequence of functions on S which are continuous at a point x0
of S (often a boundary point) and such that for some constant B,

(8.4) |«pn(x)| á B\Vn(x0)\,        xeS,    «=1,2,....

Now let u(x, t) be a function given by a convergent series

oo

(8.5) u(x, 0 = 2 cn9n(x) exp (- Xnt),       xeS,    t > 0.
i

Here the numbers An are assumed to satisfy conditions (1.5) and (1.8); instead of
(1.1) we require that, for all large «,

(8.6) ReAn2i 8|An|.

Under the given conditions, the series (8.5) will converge absolutely and uniformly
for x 6 S, t ä E > 0.

The problem is as follows. Do the values u(x0, t) on some finite i-interval,
0</<l, say, uniquely determine the function u(x, 1) on S, and does u(x, 1)
depend continuously on u(x0, t) ? In the special case of the heat equation con-
sidered by V. J. Mizel and T. I. Seidman [13], the problem takes the following
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interesting form (we take p=l). Does the temperature variation over the time
interval 0</<l at one end of an insulated rod determine the temperature dis-
tribution along the rod at time 1=1, and does the latter depend continuously on
the former? In this case one may take 5=[0, n], cpn(x) = cosnx, x0 = 0 and A„ = «2.

Theorem 8.3. The function u(x, 1) on S is uniquely determined by w(x0, t),0<t<l,
and depends continuously on it: if \\ \\', \\ " denote supremum or V (lá/?<co)
norms on [0, 1] and on S, respectively, there is a constant M such that \\u(x, 1)||"
úM\\u(x0, OH'.

Proof. We may take (| ||' to be the L1 norm, || ||" to be the supremum norm.
Let 0<£<|. For />0,

co

u(x0, 0 = 2 c»9>n(*o) exp (-Ani);
i

because of (8.6) the series converges uniformly for e^t^l. Thus by (8.1), taking
a = e~1, b = e~E,

]     i>exp( - e)

Jexp(-l)
(8.7)

]     í>exp(-¡¡)

\ckyk(x0)\ Ú -t \u(xa, log(l/j))| ds
"k Jexp(-l)

l£|«(*o,0|e-tA=s j\\u(x0,t)\\'.

Since dk > 0 it follows that the numbers ck<pk(x0) are uniquely determined by u(x0, t),
and hence also the numbers ck (we may assume «^(xJ^O or else <pk(x) = Q because
of (8.4)). Thus

oo

u(x, 1) = 2 cn9>n(*) exp ( - An)
1

is uniquely determined by u(x0, t). Furthermore, by (8.7),
GO

||m(x, 1)||" é 2 W H<PnW||exp(-ReAn)
1

S B 2 k„| |?>n(^o)| exp (-Re A„)
i

^^d^-expí-ReA^H^Xo,;)!!'.

The proof is completed by the observation that the last series converges: by (1.9),

-i- ^ exp (2e Re An)   as n -> co.
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