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Abstract 

Previous proposals for a multilevel secure relational 
model have utilized syntactic integrity properties to 
control problems such as polyinstantiation, pervasive 
ambiguity, and proliferation of tuples due to updates. 
Although successive versions of these models have 

shown steady improvement, most thorny problems 
have been mitigated but not resolved. We believe that 

the major roadblock to progress has been that no effort 
to date has shown what a multilevel secure database 
means semantically; instead the focus has been on 

making syntactic adjustments to avoid problems. In 
this paper, we introduce a belief-based semantics for 
multilevel secure databases that supports the descrip- 
tion of semantic multilevel secure entities, and argue 
for the generality of this semantics. We also present 
our syntax for multilevel secure databases, and show 
its relationship to the semantics. Our syntax is free of 

most problems of previous models, and is also simpler 
without sacrificing security or expressiveness. 
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1 Introduction 

The proposals for a multilevel secure relational model 
[JS91, HOT91, DLS+87] implement the policy of 
mandatory protection defined in [Dep85] and inter- 

preted for computerized systems by Bell and LaPadula 
[BL74]. Under mandatory protection, objects (data 
items) are assigned a security classification and sub- 
jects (active processes, users) are assigned a secu- 

rity clearance. Classifications and clearances are both 
taken from a common domain of access classes, or lev- 
els, which are partially ordered in a lattice. For exam- 

ple, levels Top Secret (TS), Secret (S), Confidential 
(C), and Unclassified (U) are widely used. For two 
levels cl and cs, if cl > c2 in the lattice partial order, 
we say cl is ‘higher than’ or ‘above’ ~2. If cl 2 ~2, we 

say cl dominates ~2. 

The Bell-LaPadula model imposes the ‘no read up, 
no write down’ restrictions on accesses by subjects. 
Subjects are only permitted to read from a level dom- 
inated by their own; subjects are only permitted to 
write to a level that dominates their own. This is suf- 
ficient to prevent subjects from directly passing infor- 
mation downward through the security lattice, as re- 
quired by the mandatory policy. These two restrictions 
are known as the simple property and the *property 

(pronounced ‘star property’) respectively. 

Multilevel secure (MLS) relational models have 
implemented these restrictions by associating access 

classes with the elements of a relation, such as tuples 
and fields. The simple property affects a user’s view 

of a relation: only tuples in levels dominated by that 
of the user are visible. Therefore different users see 
different versions of a relation, depending on their ac- 

cess class. A subject may only update, delete, or insert 

items at his or her own level. Relations in which tuples 
are visible based on their access class are called MLS 
relations. 

Indirect means of downward information flow, called 
covert channels [Lam73], must also be prevented. For 
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example, if a service of the database is denied to a 
subject based on the presence of a tuple at a higher 

level, the subject can infer the existence of that tuple, 

resulting in downward information flow. With respect 
to security, more is at stake than inferring the presence 
of a particular tuple. The success or failure of the ser- 
vice request can be used repeatedly to communicate a 
bit of information to the lower level. Therefore, any in- 
formation visible at the high level can be sent through 
the channel. 

The problem of polyinstantiation arises through the 
avoidance of a covert channel. If a user inserts a tuple 
with key 1, a user from a lower level cannot be pre- 

vented from inserting a different tuple with key k at a 
later time, as refusing the later insertion would open 

a covert channel. As a result, MLS relations can con- 
tain multiple tuples with the same key value, known 
as polyinstantiated tuples. This problem has been ad- 
dressed in previous models by means of syntactic in- 
tegrity properties, which control the extent and form 
of polyinstantiation. 

The recent Jajodia-Sandhu model [JS91] improves 
on prior models. However, several problems still re- 
main to be solved. 

l Semantic ambiguity. An MLS relation does not 

always have a single semantic interpretation. For 
example, Figure 1 shows an instance of the re- 
lation scheme SOD(Starship, Objective, Destina- 

tion), where Starship is the key, as an MLS re- 
lation under the model of [JS91]. Each attribute 
value is followed by its security classification; TC 
is the classification of the entire tuple. Consider 

1 Starshin 1 Obiective 1 Destination 1 TC 1 
I 1 I ” I I J 

] Enterprise U 1 Exploration U ] Vulcan U 1 U 1 
Enterprise C Diplomacy C Romulus C C 

Figure 1: A Starship Database 

the two polyinstantiated tuples sharing the at- 
tribute value ‘Enterprise’. These tuples can be 

interpreted in at least two ways: 

- They represent two different levels of secure 
understanding of a single starship named En- 
terprise: the first tuple gives the perspective 

of an unclassified subject, and the second 

tuple gives the perspective of a confidential 
subject. 

- Two entirely different starships exist, both 
(unfortunately) with the name Enterprise; 
one tuple refers to each ship. 

l Que y ambiguity. In Figure 1, when a confidential 

subject asks: 

SELECT Destination 
FROM SOD 

WHERE Starship = ‘Enterprise’, 
what should be the answer? One possibility is 
‘Romulus’, because that is the value associated 
with that user’s security level. Another answer 
could be the set {‘Romulus’, ‘Vulcan’}, because 
that is the exhaustive list of all values associated 
with destinations of Enterprises in the database. 

Current MLS proposals do not address this point. 

In the case of a more complicated query, the am- 
biguity becomes more acute: current proposals 
will join together two tuples from different secu- 
rity levels, even in the common case where it is 
clear that no subject at any level would believe 
that the joined tuple correctly reflects the state of 

the world. For example, no one believes that the 

Enterprise is conducting exploration on Romulus, 
yet a series of projections and joins could pro- 
duce that tuple as part of a query answer. Should 
these dubious joined tuples contribute to a query 
answer? 

