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ENTIRE FUNCTIONS THAT SHARE

REAL ZEROS AND REAL ONES

THOMAS P. CZUBIAK AND GARY G. GUNDERSEN

Abstract. We find all pairs of nonconstant entire functions that have the same

zeros and ones (ignoring multiplicities), when the zeros and ones are all real.

We say two entire functions/(z) and g(z) share the value c provided that/(z) = c

if and only if g(z) = c. We distinguish between sharing a value CM (counting

multiplicities) and IM (ignoring multiplicities). Unless stated otherwise, all func-

tions will be assumed to be nonconstant and entire.

It is easy to show that if / and g share 0 and 1 CM and f ¥=g, then there are

entire functions a and ß such that

e2m'a(z)  _   I e-2via(z)  _   J

*Z) = eW) _ ,     and   **> = t^(«) _ i • (1)

When/ and g have finite order, then C. F. Osgood and C. C. Yang [5, p. 410] have

shown that ß is a polynomial and a is a polynomial in ß with rational coefficients.

Thus all possible pairs are determined. For infinite order, the example a(z) =

z sin(irz2) and ß(z) = z2 shows that a does not even have to be a power series in ß.

When / and g share 0 and 1 EV1, the situation is more complicated. One of the

authors [3, Theorem 3] has shown that T(r,f) < (3 + o(l))T(r, g) and T(r, g) <

(3 + o(l))T(r,f) as r-» oo outside a set of finite linear measure (T(r, h) is the

Nevanlinna characteristic function of h). M. Ozawa [6] has proven some unique-

ness theorems when / and g have finite order, by assuming various further

hypotheses on the zeros and ones. But in general, no one has come close to finding

all possible pairs.

Let % be the class of all nonconstant entire functions which have only real zeros

and real ones. We will prove the following:

Theorem. Iff and g are in % and share 0 and 1 BV1, then we necessarily have one

of the following six cases where a ¥= 0 and b are real constants:

1./-A
2./(z) = sin\az + b) and g(z) = -i sin(oz + b)e

3 = sin2(/»(az + b)) sin(/,(az + b)) e¡(p^Xaz+b)

K '        sin2(az + Z») SK '        sm(az + b)

forp = -2 and for p = —3,

=  cJr,2/^r   J-   h\ „v,A o(t\  =   _/ cW,tt   -1-   M^'(<B+*)
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394 T. P. CZUBIAK AND G. G. GUNDERSEN

4.      f(2) = 1 - (*</,;-f    and   g(z) = ***" + »» e»-'X« + .)

/or/» = 3 and for p = 4.

Remarks. Each case is distinct and it can be readily verified that the five

unequal pairs are in % and share 0 and 1 EM. The following three corollaries are

immediate consequences of the theorem. We note that the first part of the proof of

the theorem is a direct proof of Corollary 2.

Corollary 1. /// and g are in % and share 0 and 1 CM, then f = g.

Corollary 2. If f and g are in % and share 0 and 1 EM, and they are also both

real on the real axis, then f = g.

Corollary 3. If f(z) and sin z share 0 and 1 EM, then f(z) = sin z.

L. A. Rubel and C. C. Yang [7, p. 293] proved the statement of Corollary 3 with

"EM" replaced by "CM". See also Theorem 1 of [6].

We mention the systematic study of meromorphic functions that share values by

R. Nevanlinna in [4].

To prove our theorem we will apply results of Laguerre and A. Edrei.

Lemma 1 [8, p. 266]. If h(z) is entire, real for real z, of order less than two, and

with only real zeros, then h'(z) has exactly one real zero between consecutive zeros of

h(z), and this zero is simple.

Lemma 2 [2]. // h(z) is entire with only real (positive) zeros and only real (positive)

ones, then the order of h is at most one (one-half). If further, h(z) is not real for some

real value of z, then h is necessarily of one of the following two forms:

.. ,      sin(az + b)e*°*+c) .,,       .v.ft ,..
h(z) = —   .  ,.        .-> sm(Z» - c) =¿= 0, (i)

sin(Z> — c)

where a, b, and c are real constants;

_ sin(/»(az + Z»)Vy<—>
v ' sin(az + b) v '

where p =£ 0, I is an integer and a, b are real constants.

Proof of the theorem. Let / and g be in % and share 0 and 1 EM. Then by

Lemma 2, order(/) < 1 and order(g) < 1.

Assume first that both / and g are real for real z. Let xx and x2 be consecutive

zeros of /, g. We deduce from Lemma 1 that, in the open interval (xx, xj), both /

and g have exactly one of the following: (i) one double one-point, (ii) two simple

one-points, or (iii) no one-points. By considering 1 — / and 1 - g, we see that the

same statement can be made with the zeros and ones interchanged. Therefore,

between any two zeros (ones), all of the ones (zeros) are shared CM. We have two

cases.
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In the first case, suppose that f(x) ¥= 0 for x > x3. It can be seen from the proof

of Lemma 1 that /'// is strictly decreasing on the interval x > x3 (Note: In the

proof of Lemma 1 it is shown that h' /his strictly decreasing where it is defined on

the real axis, for any h satisfying the hypothesis of Lemma 1.). Hence, /' can have

at most one zero in (x3, oo). Therefore, / can have at most two one-points in

(x3, oo). It follows from Lemma 2 that order(/) < | and order(g) < \. If we further

have that /(x) ^ 0 for x < x4, then / and g must be polynomials by the Hadamard

factorization theorem. This implies that f = g, because two polynomials that share

two finite values IM are identical [1]. On the other hand, if / does have infinitely

many negative zeros, then by the previous paragraph, all but at most two of the

one-points will be shared CM. Thus by the Hadamard factorization theorem, there

exists a rational function R(z) such that

f-l=R(g-l).

