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Abstract

We construct several new classes of transcendental entire functions, f , such that both the
escaping set, I ( f ), and the fast escaping set, A( f ), have a structure known as a spider’s
web. We show that some of these classes have a degree of stability under changes in the
function. We show that new examples of functions for which I ( f ) and A( f ) are spiders’
webs can be constructed by composition, by differentiation, and by integration of existing
examples. We use a property of spiders’ webs to give new results concerning functions with
no unbounded Fatou components.

1. Introduction

Let f : C → C be a transcendental entire function, and denote by f n, n ∈ N, the nth
iterate of f . The Fatou set F( f ) is defined as the set of points z ∈ C such that ( f n)n∈N forms
a normal family in a neighborhood of z. The Julia set J ( f ) is the complement of F( f ). An
introduction to the properties of these sets can be found in [6].

This paper concerns the escaping set I ( f ) and the fast escaping set A( f ), introduced
respectively by Eremenko [10], and Bergweiler and Hinkkanen [7]. These sets are defined
as follows:

I ( f ) = {z : f n(z) −→ ∞ as n −→ ∞},
and

A( f ) = {z : there exists L ∈ N such that | f n+L(z)| � Mn(R, f ), for n ∈ N};
see [20] for this form of the definition of A( f ). Here,

M(r, f ) = max
|z|=r

| f (z)|, for r > 0,

Mn(r, f ) denotes repeated iteration of M(r, f ) with respect to the variable r , and R > 0
can be taken to be any value such that M(r, f ) > r for r � R. For simplicity, we only
write down this restriction on R in formal statements of results – elsewhere this should be
assumed to be true.

Rippon and Stallard [20] gave a detailed account of many properties of A( f ). Their argu-
ments were frequently based on properties of the set

AR( f ) = {z : | f n(z)| � Mn(R, f ), for n ∈ N}.
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In particular they showed that AR( f ), A( f ) and I ( f ) can have a structure known as a
spider’s web, and that if AR( f ) is a spider’s web then so are A( f ) and I ( f ). They defined
a spider’s web as follows:

Definition. A set E is an (infinite) spider’s web if E is connected and there exists a sequence
(Gn)n∈N of bounded simply connected domains with Gn ⊂ Gn+1, for n ∈ N, ∂Gn ⊂ E, for
n ∈ N, and �n∈NGn = C.

Functions for which AR( f ) is a spider’s web have a number of strong dynamical prop-
erties. For example, if AR( f ) is a spider’s web then f has no unbounded Fatou compon-
ents [20, theorem 1·5(b)] and A( f )c has uncountably many components [17, theorem 1·2].
Hence, it is desirable to determine those functions for which AR( f ) is a spider’s web, and
in [20, section 8] several classes of such functions were given. A further class was given by
Mihaljević–Brandt and Peter [16].

In this paper we give additional classes of examples. First, in Section 2, we prove several
new results concerning regular growth conditions, which we use in later sections. These
results may also be of independent interest.

In Section 3, we demonstrate a technique for constructing new transcendental entire func-
tions for which AR( f ) is a spider’s web by taking finite compositions of functions that
satisfy a minimum modulus condition and a regularity condition.

In Section 4, we show that in certain circumstances when AR( f ) is a spider’s web, then
so is AR(P( f (Q(z)), z)), where P, Q are polynomials, and so also is AR( f + h), where
the entire function h has smaller growth, in some sense, than f . These results allow us to
construct a large class of functions for which AR( f ) is a spider’s web. They also show that
the property of having an AR( f ) spider’s web can be stable under changes in f , unlike many
other dynamical properties.

In Section 5, we establish a technique for constructing a large class of transcendental
entire functions of finite order for which AR( f ) is a spider’s web, by modifying the power
series of a transcendental entire function of finite order. This technique is a generalisation
of the method used to construct some of the examples in [20]. We show that this class of
examples can be extended by differentiation or integration. By combining the results of
Sections 3, 4 and 5, we give an unexpectedly simple function for which AR( f ) is a spider’s
web.

In Section 6, we present a technique for constructing new transcendental entire functions,
of infinite order and with large gaps in their power series, for which AR( f ) is a spider’s web.

Finally, in Section 7, we relate our results to previous work on classes of transcendental
entire functions which have no unbounded Fatou components.

Throughout the paper we use the following three facts about the maximum modulus func-
tion M(r, f ) of a transcendental entire function f . The first two are well known, and the
third is given in [19, lemma 2·2]:

log M(r, f )

log r
→ ∞ as r → ∞, (1·1)

if k > 1 then
M(kr, f )

M(r, f )
→ ∞ as r → ∞, (1·2)

and there exists R > 0 such that

M(rc, f ) � M(r, f )c, for r � R, c > 1. (1·3)
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We also use the minimum modulus function defined by

m(r, f ) = min
|z|=r

| f (z)|, for r > 0. (1·4)

Finally we use the following notation for a disc

B(z0, r) = {z : |z − z0| < r}, for z0 ∈ C, r > 0.

2. New results on regularity

In this section we set out conditions which ensure that AR( f ) is a spider’s web. Many
of these conditions require some form of regularity of growth. We prove several new results
concerning forms of regularity of growth, which enable us to construct examples of functions
with an AR( f ) spider’s web later in the paper.

A pair of conditions that are together necessary and sufficient for AR( f ) to be a spider’s
web were obtained in [20, theorem 8·1].

THEOREM 2·1. Let f be a transcendental entire function and let R > 0 be such that
M(r, f ) > r for r � R. Then AR( f ) is a spider’s web if and only if there exists a sequence
(Gn)n�0 of bounded simply connected domains such that, for all n � 0,

Gn ⊃ B(0, Mn(R, f )) (2·1)

and

Gn+1 is contained in a bounded component of C\ f (∂Gn). (2·2)

This result is very general, and so, in order to construct examples, the following, more
readily applicable, sufficient conditions for AR( f ) to be a spider’s web were established in
[20, corollary 8·3].

LEMMA 2·1. Let f be a transcendental entire function and let R > 0 be such that
M(r, f ) > r for r � R. Then AR( f ) is a spider’s web if, for some m > 1, m ∈ R,

(a) there exists R0 > 0 such that, for all r � R0,

there exists ρ ∈ (r, rm) with m(ρ, f ) � M(r, f ), and (2·3)

(b) f has regular growth in the sense that there exists a sequence (rn)n�0 with

rn � Mn(R, f ) and M(rn, f ) � rm
n+1, for n � 0. (2·4)

We use the following condition, which is stronger than the regularity condition of
Lemma 2·1(b), in order to construct a new class of functions with an AR( f ) spider’s web.