Proliferation of tuples due to updates. In the 
Denning-Lunt model [DLS+87], updates can in- 

troduce a number of new polyinstantiatied tuples 
that is exponential in the number of updated non- 
key attributes in the relation [JS90]. The Jajodia- 
Sandhu model [JSSO] eliminates much but not all 
of this proliferation, as in the following update to 
Figure 1 by a TS subject: 

UPDATE SOD 
SET Destination = ‘Pluto’ 

WHERE Starship = ‘Enterprise’. 
As Figure 2 shows, the number of Enterprise tu- 
ples doubles after this update is performed. If 

Figure 2: Tuple Proliferation Upon Update 

the two Enterprise tuples refer to different secure 

understandings of one ship, this update can be 
interpreted to mean the TS-user is adding a still- 
more-secure understanding about the destination 

of the Enterprise. Doubling the number of tuples 
should not be necessary to add this understand- 
ing, as a semantics can be conceived in which this 

information can be represented in one tuple. 

The common theme in these problems is the lack of 
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any semantics underlying the MLS relational model. 
Without a semantics, syntactic issues cannot be re- 
solved through connection to the semantics. For ex- 

ample, polyinstantiation has posed such a thorny issue 
because it is not clear what polyinstantiation means. 
In this paper, we contribute a semantics for MLS re- 
lational databases based on database interpretations 
containing multilevel secure entities, entities which 
span multiple levels of security and offer the ability 
to model multiple secure understandings of attribute 

values. We then present a new syntactic MLS rela- 
tional model based directly on our semantics. We are 
able to map directly and unambiguously from syntac- 
tic MLS relations to our semantics, and back again. 

Our model is both syntactically simpler and seman- 
tically clearer than previous models. In addition, we 
are able to resolve difficult research issues in MLS rela- 
tional databases in the context of our model: syntactic 
and semantic ambiguity, the appropriate granularity 
for security labels, the meaning of nulls, the meaning 

of queries, the proliferation of tuples under updates, 
and the profitable utilization of polyinstantiation. 

Our lever for attacking these problems is our as- 
sumption that databases are used to describe the exis- 
tence and properties of entities, as is true of relations 
derived from entities in an entity-relationship diagram. 

In general, databases will also contain relations derived 
from the relationships in an ER diagram. The treat- 
ment of relationships is a natural extension of our han- 
dling of entities; we omit its presentation in this paper 
due to space constraints. 

The remainder of this paper is organized as follows. 
In Section 2, we present our belief-based semantics and 
the modeling concept of MLS entities. Section 3 de- 
scribes a syntax for MLS relational databases based 
on our semantics. Section 4 discusses the relationship 
of our model to the the Jajodia-Sandhu (and other) 

models. Section 5 defines select, insert, update, and 
delete operations for MLS relational databases under 
our syntax and semantics. Finally, in Section 6, we 

summarize our results and describe future work. 

2 A Semantics for MLS Rela- 

t ional Databases 

In our model, we distinguish between the semantic and 

syntactic aspects of MLS databases; this section de- 
scribes our semantics for MLS databases that model 

entities. First, we define an interpretation (in the logic 
sense) of an MLS database, which draws on Kripke 
models with a simple, non-logic-based presentation. 
The interpretation of an MLS database captures the 

concept of multiple levels of belief about a shared set 

of entities. Second, we define multilevel secure (MLS) 

entities, entities which may span multiple levels of the 

interpretation. Also, we show that every interpreta- 

tion of an MLS database corresponds to a set of MLS 
entities. 

2.1 Belief-based Interpretations 

Under our semantics, the interpretation of an MLS 
database is a set of ordinary relational databases, 

one database for each level in the security lattice.” 
The databases all share the same schema2, and each 
database is labeled with its level. The database in- 
stances may contain null values in non-key attributes. 
In addition, there is a binary relationship between 
databases in the interpretation, which holds exactly 
when the label of the first database dominates the 

second, according to the security lattice. From the 
properties of the security lattice, it follows immedi- 
ately that the binary relationship is reflexive, anti- 

symmetric, and transitive. Finally, the schemas and 
instances of the databases must satisfy certain con- 

straints, which we motivate and present as Property 1 
in Section 2.2. 

The database for a level contains the total beliefs of 

the subjects of that level about the state of the world 
reflected in the schema.3 We use the term ‘belief’ be- 
cause different levels may make different statements 
about the value of the same attribute for the same en- 

tity. A null value in a tuple means that the subjects at 
that level believe that a value exists for that attribute, 
but do not have a belief about what that value is. 

The binary relationships between databases in an 
interpretation are motivated by Figure 3, which shows 
subjects and databases for three linearly ordered lev- 
els: S, C, and U. A subject believes the contents 
of the database at its own level, as represented by the 

thick arrow in the figure from a circle (a set of sub- 

jects) to a box (a database) at the same level. The 
subjects of each level see what they and the subjects 

of each lower level believe, as represented by the thin 
arrows between subject groups in the figure. A subject 

may see many tuples that it does not itself believe. 

‘There is the potential for confusion between the syntactic 
MLS database and its interpretation as a set of databases. In 
this section, the term ‘database’ will refer to a database for 
a level of the interpretation. In Section 3 we concentrate on 

syntactic databases. 
21f different schemas are desirable at different levels, this can 

be accomplished using techniques similar to those used in the 
SeaView project [DLS+87]. The issue of different schema at 
different levels is orthogonal to our proposal for semantics. 

3We use the term ‘belief’ in an intuitive manner here, not 
in the technical sense of modal logic models of belief, which are 
not necessary in this simple application. 
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Figure 3: Relationships Between Subjects and 
Databases of Different Levels 

Database access privileges for subjects are summa- 
rized below: 

MLS Database Access. 

