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Abstract

This paper presents the Entity-Duet Neu-

ral Ranking Model (EDRM), which intro-

duces knowledge graphs to neural search

systems. EDRM represents queries and

documents by their words and entity an-

notations. The semantics from knowledge

graphs are integrated in the distributed

representations of their entities, while the

ranking is conducted by interaction-based

neural ranking networks. The two com-

ponents are learned end-to-end, making

EDRM a natural combination of entity-

oriented search and neural information re-

trieval. Our experiments on a commer-

cial search log demonstrate the effective-

ness of EDRM. Our analyses reveal that

knowledge graph semantics significantly

improve the generalization ability of neu-

ral ranking models.

1 Introduction

The emergence of large scale knowledge graphs

has motivated the development of entity-oriented

search, which utilizes knowledge graphs to im-

prove search engines. The recent progresses in

entity-oriented search include better text represen-

tations with entity annotations (Xiong et al., 2016;

Raviv et al., 2016), richer ranking features (Dal-

ton et al., 2014), entity-based connections between

query and documents (Liu and Fang, 2015; Xiong

and Callan, 2015), and soft-match query and doc-

uments through knowledge graph relations or em-

beddings (Xiong et al., 2017c; Ensan and Bagheri,

2017). These approaches bring in entities and se-

mantics from knowledge graphs and have greatly

improved the effectiveness of feature-based search

systems.

∗Corresponding author: M. Sun (sms@tsinghua.edu.cn)

Another frontier of information retrieval is the

development of neural ranking models (neural-

IR). Deep learning techniques have been used to

learn distributed representations of queries and

documents that capture their relevance relations

(representation-based) (Shen et al., 2014), or

to model the query-document relevancy directly

from their word-level interactions (interaction-

based) (Guo et al., 2016a; Xiong et al., 2017b; Dai

et al., 2018). Neural-IR approaches, especially the

interaction-based ones, have greatly improved the

ranking accuracy when large scale training data

are available (Dai et al., 2018).

Entity-oriented search and neural-IR push the

boundary of search engines from two different as-

pects. Entity-oriented search incorporates human

knowledge from entities and knowledge graph

semantics. It has shown promising results on

feature-based ranking systems. On the other

hand, neural-IR leverages distributed representa-

tions and neural networks to learn more sophis-

ticated ranking models form large-scale training

data. However, it remains unclear how these two

approaches interact with each other and whether

the entity-oriented search has the same advantage

in neural-IR methods as in feature-based systems.

This paper explores the role of entities and

semantics in neural-IR. We present an Entity-

Duet Neural Ranking Model (EDRM) that incor-

porates entities in interaction-based neural rank-

ing models. EDRM first learns the distributed rep-

resentations of entities using their semantics from

knowledge graphs: descriptions and types. Then

it follows a recent state-of-the-art entity-oriented

search framework, the word-entity duet (Xiong

et al., 2017a), and matches documents to queries

with both bag-of-words and bag-of-entities. In-

stead of manual features, EDRM uses interaction-

based neural models (Dai et al., 2018) to match

query and documents with word-entity duet rep-
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resentations. As a result, EDRM combines entity-

oriented search and the interaction based neural-

IR; it brings the knowledge graph semantics

to neural-IR and enhances entity-oriented search

with neural networks.

One advantage of being neural is that EDRM can

be learned end-to-end. Given a large amount of

user feedback from a commercial search log, the

integration of knowledge graph semantics to neu-

ral ranker, is learned jointly with the modeling of

query-document relevance in EDRM. It provides a

convenient data-driven way to leverage external

semantics in neural-IR.

Our experiments on a Sogou query log and CN-

DBpedia demonstrate the effectiveness of enti-

ties and semantics in neural models. EDRM sig-

nificantly outperforms the word-interaction-based

neural ranking model, K-NRM (Xiong et al.,

2017a), confirming the advantage of entities in en-

riching word-based ranking. The comparison with

Conv-KNRM (Dai et al., 2018), the recent state-

of-the-art neural ranker that models phrase level

interactions, provides a more interesting observa-

tion: Conv-KNRM predicts user clicks reason-

ably well, but integrating knowledge graphs using

EDRM significantly improves the neural model’s

generalization ability on more difficult scenarios.