Definition. A transcendental entire function f is ψ-regular if, for each m > 1, m ∈ R,
there exist an increasing function ψm and Rm > 0 such that, for all r � Rm ,

ψm(r) � r and M(ψm(r), f ) � (ψm(M(r, f )))m . (2·5)

For given m > 1, m ∈ R, we call ψm a regularity function for f .
This condition is slightly stronger than one used in [19, theorem 5] in connection with

transcendental entire functions with no unbounded Fatou components. That version did not
require the regularity function to be increasing. However, all the regularity functions used in
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[19, 20] are, in fact, increasing. It was shown in [20, section 8] that if f is ψ-regular, then it
satisfies Lemma 2·1(b) for all m > 1, m ∈ R.

We also use the following condition, which is stronger than ψ-regularity, in order to con-
struct several classes of functions with an AR( f ) spider’s web.

Definition. Let c > 0. A transcendental entire function f is log-regular, with constant c,
if the function φ(t) = log M(et , f ) satisfies

φ′(t)
φ(t)

� 1 + c

t
, for large t. (2·6)

This condition was used by Anderson and Hinkkanen in [2, theorem 2], also in connection
with transcendental entire functions with no unbounded Fatou components. The name log-
regular was suggested by Aimo Hinkkanen in a private communication. The condition was
also used in [20, section 8] in order to construct classes of functions with an AR( f ) spider’s
web.

In [19, section 7] it was shown that if f is log-regular with constant c, then, for all m >

1, m ∈ R, f is ψ-regular with regularity function ψm(r) = rm1/c
; see also Lemma 2·2

below. Hence if f is log-regular, then it satisfies Lemma 2·1(b) for all m > 1, m ∈ R.
We now state three new results concerning ψ-regularity and log-regularity. The first con-

cerns the composition of ψ-regular functions.

THEOREM 2·2. Let f1, f2, . . . , fk be transcendental entire functions. Suppose that, for
all j ∈ {1, 2, . . . , k}, f j is ψ-regular with regularity function ψm for each m > 1, m ∈ R.
Let g = f1 ◦ f2 ◦ · · · ◦ fk . Then, for any c > 1, g is ψ-regular with regularity function cψm

for each m > 1, m ∈ R.

In particular it follows that ψ-regularity is preserved under iteration.

COROLLARY 2·1. If f is a ψ-regular transcendental entire function, then so is f n for all
n ∈ N.

The second result relates to the composition of entire functions, one of which is log-
regular.

THEOREM 2·3. Let f1, f2, . . . , fk be non-constant entire functions such that, for some
j ∈ {1, 2, . . . , k}, f j is a log-regular transcendental entire function. Let g = f1◦ f2◦· · ·◦ fk .
Then g is log-regular.

In particular it follows that log-regularity is preserved under iteration.

COROLLARY 2·2. If f is a log-regular transcendental entire function, then so is f n for
all n ∈ N.

Note that Theorem 2·2 requires all functions to be ψ-regular transcendental entire func-
tions, whereas Theorem 2·3 requires just one to be a log-regular transcendental entire func-
tion and the others only to be entire.

The third result shows that if f is log-regular, then so is any transcendental entire function
with similar growth.

THEOREM 2·4. Let f and g be transcendental entire functions. If f is log-regular and
there exist a1, a2 � 1 and R0 > 0 such that

M(ra1, g) � M(r, f ) and M(ra2, f ) � M(r, g), for r � R0, (2·7)

then g is log-regular.
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We need three preparatory lemmas to prove these results. The first lemma is from [18],
and gives a necessary condition and a sufficient condition for f to be log-regular.

LEMMA 2·2. Let f be a transcendental entire function.

(a) If f is log-regular, with constant c, then there is an R0 > 0 such that, if k > 1 and
d = kc, then

M(rk, f ) � M(r, f )kd, for r � R0. (2·8)

(b) If (2·8) holds for some d, k > 1 and R0 > 0, then f is log-regular.

The second lemma comes from Wiman–Valiron theory, (see, for example, [13]), which
was first used in connection with the escaping set by Eremenko [10]. We first need to
introduce some terminology. Let g(z) = ∑∞

n=0 anzn be a transcendental entire function.
Define

µ(r) = sup
n

|an|rn = |aN |r N , r > 0, (2·9)

to be the maximal term of the power series, and call N = N (r) the central index; if (2·9)
holds for several N , we take N (r) to be the largest of these. Note that N (r) is increasing and
N (r) → ∞ as r → ∞. Wiman–Valiron theory uses µ(r) to give results about the behaviour
of g near points z(r), r > 0, that satisfy

|z(r)| = r and |g(z(r))| = M(r, g). (2·10)

A key result of Wiman–Valiron theory is the following.

LEMMA 2·3. Suppose that g is a transcendental entire function and α > 1/2. For r > 0,
let z(r) be a point satisfying (2·10), and define

D(r) = B

(
z(r),

r

(N (r))α

)
, r > 0.

Then there exists a set E ⊂ (0, ∞) with
∫

E 1/t dt < ∞ such that, for r � E and z ∈ D(r),

g(z) =
(

z

z(r)

)N (r)

g(z(r))(1 + ε), (2·11)

where ε = ε(r, z) → 0 uniformly with respect to z as r → ∞, r � E. In particular, if r is
sufficiently large and r � E, then

g(D(r)) ⊃ {w : |w| = M(r, g)}. (2·12)

We use Lemma 2·3 to prove a result on the behaviour of the maximum modulus of the
composite of two entire functions.

LEMMA 2·4. Suppose that f is a non-constant entire function and g is a transcendental
entire function. Then, given ν > 1, there exist R0, R1 > 0 such that

M(νr, f ◦ g) � M(M(r, g), f ) � M(r, f ◦ g), for r � R0, (2·13)

and

M(νr, g ◦ f ) � M(M(r, f ), g) � M(r, g ◦ f ), for r � R1. (2·14)
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Proof. We first prove (2·13). Let α > 1/2, and let N (r), E and D(r) be related to g as in
Lemma 2·3. Note that E has finite logarithmic measure, and N (r) → ∞ as r → ∞. Hence,
for sufficiently large r , there exists r ′ ∈ (r, (ν + 1)r/2)\E , with

D(r ′) ⊂ B(0, νr) and g(D(r ′)) ⊃ {w : |w| = M(r ′, g)}. (2·15)

Let w be such that |w| = M(r ′, g) and | f (w)| = M(M(r ′, g), f ). Then, by (2·15), there is
a z ∈ D(r ′) with g(z) = w. Hence

|( f ◦ g)(z)| = M(M(r ′, g), f ) > M(M(r, g), f ).