1. Update Access. A database update request (in- 
sert, delete, update) from a subject can only alter 
data in the interpretation at the subject’s own 
level. Data at a particular level can only be al- 
tered by subjects at that level. 

2. Read Access. A query from a subject at level 
1 can access data from exactly those databases 

whose label is dominated by 1. 

The read access rule corresponds to the Bell- 
LaPadula simple property: a subject can retrieve ex- 
actly what it can see that someone believes. The up- 

date access rule states that a subject can change its 
own beliefs, but no one else’s. The update access prop- 

erty is stronger than the Bell-LaPadula *property; the 

latter is semantically tailored to message-passing sys- 
tems, where it would not violate security to allow a 
lower level to append a message to a higher level’s 
message queue. We will consider queries and updates 
in more detail in Section 5, including the ability to 

specify in a query just whose beliefs the query is to be 

evaluated against. 

We believe that this simple model of separate-level 
databases, related to one another by the visibility cri- 

terion in the security lattice, should underlie every 
MLS database syntax proposal. Surely from any syn- 
tactic MLS database one should be able to extract an 

ordinary database that describes exactly what the sub- 
jects at a particular level believe to be the state of the 
world; yet it is not at all obvious how to perform such 
a mapping under previous proposals. 

In the next section, we show that each interpretation 
corresponds to a set of MLS entities. In Section 5, 
it will be easy to define the semantics of queries and 
updates by explaining the effect of the operations on 
the levels of the interpretation of the MLS database, 
or on its MLS entities. Previous proposals had no 
such model to fall back upon, and so their answers to 

queries and updates differ sharply from our own. 

2.2 Multilevel Secure Entities 

Let us consider the need for additional constraints on 

the schema of the interpretation of an MLS database. 
Consider an ordinary (non-MLS) relation R with key 
K (K may be a set of attributes), plus m non-key 
attributes: R(K, Al, . . . , A,,,). When R is used in an 
MLS schema, K will not function properly as an en- 

tity key. For example, if subject s inserts a tuple with 
key k, s does not know if a tuple with key k already 
exists in some database at a higher level. If key k has 
already been used at a higher level to identify a differ- 

ent entity, then reuse of the key at a lower level will 
make it impossible to unambiguously refer to these en- 

tities. Rejecting the insertion request would introduce 
a covert channel. Property 1 addresses this facet of 
the polyinstantiation problem. 

Property 1 [Key Classifications]. 

The schema for every relation R in the 
interpretation must include a ‘key clas- 

sification’ attribute KC, representing the 
security level of the information in K: 
R(K, KC, AI,. . . , A,). The domain of KC 
in a database at level 1 is the set of lattice 
levels dominated by 1. Furthermore, K con- 
catenated with KC (written K 1 KC, and 

called the entity identifier (eid)) functionally 
determines all the attributes of R within the 

database at level 1. 

The inclusion of KC allows us to differentiate be- 
tween the entities believed to exist by different levels. 
For example, level S can include information about 
the existence of a secret starship named Enterprise. 

Later, level U can innocently name a new starship 

‘Enterprise’, and record information about it in the 
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database at level U. There is no confusion between 
the starship at level U and that at level S: they are 
different entities with different eids. If, on the other 

hand, the starship newly described at level U is in fact 
the same as the starship described at level S, level S 
can record the fact that the two entities are the same 
by changing KC to ‘U’ in its records on the Enter- 
prise. The S-level information recorded about the En- 
terprise can still be quite different from that recorded 

at level U, corresponding to a better understanding at 

the higher security level regarding the true nature of 
the Enterprise. Finally, level S can record its belief in 
both starships, by including in the database at level S 
a tuple with eid ‘Enterprise U’ and a tuple with eid 
‘Enterprise S’. The tuples refer to distinct real-world 

entities. 
The attribute(s) K that the user originally desig- 

nated as a key for R may of course fail to be a key 

in the interpretation of R at a level. The above case 
of level S believing in both Enterprise starships is an 
example. For this reason, we call K the apparent key 
of R. 

Because the eid functionally determines the other 
attributes of R at level 1, l’s database cannot contain 
two different beliefs about the value of an attribute of 
a entity; the beliefs of a level about an MLS entity 
are unique. As an example, the two tuples of Figure 4 
violate Property 1, since they differ on the secret ob- 

jective of the starship Voyager. 

Starship KC Objective Destination TC 

Voyager S Shipping Mars S 

Voyager S Swing Mars S 

Figure 4: Violation of Unique Belief Requirement 

In including KC in the key for an entity, we have 
altered the original schema for R and diverged from 

the standard definition of an entity. In the ER model 
[Che76], entities are real world objects which ex- 
ist, have associated attribute values, and are distin- 
guishable from other entities [KS91]. MLS relational 

databases differ from the standard relational model in 

that entity existence and attributes are not modeled 
by a single tuple. In the MLS relational model, a sin- 

gle real-world entity can be described in several tuples, 
each at a different level, as in the Enterprise example. 

We call these multilevel secure (MLS) entities; they 

correspond to real world entities for which a range of 

different beliefs, or levels of secure understanding, can 
be represented.4 

‘Note that due to the lattice structure, there is no means of 

recording the fact that two lower incomparable levels are in fact 
describing the same real-world entity. 

More precisely, the MLS entity from relation R with 
entity identifier eid is obtained as follows: we append 

an additional attribute TC (tuple class) to R, such 
that in each database the value of TC is the level label 
of that database. The entity is the set of tuples 

unioned over all database levels. In addition, to make 
the entity self-describing, it is tagged with the schema 
information for R and a copy of the security lattice. 
Every interpretation can be transformed into exactly 

one set of MLS entities by applying this derivation to 
all relations and all eids. 