Our analyses further revealed the source of

EDRM’s generalization ability: the knowledge

graph semantics. If only treating entities as ids

and ignoring their semantics from the knowledge

graph, the entity annotations are only a cleaner

version of phrases. In neural-IR systems, the em-

beddings and convolutional neural networks have

already done a decent job in modeling phrase-

level matches. However, the knowledge graph se-

mantics brought by EDRM can not yet be captured

solely by neural networks; incorporating those hu-

man knowledge greatly improves the generaliza-

tion ability of neural ranking systems.

2 Related Work

Current neural ranking models can be categorized

into two groups: representation based and inter-

action based (Guo et al., 2016b). The earlier

works mainly focus on representation based mod-

els. They learn good representations and match

them in the learned representation space of query

and documents. DSSM (Huang et al., 2013) and its

convolutional version CDSSM (Shen et al., 2014)

get representations by hashing letter-tri-grams to a

low dimension vector. A more recent work uses

pseudo-labeling as a weak supervised signal to

train the representation based ranking model (De-

hghani et al., 2017).

The interaction based models learn word-level

interaction patterns from query-document

pairs. ARC-II (Hu et al., 2014) and

MatchPyramind (Pang et al., 2016) uti-

lize Convolutional Neural Network (CNN) to

capture complicated patterns from word-level

interactions. The Deep Relevance Matching

Model (DRMM) (Guo et al., 2016b) uses pyramid

pooling (histogram) to summarize the word-level

similarities into ranking models. K-NRM and

Conv-KNRM use kernels to summarize word-

level interactions with word embeddings and

provide soft match signals for learning to rank.

There are also some works establishing position-

dependent interactions for ranking models (Pang

et al., 2017; Hui et al., 2017). Interaction based

models and representation based models can also

be combined for further improvements (Mitra

et al., 2017).

Recently, large scale knowledge graphs such

as DBpedia (Auer et al., 2007), Yago (Suchanek

et al., 2007) and Freebase (Bollacker et al., 2008)

have emerged. Knowledge graphs contain human

knowledge about real-word entities and become an

opportunity for search system to better understand

queries and documents. There are many works fo-

cusing on exploring their potential for ad-hoc re-

trieval. They utilize knowledge as a kind of pseudo

relevance feedback corpus (Cao et al., 2008) or

weight words to better represent query according

to well-formed entity descriptions. Entity query

feature expansion (Dietz and Verga, 2014) uses re-

lated entity attributes as ranking features.

Another way to utilize knowledge graphs in in-

formation retrieval is to build the additional con-

nections from query to documents through related

entities. Latent Entity Space (LES) builds an un-

supervised model using latent entities’ descrip-

tions (Liu and Fang, 2015). EsdRank uses re-

lated entities as a latent space, and performs learn-

ing to rank with various information retrieval fea-

tures (Xiong and Callan, 2015). AttR-Duet

develops a four-way interaction to involve cross

matches between entity and word representations

to catch more semantic relevance patterns (Xiong

et al., 2017a).

There are many other attempts to integrate
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knowledge graphs in neural models in related

tasks (Miller et al., 2016; Gupta et al., 2017;

Ghazvininejad et al., 2018). Our work shares a

similar spirit and focuses on exploring the effec-

tiveness of knowledge graph semantics in neural-

IR.

3 Entity-Duet Neural Ranking Model

This section first describes the standard architec-

ture in current interaction based neural ranking

models. Then it presents our Entity-Duet Neural

Ranking Model, including the semantic entity rep-

resentation which integrates the knowledge graph

semantics, and then the entity-duet ranking frame-

work. The overall architecture of EDRM is shown

in Figure 1.

3.1 Interaction based Ranking Models

Given a query q and a document d, interaction

based models first build the word-level transla-

tion matrix between q and d (Berger and Lafferty,

1999). The translation matrix describes word pairs

similarities using word correlations, which are

captured by word embedding similarities in inter-

action based models.

