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Abstract. We provide the first formal treatment of entity authentica- 

tion and authenticated key distribution appropriate to the distributed 

emironment. Addressed in detail are the problems of mutual authen- 

tication and authenticated key exchange for the symmetric, two-party 

setting. For each we present a definition, protocol, and proof that the 
protocol meets its goal, assuming only the existence of a pseudorandom 

function. 

1 Introduction 

Entity authentication is the process by which an agent gains confidence in the 
identity of a communication partner. Though central to computing practice, 

entity authentication for the distributed environment rests on no satisfactory 

formal foundations.This is more than an academic complaint; entity authentica- 

tion is an area in which an informal approach has often lead to work which is 

at  worst wrong, and at best only partially analyzable. In particular, an alarm- 
ing fraction of proposed protocols have subsequently been found to be flawed 
(see, e.g., [5, 31) and the bugs have, in some cases, taken years to discover. It 

is therefore desirable that confidence in an authentication protocol should stem 

from more than a few people’s inability to break it. In fact, each significant en- 

tity authentication goal should be formally defined and any candidate protocol 

should be proven to meet its goal under a standard cryptographic assumption. 

More often than not the entity authentication process is coupled with the 
distribution of a “session key” which the communicating partners may later 

use for message confidentiality, integrity, or whatever else. This “authenticated 

key distribution” goal may be considered even more important in practice than 

the pure entity authentication goal. As a problem, it is beset with the same 
foundational difficulties as the entity authentication problem of which it is an 
extension. 

Authentication and authenticated key distribution problems come in many 
different flavors: there may be two parties involved, or more; the authentication 

may be unilateral or mutual; parties might (the symmetric case) or might not 

(the asymmetric case) share a secret key. Here we focus on two version of the 
the two-party, mutual, symmetric case. In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmutual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAauthentication problem the 
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parties, representing processes in a distributed system! engage in a conversation 

in which each gains confidence that it is the other with whom he speaks. In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
authenticated key ezchange problem the parties also want to distribute a LLfreshn 

and “secret” session key.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAContributions of this Paper 

A COMMUNICATION MODEL FOR DISTRIBUTED SECURITY. It has been pointed 

out in many places that one difficulty in laying foundations for entity authenti- 

cation and authenticated key distribution protocols has been the lack of a formal 

communications model for authentication in the distributed environment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Here 
we specify such a model. To be fully general, we assume that all communication 

among interacting parties is under the adversary’s control. She can read the 

messages produced by the parties, provide messages of her own to them, modify 
messages before they reach their destination, and delay messages or replay them. 

Most importantly, the adversary can start up entirely new “instances” of any 

of the parties, modeling the ability of communicating agents to  simultaneously 

engage in many sessions at once. This gives us the ability to  model the kinds 

of attacks that were suggested by [3]. Formally, each party will be modeled by 

an infinite collection of oracles which the adversary may run. These oracles only 

interact with the adversary, they never directly interact with one another. See 

Section 3. 

DEFINITIONS. In the presence of an adversary as powerful as the one we define, 

it is unclear what it could possibly mean to be convinced that one has engaged 

in a conversation with a specified partner; after all, every bit communicated 

has really been communicated to the the adversary, instead. We deal with this 
problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows. 

As has often been observed, an adversary in our setting can always make 

the parties accept by faithfully relaying messages among the communication 

partners. But this behavior does not constitute a damaging attack; indeed, the 

adversary has functioned just like a wire, and may as well not have been there. 

The idea of our definition of a mutual authentication is simple but strong: we 

formalize that a protocol is secure if the only way that an adversary can get a 

party to accept is by faithfully relaying messages in this manner. In other words, 

any adversary effectively behaves as a trusted wire, if not a broken one. 

TO define authenticated key exchange it is necessary to  capture a protocol’s 

robustness against the loss of a session key; even if the adversary gets hold of 

one, this isn’t supposed to compromise security beyond the particular session 

which that key protects. We model this requirement by allowing the adversary 

to  obtain session keys just by asking for them. When this inquiry is made, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
’ At first glance it might seem unnecessary for two parties who already share a key a 

to come up with another key a. One reason a new key is useful is the necessity 
of avoiding cross-session “replay attacks” -messages copied from one session being 
deemed authentic in another- coupled with an insistence on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot attempting to carry 
“state” information (e.g., a message counter) across distinct sessions. 
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key is no longer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf iesh, and the partner's key is declared unfresh, too. Fresh 

keys must remain unknown to the adversary, which we define along the lines of 

formalizations of security for probabilistic encryption [12, 8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA91. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PROTOCOLS. Four protocols are specified. Protocol MAP1, an extension of the 

2PP of [3], is a mutual authentication protocol for an arbitrary set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI of players. 
Protocol MAP2 is an extension of MAP1, allowing arbitrary text strings to  be 
authenticated along with its flows. Protocol AKEPl is a simple authenticated 

key exchange which uses MAP2 to do the key distribution. Protocol AKEP2 is 
a particularly efficient authenticated key exchange which introduces the idea of 

"implicitly" distributing a key; its flows are identical to MAP1, but it accom- 

plishes a key distribution all the same. The primitive required for all of these 
protocols is a pseudorandom function. 

PROOFS OF SECURITY. Assuming that pseudorandom functions exist, each pro- 

tocol that we give is proven to meet the definition for the task which this protocol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 

is claimed to carry out. The proofs for MAP1 and AKEPl are given in this pa- 

per; the proofs for MAP2 and AKEP2 are omitted because they are essentially 

identical. The asymptotics implicit in all of our proofs are not so bad as to ren- 

der the reductions meaningless for cryptographic practice. In other words, if one 

had a practical method to defeat the entity authentication this would translate 

into a practical method to defeat the underlying pseudorandom function. 