One can also show that this mapping is invertible, 
by giving a direct definition of MLS entities that in- 
cludes all applicable constraints (no nulls in keys, same 
schema for every relation, tuple class must dominate 
key class, etc.). We will omit the direct definition, 
since it is not needed for our purposes. 

The tuples of an MLS entity record whether each 
level believes in the existence of the entity, and, if exis- 

tence is believed, then possibly additional information 
about the values believed to hold for attributes of that 
entity. A tuple at level 1 that contains all null values 
except for the entity’s eid means that the subjects at 
level 1 believe that the entity exists, but have no be- 

liefs about what its values are. It is immediate that 

if no tuple for a particular eid appears at level 1, then 
subjects at that level do not believe that that entity 
exists. As a mechanism for uniquely identifying MLS 
entities, at the time an MLS entity first appears in 

the database, it must have a base tuple, a tuple whose 

key class and tuple class are equal. A base tuple is a 
lowest-level database tuple where the existence of an 

entity is asserted. 
For example, consider a starship relation in our 

simple three-level database, where the existence of 

the starship Enterprise is asserted by level U. The 
MLS entity with eid Enterprise U is shown in Fig- 
ure 5. The base tuple of Enterprise U comes from the 

Starship KC Objective Destination TC 

Enterprise U Exploration Vulcan u 

Enterprise U Exploration Romulus S 

Figure 5: The MLS Entity Enterprise U 

database at level U. Level S agrees that Enterprise U 
(the Enterprise believed in by level U) exists, and 

agrees with level U regarding the starship’s objective, 
but has a different belief about its destination. Note 
that the beliefs of U about the Enterprise U are seen 

by level C, but C does not believe that Enterprise U 
exists, since no C tuple belongs to Enterprise U. 
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If the level U tuple describing the Enterprise were 
deleted, then the remaining S-level tuple would record 

S-level beliefs about the Enterprise entity formerly be- 
lieved to exist by level U. Non-base tuples can provide 

a mechanism for users with a higher security clearance 

to represent their (possibly conflicting) beliefs about 
an entity in an MLS database. 

MLS entities composed of base and non-base tuples 

as a meaning for polyinstantiation is an important fea- 
ture for security applications, and is not present in 
standard relational databases. MLS entities motivate 
the semantics of the UPDATE operation of Section 5. 

3 The Syntax of MLS Rela- 

tional Databases 

Section 2 gave a semantics for MLS relational 
databases, by assigning one single-level relational 

database to each security level, providing a visibil- 

ity relation between appropriate levels, and defining 
a set of MLS entities which spans those levels. In 
this section we present a simple syntax for MLS re- 
lational databases that merges the information from 
different levels into a single multilevel database, show 
the unambiguous mapping between syntax and seman- 

tics, and argue that the attribute-level classifications 

used in most other models do not model MLS entities 
any more powerfully. In this section, we will be care- 
ful to distinguish between the syntactic representation 
of information, which we will call the database, rela- 

tion, tuple, etc., and the semantics of that information, 
which we will refer to as its interpretation. 

Suppose that, as in Section 2, we have a single-level 
relation R with scheme R(K, Al,. . . , A,), where K 
is a set of attributes that form the key for R. As in 
Section 2, each non-key attribute may assume either a 
value from its underlying domain or a null value mean- 
ing ‘value exists but no belief given.’ To convert R into 
an MLS relation, we add new attributes KC and TC, 

giving scheme R(K, KC, AI, . . . , A,, TC). The pur- 
pose of KC and TC was explained in Section 2, and 
their properties can be summarized in an analog of 

Property 1: 

Property 1’ [Key Classifkations]. 
The schema for every relation R must include 
a ‘key classification’ attribute KC, represent- 

ing the security level of the information in 

K, and a ‘tuple classification’ attribute TC, 
representing the security level of the remain- 
der ofthetuple: R(K,KC,Al,...,A,,TC). 
The domain of TC and KC is the set of se- 
curity levels, with the restriction that in a 

particular tuple, the attribute value for TC 
must dominate that for KC. Furthermore, 

K 1 KC / TC must functionally determine 
all the attributes of R, and together form the 
key of the syntactic relation R. 

An MLS entity from relation R consists, as before, 
of all the tuples of R having the same eid (K 1 KC). 

As an example of an MLS relation, consider the fa- 
miliar SOD relation in Figure 6. The interpretation 

Starship ] KC Objective Destination 1 TC 

I~~ 

Figure 6: SOD: An MLS Relation for Starships 

of SOD (formalized below) contains three databases. 
In the level U database, the relation interpretation for 
SOD contains the first two tuples of SOD (those hav- 

ing a TCof V), with the TC attribute removed. Levels 
C and S of the SOD interpretation contain the third 

and fourth tuples, respectively, truncated. 
We now show the unambiguous mapping between 

our syntax and our semantics. Every syntactic MLS 
database has one interpretation, constructed from the 

syntactic database as follows. The interpretation con- 
tains one database for each level in the security lattice. 
The database at level I is related to the one at level 1’ 

iff 1 dominates I’. The relation schemas at each level 

are the same as those in the MLS database, except 
that the TC attribute of each relation is removed in 
the interpretation. The instance of R in the interpreta- 
tion at level 1 is obtained by selecting all those tuples 
of R in the syntactic database that have value I for 
attribute TC, and then projecting out TC. 