Typically, interaction based ranking models first

map each word t in q and d to an L-dimensional

embedding ~vt with an embedding layer Embw:

~vt = Embw(t). (1)

It then constructs the interaction matrix M

based on query and document embeddings. Each

element M ij in the matrix, compares the ith word

in q and the jth word in d, e.g. using the cosine

similarity of word embeddings:

M
ij = cos(~vtq

i
, ~vtd

j
). (2)

With the translation matrix describing the term

level matches between query and documents, the

next step is to calculate the final ranking score

from the matrix. Many approaches have been de-

veloped in interaction base neural ranking models,

but in general, that would include a feature extrac-

tor φ() on M and then one or several ranking lay-

ers to combine the features to the ranking score.

3.2 Semantic Entity Representation

EDRM incorporates the semantic information

about an entity from the knowledge graphs into its

representation. The representation includes three

embeddings: entity embedding, description em-

bedding, and type embedding, all in L dimension

and are combined to generate the semantic repre-

sentation of the entity.

Entity Embedding uses an L-dimensional em-

bedding layer Embe to get an entity embedding

~vemb
e for e:

~v
emb
e = Embe(e). (3)

Description Embedding encodes an entity de-

scription which contains m words and explains the

entity. EDRM first employs the word embedding

layer Embw to embed the description word w to

~vw. Then it combines all embeddings in text to an

embedding matrix ~Vw. Next, it leverages convolu-

tional filters to slide over the text and compose the

h length n-gram as ~g
j
e:

~g
j
e = ReLu(WCNN · ~V

j:j+h
w +~bCNN), (4)

where WCNN and ~bCNN are two parameters of the

covolutional filter.

Then we use max pooling after the convolution

layer to generate the description embedding ~vdes
e :

~v
des
e = max(~g1e , ..., ~g

j
e, ..., ~g

m
e ). (5)

Type Embedding encodes the categories of en-

tities. Each entity e has n kinds of types Fe =
{f1, ..., fj , ..., fn}. EDRM first gets the fj embed-

ding ~vfj through the type embedding layer Embtp:

~v
emb
fj

= Embtp(e). (6)

Then EDRM utilizes an attention mechanism to

combine entity types to the type embedding ~v
type
e :

~v
type
e =

n∑

j

aj~vfj , (7)

where aj is the attention score, calculated as:

aj =
exp(Pj)∑n

l
exp(Pl)

, (8)

Pj = (
∑

i

Wbow~vti) · ~vfj . (9)

Pj is the dot product of the query or document

representation and type embedding fj . We lever-

age bag-of-words for query or document encod-

ing. Wbow is a parameter matrix.

Combination. The three embeddings are com-

bined by an linear layer to generate the semantic

representation of the entity:

~v
sem
e = ~v

emb
e +We(~v

des
e ⊕ ~v

type
e )T +~be. (10)

We is an L×2L matrix and~be is an L-dimensional

vector.
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Figure 1: The architecture of EDRM.

3.3 Neural Entity-Duet Framework

Word-entity duet (Xiong et al., 2017a) is a recently

developed framework in entity-oriented search. It

utilizes the duet representation of bag-of-words

and bag-of-entities to match q-d with hand crafted

features. This work introduces it to neural-IR.

We first construct bag-of-entities qe and de with

entity annotation as well as bag-of-words qw and

dw for q and d. The duet utilizes a four-way inter-

action: query words to document words (qw-dw),

query words to documents entities (qw-de), query

entities to document words (qe-dw) and query en-

tities to document entities (qe-de).

Instead of features, EDRM uses a transla-

tion layer that calculates similarity between a

pair of query-document terms: (~viwq or ~vieq )

and (~v
j

wd or ~v
j

ed
). It constructs the interaction

matrix M = {Mww,Mwe,Mew,Mee}. And

Mww,Mwe,Mew,Mee denote interactions of qw-

dw, qw-de, qe-dw, qe-de respectively. And ele-

ments in them are the cosine similarities of cor-

responding terms:

M
ij
ww = cos(~viwq , ~v

j

wd);M
ij
ee = cos(~vieq , ~v

j

ed
)

M
ij
ew = cos(~vieq , ~v

j

wd);M
ij
we = cos(~viwq , ~v

j

ed
).

(11)

The final ranking feature Φ(M) is a concatena-

tion (⊕) of four cross matches (φ(M)):

Φ(M) = φ(Mww)⊕φ(Mwe)⊕φ(Mew)⊕φ(Mee), (12)

where the φ can be any function used in interaction

based neural ranking models.