Since R(z) = 1 whenever z is a zero of /, g, this implies that R(z) = 1. Hence

/= g.

If in the preceding paragraph we had started with the assumption that f(x) =£ 0

for x < x4, instead of f(x) ¥= 0 for x > x3, then the same argument will yield/ = g.

Similarly, if the assumption was either 1 — f(x) =£ 0 for x > x3, or 1 — f(x) ^ 0 for

x < x4, then the same argument with 1 — / and 1 — g instead of / and g will again

yield/ = g.

The second case is when / and g have infinitely many positive zeros, infinitely

many negative zeros, infinitely many positive ones, and infinitely many negative

ones. Our previous application of Lemma 1 to the zeros of/, g and also to the zeros

of 1 — / 1 — g, shows that / and g share 0 and 1 CM. Hence if / ^ g, then the

result of Osgood and Yang [5, p. 410] gives

en(az + b) _  j e-n(az + b) _ j

f(z) =-    and    e(z) =-, (2)

where a =£ 0, Z> are constants and n ^ 0, 1 is an integer. Now suppose / and g have

a zero zx = (2irik/na) — (b/a) (k is an integer ¥= 0, mod(/i)). Then z2 = zx +

(2m/a) is also a zero. Since z, and z2 are real, we obtain Re(a) = Re(Z>) = 0. But

then/ and g will not be real for all real z. Hence there are no zeros. But the same

argument with 1 — / and 1 — g will show there are no ones. By Picard's theorem, /

and g are constants, a case we have excluded. Therefore the assumption is false and

/=£•

Now suppose that neither/ nor g is real for all real z. Then each must have one

of the forms in Lemma 2. It follows that/ = g.

The last possibility is when, say, / is real for real z and g is not real for some real

value of z. Then g is one of the two forms in Lemma 2.

Case 1. g(z) = sin(az + Z>)e,,(az+c)/sin(Z» — c) where a ¥= 0, b, c are real con-

stants. Then g has all simple zeros which occur when az + b = trm for an integer

m and all simple ones which occur when az + c = itN for an integer N. Since the

distance between any two consecutive zeros and any two consecutive ones is equal,

there is exactly one zero between every two ones. By applying Lemma 1 to 1 — /,
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we see that/has all double zeros. This means

/(*) = ( g(z)feAl+B       for constants A, B.

Since /is real on the real axis, this means that there are real constants C, D, and an

integer k so that

■¿In,   4-   h\^ _ sin2(az + b) ^Cz+D+Vik

sin2(b -c)

Now g(z) = 1 => sin2(az + b) = sin2(Z> - c) =s> eCi+0+m* = 1. Since the ones are

all real, it follows that eCz+D+mk = i. Further, since the ones of / can only occur

when az + c = ttN, this means that sin2(Z> — c) = 1. Thus

f(z) = sin2(az + Z»)    and   g(z) = -/ sin(az + b)eiia* + b\

Case 2. g(z) = sin(/»(az + b))eKp~l)(az+b)/sm(az + Z») where p ¥* 0, 1 is an

integer and a ¥= 0, Z> are real constants. Then g has all simple zeros which occur

when p(az + b) = itN for an integer N ^ 0 (mod/»), and all simple ones which

occur when (/» — l)(az + Z») = mm for an integer m ^ 0 (mod(/» — 1)).

Suppose first /» < 0. There is at most one zero between consecutive ones.

Applying Lemma 1 to 1 — / shows that / can have only double zeros. Then for

constants c, d

f(z) = (g(z))V*+*.

Since / is real on the real axis, this means there are real constants A, B and an

integer k so that:

sin2(/»(az + b))eAl+B+h*
Ä*)-

sin2( az + b)

Since the ones are real, this further reduces to

, .      sivL2(p(az + b))

sin (az + b)

If p = -1 then / = 1, the excluded constant case. The cases /» = -2 and /> = -3

give item 3 in the theorem. Now assume /» < -4. If az + b = ir/(p + 1), then

f(z) = 1. Hence g(z) = 1, and from the preceding paragraph, this means that

(P ~ l)/(P + I) = m for some integer m. This cannot happen for/» < -4.

Now suppose /» > 2. There is at most one one-point between zeros. Hence by

Lemma 1,/can have only double ones. Then for constants c and d:

/(z)-l = -(g(z)-l)V*+«.

By considering two different zeros of /, g we obtain Re(c) = Re(o") = 0. Then for

real constants^, B,

f(z) = 1 - (g(z) - 1)V<—Ä>. (3)

From this we obtain

f(z) = 1 - (w(z))2exp[/(^z + B + 2p(az + b))]
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where w(z) = 2¿~ \ exp[/(/» — 2k)(az + b)] is real for real z. Hence

exp(i(Az + B)) = exp(-2/»/(az + Z»)).

Substituting this into (3),

f(z) = 1 - (g(z) - $«-**"+*>.

Then for/» = 2, g(z) = e2i(az+b) + 1 and/(z) = 0. The cases/» = 3 and/» = 4 give

item 4 in the theorem. Now assume /» > 5. /(z) = 0<=»(g(z) - l)2 = e2pKaz+b).

Thus /(z) = g(z) = 0 whenever az + Z» = tt/(p — 2). Therefore, /» = N(p — 2) for

some integer N. This is impossible for/» > 5.

The proof of the theorem is now complete.
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