The first part of (2·13) now follows, by (2·15). The second part of (2·13) is immediate.
Equation (2·14) follows in the same way if f is transcendental. Otherwise, suppose that

f is a polynomial. Then, for sufficiently large r ,

f (B(0, νr)) ⊃ {w : |w| = M(r, f )}. (2·16)

Let w be such that |w| = M(r, f ) and |g(w)| = M(M(r, f ), g). Then, by (2·16), there is a
z ∈ B(0, νr) with f (z) = w. Hence

|(g ◦ f )(z)| = M(M(r, f ), g).

The first part of (2·14) follows. The second part of (2·14) is immediate.

In passing, we note a related result discussed by Bergweiler and Hinkkanen [7, lemma 1]
that, if we also have g(0) = 0, then

M(6r, f ◦ g) � M(M(r, g), f ), for r > 0.

Now we are ready to prove Theorems 2·2, 2·3 and 2·4.

Proof of Theorem 2·2. Suppose that m > 1, m ∈ R. We note first a general result. Sup-
pose that f is ψ-regular with regularity function ψm , and let λ > 1. Then, for sufficiently
large r , by (1·2) and (2·5),

M(λψm(r), f ) � λm M(ψm(r), f ) � (λψm(M(r, f )))m . (2·17)

Hence λψm is also a regularity function for f .
Now, let a = c1/(k−1) > 1. Suppose that k = 2. Then, for sufficiently large r ,

M(aψm(r), f1 ◦ f2) � M(M(ψm(r), f2), f1) by Lemma 2·4
� M((ψm(M(r, f2)))

m, f1) by (2·5)

� M(ψm(M(r, f2)), f1)
m by (1·3)

� (ψm(M(M(r, f2)), f1))
m2

by (2·5)

� (ψm(M(r, f1 ◦ f2)))
m2

since ψm is increasing

� (aψm(M(r, f1 ◦ f2)))
m .

Hence g is ψ-regular with regularity function aψm . Finally, cψm = aψm , since k = 2. A
similar argument with f1 ◦ f2 and f3, both of which are ψ-regular with regularity function
aψm , by (2·17), gives the result for k = 3. The proof follows similarly for larger values of k.

Proof of Theorem 2·3. It is sufficient to prove the result for k = 2. Suppose then that
k = 2 and that f2 is log-regular. By Lemma 2·2(a) applied to f2, there are k, d > 1 and
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r1 > 0 such that

M(rk, f2) � M(r, f2)
kd, for r � r1. (2·18)

Choose ν such that 1 < ν < d, put k ′ = kν > 1 and d ′ = d/ν > 1. Then, for sufficiently
large r ,

M(rk ′
, f1 ◦ f2) � M(νrk, f1 ◦ f2)

� M(M(rk, f2), f1) by Lemma 2·4
� M(M(r, f2)

kd, f1) by (2·18)

� M(M(r, f2), f1)
kd by (1·3)

� M(r, f1 ◦ f2)
k ′d ′

by choice of k ′, d ′.

Thus f1 ◦ f2 is log-regular by Lemma 2·2(b). If f1 is log-regular but f2 is not, then the proof
that f1 ◦ f2 is log-regular is very similar.

Proof of Theorem 2·4. Suppose that f is log-regular with constant c, and a1, a2 are as in
(2·7). Choose k > 1 sufficiently large that kc > a1a2, put d = kc, k ′ = a1a2k > 1, and
d ′ = d/a1a2 > 1. Then, for sufficiently large r ,

M(rk ′
, g) = M(ra1a2k, g)

� M(ra2k, f ) by (2·7)

� M(ra2, f )kd by (2·8)

� M(r, g)kd by (2·7)

= M(r, g)k ′d ′
by choice of k ′, d ′.

Hence g is log-regular by Lemma 2·2(b).

We now prove several useful corollaries of Theorem 2·4. The first relates to the derivatives
and integrals of log-regular functions.

COROLLARY 2·3. Let f be a transcendental entire function. Then f is log-regular if and
only if f ′ is log-regular.

Proof. By integration and (1·3), for sufficiently large r ,

M(r 2, f ′) � r M(r, f ′) + | f (0)| � M(r, f ). (2·19)

On the other hand, by Cauchy’s estimates, for sufficiently large r ,

M(r 2, f ) � M(2r, f )/r � M(r, f ′). (2·20)

The result follows by Theorem 2·4, with a1 = a2 = 2.

The remaining corollaries of Theorem 2·4 are used later to give stability results about AR( f )

spiders’ webs. While they could be combined, they are stated separately for clarity. The first
concerns addition of a function to a log-regular function.

COROLLARY 2·4. Let f be a log-regular transcendental entire function, and let h be an
entire function. Suppose that there exist a ∈ (0, 1) and R0 > 0 such that

aM(r, f ) � M(r, h), for r � R0. (2·21)

Then g = f + h is log-regular.
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Proof. We observe that

(1 + a)M(r, f ) � M(r, g) � (1 − a)M(r, f ), for r � R0. (2·22)

The result now follows by (1·3), and Theorem 2·4 with a1 = a2 = 2.

Note that, by (1·1), if h is a polynomial, then (2·21) is satisfied for any transcendental entire
function f and any a ∈ (0, 1).

The second corollary concerns a case where log-regularity is preserved under multiplica-
tion.

COROLLARY 2·5. Let f be a log-regular transcendental entire function. Then g(z) =
z f (z) is log-regular.

Proof. By (1·3) and (1·1), for sufficiently large r , M(r 2, f ) � M(r, f )2 � M(r, g). Also,
for sufficiently large r , M(r, g) � M(r, f ). The result follows, by Theorem 2·4 with a1 = 1
and a2 = 2.

Our final corollary is quite general.

COROLLARY 2·6. Let f be a log-regular transcendental entire function. Let P(w, z) be
a polynomial, which is of degree at least one in w, and let Q(z) be a polynomial of degree
at least one. Then g(z) = P( f (Q(z)), z) is log-regular.

Proof. Suppose that

P( f (Q(z)), z) = a f (Q(z))N1 zN2 + h(z) = g0(z) + h(z),

where N1 is the highest power of w in P(w, z) and N2 is the highest power of z corres-
ponding to f (Q(z))N1 . By Theorem 2·3, the function z 	→ a f (Q(z))N1 is log-regular. By
Corollary 2·5, g0 is log-regular. Since, by (1·1), we have

1

2
M(r, g0) � M(r, h), for large r,

the result follows by Corollary 2·4.