DESIGN FOR PRACTICE. Every protocol presented in this paper is practical. 
Each is efficient in terms of rounds, communication, and computation. This 
efficiency was designed into our protocols in part through the choice of the 

underlying primitive-a pseudorandom function. 

Rom a theoretical perspective, the existence of pseudorandom functions and 

the existence of many other important cryptographic primitives (e.g., one-way 
functions, pseudorandom generators, digital signatures) are all equivalent [ 16, 14, 

10, 23].* From a practical perspective, pseudorandom functions (with the right 
domain and range) are a highly desirable starting point for efficient protocols in 

the symmetric setting. The reason is that beginning with primitives like DES and 

MD5 one can construct efficient pseudorandom functions with arbitrary domain 

and range lengths, and these constructions are themselves provably secure given 
plausible assumptions about DES and MD5. See Section 6 for discussion of these 
issues. 

IMPLEMENTATIONS. A derivative of our AKEPZ is implemented in an IBM pro- 

totype of a secure high speed transport protocol. Another derivative of AKEP2 
is implemented in an IBM product for Remote LAN Access. 

Combining ideas from our proofs and a lemma from [l], we can show that a 

special case of the 2PP of [3] meets our definition of a secure mutual authenti- 
cation. (See the end of Section 4 in our full paper for further details.) The 2Pp 

protocol is implemented in an IBM prototype called XryptoKnight [20]. 
' We remark that the existence of a secure mutual authentication protocol implies 

the existence of a one-way function, ari can be shown using techniques of [15]; thus 
mutual authentication also exists if and only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif one-way functions do. 
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1.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHistory and Related Work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PROVABLE SECURITY. Provable security means providing: (1) a formal definition 
of the goal; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) a protocol; (3) a statement of a (standard) assumption; and (4) a 

proof that the protocol meets its goal given the assumption. The notion emerged 

in the work of Blum-Micali [4] and Yao [26] (who introduced provably secure 
pseudorandom generators) and Goldwasser-Micali [12] (who introduced provably 

secure encryption). A definition for digital signatures (Goldwasser, Micali and 
Rivest [13]) took slightly longer. We follow in spirit this early foundational work 

and enable entity authentication to join the ranks of those key primitives having 
a well-defined goal proven to be achievable under a standard complexity-theoretic 

assumption. 

PROTOCOLS. The number of protocols suggested for entity authentication is too 
large to survey here; see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ,  171 for some examples. 

TOWARDS A MODEL AND DEFINITIONS. Bird, Gopal, Hereberg, Janson, Kut- 

ten, Molva and Yung [3] described a new class of attacks, called “interleaving 
attacks,” which they used to break existing protocols. They then suggested a 

protocol (2PP) defeated by none of these attacks. The recognition of interleav- 
ing attacks helped lead us to the formal model of Section 3, and our MAP1 
protocol is an extension of 2PP. However, while an analysis such aa theirs is use- 

ful as a way to spot errors in a protocol, resistance to interleaving attacks does 
not make a satisfactory notion of security; in particular, it is easy to construct 

protocols which are insecure but defeated by no attack from the enumeration. 

When our work was announced, the authors of [3] told us that they understood 

this limitation and had themselves been planning to work on general definitions; 
they also told us that the CBC assumption of their paper [3, Definition 2.11 was 

intended for proving security under a general definition. 
Mentioned in the introduction of [3] is an idea of “matching histories.” Diffie, 

Van Oorschot and Wiener [S] expand on this to introduce a notion of “matching 

protocol runs.” They refine this idea to a level of precision adequate to help them 

separate out what are and what are not “meaningful” attacks on the protocols 
they consider. Although [S] stops short of providing any formal definition or 

proof, the basic notion these authors describe is the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABB ours and is the 
basis of a definition of entity authentication. Thus there is a clear refinement of 

definitional ideas first from [3] to [6], and then from [6] to our work. 

RELATION TO OTHER FOUNDATIONAL WORK. Beginning with the paper of 

Burrows, Abadi and Needham [5] ,  the “logic-based approach” attempts to Teason 
that an authentication protocol is correct as it evolves the set of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbelief.. of its 

participants. This idea is useful and appealing, but it haa not been used to 

define when an arbitrary set of flows constitutes a secure entity authentication. 
Nor does a correctness proof in this setting guarantee that a protocol is “right,” 

but only that it lacks the flaws in reasoning captured by the underlying logic. 

More closely related to our approach is the idea of a non-transferable proof, 
a notion for (asymmetric, unilateral) authentication due to Feige, Fiat an-d 

Shamir [7]. Here an (honest) claimant P interacts with a (cheating) verifier V ,  
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and then a (?-conspiring cheating) prover zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp tries to convince an (honest) ver- 

ifier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV that she (F) is really zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. This definition accurately models a world of 

smart-card claimants and untrusted verifiers, but not a distributed system of 

always-running processes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PUBLICATION NOTES. A preliminary version of this paper (which included, in 
addition to the material here, definitions three party authentication) appeared 

in the proceedings of an IBM internal conference in October 1992. The version 

of this paper you are now reading has been edited due to  page limits. Ask either 
author for the complete version. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Preliminaries 

The set of infinite strings is (0, I}m and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, 1}SL is the set of strings of length 

at  most L .  The empty string is A. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,  . . . are strings used in some 

context, by a ,  b ,  c . . . . we denote an encoding of these strings such that each 

constituent string is efficiently recoverable given the encoding and the context 

of the string’s receipt. In our protocols, concatenation will usually be adequate 

for this purpose. A function is eff iciently computable if it can be computed in 

time polynomial in its first argument. A real-valued function ~ ( k )  is negligible if 
for every c > 0 there exists a k ,  > 0 such that e ( k )  < k-“ for all k > k , .  The 

protocols we consider are two party ones, formally specified by an efficiently 

computable function II on the following inputs: 

l k  - the “security parameter” - L E N. 
i - the “identity of the sender” - i E I C { O , l } E .  
j - the “identity of the (intended) partner” - j E I 
a - the “secret information of the sender” - a E (0, l}*. 