The entity-duet presents an effective way to

cross match query and document in entity and

word spaces. In EDRM, it introduces the knowl-

edge graph semantics representations into neural-

IR models.

4 Integration with Kernel based Neural

Ranking Models

The duet translation matrices provided by EDRM

can be plugged into any standard interac-

tion based neural ranking models. This sec-

tion expounds special cases where it is inte-

grated with K-NRM (Xiong et al., 2017b) and

Conv-KNRM (Dai et al., 2018), two recent state-

of-the-arts.

K-NRM uses K Gaussian kernels to extract

the matching feature φ(M) from the transla-

tion matrix M . Each kernel Kk summarizes

the translation scores as soft-TF counts, gener-

ating a K-dimensional feature vector φ(M) =
{K1(M), ...,KK(M)}:

Kk(M) =
∑

j

exp(−
M ij

− µk

2δ2k
). (13)

µk and δk are the mean and width for the kth ker-

nel. Conv-KNRM extend K-NRM incorporating h-

gram compositions ~gih from text embedding ~VT us-

ing CNN:

~g
i
h = relu(Wh · ~V

i:i+h
T + ~vh). (14)

Then a translation matrix Mhq ,hd
is constructed.

Its elements are the similarity scores of h-gram
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pairs between query and document:

Mhq ,hd
= cos(~gihq

, ~g
j

hd
). (15)

We also extend word n-gram cross matches to

word entity duet matches:

Φ(M) = φ(M1,1)⊕ ...⊕φ(Mhq ,hd
)⊕ ...⊕φ(Mee). (16)

Each ranking feature φ(Mhq ,hd
) contains three

parts: query hq-gram and document hd-gram

match feature (φ(Mwwhq,hd )), query entity and

document hd-gram match feature (φ(Mew1,hd )),
and query hq-gram and document entity match

feature (φ(Mwwhq,1)):

φ(Mhq ,hd
) = φ(M

wwhq,hd )⊕φ(M
ew1,hd )⊕φ(M

wehq,1).
(17)

We then use learning to rank to combine ranking

feature Φ(M) to produce the final ranking score:

f(q, d) = tanh(ωT
r Φ(M) + br). (18)

ωr and br are the ranking parameters. tanh is the

activation function.

We use standard pairwise loss to train the

model:

l =
∑

q

∑

d+,d−∈D
+,−
q

max(0, 1− f(q, d+) + f(q, d−)),

(19)

where the d+ is a document ranks higher than d−.

With sufficient training data, the whole model

is optimized end-to-end with back-propagation.

During the process, the integration of the knowl-

edge graph semantics, entity embedding, descrip-

tion embeddings, type embeddings, and matching

with entities-are learned jointly with the ranking

neural network.

5 Experimental Methodology

This section describes the dataset, evaluation met-

rics, knowledge graph, baselines, and implemen-

tation details of our experiments.

Dataset. Our experiments use a query log

from Sogou.com, a major Chinese searching en-

gine (Luo et al., 2017). The exact same dataset

and training-testing splits in the previous research

(Xiong et al., 2017b; Dai et al., 2018) are used.

They defined the ad-hoc ranking task in this

dataset as re-ranking the candidate documents pro-

vided by the search engine. All Chinese texts are

segmented by ICTCLAS (Zhang et al., 2003), af-

ter that they are treated the same as English.

(a) Statistic of queries (b) Statistic of documents

Figure 2: Query and document distributions.

Queries and documents are grouped by the num-

ber of entities.

Prior research leverages clicks to model user be-

haviors and infer reliable relevance signals using

click models (Chuklin et al., 2015). DCTR and

TACM are two click models: DCTR calculates the

relevance scores of a query-document pair based

on their click through rates (CTR); TACM (Wang

et al., 2013) is a more sophisticated model that

uses both clicks and dwell times. Following pre-

vious research (Xiong et al., 2017b), both DCTR

and TACM are used to infer labels. DCTR inferred

relevance labels are used in training. Three testing

scenarios are used: Testing-SAME, Testing-DIFF

and Testing-RAW.

Testing-SAME uses DCTR labels, the same as

in training. Testing-DIFF evaluates models perfor-

mance based on TACM inferred relevance labels.