3. Using composition to give functions for which AR( f ) is a spider’s web

In this section we demonstrate that AR(g) is a spider’s web if g = f1 ◦ f2 ◦ · · · ◦ fk , and
the entire functions f j , j ∈ {1, 2, . . . , k}, satisfy certain conditions. We need a preparatory
lemma before we can state the results. This lemma is a generalisation of Lemma 2·1, in
which condition (a) is relaxed slightly. This condition was also used, independently, in [16].

LEMMA 3·1. Let f be a transcendental entire function and let R > 0 be such that
M(r, f ) > r for r � R. Then AR( f ) is a spider’s web if, for some m > 1, m ∈ R,

(a) there exists R0 > 0 such that, for all r � R0, there is a simply connected domain
G = G(r) with

B(0, r) ⊂ G ⊂ B(0, rm) and | f (z)| � M(r, f ), for z ∈ ∂G, (3·1)

and
(b) f has regular growth in the sense that there exists a sequence (rn)n�0 with

rn � Mn(R, f ) and M(rn, f ) � rm
n+1, for n � 0. (3·2)
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Proof. Let m and R0 be as in (a), and choose (rn)n�0 satisfying (3·2) with rn > R0 for
n � 0. For each n � 0, let Gn = G(rn).

First, by (3·1) and (3·2),

Gn ⊃ B(0, rn) ⊃ B(0, Mn(R, f )), for n � 0, (3·3)

and so (Gn) satisfies (2·1).
Second, by (3·1) and (3·2), if z ∈ ∂Gn then | f (z)| � M(rn, f ) � rm

n+1. Thus f (Gn)

contains B(0, rm
n+1), since f maps points of B(0, Mn(R, f )) into B(0, Mn+1(R, f )) ⊂

B(0, rm
n+1). Now Gn+1 is contained in B(0, rm

n+1) and so is contained in a bounded com-
ponent of C\ f (∂Gn). Thus (Gn) satisfies (2·2). Hence, by Theorem 2·1, AR( f ) is a spider’s
web.

We note that if P is a non-constant polynomial, then P satisfies Lemma 3·1(a) for every
m > 1, m ∈ R, taking G(r) = B(0, rα), where α ∈ (1, m), and a suitable R0.

We now state the main results of this section. The first relates to the composition of ψ-
regular functions, and the second relates to the composition of entire functions, one of which
is log-regular.

THEOREM 3·1. Let f1, f2, . . . , fk be transcendental entire functions. Suppose that, for
all j ∈ {1, 2, . . . , k}, f j satisfies Lemma 3·1(a) with m = m j > 1, m j ∈ R. Suppose
also that, for all j ∈ {1, 2, . . . , k}, f j is ψ-regular, with regularity function ψm for each
m > 1, m ∈ R. Let g = f1 ◦ f2 ◦ · · · ◦ fk . Then AR(g) is a spider’s web, where R > 0 is
such that M(r, g) > r for r � R.

THEOREM 3·2. Let f1, f2, . . . , fk be entire functions. Suppose that, for all j ∈
{1, 2, . . . , k}, f j satisfies Lemma 3·1(a) with m = m j > 1, m j ∈ R. Suppose also
that, for some j ∈ {1, 2, . . . , k}, f j is a log-regular transcendental entire function. Let
g = f1 ◦ f2 ◦ · · · ◦ fk . Then AR(g) is a spider’s web, where R > 0 is such that M(r, g) > r
for r � R.

We need one further lemma before we can prove these results. This lemma also concerns the
composition of entire functions.

LEMMA 3·2. Let f1, f2, . . . , fk be entire functions. Suppose that, for all j ∈
{1, 2, . . . , k}, f j satisfies Lemma 3·1(a) with m = m j > 1, m j ∈ R. Let
g = f1 ◦ f2 ◦ · · · ◦ fk . Then g satisfies Lemma 3·1(a) with m = m1m2 · · · mk.

Proof. It is sufficient to prove the result for k = 2. The result is immediate if f1 and
f2 are both polynomials. Otherwise, let m1 and m2 be as given. Consider first the case that
f2 is a transcendental entire function. For sufficiently large r , let G1 = G1(r) be a simply
connected domain such that

B(0, M(r, f2)) ⊂ G1 ⊂ B(0, M(r, f2)
m1), (3·4)

and

| f1(z)| � M(M(r, f2), f1), for z ∈ ∂G1. (3·5)

For sufficiently large r , let G2 = G2(r) be a simply connected domain such that

B(0, rm1) ⊂ G2 ⊂ B(0, rm1m2), (3·6)
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and

| f2(z)| � M(rm1, f2), for z ∈ ∂G2. (3·7)

If f2(z) ∈ ∂G1 then, by (3·4), |z| � r , and so there is a component G3 of f −1
2 (G1) which

contains B(0, r). Note that G3 is simply connected, and f2 is a proper map of G3 to G1.
If z ∈ ∂G2 then, by (3·7) and (1·3),

| f2(z)| � M(rm1, f2) � M(r, f2)
m1, for large r. (3·8)

If z ∈ ∂G3 then, by (3·4), | f2(z)| � M(r, f2)
m1 . Hence, by the maximum principle, if

z ∈ G3 then | f2(z)| < M(r, f2)
m1 . Thus ∂G2 � G3 = �, by (3·8), and so B(0, r) ⊂ G3 ⊂

B(0, rm1m2), by (3·6). Also, if z ∈ ∂G3 then, by (3·5),

|( f1 ◦ f2)(z)| � M(M(r, f2), f1) � M(r, f1 ◦ f2). (3·9)

Hence f1 ◦ f2 satisfies Lemma 3·1(a), with m = m1m2.
Secondly, we consider the case where f2 is a polynomial. Choose m ′ such that m ′ > m1.

For sufficiently large r , let G1 and G3 be the domains from the first part of the proof, and let
G2 = B(0, rm ′

). Since f2 is a polynomial, for sufficiently large r ,

| f2(z)| � M(r, f2)
m1, for z ∈ ∂G2.

As in the first part of the proof, ∂G2 � G3 = �, and so B(0, r) ⊂ G3 ⊂ B(0, rm ′
). Also,

if z ∈ ∂G3 then |( f1 ◦ f2)(z)| � M(r, f1 ◦ f2). Hence f1 ◦ f2 satisfies Lemma 3·1(a), with
m = m ′ > m1, in particular with m = m1m2.

In particular it follows from Lemma 3·2 that the property of satisfying Lemma 3·1(a) for
some m > 1, m ∈ R, is preserved under iteration.

COROLLARY 3·1. If f is a transcendental entire function that satisfies Lemma 3·1(a) for
some m > 1, m ∈ R, then so is f n for all n ∈ N.

We are now able to prove Theorems 3·1 and 3·2.