Each interpretation so obtained is a legal interpre- 
tation. First, the interpretation has the same schema 
at each level. Second, it has no nulls in non-key at- 
tributes, because the syntax for R forbids nulls in K, 
KC, and TC. Third, it satisfies Property 1: Every re- 

lation schema at level 1 contains a key classification, 

whose domain will not include any values that are 

higher than I, by Property 1’. In addition, Property 1’ 
guarantees that K 1 KC 1 TC functionally determines 
all the attributes in the syntactic R. Therefore if all 
tuples of R are guaranteed to have the same value for 
TC, K 1 KC will functionally determine all attributes 

of R. Therefore K 1 KC functionally determines all 
the attributes in the interpretation of R at a particular 

level. 

Conversely, every MLS interpretation can be ex- 

pressed as an MLS database by appending a new TC 
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attribute to each relation scheme in the interpretation, 

giving each tuple at level 1 the value 1 for attribute 

TC, and then taking the union of the tuples at differ- 
ent levels for each relation. It is immediate that the 
composition of the mappings from syntax to semantics 
and back again is the identity function. 

3.1 Properties of this Syntax 

Semantic ambiguity exists when one MLS relation can 
have more than one interpretation. Previous MLS pro- 
posals have not included any definition of semantics; 
the example of Figure 2 show that it is easy to think 

of multiple interpretations for those syntactic propos- 
als, in which the same database corresponds to several 

distinct sets of MLS entities. Conversely, it is easy to 
think of several ways to represent the same MLS en- 

tity under the syntax of previous examples, which is 
syntactic ambiguity. The one-to-one correspondence 
between syntactic databases and their semantic inter- 
pretations in our proposal prevents both syntactic and 
semantic ambiguity. 

We also argue that strict attribute-level security 
classifications (one security attribute for every data 

attribute) do not model MLS entities any more pow- 
erfully. Most models use an attribute level security 

scheme in an effort to provide maximum modeling 

power [JS91, DLSS87]. 0 ne way to define modeling 
power is the ability of a particular syntax to express a 
particular semantics, such as we have defined in Sec- 
tion 2. Since other proposals do not present a seman- 

tics for MLS databases, it is difficult to define ‘model- 

ing power’ in their cases. However, we argued in Sec- 
tion 2 that any MLS syntax should be reducible to a 
semantics that includes a set of single-level databases, 
showing what is believed at each level, and which can 
be used to capture the concept of MLS entities. The 
current section has shown that it is easy to capture 

such a semantics using a syntax in which non-key data 

attributes are uniformly classified. Only two security 

attributes per relation are needed to model MLS enti- 

ties under this approach ‘. 

4 Comparisons 

Several of the concepts introduced in Section 2 have 
been proposed in other MLS relational models. For ex- 

ample, key classifications are used in all MLS relational 

proposals to date. A functional dependency equivalent 

to Property 1 was proposed and called ‘Polyinstantia- 
tion Integrity’ in [JS91] and [DLS+87]. The semantic 

‘An MLS relationship [Smi92] can require more than two 

security attributes per tuple, however less than one per data 
attribute is required in general. 

concept of eids has not been proposed before. A con- 

cept of MLS entities can be detected in several papers 

[JS91] [HOT911 as well. One author goes so far as to 

state that tuples with the same apparent key but dif- 
ferent key classifications refer to different entities, and 
tuples with the same apparent key and key classifica- 
tion refer to the same entity [LunSl]. 

Previous authors have not made use of MLS entities 
to give meaning to relational operations as we do in 
Section 5. They have also not considered the questions 
of relationships between MLS entities, or the question 
of what exactly users at each level believe to be the 
state of the world, as we do in Section 2. None of 
them have introduced a formal semantics for their data 

model or operations. 
In the following, we consider the work of other 

database security researchers, as it relates to the work 
of this paper. We compare our model with other ex- 
isting MLS relational models. Since no other MLS re- 
lational model develops a semantics, no comparison is 
made at that level, although we note stated intentions. 
Instead, we summarize the syntactic properties of each 
and make observations and comparisons with our own. 

We focus on the recent Jajodia-Sandhu model in our 
comments. 

4.1 The Jajodia-Sandhu Model 

In the Jajodia-Sandhu (JS) model, an MLS relational 
database is a set of multilevel relations, whose defini- 
tion is different than that in our proposal The schema 

for a single-level relation R(A1, . . . , An) becomes 

R(Al,Cl,A2,G I..., A,,C,,TC) 

under the JS model, where each Ai is a data attribute 

over a domain Di, each Ci is a classification attribute 

for Ai, and TCis the tuple-class attribute. The domain 

of each Ci is specified by a range [Li, Hi] which defines 
a sub-lattice of access C~ZI.SS~S ranging from Li up to Hi. 

The domain of TCis [lub{Li : 1 < i _< n}, lub{Hi : 1 5 

i 2 n}] (where lub denotes least upper bound). 
A relation instance is a set of tuples, each of the 

form 

(al, Cl, a2, c2,. . . ,%,cn,tc), 

where each oi E Di or oi = null, ci E [Li, Hi], and 
tC = lub{ci : 1 5 i 5 n}. 

A subset of the attributes of an MLS relation is des- 

ignated as its user-specified key K. As in our proposal, 

K is not a key in practice, due to polyinstantiation; 
therefore K is also called the apparent key. In the JS 
model, K is restricted in two ways, both of which are 
included in our own proposal: tuples cannot contain 

nulls in K, and all attributes of K receive the same 
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classification in a tuple. KC, the classification of the 
key, is therefore spoken of as though it were a sin- 

gle attribute in the JS model. The value of KC must 
dominate the classification of any attribute in R: if an 
attribute of R is visible to a user, then its key is too. 

Additionally, the JS model requires that all data at- 
tributes receiving a null value be given the same clas- 

sification as KC. This means subjects cannot state 
that, in contrast to what might be believed at lower 
levels, they are uncertain about the value of a partic- 
ular attribute. 