Testing-RAW evaluates ranking models through

user clicks, which tests ranking performance for

the most satisfying document. Testing-DIFF and

Testing-RAW are harder scenarios that challenge

the generalization ability of all models, because

their training labels and testing labels are gener-

ated differently (Xiong et al., 2017b).

Evaluation Metrics. NDCG@1 and

NDCG@10 are used in Testing-SAME and

Testing-DIFF. MRR is used for Testing-Raw.

Statistic significances are tested by permutation

test with P< 0.05. All are the same as in previous

research (Xiong et al., 2017b).

Knowledge Graph. We use CN-DBpedia (Xu

et al., 2017), a large scale Chinese knowledge

graph based on Baidu Baike, Hudong Baike,

and Chinese Wikipedia. CN-DBpedia contains

10,341,196 entities and 88,454,264 relations. The

query and document entities are annotated by

CMNS, the commonness (popularity) based en-

tity linker (Hasibi et al., 2017). CN-DBpedia and

CMNS provide good coverage on our queries and
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Table 1: Ranking accuracy of EDRM-KNRM, EDRM-CKNRM and baseline methods. Relative per-

formances compared with K-NRM are in percentages. †, ‡, §, ¶, ∗ indicate statistically significant

improvements over DRMM†, CDSSM‡, MP§, K-NRM¶ and Conv-KNRM∗ respectively.

Testing-SAME Testing-DIFF Testing-RAW

Method NDCG@1 NDCG@10 NDCG@1 NDCG@10 MRR

BM25 0.1422 −46.24% 0.2868 −31.67% 0.1631 −45.63% 0.3254 −23.04% 0.2280 −33.86%
RankSVM 0.1457 −44.91% 0.3087 −26.45% 0.1700 −43.33% 0.3519 −16.77% 0.2241 −34.99%
Coor-Ascent 0.1594 −39.74% 0.3547 −15.49% 0.2089 −30.37% 0.3775 −10.71% 0.2415 −29.94%

DRMM 0.1367 −48.34% 0.3134 −25.34% 0.2126‡ −29.14% 0.3592§ −15.05% 0.2335 −32.26%
CDSSM 0.1441 −45.53% 0.3329 −20.69% 0.1834 −38.86% 0.3534 −16.41% 0.2310 −33.00%
MP 0.2184†‡ −17.44% 0.3792†‡ −9.67% 0.1969 −34.37% 0.3450 −18.40% 0.2404 −30.27%
K-NRM 0.2645 – 0.4197 – 0.3000 – 0.4228 – 0.3447 –

Conv-KNRM 0.3357†‡§¶ +26.90% 0.4810†‡§¶ +14.59% 0.3384†‡§¶ +12.81% 0.4318†‡§ +2.14% 0.3582†‡§ +3.91%

EDRM-KNRM 0.3096†‡§¶ +17.04% 0.4547†‡§¶ +8.32% 0.3327†‡§¶ +10.92% 0.4341†‡§¶ +2.68% 0.3616†‡§¶ +4.90%

EDRM-CKNRM 0.3397†‡§¶ +28.42% 0.4821†‡§¶ +14.86% 0.3708†‡§¶∗ +23.60% 0.4513†‡§¶∗ +6.74% 0.3892†‡§¶∗ +12.90%

documents. As shown in Figure 2, the majority

of queries have at least one entity annotation; the

average number of entity annotated per document

title is about four.

Baselines. The baselines include feature-based

ranking models and neural ranking models. Most

of the baselines are borrowed from previous re-

search (Xiong et al., 2017b; Dai et al., 2018).

Feature-based baselines include two learning

to rank systems, RankSVM (Joachims, 2002) and

coordinate ascent (Coor-Accent) (Metzler and

Croft, 2006). The standard word-based unsuper-

vised retrieval model, BM25, is also compared.

Neural baselines include CDSSM (Shen et al.,

2014), MatchPyramid (MP) (Pang et al., 2016),

DRMM (Grauman and Darrell, 2005), K-NRM

(Xiong et al., 2017b) and Conv-KNRM (Dai et al.,

2018). CDSSM is representation based. It uses

CNN to build query and document representations

on word letter-tri-grams (or Chinese characters).