Proof of Theorem 3·1. By Lemma 3·2, g satisfies Lemma 3·1(a) for some m > 1, m ∈ R.
By Theorem 2·2, g is ψ-regular, and so satisfies Lemma 3·1(b) for all m > 1, m ∈ R. The
result follows by Lemma 3·1.

Proof of Theorem 3·2. As in the proof of Theorem 3·1, g satisfies Lemma 3·1(a) for some
m > 1, m ∈ R. By Theorem 2·3, g is log-regular, and so satisfies Lemma 3·1(b) for all
m > 1, m ∈ R. The result follows by Lemma 3·1.

Rippon and Stallard [18] show that there are examples of ψ-regular functions that are not
log-regular. Some of these examples have order less than 1/2, and so satisfy Lemma 3·1(a)
for some m > 1, m ∈ R; see Lemma 5·2. This shows that there are situations in which
Theorem 3·1 can be applied, but not Theorem 3·2.

Finally, we note that the conditions of Theorem 3·2 are satisfied by many of the examples
in [20, section 8], and all the examples in this paper (see Sections 5 and 6).

4. Stability of AR( f ) spiders’ webs

Many known dynamical properties of a transcendental entire function f are unstable un-
der relatively small changes in f . For example, the functions f1(z) = exp(−z), f2(z) =
f1(z) + z + 2π i − 1 and f3(z) = f1(z) + z + 1 all have very different Fatou sets (see, for
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example, [6, section 4]). In this section we prove results which show that, in certain circum-
stances, AR( f ) spiders’ webs can be very stable. The first result concerns composition with
polynomials.

THEOREM 4·1. Suppose that f is a log-regular transcendental entire function which sat-
isfies Lemma 3·1(a) for some m > 1, m ∈ R. Let P(w, z) be a polynomial, which is of
degree at least one in w, and let Q(z) be a polynomial of degree at least one.

Let g(z) = P( f (Q(z)), z). Then AR(g) is a spider’s web, where R > 0 is such that
M(r, g) > r for r � R.

Proof. By Corollary 2·6, g is log-regular and so satisfies Lemma 3·1(b) for all m >

1, m ∈ R. Hence we need only prove that g satisfies Lemma 3·1(a) for some m > 1, m ∈ R.
As in the proof of Corollary 2·6, let

g(z) = a f (Q(z))N1 zN2 + · · · ,

where N1 is the highest power of w in P(w, z), and N2 is the highest power of z corres-
ponding to f (Q(z))N1 . By Lemma 3·2, f ◦ Q satisfies Lemma 3·1(a). Hence, there is an
m > 1, m ∈ R such that, for sufficiently large r , there is a simply connected domain
G = G(r) with B(0, rm) ⊂ G ⊂ B(0, rm2

) and

| f (Q(z))| � M(rm, f ◦ Q), for z ∈ ∂G. (4·1)

Hence, when z ∈ ∂G, for sufficiently large r ,

|g(z)| � 1

2
|a|M(rm, f ◦ Q)N1r N2 by (4·1) and (1·1)

� 2|a|M(r, f ◦ Q)N1r N2 by (1·3)

� M(r, g) by (1·1).

Thus g satisfies Lemma 3·1(a) with m replaced by m2, so the proof is complete.

The second result concerns addition of an entire function to a transcendental entire function
with an AR( f ) spider’s web.

THEOREM 4·2. Suppose that f is a log-regular transcendental entire function which sat-
isfies Lemma 3·1(a) for some m > 1, m ∈ R, and that h is an entire function. Suppose also
that there exist a ∈ (0, 1) and R0 > 0 such that

aM(r, f ) � M(rm, h), for r � R0. (4·2)

Let g = f + h. Then AR(g) is a spider’s web, where R > 0 is such that M(r, g) > r for
r � R.

Proof. First we note that, for sufficiently large r , aM(r, f ) � M(r, h). Hence, by Corol-
lary 2·4, g is log-regular and so satisfies Lemma 3·1(b) for all m > 1, m ∈ R. Thus, by
Lemma 3·1, it remains to prove that g satisfies Lemma 3·1(a) for some m > 1, m ∈ R.

By hypothesis, for sufficiently large r , there is a simply connected domain G = G(r)

with B(0, rm) ⊂ G ⊂ B(0, rm2
) and

| f (z)| � M(rm, f ), for z ∈ ∂G. (4·3)
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Thus, when z ∈ ∂G, for sufficiently large r ,

|g(z)| � | f (z)| − |h(z)|
� (1 − a)M(rm, f ) by (4·2), and (4·3)

� (1 + a)M(r, f ) by (1·3)

� M(r, g) .

Hence g satisfies Lemma 3·1(a) with m replaced by m2, so the proof is complete.

Remark. Using the same method of proof it can be shown that in Theorem 4·2 the function
h can also be of the form h(z) = f (z)/(z − c), where f (c) = 0.

Finally, we note that the conditions on f in Theorems 4·1 and 4·2 are satisfied by many
of the examples in [20, section 8], and all the examples in this paper. It can be shown that
these conditions are also satisfied by the functions in [16]. So we can produce new functions
for which AR( f ) is a spider’s web by taking these known examples and applying Theorems
4·1 and 4·2.

5. Functions of finite order for which AR( f ) is a spider’s web

In this section we develop a technique which enables us to take a transcendental entire
function of finite order, modify its power series, and produce a class of transcendental entire
functions of finite order for which AR( f ) is a spider’s web. From the exponential function
we obtain a class of such functions (Example 1) which contains the function

f (z) = 1

2
(cos z

1
4 + cosh z

1
4 ) =

∞∑
n=0

zn

(4n)! (5·1)

given in [20, section 8], together with the related functions

f (z) =
∞∑

n=0

z pn

(qn)! , p, q ∈ N, p/q <
1

2
, (5·2)

suggested by Halburd and also mentioned in [20, section 8]. We obtain another class (Ex-
ample 3) from the error function (see [1, p. 297])

erf(z) = 2√
π

∞∑
n=0

(−1)n

n!(2n + 1)
z2n+1. (5·3)

We define the order ρ( f ) and lower order λ( f ) of a transcendental entire function f by

ρ( f ) = lim sup
r→∞

log log M(r, f )

log r
and λ( f ) = lim inf

r→∞
log log M(r, f )

log r
. (5·4)

We note from, for example, [15] that if f (z) = ∑∞
n=0 anzn , then

ρ( f ) = lim sup
n→∞

n log n

log |an|−1
(5·5)

and

λ( f ) = max
(n p)

lim inf
p→∞

n p log n p−1

log |an p |−1
. (5·6)

We use the following three lemmas, all discussed in [20, corollary 8·3 and the following
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remarks]. The first is from [14, p. 205], and gives a sufficient condition for a transcendental
entire function to be log-regular.