K - the “conversation so far” - u E (0, l)*. 

T - the “random coin flips of the sender” - T E (0, l}’. 

m - the “next message to send out” - m E (0,1}* U {*}. 
6 - the “decision” - 6 E (A, R,  *). 
Q - the “private output” - Q E (0,1}* U {*}. 

(0, l}k. 

The value of n( l k ,  i, j ,  a, n, T )  = (m, 6, a) specifies: 

Here I is a set of i d e n t i t i e s  which defines the p l a y e m  who can participate in the 

protocol. Although our protocols involve only two parties, the set of players I 
could be larger, to  handle the possibility (for example) of an arbitrary pool of 

players who share a secret key. Elements of I will sometimes be denoted A or 

B (Alice and Bob), rather than i,j; we will switch back and forth irrationally 

between these notations. We stress that A ,  B (and i , j )  are variables ranging 

over I (not fixed members of I), so A = B (or i = j )  is quite possible. Note 
that the adversary is n o t  a player in our formalization. The value a that a 

player sees is the private information provided to him. This string is sometimes 

called the long-lived Ley (or LL-key) of a player. In the case of (pure) symmetric 

authentication, all players i E I will get the same LL-key, and the adversary will 

be denied this key. In general, a LL-key generator B associated to  a protocol will 
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determine who gets what initial LL-key (see below). The value ‘%” is supposed 

to suggest, for m, that “the player sends no message.” For 6, it means that “the 

player has not yet reached a decision.” For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, it means Uthe player does not 

currently have any private output.” The values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and R, for 6, are supposed t o  

suggest “accept” and “reject,” respectively. We denote the t-th component of II 
(for t E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1,2,3}) by 17 t .  Acceptance usually does not occur until the end of the 

protocol, although rejection may occur a t  any time. Some protocol problems, 

such as mutual authentication, do not make use of the private output; these 

protocol are concerned only with acceptance or rejection. For others, including 

key exchange protocols, the private output of a party will be what this party 

thinks is the key which has been exchanged. It is convenient to  aasume that 

once a player has accepted or rejected, this output cannot change. To each 

protocol is associated its number of moves, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. In general this is a polynornially 

bounded, polynomial time computable function of the security parameter; in all 

our protocols, however, it is a constant. 

Associated to a protocol is a long-lived key generator (LL-key generator) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G ( l k ,  L, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATG) ”  This is a polynomial time algorithm which takes as input a security 

parameter lk, the identity of a party L E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI U {E l ,  and an infinite string TG E 

{0, l}m (coin flips of the generator). For all of the protocols of this paper, the 
associated LL-key generator will be a symmetric one, where for each i, j E I we 

have that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG( lk, i, T G )  = G ( l k ,  j ,  r c ) ;  while, on the other hand, G ( l k ,  El r G )  = A. 
The value of G ( l k ,  i, T G )  will just be a prefk of TG (that is, a random string). 

The length of this prefix will vary according to  the protocol we consider. 

3 A Communication Model for Distributed Security 

Formally the adversary E is a probabilistic machine‘ E ( l k ,  aa,  r ~ )  equipped 

with an infinite collection of oracles II:,j, for i, j E I and s E N. Oracle ll:,j 

models player i attempting to authenticate player j in “session” s. Adversary E 
communicates with the oracles via queries of the form (i,j, s, z) written on a 

special tape. The query is intended to mean that E is sending message x to  i, 
claiming it is f r o m j  in session s. Running a protocol 17 (with LL-key genera- 

tor G) in the presence of an adversary E ,  using security parameter k, means 

performing the following experiment: 

(1) Choose a random string r c  E (0 , l )”  and set ai = G ( l k , i , r G ) ,  for i E I, 
and set ag = ( I k ,  E,TG). 

(2) Choose a random string TE E (0,l)O” and, for each i, j E I ,  s E N, a 
random string T : , ~  E (0, l}m. 

(3) Let K : , ~  = A for all i, j E 1 and 1~ E N. (The variable ~ 9 , ~  will keep track of 
the conversation that L!iSj engages in.) 

’ Adversaries cBn be uniform or non-uniform, and the results of this paper hold in 
both cases, with uniform adversaries requiring a uniform complexity assumptions 
and non-uniform adversaries requiring non-uniform ones. 



(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARun adversary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE on input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(l’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU E ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ~ ) ,  answering oracle calls zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows. 

When E asks a query (i, j, 8 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz), oracle iI,!j computes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m, 6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) = D(lk, 2, j, 
ai, K : ~ ~  . I, T : , ~ )  and answers with (m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6). Then K ! , ~  gets replaced by . z. 