MP and DRMM are both interaction based models.

They use CNNs or histogram pooling to extract

features from embedding based translation matrix.

Our main baselines are K-NRM and

Conv-KNRM, the recent state-of-the-art neu-

ral models on the Sogou-Log dataset. The goal

of our experiments is to explore the effectiveness

of knowledge graphs in these state-of-the-art

interaction based neural models.

Implementation Details. The dimension of

word embedding, entity embedding and type em-

bedding are 300. Vocabulary size of entities and

words are 44,930 and 165,877. Conv-KNRM uses

one layer CNN with 128 filter size for the n-

gram composition. Entity description encoder is

a one layer CNN with 128 and 300 filter size for

Conv-KNRM and K-NRM respectively.

All models are implemented with PyTorch.

Adam is utilized to optimize all parameters with

learning rate = 0.001, ǫ = 1e − 5 and early stop-

ping with the practice of 5 epochs.

There are two versions of EDRM: EDRM-KNRM

and EDRM-CKNRM, integrating with K-NRM and

Conv-KNRM respectively. The first one (K-NRM)

enriches the word based neural ranking model

with entities and knowledge graph semantics; the

second one (Conv-KNRM) enriches the n-gram

based neural ranking model.

6 Evaluation Results

Four experiments are conducted to study the ef-

fectiveness of EDRM: the overall performance, the

contributions of matching kernels, the ablation

study, and the influence of entities in different sce-

narios. We also do case studies to show effect of

EDRM on document ranking.

6.1 Ranking Accuracy

The ranking accuracies of the ranking methods are

shown in Table 1. K-NRM and Conv-KNRM out-

perform other baselines in all testing scenarios by

large margins as shown in previous research.

EDRM-KNRM out performs K-NRM by over 10%

improvement in Testing-SAME and Testing-DIFF.

EDRM-CKNRM has almost same performance on

Testing-SAME with Conv-KNRM. A possible rea-

son is that, entity annotations provide effective

phrase matches, but Conv-KNRM is also able to

learn phrases matches automatically from data.

However, EDRM-CKNRM has significant improve-

ment on Testing-DIFF and Testing-RAW. Those

demonstrate that EDRM has strong ability to over-

come domain differences from different labels.
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Table 2: Ranking accuracy of adding diverse semantics based on K-NRM and Conv-KNRM. Rela-

tive performances compared are in percentages. †, ‡, §, ¶, ∗, ∗∗ indicate statistically significant im-

provements over K-NRM† (or Conv-KNRM†), +Embed‡, +Type§, +Description¶, +Embed+Type∗ and

+Embed+Description∗∗ respectively.

Testing-SAME Testing-DIFF Testing-RAW

Method NDCG@1 NDCG@10 NDCG@1 NDCG@10 MRR

K-NRM 0.2645 – 0.4197 – 0.3000 – 0.4228 – 0.3447 –

+Embed 0.2743 +3.68% 0.4296 +2.35% 0.3134 +4.48% 0.4306 +1.86% 0.3641† +5.62%
+Type 0.2709 +2.41% 0.4395† +4.71% 0.3126 +4.20% 0.4373† +3.43% 0.3531 +2.43%

+Description 0.2827 +6.86% 0.4364† +3.97% 0.3181 +6.04% 0.4306 +1.86% 0.3691†§∗ +7.06%
+Embed+Type 0.2924† +10.52% 0.4533†‡§¶ +8.00% 0.3034 +1.13% 0.4297 +1.65% 0.3544 +2.79%
+Embed+Description 0.2891 +9.29% 0.4443†‡ +5.85% 0.3197 +6.57% 0.4304 +1.80% 0.3564 +3.38%

Full Model 0.3096†‡§ +17.04% 0.4547†‡§¶ +8.32% 0.3327†∗ +10.92% 0.4341† +2.68% 0.3616† +4.90%