LEMMA 5·1. If f is a transcendental entire function of finite order and positive lower
order, then f is log-regular.

The second is from, for example, [3, Satz 1].

LEMMA 5·2. If f is a transcendental entire function of order less than 1
2 , then f satisfies

Lemma 2·1(a) for some m > 1, m ∈ R.

The third follows from Lemma 5·1, Lemma 5·2 and Lemma 2·1.

LEMMA 5·3. If f is a transcendental entire function of order less than 1/2 and positive
lower order, then AR( f ) is a spider’s web, where R > 0 is such that M(r, f ) > r for r � R.

We use the following operator to produce classes of functions which satisfy the conditions
of Lemma 5·3.

Definition. For n, m ∈ N, let T n
m

be defined by

T n
m
( f (z)) = 1

m

m∑
k=1

f (e
2π ik

m z
n
m ), (5·7)

where f is an entire function, and we choose a consistent branch of the mth root for each
term in the sum.

If f is a transcendental entire function, then the T n
m

operator extracts from the power
series of f only those terms with exponents which are multiples of m, and these exponents
are multiplied by n/m (see (5·8) below). For example, if f (z) = ez , then

T 2
3
( f (z)) = 1 + z2

3! + z4

6! + · · · .

We note in passing that the T n
m

operator has some appealing properties; for example, T 1
m

◦
T 1

n
= T 1

nm
and also T n

m
( f (zm)) = f (zn).

The following result concerns a key property of this operator, namely its effect on the
order of a function.

THEOREM 5·1. If f is a transcendental entire function of order ρ( f ) and n, m ∈ N,
then T n

m
( f ) is a well-defined entire function of order at most n

m ρ( f ).

Proof. First, we consider the action of T n
m

on the power series f (z) = ∑∞
l=0 al zl . Since

we have a consistent choice of the mth root, the sum of the complex roots of unity is zero,
and with p = l/m, we obtain

T n
m
( f (z)) = 1

m

m∑
k=1

∞∑
l=0

ale
2π ikl

m z
ln
m =

∞∑
l=0

al z
ln
m

m∑
k=1

1

m
e

2π ikl
m =

∞∑
p=0

apm z pn. (5·8)

Hence the value of T n
m
( f ) is independent of the choice of the mth root, and this power series

has infinite radius of convergence.
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We deduce from (5·5), with k = pm, that

ρ(T n
m
( f )) = lim sup

p→∞
pn log pn

log |apm |−1

� lim sup
k→∞

(kn/m) log(kn/m)

log |ak |−1

= n

m
lim sup

k→∞
k log k

log |ak |−1

= n

m
ρ( f ),

as required.

We now seek to use this operator, together with Lemma 5·3, to generate transcendental
entire functions for which AR( f ) is a spider’s web. It is possible for the function T n

m
( f ) to

be simply a polynomial when f is a transcendental entire function. For example, if f (z) =
z exp(z2) then T 1

2
( f (z)) = 0, because the power series of f has only odd powers of z which

are eliminated by the T 1
2

operator.
Even if T n

m
( f ) is transcendental, T n

m
( f ) may not have positive lower order when f does.

For example, if g is a transcendental entire function of order less than 1 and lower order
zero, then f (z) = g(z2) + z exp(z2) has both order and lower order 2, but T 1

2
( f (z)) =

T 1
2
(g(z2)) = g(z) has order less than 1 and lower order zero, reasoning as in the previous

paragraph.
The following lemma gives two sufficient conditions for T n

m
( f ) to have positive lower

order.

LEMMA 5·4. Let f (z) = ∑∞
p=0 apz p be a transcendental entire function, and let n, m ∈

N.

(a) If

lim inf
p→∞

p log p

log |apm |−1
> 0, (5·9)

then T n
m
( f ) has positive lower order.

(b) If T n
m
( f ) has positive lower order, and g(z) = ∑∞

p=0 bpz p is a transcendental entire
function with |bp| � |ap| for p sufficiently large, then T n

m
(g) has positive lower order.

Proof. For part (a) we note, by (5·8) and with n p = np in (5·6), that

λ(T n
m
( f )) � lim inf

p→∞
np log(n(p − 1))

log |apm |−1
= n lim inf

p→∞
p log p

log |apm |−1
> 0.

Part (b) follows immediately from (5·6).

We now give some explicit examples of classes of functions for which AR( f ) is a spider’s
web. The first example includes (5·1) as a special case.

Example 1. Let f = T n
m
(g), where g(z) = exp(z) and where m > 2n. Then AR( f ) is a

spider’s web, where R > 0 is such that M(r, f ) > r for r � R.

Proof. The exponential function has order 1, and satisfies (5·9) for all m > 1, m ∈ R.
Thus f has order less than 1/2 by Theorem 5·1, and the result follows by Lemma 5·4(a) and
Lemma 5·3.
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The second example illustrates the use of both parts of Lemma 5·4. This result can also be
justified by the results of Sections 3 and 4.

Example 2. Let f = T n
m
(g), where g(z) = z exp (z2) + exp(z), m > 4n and m is odd.

Then AR( f ) is a spider’s web, where R > 0 is such that M(r, f ) > r for r � R.

Proof. The function z 	→ z exp (z2) has order 2, and satisfies (5·9) when m is odd.
Thus f has order less than 1/2 by Theorem 5·1, and the result follows by Lemma 5·4 and
Lemma 5·3.

The technique of this section can be applied any transcendental entire function of finite
order, provided its power series satisfies (5·9) for some m ∈ N. We illustrate this with the
error function.

Example 3. Let f = T n
m
(g), where g(z) = erf(z), m > 4n and m is odd. Then AR( f ) is

a spider’s web, where R > 0 is such that M(r, f ) > r for r � R.

Proof. By (5·3) and (5·5), g has order 2, and satisfies (5·9) when m is odd. Thus f has
order less than 1/2 by Theorem 5·1, and the result follows by Lemma 5·4(a) and Lemma 5·3.

Our final example combines earlier results to give an unexpectedly simple function with an
AR( f ) spider’s web.

Example 4. Let f (z) = cos z + cosh z. Then AR( f ) is a spider’s web, where R > 0 is
such that M(r, f ) > r for r � R.

Proof. This follows from Theorem 3·2 and the function in (5·1).

Our goal in this section has been to produce a class of log-regular transcendental entire
functions of order less than 1/2, which, by Lemmas 5·2 and 2·1, have an AR( f ) spider’s
web. Finally, we show that this class can be extended by differentiation or integration, thus
giving a further method of constructing AR( f ) spiders’ webs.