The JS model constrains schemas in additional 
ways. First, the JS model introduced the concept of 
Polyinstantation Integrity, from which the functional 

dependency in our Property 1 is drawn: 

[Polyinstantiation Integrity]. 

{K, KC, Ci} 4 Ai must be satisfied in an 
MLS relation R for all 1 _< i 5 n. 

With a security label on each field, in the extreme 
case a single tuple can contain a different security class 
for each data attribute label. Therefore, there is no 
direct and simple correspondence between a syntactic 
tuple in a JS MLS relation and the set of beliefs of 
a security class about an MLS entity, in the style of 
Section 2. 

In the JS model, if 1 dominates all the security lev- 
els present in a tuple, then the subject can see that 

tuple. If all the security levels present in a tuple dom- 
inate 1, then the subject cannot see that tuple. How- 
ever, if 1 dominates some security levels in a tuple 

but not others, then during query processing the JS 
model uses a filter function 4 to replace by nulls all 
attribute values that the user does not have the clear- 
ance to see. Given a tuple t, and level I, for which 
KC _< I 2 ltib{ci : 1 _< i _< n}, a(t,Z) returns a tu- 
ple t’ using the following procedure. For each non-key 

attribute Ai in t, 

Unfortunately, g introduces an additional semantics 
for nulls: a null value can now mean ‘information hid- 

den.’ As ‘value exists but is unknown’ nulls can also be 

present in the database, it is hard for a subject to tell 
what is believed by its own level, as information hid- 

den by higher layers may look like uncertainty present 
at the subject’s own level. 

Another source of semantic and syntactic ambiguity 
is that there is no means of determining whether tu- 

ples with the same key but different key classifications 
refer to the same or to different underlying entities. 

For instance, no semantic distinction is made between 
the two tuples of Figure 7, which might have the same 

meaning in the JS model, despite their syntactic dif- 
ference. In Figure 7, Ci immediately follows A;. 

Starship Objective Destination TC 

Enterprise U Diplomacy C Romulus C C 
Enterprise C Diplomacy C Romulus C C 

Figure 7: SOD: Possible Tuples 

In the JS model, it is difficult to determine exactly 
what a subject at level 1 believes and thinks that others 
believe, due in part to the problems with nulls and with 
entity identity described above. It is unclear whether 
higher levels that make no statement about an entity 
inherit the beliefs of lower levels or not, or how conflict- 
ing beliefs from lower levels could be resolved. There 
is no way for a level to state that it does not believe 

in the existence of an entity that lower levels believe 

in. In addition, queries are evaluated over all tuples 

seen by the subject, even though the answers to such 
a query might not be believable by any level in the 
database. 

4.2 The Denning-Lunt Model 

The Denning-Lunt (DL) model [DLS+87] is being used 
in the SeaView project, a joint effort between SRI In- 

ternational and Gemini Computers to produce an MLS 

relational database. This project uses attribute level 

security and was the first to point out the important 
issue of polyinstantiation. The DL model is similar to 
the JS model: each attribute of a tuple has an indi- 
vidual security level, and key attributes are uniformly 
classified and cannot contain null values. The most 
notable difference is in the treatment of polyinstanti- 
ation. It was shown in [JS90] that the DL model can 
produce a number of tuples exponential in the num- 
ber of non-key attributes in a relation. [JS90] argues 
that these tuples are spurious. This proliferation of tu- 
pies on updates is traced to the DL requirement that, 

in addition to Polyinstantiation Integrity, the key and 
its classification must determine each attribute and its 

classification via a multivalued dependency. This lat- 

ter requirement is dropped in the JS model. 

Other MLS database work done by Teresa Lunt in- 
cludes work on an object-oriented model [LunSO] which 

proposes multilevel objects and defines constraints for 
their secure classification. This work has been ex- 
tended to object-oriented databases with the expert 
systems functionality of forward and backward chain- 

ing rules to implement, among other things, classifica- 

tion constraints on data [GL90] [LM89]. 
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In a recent paper [LunSl], Lunt discussed the 
need for understanding the affect of semantics on 
polyinstantiation, and proposed a solution in har- 
mony with the approach developed in this paper. 

She distinguishes between polyinstantiated elements 
and polyinstantiated tuples. Polyinstantiated elements 
correspond closely to MLS entities (although in an 

attribute-level classification scheme). The operations 

of [DLS+87] are being adjusted to reflect this new se- 
mantic understanding. 

4.3 The LDV Model 

The LDV model, proposed in [HOT91], is also the 
base of a research protoype. This model eschews at- 
tribute level security, seeking instead to obtain mod- 

eling power by augmenting the model with syntactic 

tools such as the derive option. The derive option per- 
mits a user to require that the value of an attribute at 

a lower tuple is automatically copied up into that at- 
tribute of its own higher-level tuple. The LDV model 

makes mention of the existence of ‘multilevel entities’; 
however, the concept is not developed. 

5 Operations 

In this section, we present simple MLS versions of four 
SQL relational operations: select, insert, update, and 

delete, defined on the MLS relational syntax presented 
in Section 3. We assume the MLS relations involved 

contain MLS entities, as described in Section 2.2. The 
syntactic effect of each operation on the tuples of the 
relation is defined by its effect on the semantic inter- 
pretation of the relation. For the update operation, 
the semantics are motivated by operation’s effect on 
the MLS entities involved. In contrast, the operations 
defined in [JS91, DLS+87] are based purely on syntac- 
tic manipulations. 