We point out that in response to an oracle call E learns not only the outgoing 
message but also whether or not the oracle has accepted or rejected. (For conve- 

nience of discourse, we often omit mention of the latter.) According to the above, 

E doesn’t learn the oracle’s private output. For some problems (such as authen- 

ticated key exchange) we will need to give the adversary the power to sometimes 

learn these private outputs. Such an extension is handled by specifying a new 
kind of oracle query and then indicating how the experiment is extended with 

responses to  the new class of queries. An adversary is called benign if it is de- 

terministic and restricts its action to choosing a pair of oracles Ll!,j and n;,; 
and then faithfully conveying each flow from one oracle to the other, with L!:,j 
beginning first. While the choice of i, j, s, t is up to the adversary, this choice is 
the same in all executions with security parameter k. 

In a particular execution of a protocol, the adversary’s i-th query to an oracle 
is said to occur a t  time r = r; E R. We intentionally do not specify {ri}, except 

to demand that ri < rj when i < j .  Conforming notions of time include “abstract 
time,” where ~i = i ,  and “Turing machine time,” where r, = the i-th step in E’s 
computation, when parties are realized by interacting Turing machines. 

4 Entity Authentication 

A central idea in the definition is that of matching conversations. Consider run- 
ning the adversary E with security parameter k. When E terminates, each oracle 

lI,?j has had a certain conversation with E,  and it has reached a certain de- 

cision 6 E {A, R, *}. Fix an execution of an adversary E (that is, fix the coins 
of the LL-key generator, the oracles, and the adversary). For any oracle L!:,j we 

can capture its conversution (for this execution) by a sequence 

K = (~ l?%@l ) ,  (72,&2,P2),  . a ’ ,  (G-n,am,Pm).  

This sequence encodes that at time r1 oracle lI,?j was asked a1 and responded 

with PI ;  and then, at some later time 72 > 71, the oracle was asked a2 and 
answered P 2 ;  and so forth, until, finally, at time 7, it was asked am and an- 

swered &. Adversary E terminates without asking oracle lI/lj any more ques- 
tions. Suppose oracle D:,, has conversation prefixed by (71, a1, PI) .  Then if 

a1 = A we call lI/lj an initiator oracle; if a1 is any other string we call n/,j 
a responder oracle. We now define matching conversations. For simplicity we 

focus on the caae where R is odd; the case of even R is analogous and is left to 

the reader. Explanations follow the formal definition. 

Definition 1. (Matching conversations)Fiz a number of moves R = 2p - 1 and 
an R-move protocol D. Run 17 in the presence of an adversary E and consider 
two oracles, lIi,B and Dk,A, that engage in conversations K and K’, respec- 
tively. 
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(1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW e  say that K’  is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmatching conversation to  K if there ezist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< TI < 
. . . < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATR and a l , P l , .  . ., ap,Pp such that K is prefized by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 7 O , X , a l ) , ( 7 a , & r a a ) ,  ( 7 4 , P 2 , a 3 ) , . - . $  ( 7 2 p - - 1 , p p - 2 1 a p - l ) , ( ~ a p - a i p p - l , ~ ~ )  

and K’ i s  prefized by 

(7irai,Pi),(73,aa,&), ( 7 ~ , a 3 ~ P 3 ) ,  ( ~ a p - 3 , a p - i , P p - i )  - 
W e  say that K is a matching conversation to  K’ i f there ezist TO < TI < 
. . . < 7~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand al, pl,. . . , ap, Pp such that K‘ i8  prefized by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) 

(71, a1,P1), (73,  aa,Pd, (76, a 3 , P 3 ) ,  . . * 1 (Tap-3,  a p - - l , P p - - l ) ,  ( 7 2 p - 1 ,  a p ,  *) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and K is prefized b y  

(70, hai), (~a,Pi,aa), (74,Pa,aa),  . ., ( ~ a ~ - 4 , P p - a , a ~ - ~ ) ,  ( T a p - a , P p - l , a p )  

Case (1) defines when the conversation of a responder oracle matches the con- 
versation of an initiator oracle. Case (2) defines when the conversation of an 
initiator oracle matches the conversation of a responder oracle. Let us para- 

phrase our definition. Consider an execution in which niIB is an initiator oracle 

and lIL,A is a responder oracle. If every message that l?i,B sends out, except 

possibly the last, is subsequently delivered to 17h,A, with the response to this 

message being returned to ZIilE as i ta  own next measage, then we say that the 

conversation of lIL,A matches that of l?i,B. Similarly, if every message that 

ELlA receives was previously generated by D;l,B, and each message that l I h , ~  
sends out is subsequently delivered to IlilB, with the response that this message 

generates being returned to nklA as its own next message, then we say that the 

conversation of lI;l,B matches the one of Note that this second condition 

is easily seen to imply the first one. 
We comment that the party who sends the laat flow (Df i ,E,  above) can’t 

“know” whether or not its last message was received by its partner, so when 

this oracle accepts accepts, it cannot “know” (assuming this last message to be 

relevant) whether or not its partner will accept. This asymmetry is an inherent 
aspect of authentication protocols with a fixed number of moves, 

We will say that oracle Dj,i has a matching conversation with oracle ZIilj if 
the first has conversation K’, the second has conversation K, and K’ matches 
K. Either party here may be the initiator, 

We require that any mutual authentication protocol have R 2 3 rounds. We 

implicitly make this assumption throughout the remainder of this paper. Let 

No-MatchingE(lc) be the event that there exist i, j ,  s such that Ll!,j accepted and 
there is no oracle l I j , i  which engaged in a matching conversation. 