Conv-KNRM 0.3357 – 0.4810 – 0.3384 – 0.4318 – 0.3582 –

+Embed 0.3382 +0.74% 0.4831 +0.44% 0.3450 +1.94% 0.4413 +2.20% 0.3758† +4.91%
+Type 0.3370 +0.38% 0.4762 −0.99% 0.3422 +1.12% 0.4423† +2.42% 0.3798† +6.02%
+Description 0.3396 +1.15% 0.4807 −0.05% 0.3533 +4.41% 0.4468† +3.47% 0.3819† +6.61%
+Embed+Type 0.3420 +1.88% 0.4828 +0.39% 0.3546 +4.79% 0.4491† +4.00% 0.3805† +6.22%
+Embed+Description 0.3382 +0.73% 0.4805 −0.09% 0.3608 +6.60% 0.4494† +4.08% 0.3868† +7.99%

Full Model 0.3397 +1.19% 0.4821 +0.24% 0.3708†‡§ +9.57% 0.4513†‡ +4.51% 0.3892†‡ +8.65%

(a) Kernel weight distribution for EDRM-KNRM. (b) Kernel weight distribution for EDRM-CKNRM.

Figure 3: Ranking contribution for EDRM. Three scenarios are presented: Exact VS. Soft compares the

weights of exact match kernel and others; Solo Word VS. Others shows the proportion of only text based

matches; In-space VS. Cross-space compares in-space matches and cross-space matches.

These results show the effectiveness and the

generalization ability of EDRM. In the following

experiments, we study the source of this general-

ization ability.

6.2 Contributions of Matching Kernels

This experiment studies the contribution of knowl-

edge graph semantics by investigating the weights

learned on the different types of matching kernels.

As shown in Figure 3(a), most of the weight

in EDRM-KNRM goes to soft match (Exact VS.

Soft); entity related matches play an as impor-

tant role as word based matches (Solo Word VS.

Others); cross-space matches are more impor-

tant than in-space matches (In-space VS. Cross-

space). As shown in Figure 3(b), the percentages

of word based matches and cross-space matches

are more important in EDRM-CKNRM compared to

in EDRM-KNRM.

The contribution of each individual match type

in EDRM-CKNRM is shown in Figure 4. The

weight of unigram, bigram, trigram, and entity is

almost uniformly distributed, indicating the effec-

tiveness of entities and all components are impor-

tant in EDRM-CKNRM.

6.3 Ablation Study

This experiment studies which part of the knowl-

edge graph semantics leads to the effectiveness

and generalization ability of EDRM.

There are three types of embeddings incorpo-

rating different aspects of knowledge graph in-

formation: entity embedding (Embed), descrip-

tion embedding (Description) and type embedding

(Type). This experiment starts with the word-only

K-NRM and Conv-KNRM, and adds these three

types of embedding individually or two-by-two

(Embed+Type and Embed+Description).

The performances of EDRM with different

groups of embeddings are shown in Table 2.

The description embeddings show the greatest im-

provement among the three embeddings. Entity
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Figure 4: Individual kernel weight for EDRM-

CKNRM. X-axis and y-axis denote document and

query respectively.

type plays an important role only combined with

other embeddings. Entity embedding improves

K-NRM while has little effect on Conv-KNRM.

This result further confirms that the signal from

entity names are captured by the n-gram CNNs

in Conv-KNRM. Incorporating all of three embed-

dings usually gets the best ranking performance.

This experiments shows that knowledge graph

semantics are crucial to EDRM’s effectiveness.

Conv-KNRM learns good phrase matches that

overlap with the entity embedding signals. How-

ever, the knowledge graph semantics (descriptions

and types) is hard to be learned just from user

clicks.

6.4 Performance on Different Scenarios

This experiment analyzes the influence of knowl-

edge graphs in two different scenarios: multiple

difficulty degrees and multiple length degrees.

Query Difficulty Experiment studies EDRM’s

performance on testing queries at different diffi-

culty, partitioned by Conv-KNRM’s MRR value:

Hard (MRR < 0.167), Ordinary (MRR ∈
[0.167, 0.382], and Easy (MRR > 0.382). As

shown in Figure 5, EDRM performs the best on

hard queries.

Query Length Experiment evaluates EDRM’s

effectiveness on Short (1 words), Medium (2-3

words) and Long (4 or more words) queries. As

shown in Figure 6, EDRM has more win cases

and achieves the greatest improvement on short

queries. Knowledge embeddings are more cru-

cial when limited information is available from the

original query text.