THEOREM 5·2. Let f be a log-regular transcendental entire function of order less than
1/2, and let g be the derivative of f or an integral of f . Then AR(g) is a spider’s web,
where R > 0 is such that M(r, g) > r for r � R.

Proof. Since g has the same order as f , and is log-regular by Corollary 2·3, the result
follows by Lemmas 5·2 and 2·1.

6. A function of infinite order with gaps for which AR( f ) is a spider’s web

We recall that a transcendental entire function f has Fabry gaps if

f (z) =
∞∑

k=1

ak znk

and nk/k → ∞ as k → ∞. By a result of Fuchs [11], an entire function f of finite
order with Fabry gaps satisfies Lemma 2·1(a) for m > 1, m ∈ R. This fact was used by
Wang in [22, theorem 1] to describe a class of entire functions with no unbounded Fatou
components. Thus if f is also log-regular then, by Lemma 2·1, AR( f ) is a spider’s web.
(As noted earlier, a log-regular transcendental entire function satisfies Lemma 2·1(b) for all
m > 1, m ∈ R.) This fact was pointed out by Rippon and Stallard [20, theorem 1·9(d)],
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who gave an example of such a function [20, example 1], shown to be log-regular by using
Lemma 5·1.

It was also pointed out in [22] and in [20, section 8] that, by a result of Hayman [12],
Lemma 2·1(a) holds in the case of certain functions of infinite order with gaps:

LEMMA 6·1. Let f (z) = ∑∞
k=1 ak znk be a transcendental entire function where, for some

α > 2,

nk > k log k(log log k)α, for large k. (6·1)

Then f satisfies Lemma 2·1(a) for m > 1, m ∈ R.

Wang [22, theorem 2] used this result to show that if f satisfies (6·1) and has a property
equivalent to log-regularity, then f has no unbounded Fatou components.

Suppose that g is a transcendental entire function of infinite order generated by omitting
terms from the power series of another transcendental entire function, f say, and g satisfies
(6·1). If g is also log-regular, then AR(g) is a spider’s web, by Lemma 2·1. If f has infinite
order, then it does not seem straightforward to check that such a function g is log-regular. In
this section we demonstrate a method for achieving this, and then give an explicit example
of such a function.

We start with a general result.

THEOREM 6·1. Suppose that f (z) = ∑∞
n=0 anzn is a log-regular transcendental entire

function and there exists N0 ∈ N such that

0 < an+1 � an, for n � N0. (6·2)

Suppose also that g is a transcendental entire function with

g(z) =
∞∑

k=1

ank znk , (6·3)

where, for some M > 1 and α > 2,

1 <
nk+1

nk
< M, for large k, (6·4)

and

nk > k log k(log log k)α, for large k. (6·5)

Then g is log-regular and AR(g) is a spider’s web, where R > 0 is such that M(r, g) > r
for r � R.

Proof. By Lemma 6·1, g satisfies Lemma 2·1(a) for m > 1, m ∈ R. To complete the
proof, we use Theorem 2·4 to show that g is log-regular.

Without loss of generality, by adding a polynomial, we can assume by Corollary 2·6 that
N0 = 0 and (6·4) holds for k � 1. Because an > 0 for n � 0,

M(r, f ) = f (r) > g(r) = M(r, g), for r > 0.

Thus it remains to show that there exist a > 1 and R0 > 0 such that

M(ra, g) � M(r, f ), for r � R0. (6·6)
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Choose a′ > 1 and K > 1 sufficiently large such that

nk+1

nk
<

1

2
(1 + a′) < a′, and K nk > nk+1 − nk, for k � 1. (6·7)

Now let µ = (a′ − 1)/2 > 0, and define

M(ra′
, g) =

∞∑
k=1

Ak, Ak = ank r
a′nk , (6·8)

M(r, f ) =
an1 −1∑
n=0

anrn +
∞∑

k=1

Bk, Bk = ank r
nk + · · · + ank+1−1rnk+1−1. (6·9)

Because the an are decreasing,

Bk < (nk+1 − nk) ank r
nk+1, for r > 1 and k � 1. (6·10)

Thus, if r > max{1, K
1
µ }, then, by (6·8) and (6·7),

Bk < (nk+1 − nk) rnk+1−a′nk Ak < K nk r−nkµ Ak < Ak, for k � 1. (6·11)

Thus, by (6·8) and (6·9),

M(ra′
, g) > M(r, f ) −

an1 −1∑
n=0

anrn, for r > max{1, K
1
µ }. (6·12)

Finally, for any a > a′ we can choose r sufficiently large such that

M(ra, g) � 2M(ra′
, g) by (1·2) (6·13)

> 2M(r, f ) − 2

an1 −1∑
n=0

anrn by (6·12) (6·14)

� M(r, f ) by (1·1). (6·15)

This proves (6·6) as required.

In the rest of this section we construct an explicit example of a transcendental entire function
f of infinite order, defined by a gap series, for which AR( f ) is a spider’s web. First we need
a simple result about functions of infinite order.

LEMMA 6·2. Let f and g be transcendental entire functions, and suppose that f has
infinite order. If there exist a, R0 > 0 such that

M(ra, g) � M(r, f ), for r � R0,

then g has infinite order.

Proof. By (5·4),

ρ(g) = lim sup
r→∞

log log M(ra, g)

log ra
� 1

a
lim sup

r→∞
log log M(r, f )

log r
= 1

a
ρ( f ),

and the result follows.

The next lemma is needed in the construction of our example.
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LEMMA 6·3. Let g(z) = ∑∞
n=0 anzn be a transcendental entire function, with an ∈ R for

n � 0, a1 � 1, and

0 < (n + 1)an+1 � nan, for n � 1. (6·16)

Then f (z) = exp(g(z)) has power series f (z) = ∑∞
n=0 bnzn, where

0 < bn+1 � bn, for n � 1. (6·17)

Proof. Clearly bn > 0 for n � 0. Since f ′(z) = g′(z) f (z) we have
∞∑

n=0

(n + 1)bn+1zn =
∞∑

k=0

(k + 1)ak+1zk
∞∑

l=0

bl z
l . (6·18)

Equating powers of z gives

(n + 1)bn+1 =
n∑

l=0

(n + 1 − l)an+1−lbl, for n � 0. (6·19)

Hence, for n � 1,

(n + 1)bn+1 =
n−1∑
l=0

(n + 1 − l)an+1−lbl + a1bn (6·20)

�
n−1∑
l=0

(n − l)an−lbl + bn, by (6·16) and as a1 � 1 (6·21)

= nbn + bn, by (6·19), (6·22)

which proves that (6·17) holds.

Finally, as promised, we give our explicit example.