Definitioh2. (Secure mutual authentication) W e  say that 17 is a secure mutual 
authentication protocol if for any polynomial time adversary E ,  

(1) (Matching conversations s acceptance.) If oracles lI;l,B and l ILIA have 
matching conversations, then both oracles accept. 

( 2 )  (Acceptance * matchingconversations.) The probability ofNo-MatchingE(k) 
i s  negligible. 
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An oracle’s matching partner is unique. Formally, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMultiple-MatchE(k) be the 

event that some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl I :, j  accepts, and there are at least two distinct oracles nj,; and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l I f i  which have had matching conversations with D;,, . The proof of the following 

is in Appendix C (omitted here due to lack of space; see our full paper). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proposition3. Suppose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17 is a secure MA protocol. Let E be any polynomial 
time adversary. Then the probability of Multiple-MatchE(k) is negzigible. 

We now proceed to protocols. Let f be a pseudorandom function (PRF) family 
[lo]. Denote by fa: (0, l }sL(k)  + (0, l}f(k) the function specified by key a. In 

general, the length of the key, the length L of the input to fa, and the length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
of the output, are all functions of the security parameter. Here we assume the 
key length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis just k, and, for our first protocol (MAP1) it suffices to assume 
L ( k )  = 4k and l ( k )  = k. For any string z E (0, l}(L(k) define [z]~ = (t, fa(t)); 

this will serve as an authentication of message z [lo, 111. For any i E I ,  [i. ~ ] a  

will serve as i’s authentication of message t. 

A” RA . B” 

IB. A .  RA . R B ~ .  

F i g .  1 .  Protocol MAPl:  a mutual authentication of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAany two principals, A and B,  
among a set of principals I who share a key a. 

Our first protocol (called “MAP1 ,” for “mutual authentication protocol one”) 
is represented by Figure 1. Alice (A )  begins by sending Bob ( B )  a random chal- 

lenge RA of length k. Bob responds by making up a random challenge RB of 

length k and returning [ B  . A .  RA , &la .  Alice checks that this message is of the 
right form and is correctly tagged as coming from B .  If it is, Alice sends Bob 

the message [ A .  and accepts, Bob checks that this message is of the right 

form and is correctly tagged as coming from A, and, if it is, he accepts. We stress 
that checking the message is of the right form, for A in the second flow, includes 

checking that the nonce present in the message is indeed the same nonce she 

sent in the first flow; similarly for B with respect to checking the third flow. we 

comment that A = B is permitted; these are any two identities in the set I .  The 
proof of the following Theorem 4 appears in Appendix A. 

Theorem4. (MAP1 is a secwe MA) Suppose f is a pseudorandom function 
family. Then protocol MAP1 described above and based on f is a secure mutua1 
authentication. 
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5 Authenticated Key Exchange zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ S k } k c N  with each sk a distribution over {o, 1}"('), for some polYn0- 
miala(E). The intent of an AKE will be both to authenticate entities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand to 

distribute a "session key" sampled from Sk. When a player accepts, his private 
output will be interpreted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the session key which he has computed. Formally, 

the session key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa will be defined by Ll3. For simplicity, we assume that an ac- 

cepting player always has a string-valued private output of the right length (that 

is, if l I 2  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA then D, E (0, l}'(k)), while a non-accepting player has a session 
key of * (that is, if 1 7 2  E {R, *} then II, = *). 

Compromise of a session key should have minimal consequences. For example, 
its revelation should not allow one to subvert subsequent authentication, nor 

should it leak information about other (as yet uncompromised) session keys. TO 

capture this requirement we extend the interaction of the adversary with its 
oracles by adding a new type of query, as follows: we say that the adversary can 
learn a session key a t  of an oracle lIa . by issuing to the oracle a distinguished 

reveal query, which takes the form (i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, s, reveal). The oracles answers at,j. To 

quantify the power of an adversary who can perform this new type of query, we 
make the following definitions. Initially, each oracle D;,, is declared unopened, 
and so it remains until the adversary generates a reveal query (i, j ,  s, reveal). At 
this point, the oracle is declared opened. We say that an oracle LT,?j is fresh 
if the following three conditions hold: First, II[,j has accepted. Second, l I [> j  is 

unopened. Third, there is no opened oracle D;,; which engaged in a matching 

conversation with II[,i. When oracle n;,, is fresh, we will also say that "the 

oracle holds a fresh session key." 

We want that the adversary should be unable to understand anything in- 

teresting about a fresh session key. This can be formalized along the lines of 

security of probabilistic encryption; the particular formalization we will adapt 
is that of (polynomial) indistinguishability of encryptions [12, 8, 91. We demand 

that at the end of a secure AKE the adversary should be unable to distinguish a 

fresh session key a from a random element of sk. After the adversary has asked 

all the (i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  s, z) and (i, j, s, reveal) queries that she wishes to ask, the adversary 

asks of a fresh oracle a single query ( i , j ,  s, test). The query is answered by 

flipping a fair coin b 6 {0,1} and returning if b = 0, or else a random sample 
from Sk if b = 1. The adversary's job is to guess b. To this end, she outputs a 

bit Guess, and then terminates. Let Good-GuessE(k) be the event that Guess = b, 
when the protocol is executed with security parameter i c ;  in other words, this is 
the probability the adversary has correctly identified whether she was given the 
real session key or just a sample from sk. Let 

'+ 

advantageE(k)  = max 0 ,  Pr Good-GuessE(k)] - } . { I  
Definition5. (Authenticated Key Exchange (AKE)) Protocol II i3 a secure 
AKE oveT S = { S k } k c N  i f  Ll i s  a secuTe mutua l  authent icat ion protocol, and, in 
addition, the following are t rue:  
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(1) (Benign adversary keys according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsk) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL e t  B be a n y  benign adversary 

and let lI:lj and be i ts  chosen aracles in t he  exper iment w i th  security 
parameter  k .  T h e n  both oracles always accept, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;,,, and moreover 
this r a n d o m  varaable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis distr ibuted according t o  Sk. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Session key is protected) Le t  E be a n y  po lynomia l  t i m e  adversary.  T h e n  
advan tageE(k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  negligible. 