Recall from Section 2 that subjects can only change 
beliefs at their own level. The INSERT operation as- 
serts the existence of new MLS entities, and the UP- 

DATE operation alters a level’s beliefs regarding pre- 

existing MLS entities. In the following notation, the 
rectangular brackets denote optional items, and ‘*’ de- 
notes zero or more repetitions. 

5.1 Select 

The SELECT statement has the following general 
form: 

SELECT -4 [,Ai]* 
FROM & [, RI]* 
WHERE P 

[BELIEVED BY L] ; 

In this operation, as in those described in subse- 

quent subsections, the SELECT, FROM, and WHERE 
clauses are ordinary SQL syntax with the ordinary 
SQL syntactic restrictions. Nested SELECTS cannot 
have a BELIEVED BY clause, for reasons explained 
below. TC may not appear in the SELECT clause; it 

is implicitly part of the answer to every query. 

The clause BELIEVED BY tells which database in- 
terpretation levels the query is to be evaluated against. 
L is a list of one or more security levels or security vari- 
ables, described below. If the BELIEVED BY clause 
is absent, L is set to the security variable SELF. 

Before query execution, security variables in L are 
replaced by explicit security levels. SELF is replaced 
by the level of the query issuer. ANYONE is replaced 
by a list of all levels that the query issuer dominates. 
If the level of the subject issuing the query does not 
dominate some security level in L, then that level is 
eliminated from L. The use of security variables per- 

mits the same query to be used in different levels of 
the security lattice without being rewritten. 

The result of the SELECT operation is defined with 
respect to the database interpretation, as follows: The 
entire query including subqueries (but minus the BE 
LIEVED BY clause) is evaluated separately at each 
level of the database interpretation in L, using or- 
dinary SQL semantics, producing an answer at each 
level. The answers can be converted to syntactic form 

by appending a TC attribute to each answer tuple, 

and unioning the answers from all levels. A cascade of 
queries is also meaningful, and is defined in the obvious 
way. 

To list the beliefs of all visible levels about the des- 
tination of starship entity Enterprise U of Figure 6, 
we use 

SELECT Destination 

FROM SOD 

WHERE Starship = “Enterprise” 

andKC=U 

BELIEVED BY ANYONE; 

which returns {Vulcan, U; Romulus, C} for a user 
classified C or higher. With an empty WHERE clause, 

this query would return all visible beliefs about des- 
tinations of all starships in SOD, which is {Mars, U; 

Vulcan, U; Romulus, C; Romulus, S} for users classi- 
fied S or higher. 

The semantic definition of SELECT can be used to 
evaluate SELECT directly against a syntactic MLS 
database, by modifying the query before execution as 
follows: For each level 11 through 1, in L, a new query 

expression is formed by conjoining the WHERE clause 
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in the original query (and each of its subqueries) with 
a clause making each new query specific to one seman- 

tic database. For level 1; having relations rr through 
T,, in its FROM clause, the new query is formed by 
conjoining its WHERE clauses with: 

In this new query, the SELECT clause is augmented 

with rl.tc, and the BELIEVED BY clause is removed. 
Finally, the union of the m new query expressions is 

formed. This resulting SQL query is evaluated against 
the syntactic MLS database in the standard way. 

We prohibit BELIEVED BY clauses in subqueries, 
thus preventing joins between tuples from different lev- 
els. Cross-level joins can be useful as metaqueries, 
such as, “give me all eids for which there exist differ- 
ent beliefs at different levels.” Although metaqueries 
are easy to define syntactically, we have not included 
them here because we do not have a good semantic 

definition for them. 

5.2 Insert 

The INSERT statement has the following general form: 

INSERT 

INTo R [(Ai [,Aj]* > ] 
VALUES(aj [, aJ*); 

INSERT places a new MLS entity into the database 
by inserting a base tuple in the database interpretation 

at the level of the requestor. The base level’s belief in 

the existence of the new entity, and in its attribute 
vaIues, are asserted in the inserted tuple. In the in- 

serted tuple, attribute Ai is given the constant value 
ai. KCis automatically set to the level of the subject; 
KC and TC cannot appear in the VALUES clause. 
The remaining key attributes must be assigned non- 
null values, else the request is rejected. Any omitted 

non-key attributes of R are assigned a null. 
Due to Property 1, if a base tuple already exists with 

eid matching that of the inserted tuple, the insertion is 
rejected. This rejection does not open a covert chan- 

nel, since the tuple causing the rejection is already 
visible to the issuer. 

We set one strong restriction on INSERT: that users 
at a particular level not reuse their old entity keys 

for new entities. For example, if the Enterprise U is 
blown up, a new starship could be named Enterprise- 

II U but not just Enterprise U. This restriction guar- 
antees that after the deletion of an entity at a lower 
level, higher levels can continue to believe in that same 
entity, with no possibility of confusion between the old 

entity and any new entities introduced later on at lower 

levels. 

5.3 Update 

The UPDATE statement has the following general 

form, in which the SET clause cannot contain TC, 
KC, or other key attributes. 

UPDATE R 
SET 
WHERE 

$$ = ai [,Aj = uj]* ) 

[BELIEVED BY ~51; 

The semantics of UPDATE are a bit subtle. The 

WHERE and BELIEVED BY clauses select tuples of 
R in the database interpretation at any level specified 

in L, just as for SELECT. Due to the update access 
property, only tuples at the level of the issuer can be 
altered. Therefore, unlike the traditional UPDATE, 
the set of tuples selected is not always the same as 
those updated. 

The response to this mismatch is motivated by MLS 

entities. The WHERE and BELIEVED BY clauses 
are used to describe attributes of a set of MLS enti- 
ties in R. The set contains those entities which match 
the attribute values in the WHERE clause at any of 
the levels of L (duplicate entities are removed from the 

set). The SET clause alters a level’s beliefs about these 
entities, setting attribute Ai = ai, where ai is an ex- 
pression involving constants, relational attributes and 
appropriate operators (such as the arithmetic opera- 
tors). 