THEOREM 6·4. Let

f (z) = exp(ez − 1) =
∞∑

n=0

bnzn and g(z) =
∞∑

n=0

bn2 zn2
.

Then g is a log-regular transcendental entire function of infinite order, and AR(g) is a
spider’s web, where R > 0 is such that M(r, g) > r for r � R.

Proof. We can see that f is log-regular because φ(t) = log M(et , f ) = exp(et) − 1 and

φ′(t)
φ(t)

> et � 2

t
, for t � 1.

Conditions (6·4) and (6·5) are satisfied, and the coefficients bn are decreasing because the
function z 	→ ez − 1 satisfies the conditions of Lemma 6·3. Hence, by Theorem 6·1, g is
log-regular and AR(g) is a spider’s web.

Finally, f has infinite order. We see from the proof of Theorem 6·1 that f and g satisfy
(6·6). Hence, by Lemma 6·2, g has infinite order.

Clearly this approach can be used with the function f of Theorem 6·2 to give a class of
functions with AR( f ) spiders’ webs, by suitably selecting terms from the power series of
f . We can also use Lemma 6·3 to find other transcendental entire functions which can be
manipulated in this way to give further classes of examples.
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Remark. We note in passing that, in Theorem 6·2, bn = Bn/n!, where (Bn) are the Bell
numbers (see, for example, [5]). Thus, by (6·17), we have

Bn+1 � (n + 1)Bn, for n � 1.

In fact the more precise estimates

2Bn < Bn+1 < (n + 1)Bn, for n � 2,

hold (see [8, corollary 8]). These can be deduced in a straightforward way from the identity

Bn+1 =
n∑

k=0

(
n

k

)
Bk, for n � 0, (6·23)

which follows from (6·19).

7. Transcendental entire functions with no unbounded Fatou components

Baker [4] posed the question of whether the Fatou set of a transcendental entire function of
sufficiently small growth can have any unbounded components; see the survey article on this
question by Hinkkanen [14]. By [20, theorem 1·5(b)], when AR( f ) is a spider’s web, F( f )

has no unbounded components. Hence all the examples in this paper have no unbounded
Fatou components. In this section we give two results on functions with no unbounded Fatou
components, which generalise existing results of this type.

Our first class of functions with no unbounded Fatou components consists of functions
formed by composition of ψ-regular functions.

THEOREM 7·1. Let f1, f2, . . . , fk be transcendental entire functions. Suppose that, for
all j ∈ {1, 2, . . . , k}, f j satisfies Lemma 3·1(a) with m = m j > 1, m j ∈ R. Suppose
also that, for all j ∈ {1, 2, . . . , k}, f j is ψ-regular, with regularity function ψm for each
m > 1, m ∈ R. Let g = f1 ◦ f2 ◦ · · · ◦ fk . Then every component of F(g) is bounded.

Proof. By Theorem 3·1, AR(g) is a spider’s web, and the result follows by [20, theorem
1·5(b)].

To compare Theorem 7·1 to previous results, we need the following lemma, part of [19,
theorem 6]. This gives a sufficient condition for a transcendental entire function to be ψ-
regular. We note that although, for other reasons, the full statement of [19, theorem 6]
supposes order less than 1/2, finite order is sufficient for the proof of this part of the
result.

LEMMA 7·1. Let f be a transcendental entire function of finite order. Suppose that there
exist n ∈ N and q ∈ (0, 1) such that

M(r, f ) � expn+1((logn r)q), for large r. (7·1)

Then f is ψ-regular with regularity function given, for all m > 1, m ∈ R, by

ψm(r) = expn((log r)p), where pq > 1.

The next result now follows from Lemma 7·1 and Theorem 7·1.

COROLLARY 7·1. Let f1, f2, . . . , fk be transcendental entire functions of finite order
which satisfy Lemma 3·1(a) for some m > 1, m ∈ R. Suppose that there exist n ∈ N
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and q ∈ (0, 1) such that, for all j ∈ {1, 2, . . . , k},
M(r, f j ) � expn+1((logn r)q), for large r. (7·2)

Let g = f1 ◦ f2 ◦ · · · ◦ fk . Then every component of F(g) is bounded.

Rippon and Stallard, in [19, theorem 6], showed that if f is a transcendental entire func-
tion of order less than 1/2, which satisfies (7·1) for some n ∈ N and q ∈ (0, 1), then f has no
unbounded Fatou components. By Lemma 5·2 this is included in Corollary 7·1, with k = 1.

Corollary 7·1, with n = 1, includes a result of Singh in [21, theorem 1]. (We note that the
statement of [21, theorem 1] omits the requirement of finite order, but this was assumed in
the proof of [21, lemma 1].)

Our second class of functions with no unbounded Fatou components consists of functions
formed by composition of entire functions, one of which is log-regular.

THEOREM 7·2. Let f1, f2, . . . , fk be entire functions. Suppose that, for all j ∈
{1, 2, . . . , k}, f j satisfies Lemma 3·1(a) with m = m j > 1, m j ∈ R. Suppose also
that, for some j ∈ {1, 2, . . . , k}, f j is a log-regular transcendental entire function. Let
g = f1 ◦ f2 ◦ · · · ◦ fk . Then every component of F(g) is bounded.

Proof. By Theorem 3·2, AR(g) is a spider’s web, and the result follows by [20, theorem
1·5(b)].

As noted in Section 2, this result differs from Theorem 7·1 in that only one function in the
composition needs to satisfy the regularity condition and be transcendental.

The final result follows from Theorem 7·2 and Lemma 5·2.

COROLLARY 7·2. Let f1, f2, . . . , fk be transcendental entire functions of order less than
1/2. Suppose that, for some j ∈ {1, 2, . . . , k}, f j is log-regular. Let g = f1 ◦ f2 ◦ · · · ◦ fk .
Then every component of F(g) is bounded.

This corollary generalises a result of Anderson and Hinkkanen in [2, theorem 2], which
states that if a log-regular function has order less than 1/2, then it has no unbounded Fatou
components. Anderson and Hinkkanen’s result is included in Corollary 7·2 with k = 1.

Cao and Wang [9] developed a similar result to Corollary 7·2, concerning composition of
transcendental entire functions. They showed that if g = f1 ◦ f2 ◦ · · · ◦ fk , where
f1, f2, . . . , fk are transcendental entire functions of order less than 1/2, at least one of which
has positive lower order, then g has no unbounded Fatou components. By Lemma 5·1, Cao
and Wang’s result is included in Corollary 7·2. We note that it is possible to construct a class
of log-regular functions of lower order zero and any given finite order, in particular order
less than 1/2. This shows that there are situations in which Corollary 7·2 can be applied but
not the result of [9].
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