(2) 

The first condition says that if flows are honestly conveyed then a session key 

is agreed upon, and this key is properly distributed. The second condition says 

that the adversary can't tell this session key from a random string of the same 

distribution. 

Since the protocol is assumed to be a secure mutual authentication, we know 
that if oracles lI,?j and n,t,i have matching conversations then they both accept. 

F'rom the first condition it follows that they will also have the same session key. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 2. Protocol AKEPI: The d u e  OL is the session key distributed. 

We now present a protocol for AKE. Let S = {sk} be a family of samplable 
distributions on (0, l }q (k ) .  The parties share a 2k bit LL-key which we denote 

al,aa. The first part, all is taken as the key to the pseudorandom function 
family f ,  yielding a PRF fal: (0, l}sL(k) + (0, lIk to be used for message 
authentication; this time, L(k)  = 5k + ~ ( k )  will suffice. The second part, d.2,  

is used as a key to another pseudorandom family f' with the property that 
fLa: (0, l } k  -t (0, l }Q(L) .  A probabilistic encryption of string a E (0, l )q (k )  is 

defined by {a},, %f (7, f ; , ( ~ ) $ a ) ,  with T selected at random. Party B chooses 
the session key a from sk and sets Text2 to be {CY} ,~ .  The strings Text1 and 

Text3 of MAP2 are set to A. This protocol, which we call AKEP1, is shown in 
Figure 2. It is important that a3 (the key used for encryption) be distinct from 

a1 (the shared key used for the message authentication). Formally, the LL-key 

generator G provides the parties i E I with a 2k-bit shared key. The two keys 

need not be independent, however; the generator could set q = fa(i) ( i  = 1,2) 
where a is a random k-bit key and fa is a pseudorandom function. The proof Of 

the following theorem is given in Appendix B. 

Theorem6. L e t  S = {Sk} be samplable, and suppose f, f' are pseudorandom 
func t i on  fam i l i es  with t he  parameters  specified above. T h e n  the  protocol AKEPl 
based o n  f ,  f' i s  a secure AKE over S. 
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A more efficient (in terms of communication complexity) AKE protocol may be 
devised by using an “implicit” key distribution. In this case, the flows between A 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB are the same as in MAPl and one (or more) of the parameters already 

present in its flows (say RB)  is used to define the session key. Specifically, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{sk} be a family of distributions given by s k  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIJ(uk), for some deterministic, 
polynomial-time computable function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, where uk is the uniform distribution 

on k-bit strings; for example Sk = uk and g the identity, the most useful choice 
in practice. Again the parties share a 2k bit LL-key al,aa, with a1 being used 

as the key in MAPl (so L ( k )  = 4k). Let f’ be a pseudorandom pennutation 
family [la]; f& specifies a permutation on (0, l}k. Define AKEP2 by having its 

flows be identical to MAPl with a1 being used for message authentication. Each 

accepting party outputs session key (Y = g ( f L , ( R B ) ) .  This protocol, which we 
call AKEPP, is shown in Figure 3. Modifying the proof of Theorem 6 we can 

show the following: 

Fig. 3.  Protocol AKEP2: The Implicit Key Exchange Protocol. The value Q is the 
session key “implicitly” distributed. 

Theorem 7 .  Let s = {Sk) be given b y  s k  = g ( U k ) ,  for some polynomial t ime g .  
Suppose f, f’ are a pseudorandom function family and a pseudorandom permuta- 
tion family, with the parameters specified above. Then the protocol AKEP2 based 
on f, f’ is a secure AKE over S. 

6 From Theory t o  Practice 

Cryptographic practice provides good PRFs on particular input lengths 1 (for 

example, DES for l = 64 [18, 191). In contrast, our protocols need PRFs for 

arbitrary input lengths. In devising such PRFs we prefer not to rely purely on 
heuristics but instead zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto give provably-correct constructions of arbitrary length 

PRFs based on fixed length PRFs and collision-free hash functions. The lemmas 

underlying our constructions are from [i] and are summarized with additional 
material in Appendix D (omitted here due to lack of space; see our full paper). 

The exception is the third construction given below; we’ll discuss it when we get 
there. 
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PRIMITIVES. The algorithm of the DES specifies for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64 bit key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa a permuta- 

tion DES, from (0, 1)64 to (0, l)64. The viewpoint adopted here -suggested by 

Luby and Rackoff [18, 191- is to regard DES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa pseudorandom permutation, 

with respect to practical computation. 

The MD5 function [22] maps an arbitrary string z into a 128-bit string 

MD5(z). It is intended that this function be a collision-free hash function, with 

respect to  practical computation. 

NOTATION. Let ga denote a PRF of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 bits to 1 bits. Suppose y has length a 

multiple of 1 bits, and write it as a sequence of I bit blocks, y = y1.. .yn. The 

cipher block chaining (CBC) operator defines 

Let A denote a collision free hash function of {0,1}* to (0, l}al. Let Hl(z) and 

H ~ ( z )  denote the first I bits of H ( z )  and the last 2 bits of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( z ) ,  respectively. 