Imagine an extra Speed attribute in relation SOD. 
We can increase Speed for the Voyager U by 10% with 

the following update issued by a U subject: 

UPDATE SOD 
SET Speed = Speed * 1.1 
WHERE Starship = “Voyager” and KC = “U”. 

This query selects the Voyager U entity, and increases 
the speed given for it at the U level by 10%. 

It may be the case that the updator’s level 1 has ex- 
pressed no beliefs yet about a particular entity quali- 
fied by the WHERE and BELIEVED BY clauses. In 
this case, a new tuple for that entity is formed and in- 

serted in the level 1 database interpretation to contain 

I’s beliefs expressed in the SET clause. (The value ai 

must be a constant in this case.) The eid of the tuple 

is set to the entity’s; any non-key values not given in 
SET are set to null. 

As an example of a new tuple being formed as the 
result of UPDATE, consider relation SOD of Figure 6 

again. Suppose an S subject issues the command 

UPDATE SOD 

SET Destination = “Earth” 

WHERE Destination = “Romulus” 
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BELIEVED BY ANYONE; 

meaning ‘Every starship anyone (whose beliefs I can 

see) believes is headed to Romulus, I now believe is 
headed to Earth’. Figure 8 shows the updated relation. 
The MLS entity Enterprise U satisfies the WHERE 

Starship KC Objective Destination TC 

Voyager U Shipping Mars U 

Figure 8: SOD: Update Rerouting to Earth 

and BELIEVED BY clauses. Level S had not pre 
viously expressed any beliefs about Enterprise U, so 

the update results in a new tuple for Enterprise U at 

level S. 

This semantics permits the scope of an update to be 
narrowed to a single entity by specifying a WHERE 
clause which qualifies only one eid. This is a semantic 
solution to the problem of tuple proliferation: when 
one eid is qualified in p, at most one tuple will be 
added to the database and to its interpretation. For 
example, if an S subject issues the command 

UPDATE SOD 
SET Destination = “Earth” 
WHERE Starship = “Enterprise” 
BELIEVED BY ANYONE; 

against Figure 6, the result is the same as Figure 8, 
except that the Zardor tuple is not updated. The up- 
date causes the database to grow by only one addi- 
tional tuple. Under the JS model (which uses attribute 
classification), the same update doubles the number of 
Enterprise U tuples, to four. This occurs because the 
effect of an update in the JS model is determined by 
considering each tuple separately, without considera- 

tion of MLS entities. 

Note that UPDATE cannot be used to change an 
eid. That change can be accomplished by a combina- 

tion of other DML operations, or by introduction of a 
new command to express that a higher-level entity is 

in fact the same entity as one introduced at a lower 
level. 

5.4 Delete 

The DELETE statement has the following form: 

DELETE 

FROM R 

WHERE p 

A DELETE request says that the issuer no longer 

believes in the existence of the entities qualified by p. 
Tuples are selected from the database interpretation at 

the level of the issuer, using the WHERE clause as in 
an ordinary MLS query. Then the selected tuples are 
removed from the database interpretation at that level. 
No BELIEVED BY clause is needed for DELETE, be 
cause a subject can only retract belief in entities that 
exist at the subject’s own level. If a deleted tuple was a 

base tuple, higher level beliefs about that same entity 
will persist. 

6 Conclusions 

In this paper, we have presented syntax and semantics 
for an MLS relational database, with an unambigu- 

ous relation between the two. Our semantics is based 
on Kripke-like database interpretations, which express 

the beliefs held at different security levels about a set 
of shared entities. These multilevel secure entities ex- 

pand on the traditional definition of an entity to per- 
mit expression of multiple levels of secure understand- 
ing about the value of an attribute. Syntactically, 
we present a simple representation of MLS relational 

databases which we show expresses the full meaning of 
our semantics without ambiguity (semantic or syntac- 
tic) and without the need for attribute level security. 
Other problems present in previous models, such as 

ambiguous null values and tuple proliferation under 
updates, are resolved in our model. We believe that 
our semantics is useful and general, and that it can be 
a useful retrofit for other models with existing imple- 
mentations. 

We deiine the select, insert, update, and delete op- 
erations for our model, deriving the effect of each op- 
eration from its effect on the semantic interpretation 
of the relations involved. Queries are unambiguously 
defined by clearly expressing the particular set of be- 
liefs in the database interpretation the SELECT state- 

ment is to retrieve, using a BELIEVED BY clause. 

The particularly difficult UPDATE operation is de- 

fined through its effect on preexisting MLS entities. 

We have recently generalized our model to include 
MLS relationships, enabling standard ER modeling 
techniques to be utilized in the design of a multilevel 

secure databases [Smi92]. Also, we have extended our 
model to allow a level to believe by default what a 

lower level believes, unless explicitly overridden, pre- 
venting the generation of potentially many tuples to 
state agreement with a lower belief. 

As future work, we plan to develop the semantics 

of meta-queries, involving cross-level joins into Our 
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model. Also, levels may wish to respond automatically 
to certain kinds of changes that take place at lower 

levels. Database-integrated production rules, such as 
those implemented within Starburst [WF90] and Post- 
gres [SHP88], have recently been integrated into the 
MLS database framework [SW92]. We believe that 
the greater flexiblity offered by rules permits the ex- 

pression of contextually dependent responsive policies 
which will solve such problems within the framework 

of mandatory security. We plan to develop a frame- 
work for extensible secure policies, which may be im- 
plemented by rules. 
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