(a) K-NRM VS. EDRM (b) Conv-KNRM VS. EDRM

Figure 5: Performance VS. Query Difficulty. The

x-axises mark three query difficulty levels. The y-

axises are the Win/Tie/Loss (left) and MRR (right)

in the corresponding group.

(a) K-NRM VS. EDRM (b) Conv-KNRM VS. EDRM

Figure 6: Performance VS. Query Length. The x-

axises mark three query length levels, and y-axises

are the Win/Tie/Loss (left) and MRR (right) in the

corresponding group.

These two experiments reveal that the effec-

tiveness of EDRM is more observed on harder or

shorter queries, whereas the word-based neural

models either find it difficult or do not have suf-

ficient information to leverage.

6.5 Case Study

Table 3 provide examples reflecting two possible

ways, in which the knowledge graph semantics

could help the document ranking.

First, the entity descriptions explain the mean-

ing of entities and connect them through the word

space. Meituxiuxiu web version and Meilishuo

are two websites providing image processing and

shopping services respectively. Their descriptions

provide extra ranking signals to promote the re-

lated documents.

Second, entity types establish underlying rel-

evance patterns between query and documents.

The underlying patterns can be captured by cross-

space matches. For example, the types of the

query entity Crayon Shin-chan and GINTAMA

overlaps with the bag-of-words in the relevant

documents. They can also be captured by the

entity-based matches through their type overlaps,
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Table 3: Examples of entity semantics connecting query and title. All the examples are correctly ranked

by EDRM-CKNRM. Table 3a shows query-document pairs. Table 3b lists the related entity semantics

that include useful information to match the query-document pair. The examples and related semantics

are picked by manually examining the ranking changes between different variances of EDRM-CKNRM.

(a) Query and document examples. Entities are emphasized.

Query Document

Meituxiuxiu web version Meituxiuxiu web version: An online picture processing tools

Home page of Meilishuo Home page of Meilishuo - Only the correct popular fashion

Master Lu Master Lu official website: System optimization, hardware test, phone evaluation

Crayon Shin-chan: The movie Crayon Shin-chan: The movie online - Anime

GINTAMA GINTAMA: The movie online - Anime - Full HD online watch

(b) Semantics of related entities. The first two rows and last two rows show entity descriptions and entity types respectively.

Entity Content

Meituxiuxiu web version Description: Meituxiuxiu is the most popular Chinese image processing software,

launched by the Meitu company

Meilishuo Description: Meilishuo, the largest women’s fashion e-commerce platform,

dedicates to provide the most popular fashion shopping experience

Crayon Shin-chan, GINTAMA Type: Anime; Cartoon characters; Comic

Master Lu, System Optimization Type: Hardware test; Software; System tool

for example, between the query entity Master Lu

and the document entity System Optimization.

7 Conclusions

This paper presents EDRM, the Entity-Duet Neu-

ral Ranking Model that incorporating knowl-

edge graph semantics into neural ranking sys-

tems. EDRM inherits entity-oriented search to

match query and documents with bag-of-words

and bag-of-entities in neural ranking models. The

knowledge graph semantics are integrated as dis-

tributed representations of entities. The neural

model leverages these semantics to help docu-

ment ranking. Using user clicks from search logs,

the whole model—the integration of knowledge

graph semantics and the neural ranking networks–

is trained end-to-end. It leads to a data-driven

combination of entity-oriented search and neural

information retrieval.

Our experiments on the Sogou search log and

CN-DBpedia demonstrate EDRM’s effectiveness

and generalization ability over two state-of-the-

art neural ranking models. Our further analy-

ses reveal that the generalization ability comes

from the integration of knowledge graph seman-

tics. The neural ranking models can effectively

model n-gram matches between query and docu-

ment, which overlaps with part of the ranking sig-

nals from entity-based matches: Solely adding the

entity names may not improve the ranking accu-

racy much. However, the knowledge graph se-

mantics, introduced by the description and type

embeddings, provide novel ranking signals that

greatly improve the generalization ability of neu-

ral rankers in difficult scenarios.

This paper preliminarily explores the role of

structured semantics in deep learning models.

Though mainly fouced on search, we hope our

findings shed some lights on a potential path to-

wards more intelligent neural systems and will

motivate more explorations in this direction.
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