Finally (z)l will denote some standard padding of 2: to string of length a multiple 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 bits; for example, always add a 1 and then add enough zeroes to get to a 

length which is a multiple of 1. 

CONSTRUCTIONS. For concreteness, we suggest three constructions of a PRF 

fa mapping long inputs to  short outputs. Below, let 1 = 64, g = DES, and 

H = MD5 The key a has length 64 bits. 

(1) The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACBC PRF. Let fa($) be the first 1 / 2  bits of CBCS,((a)l. /(z)r l) ,  where 

IyI is the length of y encoded as an 1-bit string. This construction is justified 

by Lemma 12 of Appendix D (omitted).6 

The CBC/Hash PRF. Let fa(z) be the first 1/2 bits of ga( g b ( H 1 ( z ) )  G3 
H z ( z )  ) = CBCZ(H(a)). This construction is justified by Corollary 14 
(omitted). In software this is significantly more efficient than the CBC 
construction, requiring one hash and two DES operations. 

The Pure Hash PRF. Let fa(z) be the first 1 /2  bits of H ( z  .a) .  This con- 
struction was suggested in [24] as a message authentication code; we sug- 

gest the stronger assumption that it is a PRF. However no standard as- 

sumption about H of which we are aware can be used to justify the the 

security of this construction, and it should be viewed more aa a heuristic 

than the two constructions suggested above.7 

(2) 

(3) 

Similar constructions can be given using other primitives; for example the SHA 
instead of MD5, etc. 

' Lemma 12 does not require us to drop the last 1/2  bits of the output. We drop them 

for two reasons. The first is efficiency. The second is specific to DES and will not be 

discussed here. 
See [2] for another viewpoint. 
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We stress the importance in security considerations of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACBC and Hash Lem- 

mas of Appendix D; the lack of such lemmas has lead in the past to more com- 
plex assumptions about the security of CBC and other constructions (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3, 
Definition 2.11). 
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A Proof of Theorem 4 

We prove that MAP1 is a secure mutual authentication protocol under the as- 
sumption that f is a PRF. The first condition of Definition 2 is easily verified; it 

merely says that when the messages between A and B are faithfully relayed to 

one another, each party accepts. We now prove that the second condition holds. 
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Fix an adversary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. Recall that the domain of our PRF is (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl}sL(k) and 

its range is (0, l}k. In the following, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD will denote MAP1. In what follows we 

will be considering a variety of experiments involving the running of E with its 

oracles. In order to avoid confusion, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe will refer to  the experiment of running 

E with MAPl (the experiment about which we wish to  prove our theorem) as 
the “real” experiment. 

M A P l  WITH A g ORACLE. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg be a function of (0, l}sL(k) to (0, l}k. Let 

[zIg = (z, g(z)). MAPlg denotes the protocol in which, instead of a shared secret 

a, the parties share an oracle for g, and they compute [.Ig wherever MAPl asks 

them to compute [z]~. We define the experiment of running E for MAP1’ to 

be the same as the experiment of running E for MAPl except for the following 

difference. There is no shared secret a; instead, the oracles all have access to 

a common g oracle and compute their flows according to  MAPlg. Note E is not 

given access to the g oracle. When g = fa for randomly chosen a, this experiment 

coincides with the real experiment. Of interest in our proof is the case of g being 

a truly random function; we call this the random MAPl experiment. 

THE RANDOM M A P l  EXPERIMENT. In the random MAP1 experiment we select 

g as a random function of (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1}5L(k)  to (0, l}k, and then run the experiment 

of running E with MAPlg. Recall that No-MatchingE(Ic) denotes the event that 

there exists an  oracle D:,j who accepts although no oracle engaged in a 

matching conversation; we will refer to it also as the event that the adversary 

is successful. Recall that an initiator oracle is one who sends a first flow (that 

is, it plays the role of A in Figure 1) while a responder oracle is one who plays 

the opposite role (namely that of B in the same Figure). Let T’(Ic) denote a 

polynomial bound on the number of oracle calls made by El and assume wlog 

that this is at least two. 

Lemma8. The probability that the adversary E is successful in the random 
MAPl ezperiment is at most T E ( ~ ) ~  . 2 - k .  

Proof: We split the examination of acceptance into two cases. 

Claim 1: Fix A, B ,  s. The probability that nil, accepts without a matching 

conversation, given that it is an initiator oracle, is at most T E ( ~ )  + 2-k .  

Proof. Suppose at time TO oracle lIi,B sent the flow RA. Let R(Q) denote the 

set of all Rk E (0, l}k for which there exist ~ , t  such that was given RL 
as first flow at a time T < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO. If is to accept, then at some time 7 2  > TO it 

must receive [ B  . A .  RA . & I g  for some RE.  If no oracle previously output this 

flow, the probability that the adversary can compute it correctly is at most 2 - k .  
So consider the case where some oracle did output this flow. The form of the flow 

implies that the oracle which output it must be a lIk,A oracle which received 

RA as its own first flow. The probability of this event happening before time TO 

is bounded by the probability that RA E R(To), and this probability is at most 

[T’(Ic) - 11 * 2 - k .  If it happened after time TO then we would have a matching 
conversation. We conclude that the probability that lIi,B accepts but there is 

no matching conversation is at most T E ( ~ )  - 2-“ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
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Claim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: Fix B,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, t .  The probability that 

conversation, given that it is a responder oracle, is a t  most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT'(L) 2 - k .  

Proof. Suppose at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 oracle received the flow RA and responded 

with [B . A .  RA . R B ] ~ .  If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnil, is to accept, then at  some time 73 > 7 1  it must 

receive [A .  &Is. If no oracle previously output this flow, the probability that 
the adversary can compute it correctly is at most 2 - k .  We must now consider 

the case where some oracle did output this flow. The form of the flow implies 

that the oracle which output it must be a lIAjc oracle. 

The interaction of a 

accepts without a matching 

oracle with E has in general the form 

(701 A, RL), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(721 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[C * A .  RL * RIB199 [ A .  Rb]g) 

for some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO < 72. For any such interaction, except with probability 2 - k ,  there is a 

oracle which output [C. A .  R/A . RbIg at some time. If (u) C) # ( t ,  B )  then 

the probability that R(, = RB is a t  most [T~(k)-2].2-~, and thus the probability 

that the flow [ A .  R(,Ig leads l I h ,A  to accept is a t  most [ T E ( ~ )  - 21 * 2 - k .  O n  
the other hand suppose (u ,C)  = ( t ,B) .  It follows that 7-0 < 71 < 72 < 73, 

R i  = R.4 and RIB = RB; that is, the conversations match, We conclude that 

the probability that 17h,A accepts but there is no matching conversation is at 

most T E ( ~ )  - 2-k. 

The probability that there exists an oracle which accepts without a matching 

conversation is at most T E ( ~ )  times the bound obtained in the claims, which is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 TB(IC)~ . 2 - k  as desired. 

See our full paper for the argument that these lemmas yield the theorem. 

B Proof of Theorem6 

We prove that AKEPl is a secure authenticated key exchange protocol under 

the assumption that f, f' are PRFs. 
The proof that AKEPl is a secure mutual authentication protocol is anal- 

ogous to  the proof of Theorem 4 given in Appendix A and is omitted. Condi- 

tion (1) of Definition 5 is easily verified: the session key Q is chosen in AKEPl 

according to sk and so in the presence of a benign adversary the oracles certainly 

accept, and with this same key. We concentrate on the proof that condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) 
of Definition 5 is satisfied. 

Fix an adversary E. Recall that we are using two PRFs: fa,: (0, 1)sL(lE) -+ 

(0, l } k  and f&: (0, l}k + {O, l } " (k) .  The first is for the authentication and the 

second is to  encrypt the session key. In what follows IT will denote AKEP1, and 

the "real" experiment will denote the experiment of running E for AKEP1. 

AKEPl  WITH A g' ORACLE. Let g' be a function mapping : (0, l}k to (0, 
Let Egt(a, T )  = ( T ,  g'(r)$a). Let be the random variable resulting from 

picking T E (0, l}k at random and outputting Ist(a, 7 ) .  AKEPlg' denotes the 

protocol in which the parties share a secret a1 and an oracle for 9'. Whenever 
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AKEPl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAasks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthem to compute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a},, they compute The experiment of 

running zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE for AKEPlg' is the same as the experiment of running zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE for AKEPl 
except that the second part of the shared key, namely aa, is absent, and in- 

stead the oracles n&. all have access to a common zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg' oracle and compute their 

flows according to AKEPlgr. E does not have access to 9'. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg' = fL2 for 

randomly chosen a2) this experiment coincides with the real experiment. 

THE RANDOM AKEPl EXPERIMENT. In the random AKEPl experiment we 

select g' as a random function of (0, l}k to {Oll}"(E), and then run the exper- 

iment of running E with AKEPlgr. As before, let T~( l c )  denote a polynomial 

bound on the number of oracle calls made by E. 

Lemma 9. In the random AKEPl eqeriment, advantageE(k) is negligible. 

Proof: Let c > 0 be a constant. We will show that advantageE(lc) 5 h-' for all 

sufficiently large h .  

A view of E consists of all the oracle queries made by E ,  the responses to them, 

and E's own coin tosses; that is precisely what E sees. We denote by v iew(k)  
the random variable whose value is the view of the interaction of E with its 

oracles. A particular view will usually be denoted <. We will be interested in two 

properties ( may possess. If for any accepting oracle there exists an oracle with a 

matching conversation then we say [ is authentic. If ( T I ,  yl), . . . ) (T, ,  yn) denote 

the encryptions output by oracles in the transcript and T I , .  . . , T,  are distinct 

then we say ( is non-colliding. Recall that b denotes the bit flipped in our answer 

to a test  query in the definition of measuring udvantageE(k). 

Now fix a particular authentic and non-colliding view (. Suppose E is pointing to 

(fresh) oracle L!i,B. Since fli,B has accepted and (is authentic, there is an oracle 

.L!&,A which engaged in a matching conversation. This means the encryption 

for this conversation was selected by one of the oracles (specifically, the one 

who played the role of the responder). The oracle's being fresh means that any 

matching partner is unopened. Since is non-colliding it follows that conditioned 

on v iew(k)  = (, the key is uniformly distributed over Sk, and E's advantage 

in predicting the bit b is 0. 

Let Nk denote the set of non-authentic views and c k  the set of colliding views. 

We claim that AKEPlg', with g' chosen at random, still remains a secure mutual 

authentication; the proof of this is analogous to the proof of Theorem 4 and hence 

is omitted. Based on this claim, we know that the probability of Nk is at most 

k - " /2  for large enough k. On the other hand the probability of ck is at most 

T ~ ( h ) ~ * 2 - ~  which is at  most k - c / 2  for large enough h .  Combined with the above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 we conclude that E's advantage is at most k - ' .  

See our full paper for the argument that this lemma yields the theorem. 
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